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ABSTRACT

The Arctic is a region with unique climate features, motivat-
ing new Al methodologies to study it. Unfortunately, Arc-
tic sea ice has seen a continuous decline since 1979. This
not only poses a significant threat to Arctic wildlife and sur-
rounding coastal communities but is also adversely affecting
the global climate patterns. To study the potential of Al in
tackling climate change, we analyze the performance of four
probabilistic machine learning methods in forecasting sea-ice
extent for lead times of up to 6 months, further comparing
them with traditional machine learning methods. Our com-
parative analysis shows that Gaussian Process Regression is
a good fit to predict sea-ice extent for longer lead times with
lowest RMSE score.

Index Terms— Arctic sea ice, climate change, proba-
bilistic machine learning, Gaussian Process Regression

1. INTRODUCTION

The enormous areas of Arctic ice and snow are responsible
for reflecting sunlight back to space which keeps the planet
cool and regulates global and regional weather patterns [11].
However, the Arctic sea ice has seen a continuous decline
since 1979 and is half of what it was in 1970. It is impor-
tant to predict fluctuations in the Arctic sea ice by modeling
the weather patterns as it can improve our understanding of
potential changes facing the global climate. Since the cli-
mate data presents high spatiotemporal correlations, machine
learning models have shown promising results in spatiotem-
poral data mining leading to short and long term weather fore-
casting [10]. In order to convince physicists of the potential
of these data-driven approaches, however, quantifying model
uncertainty still remains a major challenge. Probabilistic ma-
chine learning models, particularly Bayesian models, provide
a principled approach for quantifying uncertainty. Though re-
cent data-driven approaches have shown promising results in
sea-ice forecasting, they still struggle with sub-seasonal fore-
casting at longer lead times [2, 3]. We therefore present a
rigorous study of four probabilistic models and two baseline
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models to forecast sea ice extent at multiple lead times, fur-
ther proposing directions to quantify epistemic uncertainty
in model predictions. Our results illustrate the value of the
probabilistic modeling approach in this context. We have
open-sourced our work at github.! The contributions of our
work include: (i) Customizing probabilistic machine learning
models to forecast sea ice extent (SIE) at lead times of 1 to
6 months. (ii) Performing a rigorous study of the accuracy
versus lead-time tradeoff for the implemented models. (iii)
Benchmarking the performance of probabilistic and standard
models to assist researchers in forecasting sea ice variations.

2. METHODOLOGY

In this section, we will first explain the problem definition
and then provide details on the dataset used and the methods
implemented. The end-to-end pipeline of the benchmarking
process is illustrated in Figure 1. A high-level summary of
our comparative analysis is given in Table 1.
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Fig. 1. End-to-end pipeline of our benchmarking experi-
ments.

2.1. Problem Definition

Owing to the fluctuations in sea-ice over summer and winter
seasons, accurate sub-seasonal forecasting becomes a great
challenge. To tackle this challenge, we compare the predic-
tions of all six models at a lead time of 1 to 6 months. We
specifically look at the following problem definition: Given N
months of historic meteorological and sea-ice data X, learn a
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Table 1. Comparison of predictive models and their important characteristics

Methods Purpose Variables  Type Probabil- Uncertainty Quantification
istic
MLR Regression teghmque; uses more than one in- Multivariate ML No Indirectly via model ensem-
dependent variable to predict a response [1]. bles
Sequence prediction or time-series forecast- Indirectly via dropout lavers
LSTM ing; predicts future values over large time pe- Multivariate DL~ No y p Y
. or model ensembles
riods from sequence of data [5].
Regression  technique; non-parametric
GRNN method .that provides es.tlmates of fzont}nu- Multivariate DL Yes Yes
ous variable and function approximations
[9].
GPR Regrgsspn te(fhnlque; fzomputes predictive Multivariate ML Yes Yes
distribution using Bayesian approach [8].
Sequence prediction; capable of observing . .
HMM unknown facts using Markov process that Univariate ML  Yes ;I;S;rectly via model ensem-
contains hidden parameters [4].
Regression technique; outcome is drawn
BLR from a probability distribution instead of Multivariate ML  Yes Yes
point estimates [7].

probabilistic function to forecast sea-ice extent Y for the next
M months in future.

Y?‘H»m - f(thnathnﬂ»ly"')Xt) (1)

2.2. Dataset

This study utilizes 512 temporal records of observational data
for 42 years from 1979-2021 over the Arctic region. These
records include monthly mean values of sea-ice extent (SIE)
from Nimbus-7 SSMR and DMSP SSM/I-SSMIS passive mi-
crowave data version” and 9 meteorological data variables ob-
tained from ERA-5 global reanalysis product.® The choice
and details of these variables is presented in our previous
causal discovery study conducted on Arctic sea-ice [6]. To
conduct our experiments, we first combined all the raw vari-
able datasets to have single temporal and spatial resolution,
i.e. monthly means and 1 degree (180 lat.x360 lon.) of spa-
tial resolution. Next we replaced missing values with inter-
polated values for sea-ice and replaced other missing values
with 0. Finally we normalized data using the MinMax nor-
malization technique.

2.3. Baseline Models

We implemented two widely used predictive models as base-
line methods to compare with our probabilistic models. These
include the Multiple Linear Regression (MLR) and Long
Short Term Memory Model (LSTM).

2NSIDC (nsidc.org/data/NSIDC-0051)
3ECMWEF (cds.climate.copernicus.eu/cdsapp!/home)

2.3.1. Multiple Linear Regression (MLR)

We trained a Multiple Linear Regression model to predict sea
ice extent values with a sequential split on the data contain-
ing all 10 variables including sea ice extent as input features.
The predicted sea ice extent values are for a lead time of M
months. Here, M is from 1 to 6. Six MLR models are trained,
one for each lead time.

2.3.2. Long Short Term Memory Model (LSTM)

LSTM is a variant of the Recurrent Neural Network (RNN)
used for time series data analysis and forecasting. Our LSTM
based network comprises two many-to-many LSTM and one
many-to-one LSTM layer, one dropout layer and three fully-
connected layers. Like MLR, we trained six LSTM mod-
els for 6 months’ lead times and optimized them using the
‘Adam’ optimizer.

2.4. Probabilistic Models

We implemented following four probabilistic models for fore-
casting sea ice extent for lead times of 1 to 6 months.

2.4.1. General Regression Neural Network (GRNN)

GRNN is a modified form of a radial basis network (RBF),
that estimates values for continuous variables using nonpara-
metric estimators of probability density functions (PDF) [9].
GRNN uses an extra layer of summation and weight connec-
tion between the hidden and output layer. The summation
layer takes the input from previous layers and sums those val-
ues together to form the probability density function (PDF)
using the Parzen window. GRNN uses Equation 2 where y
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is the estimator output, = is the estimator input vector and
El[y|z] is the expected value of output. For the given input
vector x, f(x,y) would be the joint PDF of x and y:

Sy f(y))dy
T fy))dy

Ely|z] 2)

2.4.2. Hidden Markov Model (HMM)

HMM is a statistical model able to observe hidden events us-
ing a Markov process. It consists of (i) a sequence of observ-
able variables, (ii) a sequence of hidden states, (iii) a transi-
tion matrix, and (iv) an emission matrix to explain distribu-
tion of observed variables generated from the hidden states.
The transition matrix is composed of probability for each hid-
den state transforming to the other, while the emission matrix
comprises probabilities for each observed variable to be gen-
erated by the corresponding hidden states. We implemented
the GaussianHMM variant of the model as it handles contin-
uous distributions for observation state sequence. The num-
ber of hidden states is kept at six as the sea ice extent of six
lead times need to be estimated, and the fractional changes
are taken as features.

2.4.3. Gaussian Process Regression (GPR)

We find GPR a good fit for our problem since it is a pop-
ular non-parametric probabilistic model for regression with
a Bayesian approach. Instead of calculating the probability
distribution of parameters of a specific function, GPR calcu-
lates the probability distribution over all admissible functions
that fit the data. Therefore, when we fit GPR on our train-
ing data it estimates the posterior distribution. Given fea-
tures X and outcome y, GPR calculates the posterior dis-
tribution using Bayes’ rule as given in Equation 3 where w
represents the model parameters learnt. While fitting GPR,
the log-marginal-likelihood (LML) is optimized which helps
learn the parameters of the kernel. We implemented GPR by
setting the prior mean of the GP to be the training data’s mean.
We repeated the training procedure 10 times to prevent LML
from being trapped in local optima.

_ pylX, w)p(w)
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2.4.4. Bayesian Linear Regression (BLR)

Lastly, we implemented BLR to test its usability on the prob-
lem domain. In contrast to MLR, here both the output y and
the model parameters are generated from a normal (Gaussian)
distribution characterized by a mean and variance. First, we
specified priors for the model parameters using normal distri-
bution, then we created a model mapping the training inputs
to the training outputs, finally we used a Markov Chain Monte
Carlo (MCMC) algorithm to draw 500 samples from the pos-
terior distribution for the model parameters. The end result
is an estimate of the posterior distribution for the parameters

using which we can compute predicted outcomes for a given
test dataset.

2.5. Uncertainty Quantification

A valuable feature of probabilistic models is their ability to
predict probability distributions instead of discrete values.
We can estimate model uncertainty by computing variance
and standard deviation of the posterior predictive probabili-
ties given by the models. In case of non-probabilistic models,
the epistemic uncertainty can be quantified through ensemble
predictions by using multiple copies of the same model.

3. RESULTS AND DISCUSSION

We trained all models on the first 40 years of data and tested
them on last 30 months, that is, from February 2019 to August
2021. We evaluated their performance by calculating the Root
Mean Square Error (RMSE) (in million square kilometers).
To tackle such large values, we normalized RMSE scores by
dividing RMSE values with the mean of observed sea ice ex-
tent, that is, iy. Lower the values of RMSE and NRMSE, better
the predictive performance. We further investigated the vari-
ations in predicted SIE values due to input features using the
correlation co-efficient score, also known as R-Squared or R2
Score. Higher the values of R2 Score, better the performance.

Looking at the results in Table 2, it is evident that the pre-
diction error increases with the increase in lead times. The in-
creasing RMSE implies that models’ performance are greatly
affected by seasonal patterns, however, we noticed different
patterns in the performance of different models.

Evaluating the performance of deep learning models, we
see that GRNN outperformed LSTM — one of the widely used
methods for Arctic sea-ice prediction [2]. This implies that
GRNN can be a good alternative for learning non-linearities
in data alongwith uncertainty prediction over longer lead
times. In case of HMM, as it follows the forward-backward
algorithm, the steady climbing in the RMSE scores makes
sense because the prediction of each observation strongly de-
pends on the previous states; also evident by negative R2
Score. Further, we observed that GPR gets better from one
lead time to another, which makes it the best fit for the ice
extent prediction for different lead times. This commendable
performance could be due to GPR’s underlying Bayesian ap-
proach, which infers a probability distribution over all possi-
ble values, irrespective of the sequential patterns. However,
BLR performed against our expectations and had the highest
error for all lead times, making it unfit for the problem do-
main. We did not investigate BLR’s failure to reach conver-
gence but it can be inspected further in future studies. Qual-
itatively, we observed in Figure 2 that both GPR and GRNN
better captured the peak values during Summer and Winter
seasons, however GPR outperformed GRNN for the lead time
of 6 months.

4. CONCLUSION AND FUTURE WORK



Table 2. RMSE, NRMSE and R-Squared scores for all models for lead times of 1 to 6 months.

RMSE NRMSE R-Squared
Lead time | , 2 3 4 5 6 1 2 4 5 6 1 2 3 4 5 6
(months)
MLR 0.4331 | 0.8928 | 1.4292 | 1.7148 | 2.0042 | 2.1663 | 0.0412 | 0.0850 | 0.1361 | 0.1633 | 0.1908 | 0.2062 | 0.985 | 0.937 | 0.839 | 0.769 | 0.684 | 0.631
HMM 1.6535 | 3.3911 | 4.7954 | 6.3511 | 7.0038 | 7.2644 | 0.1558 | 0.3201 | 0.4540 | 0.6038 | 0.6715 | 0.7018 | 0.783 | 0.081 | -0.860 | -2.286 | -2.931 | -3.066
GPR 0.4523 | 0.4514 | 0.4055 | 0.3985 | 0.4007 | 0.3936 | 0.0430 | 0.0720 | 0.0978 | 0.1113 | 0.1197 | 0.1256 | 0.983 | 0.955 | 0.917 | 0.892 | 0.875 | 0.863
LSTM 0.6274 | 1.1022 | 1.4313 | 1.5610 | 1.7222 | 1.7636 | 0.0697 | 0.1060 | 0.1338 | 0.1561 | 0.1517 | 0.2025 | 0.958 | 0.903 | 0.845 | 0.789 | 0.801 | 0.645
GRNN 0.5784 | 0.8048 | 1.0311 | 1.2550 | 1.5549 | 1.8162 | 0.0550 | 0.0766 | 0.0981 | 0.1195 | 0.1480 | 0.1729 | 0.973 | 0.949 | 0.916 | 0.876 | 0.810 | 0.740
BLR 8.0842 | 6.5638 | 8.4614 | 7.2429 | 8.3365 | 6.6301 | 0.7618 | 0.5307 | 0.7973 | 0.6825 | 0.7856 | 0.6248 | -4.815 | -2.834 | -5.371 | -3.668 | -5.184 | -2.911
Lead time : 1 month Lead time : 2 months Lead time : 3 months
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Fig. 2. Time-series predictions from five models versus the observations for lead time of 1 to 6 months.

In this paper, we compared six of the renowned probabilistic
and standard machine learning models suitable for forecast-
ing sea-ice extent at greater lead times. We conclude that:
(i) Probabilistic models can be a good alternative to deep
learning models for small datasets. (ii) All models’ perfor-
mance decreases as lead times increase. However, GPR out-
performed MLR and LSTM with a 12% increase in R2-Score
making it the best fit for the ice extent prediction at greater
lead times. (iii) HMM and BLR are not suitable for seasonal
forecasting at greater lead times. In future, we plan to ex-
tend the benchmarking on spatiotemporal data incorporating
higher dimensions in the performance evaluation.
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