

1 **Current and emerging tools of computational biology to
2 improve the detoxification of mycotoxins**

3 Natalie Sandlin*, Darius Russell Kish*, John Kim, Marco Zaccaria, and Babak Momeni†

4 *Department of Biology, Boston College, Chestnut Hill, MA 02467 US*

5 * Equal contribution

6 † Corresponding author, momeni@bc.edu

8 **Abstract**

9 Biological organisms carry a rich potential for removing toxins from our environment, but
10 identifying suitable candidates and improving them remain challenging. We explore the use of
11 computational tools to discover strains and enzymes that detoxify harmful compounds. In
12 particular, we will focus on mycotoxins—fungi-produced toxins that contaminate food and
13 feed—and biological enzymes that are capable of rendering them less harmful. We discuss the
14 use of established and novel computational tools to complement existing empirical data in three
15 directions: discovering the prospect of detoxification among underexplored organisms, finding
16 important cellular processes that contribute to detoxification, and improving the performance of
17 detoxifying enzymes. We hope to create a synergistic conversation between researchers in
18 computational biology and those in the bioremediation field. We showcase open bioremediation
19 questions where computational researchers can contribute and highlight relevant existing and
20 emerging computational tools that could benefit bioremediation researchers.

22 **1. Background and Motivation**

23 **1.1. Context: detoxifying contaminated food and feed**

24 Fungi that grow on foodstuffs are one of the major sources of contamination in food and
25 feed; these fungi-produced toxins are called mycotoxins. Currently, an estimated 25% of world
26 crops is thought to get contaminated with mycotoxins each year (1, 2), putting a major burden on
27 agriculture and public health. Preventing contamination or detoxifying mycotoxins is a major
28 safety priority (3). In what follows, we briefly describe the threat of mycotoxins, and the
29 potentials of biological organisms to address this threat via detoxifying enzymes. We will then
30 investigate and explore the use of computational approaches to discover and improve such
31 potentials. We will primarily discuss three aspects: (1) the use of bioinformatics tools to search
32 genomic databases for candidate species and enzymes, (2) the use of genetics and genomics data
33 to investigate how the detoxification performance can be improved, and (3) the use of
34 computational tools to improve the detoxifying enzymes. While we discuss established
35 computational methods used in identifying mycotoxin degrading enzymes, we also consider the
36 use of novel, field-adjacent methods that have potential in mycotoxin detoxification.

37 **1.2. Mycotoxins are prevalent and harmful**

38 Mycotoxins are secondary metabolites produced by a variety of filamentous fungi that
39 contaminate common food crops and cause negative health effects in animals and humans. More
40 than 300 types of mycotoxins have been identified so far, all of which would be candidates for
41 detoxification (1). Among these, six major types are of particular interest and the focus of this
42 review because of their detrimental health impact and because they routinely contaminate foods

43 and animal feed (4, 5): aflatoxin (AF), ochratoxin (OT), zearalenone (ZEA), fumonisins,
44 deoxynivalenol (DON), and patulin.

45 Aflatoxins, produced by *Aspergillus* species, are one of the most carcinogenic naturally
46 occurring substances and active inducers of mutations, liver cancer, congenital malformations,
47 hormone disorders, and immunodepression (6, 7). Ochratoxin is also produced by *Aspergillus*
48 species, as well as certain *Penicillium* species, and is a nephrotoxin, immunosuppressant, potent
49 teratogen, and renal carcinogen (6, 8, 9). Zearalenone and fumonisins are produced by *Fusarium*
50 species. ZEA acts through estrogen mimicry to dysregulate the hormone receptor and antagonize
51 the estrogen pathway leading to reproductive disorders, hormone imbalance, and breast cancer
52 (6, 10). Fumonisins have been linked to esophageal cancer in humans as well as a variety of
53 health complications in animals such as pulmonary edema and hepatotoxicity (6, 11). Produced
54 by *Fusarium graminearum*, DON is a vomitoxin, causing emetic and nauseous effects after
55 ingestion (12). Finally, patulin is produced by ascomycetes such as *Penicillium*, *Aspergillus*, and
56 *Byssochlamys* species and is commonly found in fruit and vegetable products, especially rotten
57 apples and apple juice (13). Patulin ingestion is linked to a number of health complications,
58 namely immune suppression, ulcers, gastrointestinal inflammation and embryotoxicity (13).
59 There are a variety of food crops that these mycotoxins contaminate, including cereal crops such
60 as wheat, barley, corn, and oats (6, 11). Due to the serious health implications of mycotoxin
61 contamination, economic losses arise from reduction of crop and livestock yields as well as the
62 cost of decontamination efforts. Annually, the United States faces an estimated \$932 million
63 economic losses from AFs, fumonisins, and DON alone (14). This sizable economic burden is
64 faced across agriculture and livestock producers globally and requires efficient and cost-effective
65 measures as a solution.

66 Mycotoxins build up on foodstuff necessitates methods of decontamination in order to
67 supply safe foods for consumption. Currently, decontamination is limited to physical and
68 chemical methods. Physical methods, including sorting and cleaning, have been shown to be
69 effective in some but not all cases of mycotoxin contaminations. Chemical methods, which use
70 chemical agents to reduce or convert mycotoxins into less toxic byproducts, include ozonation
71 and ammoniation. While these physical and chemical methods have been used to reduce
72 mycotoxin contamination, they suffer from high operational costs and limited reliability and may
73 decrease the quality or nutritional value of the food (3, 14–16). These limitations expose the need
74 to look for better solutions.

75 **1.3. Toxin removal by biological processes is a promising solution**

76 Bioremediation, or the use of biological entities to detoxify or remove toxins in the
77 environment, is a promising alternative to current decontamination methods. Bioremediation
78 offers lower costs, fewer undesired environmental side-effects, and potentially higher efficiency
79 and reliability (17–19). The use of microbes is a particularly attractive choice in bioremediation,
80 offering faster activity and the feasibility of strain evolution and engineering for improved
81 performance (20). There are six key factors that make a good bioremediator: 1) fast and efficient
82 at degradation, 2) safe degradation products, 3) non-pathogenic to plants, animals, or humans, 4)
83 not detrimental to the quality of the food/feed, 5) applicable outside of lab settings, and 6)
84 applicable to multiple pollutants (17). Among identified mycotoxin degraders none effectively fit
85 all of these factors, with speed and efficiency often being subpar. Additionally, the mechanisms
86 of degradation by these identified microorganisms are often unknown or understudied, limiting
87 the ability to improve upon the native degradation performance. Therefore, identifying new

88 species that possess mycotoxin degradation ability and elucidating the mechanisms of
89 degradation are beneficial in making this capability effective and commercially viable.

90 **1.4. Modes of biological detoxification**

91 In the context of microbial interventions for removing mycotoxins, the two main modes
92 of detoxification are adsorption and biotransformation. In adsorption, mycotoxins are physically
93 bound to polysaccharides and proteins in the outer cell structures (21, 22). Biotransformation
94 utilizes microbes and their enzymes to convert mycotoxins into non-toxic compounds (23, 24).
95 In this paper we are solely concerned with methods to identify and improve biotransformation
96 processes. Biotransformation can be further broken into two categories (schematically shown in
97 Fig. 1): secretion of enzymes (extracellular degradation) and uptake of the toxin into the cell
98 (intracellular degradation). Intracellular degradation of toxins more closely follows normal
99 metabolic processing of molecules by microbes inside the cell. Microbes that mitigate
100 mycotoxins through extracellular degradation are more likely to produce stable enzymes that can
101 be isolated and used in practice; this has been the strategy for several existing commercial
102 products (25–27). Table 1 shows some of the bacterial and fungal enzymes that have been found
103 to degrade major mycotoxins.

104 Enzymatic degradation has been suggested in a number of studies; however,
105 identification of the degrading enzymes has proven difficult. Sangare *et al.* show a *Pseudomonas*
106 species capable of degrading AFB₁ from cell-free culture supernatant, suggesting that an
107 extracellular enzyme is responsible for the degradation (43). Screening for the effect of common
108 functional cofactors may potentially help identify the enzyme class. Similar extracellular
109 degradation has been reported for *Rhodococcus* spp., *Stenotrophomonas* spp., and *Myxococcus*

110 spp. (44–46). DON has been observed to be assimilated as a carbon source in some, but not all
111 strains (47). Other extracellular enzymes with mycotoxin degrading abilities include
112 oxidoreductase, dehydrogenase, aldo-keto reductases, and peroxidases (48–50). While there has
113 been less focus on intracellular mechanisms, intracellular enzymatic degradation has been shown
114 by Zhu *et al.* (51).

115 **1.5. Bacteria and fungi carry a rich repertoire of enzymes capable of removing mycotoxins**

116 Biotransformation of mycotoxins into non-toxic products by bacterial and fungal
117 enzymes has already been demonstrated (19, 48, 52, 53). The detoxification performance can be
118 improved by identifying and characterizing the enzymes with degradation/detoxification
119 capability. On one side, uncovering the cellular machinery of degradation (schematically shown
120 in Fig. 1 and explored in Section 2.3) allows us to select conditions to express the enzyme (when
121 searching for candidates) or engineer strains to improve their performance. On the other hand,
122 the enzyme itself can be modified and improved. Structural modelling and design of experiments
123 (DOE) techniques can shed light on the identification of key structural components that
124 contribute to degradation (52).

125 In the remainder of this work, we will limit the scope to extracellular bacterial and fungal
126 detoxifying enzymes. We make this choice to offer a more focused view on recent developments
127 in computational tools for biological enzymes, but also because deploying enzymes (versus live
128 organisms) in food/feed applications is a more practical approach (23, 52). The use of enzymes
129 for reducing the threat of mycotoxins has reached industrial applications, even if only in a few
130 cases. Mycofix® line of products (27) combine different modalities, including biotransformation
131 and adsorption to remove several mycotoxins from feed. FUMzyme® is a commercially

132 available fumonisin esterase produced in a genetically modified strain of *Komagataella pastoris*
133 (54) that has shown success in removing the contamination from feed (26). However, more
134 research is still needed to improve the performance of mycotoxin removal.

135 Several previous reports have cataloged specific enzymes that act on mycotoxins (17, 48,
136 55) and Table 1 lists representative examples for the major mycotoxins explored in this review.
137 Here instead we focus on current challenges and questions in the field of mycotoxin
138 detoxification that can be addressed by computational tools. In this context, we survey some of
139 the existing tools that have already been applied in this field and then propose emerging tools
140 that have the potential to lead to transformative progress.

141

142 **2. Current Challenges and Computational Solutions**

143 How can we effectively remove mycotoxins using biological organisms? Conceptually, we break
144 down this search into two steps: (1) finding organisms that have this capability, and (2)
145 optimizing the performance by modifying the environmental conditions, the detoxifying strain,
146 or the target enzymes. We survey existing computational tools that can facilitate this process
147 (Fig. 2). We focus our discussions on genomic and structural biology tools. We acknowledge
148 that there are other useful tools—including proteomics—that can offer additional insights, but
149 are beyond the scope of this mini-review.

150 **2.1. Finding candidate organisms: who can do the job?**

151 Discovering organisms that can degrade mycotoxins poses a number of challenges that
152 can be met both through experimental and computational approaches. In terms of enzymatic

153 degradation, there are three challenges to be addressed. First, organisms must have the genes
154 necessary to produce enzymes and possibly cofactors involved in degradation. Second, the
155 organisms must have favorable regulatory mechanisms for these enzymes. Third, the method of
156 obtaining and isolating the enzymes must be favorable to the end use case. One can describe the
157 search space as being largely defined by these characteristics that may be specific to the use
158 cases, but are still conceptually similar among different cases.

159 From the experimental front, high-throughput screening may be used both to identify
160 candidate organisms as well as explore mutations for optimizing degradation potential.
161 Environmental isolates are a traditional source for identifying mycotoxin degraders. Isolates can
162 be cultivated and tested for degradation, especially when high-throughput screening is possible.
163 As an example, Ciegler *et al.* screened ~1000 organisms, both prokaryotes and eukaryotes, for
164 their aflatoxin-degradation capability (56). Screening can also be used for optimizing the
165 environmental conditions or the enzyme itself. However, unless feasible high-throughput assays
166 are available, this process is resource and time expensive. Therefore, looking to computational
167 methods to screen for new organisms will be beneficial.

168 As an example, there is a known, highly specific two-step enzymatic process in the
169 detoxification of fumonisin, which involves a carboxylesterase and an aminotransferase (34).
170 This becomes a useful bottleneck in the search space, as candidate organisms must contain both
171 enzyme-encoding genes to be viable degraders. Toward this end, tools such as BLASTp (57) can
172 be utilized in cases where genome sequences are available. Simply put, the presence of these two
173 genes largely dictates whether or not an organism is a fumonisin degrader. On the other hand, in
174 the example of AF detoxification, many species can possess hydrolases or oxidases related to
175 those that are known to degrade AF (24, 48, 58). The search space is instead constrained on a

176 separate manifold involving the specificity and affinity of the hydrolase for AFs. That is, the
177 presence of the same hydrolase gene may not be sufficient to identify degradation potential,
178 since it may be optimized for a different substrate. The sequence-to-function relationship then
179 becomes critical, which is not guaranteed to be captured by sequence similarity *à la* BLASTp.
180 This shortcoming can be thought of as a signal to noise ratio, where key amino acids involved in
181 the active site mechanism are sparse signals, and the rest of the sequence functions primarily to
182 provide the correct structural shape and may be noisy in this regard. This is witnessed in the
183 work by Dellafiora and colleagues (59), where two related, AF-degrading oxidases shared only
184 72% sequence similarity, despite using the same mechanism for degradation. In a more extreme
185 example, a recently identified carboxylesterase that degrades fumonisin shows only around 34%
186 sequence similarity to previously reported fumonisin-degrading carboxylesterases (60).

187 Similarity in sequence does not necessarily overlap with similarity in function. Sequence
188 similarity may be used to imply functional similarity; however, such a predicate does not include
189 enzymes that share functional similarity without sequence similarity. High sequence similarity
190 among closely related species might not fully overlap with functional similarity either.
191 Therefore, searches should be conducted on a sequence-to-function relationship model. While
192 this method loses the high-throughput optimizations of BLAST-based sequence similarity, it may
193 be modeled via a reductive filter pipeline to maintain reasonable complexity. It also loses the
194 generalizability of sequence similarity, and instead pipelines must be custom designed for each
195 case. Dellafiora *et al.* have combined an *in silico* screen with an enzymatic assay to address this
196 challenge in search of hydrolyzing enzymes that can degrade ochratoxin A (61). In the example
197 of AFs, initial work has been performed to design a structure-to-function reductive filter model
198 using a number of filters. Furthermore, this model does not necessarily require a labeled, positive

199 enzyme to seed the search, rather it only requires characteristics to build the filters. Prior
200 research by Risa and colleagues (62) has identified that excreted enzymes can be responsible for
201 degrading AFs. SignalP is able to predict protein excretion in bacteria, and can be used as an
202 initial filter to narrow down proteomes. These sequences can be passed through both size and
203 sequence-based enzyme classification filters based on facile experimental determinations to
204 further reduce the candidate pool. From here, 3D structures may be built, the binding pockets
205 predicted, and AF docked to identify high affinity interactions that then may be confirmed
206 experimentally. These computational processes will be expanded below. The reductive filter
207 model uses low-complexity tools at its head, increasing in complexity towards the tail to ensure
208 efficiency. Similarly, its modular nature allows for easy insertion or upgrading of components as
209 advances occur in each domain.

210 **2.2. Community-level detoxification: when the task needs to be divided**

211 Mycotoxin degradation may require multiple reactions to reach byproducts with complete
212 or significantly decreased toxicity. There are several examples where a single enzyme is
213 insufficient for complete degradation and two or more enzymatic steps are required for the
214 detoxification process. In such cases, we need to better understand how multiple enzymes from
215 the same, or even different, species are required for degradation of a single mycotoxin. While
216 this increases the difficulty and cost of searching for degrading enzymes that can work together,
217 the outcome of complete degradation and reduced toxicity is desirable for application in
218 agriculture where mycotoxin levels must fall under set regulatory limits. For degradation of
219 fumonisin B₁ by *Sphingopyxis* sp. MTA144, Heinl *et al.* found that two enzymes were involved
220 (34). A carboxylesterase facilitated the initial deesterification step to form a hydrolyzed
221 fumonisin B₁, which is less active in its known ceramide synthase inhibitory pathway but still

222 possesses significant toxic effect (34, 63). A second enzyme, an aminotransferase, deaminated
223 the hydrolyzed byproduct of the first reaction resulting in complete degradation and loss of toxic
224 effects (34). Similarly, Carere *et al.* elucidated a two component enzymatic pathway involved in
225 the epimerization of DON by *Devosia mutans* 17-2-E-8 (64, 65). The enzymes, designated DepA
226 and DepB, first oxidize DON into 3-keto-DON (DepA) (64) and subsequently reduce 3-keto-
227 DON into 3-epi-DON (DepB) (65), significantly reducing toxicity. These examples highlight the
228 need to understand all the enzymes playing a role in complete degradation.

229 In some instances, mycotoxin biotransformation does not lead to complete detoxification
230 (52); DON degradation above as an example leads to end products that are less toxic than the
231 starting substrate, but still retain some toxicity. In biotransformation of ZEA, there are cases
232 where microbial breakdown results in byproducts, α -zearalenol and β -zearalenol, that are even
233 more toxic than the original compound (39, 66, 67). In such cases, we need to identify additional
234 species or enzymes that can take the byproducts and convert them into non-toxic compounds in a
235 multi-step process.

236 Multi-step degradation underscores the possible need to look beyond single
237 microorganisms and employ microbial consortia to complete the job; as an example, Wang *et al.*
238 discovered a microbial consortium that utilizes multiple species across various taxa working in
239 unison to transform ZEA to non-toxic byproducts (68). Bioinformatic searches for identifying
240 multiple enzymes necessary for a particular case would be an extension of the single-enzyme
241 searches discussed in the previous section, using the similar tools. Of note could be searching for
242 individual organisms that carry two or more necessary enzymes that have previously been
243 identified in multiple species/strains.

244 **2.3. Regulation: even when the detoxification capability exists in an organism, its**
245 **availability may be under regulation**

246 Even after organisms have been identified that are capable of detoxifying target
247 pollutants, the availability of the relevant enzymes depends on whether the environmental
248 context induces the relevant genes of enzyme production and secretion effectively. These
249 considerations point to the need to explore the internal regulation of the production and secretion
250 of detoxification enzymes. Microorganisms respond to cellular and environmental changes
251 through regulatory decisions that could impact the availability of degradation machinery for
252 target pollutants (69). Production of enzymes is regulated through different mechanisms, such as
253 transcription factors binding in and around promoter regions that contributes to the amount of
254 enzyme produced by the cell. These mechanisms are likely influenced by nutrient availability
255 and overall conditions of the cell (i.e. growth phase) (70). Secreted enzymes have an added layer
256 of regulation due to the high energy cost of secretion. While these enzymes have beneficial
257 effects, often being employed to breakdown macromolecules in the environment for cellular
258 uptake, they also incur an energy/biomass cost (71). Therefore, certain enzymes targeted for
259 secretion are up- or down-regulated by the presence of nutrients in the environment that
260 respectively do or do not require extracellular breakdown.

261 Here, we primarily emphasize the existing native potential as the starting point, even
262 though ultimately the deployment likely happens in a safe and tractable host organism. Our
263 discussion on regulation and the detoxification machinery in the native context has two purposes.
264 (1) It reveals the preferred conditions for the expression of the detoxification machinery to
265 enable more effective screening for functions of interest. (2) It allows us to better understand the
266 diversity of possibilities and the ideal machinery to be transferred to a host organism.

267 Understanding the influence of regulation on production and secretion of the enzyme is also
268 necessary for strain optimization to factor in the cost-benefit balance of increased enzyme
269 production and secretion.

270 Several existing bioinformatic tools can help us uncover aspects of bacterial gene
271 regulation, such as promoter and DNA binding sites, operon regions, and secretion signals,
272 which are touched on in the following sections. The usefulness of these tools in the context of
273 bioremediation is that they allow researchers to uncover possible mechanisms of regulation that
274 control the detoxification process. Insight from regulation, for example similarity to a known
275 catabolic pathway, can also be used to choose suitable environmental conditions or infer the
276 mechanism of degradation.

277 **Promoter Prediction.** Identifying promoter regions and DNA binding sites are important in that
278 transcription initiation is the most frequently regulated step in gene expression. Promoters
279 contain an intrinsic strength that governs the amount of transcription a gene undergoes and when
280 transcription occurs according to environmental factors such as nutrient availability (70). It is
281 important to properly regulate gene expression to ensure the degrading enzyme is sufficiently
282 expressed, but only when the particular substrate is present to limit wasteful production of
283 enzymes that are disadvantageous to the cell without the substrate (72). By uncovering promoters
284 associated with genes/enzymes of interest in bioremediation, we can understand how the cell
285 naturally regulates its expression and better manipulate it toward improved expression for
286 application in agriculture. There are several existing tools for predicting and cataloging promoter
287 regions in different organisms, such as phiSITE (73, 74), SAPPHIRE (75), PRODORIC2 (76),
288 BacPP (77), and PPCNN (78). We will expand on the latter three.

289 PRODORIC2 is a transcription factor binding site (TFBS) database that possesses one of
290 the largest collections of DNA binding sites in prokaryotic organisms (76). In 2018, its most
291 recent update, PRODORIC2 expanded its database to host the genomic information of 2274
292 bacterial strains and their 5191 replicons (76). This database is curated to only include
293 experimentally validated binding sites, limiting the expanse of bacterial species it contains but
294 ensuring accuracy in its TFBS inventory. De Avila e Silva *et al.* created a bioinformatic tool,
295 BacPP, to predict promoter sequences in *Escherichia coli* strains through neural network
296 simulations (77). BacPP is able to recognize and predict promoter sites with varying levels of
297 accuracy (all above 83%) across the different sigma factors crucial for prokaryotic transcription
298 initiation (77). Additionally, BacPP has 76% prediction accuracy among other enterobacteria
299 species (77). The advantage of this method is in its ability to classify promoter sequences by its
300 sigma factor, an important distinguishing feature that was a shortcoming of previous tools.
301 However, BacPP is currently limited to *E. coli* and, to a lower accuracy, enterobacteria. Another
302 promoter prediction tool is Promoter Prediction Convolutional Neural Network (PPCNN),
303 developed for both eukaryotic and prokaryotic prediction and implemented into the CNPProm
304 program. This approach uses deep learning neural networks for its prediction models (78). For
305 prokaryotes, PPCNN was trained on *E. coli* and *Bacillus subtilis*, offering insight into both
306 Gram-positive and Gram-negative species. A highlight of this method is its applicability to other
307 sequenced species because it predicts promoters without prior knowledge of specific promoter
308 features (78).

309 **Operon Prediction.** Metabolically or functionally related genes within prokaryotic genomes are
310 often arranged in contiguous segments called operons and are co-transcribed along the same
311 messenger RNA (79). This organization imparts an added layer of regulation on the genes within

312 the operon. Specifically, in the context of bioremediation, if an enzyme of interest is encoded
313 within an operon, it opens up new genes that could help play a role in degradation, either
314 functionally or through regulation. As an example, Heinl *et al.* identified two fumonisin
315 degrading enzymes that were held within a gene cluster organized in two operons and
316 subsequently determined other genes in the operon held importance to transcriptional regulation
317 and transport of the degrading enzymes, as well as additional enzymes that might play a role in
318 further breakdown on the degradation byproducts (34). Additionally, downstream utilization of
319 the enzyme-encoding gene(s) can be affected by its placement within an operon. For example,
320 Altahli and El-Deeb transferred ZEA degradation capability in *Pseudomonas putida* into *E. coli*
321 via a plasmid encoding detoxification genes (39). Multiple genes were shown to be expressed for
322 detoxification; however, they were unable to separate these genes due to their organization in
323 operons. Therefore, understanding the genomic organization of these genes within operons can
324 aid in their use for degradation. Determining operons computationally has been a field of interest
325 for a number of years, leading to tools such as Operon DataBase (80, 81), OperomeDB (82, 83),
326 Operon Hunter (84), and Operon-mapper (85, 86), with recent advances in *de novo* prediction of
327 operons from genomic data, which is expanded on below.

328 Operon-mapper, a web-based server for operon prediction, was developed in 2018 and is
329 the first publicly available tool for operon prediction that only requires genome sequences as the
330 input (85, 86). Operon-mapper uses a five step procedure: (1) open reading frame (ORF)
331 prediction using *Prokka* software (87, 88); (2) homology gene determination using the
332 *hmmsearch* program based on Hidden Markov Models (85, 88); (3) intergenic distance
333 evaluation using a custom program (85); (4) operon prediction using an artificial neural network
334 with intergenic distance and a score defining functional relatedness of protein products as the

335 input arguments (85, 89, 90); and (5) gene function assignment using the DIAMOND algorithm
336 (91). The accuracy of this method in predicting operons was ~90% across eight tested genomes
337 with varying size and GC content, and outperformed other algorithms in a recent evaluation of
338 correlation to experimentally validated operons (92). Operon-mapper also has the advantage of
339 providing ORF identification and functional annotation of protein (85).

340 **Secreted Protein Prediction.** A signal peptide (SP) is a sequence of amino acids in a newly
341 synthesized protein that targets the protein into or across the membranes in the cell (93).
342 Determining whether and how an enzyme is secreted outside the cell enables better utilization of
343 the degradation machinery (schematically represented in Fig. 1A). To predict secreted proteins,
344 several algorithms to identify SPs within a proteome have been developed: SignalP (94), Psort
345 (95), Pred-Tat (96), and TatP (97).

346 Of note, SignalP is able to determine these secretion signals and distinguish between the
347 type of secretion pathway. The current version, SignalP 5.0, uses deep neural networks in
348 combination with conditional random field classification and optimized transfer learning to
349 determine SPs in prokaryotes, eukaryotes, and archaea (94). This update builds upon previous
350 versions based on artificial neural networks (98), with added improvements of hidden Markov
351 models (99), enhanced cleavage site predictions (100), and discrimination of signal peptides and
352 transmembrane helices (101). For prokaryotes, there are two main secretion pathways, Sec and
353 Tat, with three enzymes, signal peptidases I-III (SPase I-III), needed to cleave proteins for
354 secretion. SignalP 5.0 is able to distinguish between three types of SPs: (1) Sec substrates
355 cleaved by SPase I; (2) Sec substrates cleaved by SPase II; and (3) Tat substrates cleaved by
356 SPase I (94). Unfortunately, due to limited training data sets, SignalP 5.0 is unable to predict Sec
357 substrates processed by SPase III or Tat substrates processed by SPase II. However, the current

358 ability to determine between the three secretion pathways is important in understanding how the
359 protein will be secreted and the regulation of the secretion process. SignalP 5.0 is available either
360 through their webserver or as a standalone package, making it an accessible tool for secreted
361 protein prediction. SignalP has already been used in the context of determining mycotoxin
362 degrading enzymes: Carere *et al.* utilized this predictive power in conjunction with an
363 experimental approach to narrow down gene candidates for the identification of DepA in the
364 DON degradation pathway by *D. mutans* (64). This example highlights the application this tool
365 has in aiding mycotoxin degradation research.

366 **2.4. Sub-optimal enzymes: naturally evolved enzymes may not be the best match**

367 Enzymes found capable of degrading mycotoxins may not be naturally optimized for
368 targeting the mycotoxin of interest. Importantly, some of the detoxifying enzymes belong to
369 common categories such as oxidases and hydrolases; however, it is not well understood what
370 features of the particular enzymes separates efficient detoxifiers from nonefficient ones. Thus,
371 there is a need to better understand what aspects determine the efficacy of the enzymes and how
372 they can be improved. Enzyme optimization often involves adaptation of a wild-type isolate to a
373 new substrate or reaction environment. New reaction environments often involve changes of
374 temperature, pH, and solvent conditions, all of which non-trivially affect the structure and
375 activity of the enzyme. One technique that is agnostic to fundamental understanding of these
376 effects is directed evolution (102–104). In directed evolution, genetic diversity is introduced via
377 random mutations and the resultant mutant proteins are screened/selected for improved
378 performance. There is some evidence that restricting directed evolution to residues close to the
379 active site leads to a higher probability of displaying meaningful contributions to its activity
380 (105). However, it remains unclear how such a process is achieved through traditionally

381 structure-agnostic *in vitro* mutagenesis. Often, directed evolution is applied iteratively to further
382 improve strong performing mutants (106). Though directed evolution conveniently creates a
383 black-box optimization method, it does so at the cost of efficiency, where screening for fitness
384 can become a major bottleneck in the process (107). As an alternative, a variety of computational
385 tools have been developed for targeted enzyme engineering (e.g. those reviewed in (108, 109)).

386 Protein sequence activity relationship (ProSAR) models can assist the search algorithm
387 by creating a statistical model that links the protein sequence to its activity (i.e., fitness) (110,
388 111). ProSAR relies on a mutant library generated from mutagenesis with a constraint of
389 constant protein sequence length, along with the corresponding activities of interest (catalytic
390 constant, thermostability, etc.). A statistical model is built that links the presence or absence of
391 individual mutations to a contribution to the activity, from which some subset of the highest
392 contributing mutations can be fixed for the next round of mutagenesis. Unlike the close
393 mutations described earlier by Morely *et al.* (105), this method is able to link individual
394 mutations to activity contributions without explicit knowledge of the 3D structure. The
395 traditional statistical methods for ProSAR involved partial least square regression and genetic
396 algorithm, while more recently traditional statistical methods could be replaced with Recurrent
397 Neural Network architectures (112).

398 Focused evolution, where targeted mutations are introduced based on rational mutation
399 hypotheses, can increase the efficiency of optimization by narrowing the search space; however,
400 current robust methods require 3D structures of the enzyme. When optimizing for known
401 properties such as thermostability and where reasonable 3D models are available, such as
402 homology models, a small subset of rational mutations can feasibly be explored through
403 computational methods and the final mutations evaluated experimentally. Rational mutation

404 methods rely on heuristic evaluation methods like FoldX (113) to predict changes in Gibbs free
405 energy from mutations, or predictive methods like DbD2 (114), which predicts mutations to
406 introduce disulfide bonds that potentially have stabilizing effects on the protein for given
407 conditions. Potential mutations identified via heuristic methods are then commonly evaluated as
408 a narrow combinatorial library. Although not strictly necessary, to reduce cost and labor for the
409 *in vitro* experiments, the mutated proteins are often computationally evaluated for stability to
410 further narrow down viable mutations. Because of their heuristic nature, it is always necessary to
411 be able to introduce the mutations *in vitro* and evaluate them experimentally under the target
412 conditions to confirm the mutated protein is improved.

413

414 **3. Future Outlook**

415 Computational biology tools we have discussed above—although not comprehensive—represent
416 a range of traditional applications for better understanding the mechanisms and ultimately
417 improving the performance of toxin biodegradation. Some of these tools have already been used
418 in this context, whereas others have the potential to yield helpful insights. Table 2 captures the
419 current landscape, using representative examples from the literature. Next, we explore ongoing
420 and future advancements in computational methods that would further facilitate answering
421 pertinent questions in the field of mycotoxin bioremediation.

422 **3.1. Taking the next step: combining machine learning with high-throughput 423 experimentation**

424 Both the use of machine learning and automated, high-throughput laboratory experiments
425 are becoming increasingly prevalent for enzyme optimization. Enzyme engineering may become

426 a useful tool for the optimization of known degrading enzymes, especially when only sequences,
427 rather than solved crystallographic structures, are known (135). Models for directed evolution
428 can be experimentally realized in parallel and incrementally updated, moving towards an optimal
429 sequence. Like directed evolution, biopanning assays, also known as phage display assays, are a
430 technique often used to determine novel antibodies with high affinity to some known antigen
431 (136, 137). Biopanning involves washing a random peptide library over a target ligand
432 immobilized on some substrate. The non-binding peptides may be washed away, after which the
433 peptides with high affinity remain bound to the ligand and can be separately identified. Like a
434 genetic algorithm, these peptides form the seed for the next round of mutation and panning.
435 While this technique does not offer per-sequence performance metrics, we obtain partitioned
436 sequence datasets resulting from the pannings. Such partitioned datasets have been used in
437 unsupervised, autoregressive sequence models for nanobodies to generate novel sequences that
438 overlap with the high-affinity partition without needing to perform additional physical
439 experiments (138, 139). While further evaluation is needed to obtain specific performance
440 estimates for these novel sequences, the method aims to narrow the search space needed in
441 optimization. Biopanning has been previously shown to optimize TEM-1 beta-lactamase and
442 biotin ligase, indicating it may be feasible to use in optimizing mycotoxin degrading enzymes
443 (140–143).

444 Complemented by high-throughput assays, machine learning approaches are gradually
445 taking charge to bring out patterns, similarities, and dependencies—for example in sequence-
446 function relation of an enzyme family—that may otherwise be too cryptic. The use of machine
447 learning is in particular expanding in situations when an *a priori* model does not exist.

448 **3.2. Computational chemistry can further advance our understanding of enzymatic**
449 **processes**

450 Towards the understanding of enzymatic mechanisms, advancements in quantum
451 mechanics (QM) and molecular mechanics (MM, atomistic) studies will be vital for
452 characterizing reaction mechanisms and exploring the chemical space available via mutations
453 (144). Additionally, crystallographic structures can be slow and expensive to solve; therefore,
454 recent advances in protein 3D structure prediction will be instrumental to develop high-
455 throughput pipelines.

456 Molecular mechanics provides a view of a system at the atomic level. It is often used for
457 molecular dynamics (MD) simulations, where a system (e.g. a protein-substrate interaction) is
458 studied using Newtonian physics, often at nanosecond to microsecond timescales. For some
459 protein systems, this timescale is sufficient to study the relevant mechanisms, such as in the case
460 of using steered MD simulations to characterize an aflatoxin oxidase enzyme isolated from
461 *Armillariella tabescens* as a member of the dipeptidyl peptidase III family of enzymes (145).
462 However, for larger proteins, or proteins involving large conformational shifts, extensive
463 computation may be needed. For these systems, a coarse-grained approach is taken where
464 moieties in the system are combined to reduce the total atom count, reducing the computational
465 cost (146, 147). Some examples are coarse-grained water models, as well as proteins where the
466 side chains are often reduced to a single pseudo-atom. Coarse-grained models face issues in
467 faithfully reproducing the system, and current research is focused in this area (147).

468 Atomistic models allow some insight into the interaction between the protein and the
469 toxin. Such models are often sufficient to determine if the toxin will sterically fit in the binding

470 pocket, and may also help to determine pose, electrostatic favorability of the binding, and
471 conformational changes of the protein-ligand complex (148, 149). Unlike the more common use
472 for MM in evaluating non-covalent inhibitors, some difficulty emerges in the inherent covalent
473 nature of detoxification, which cannot be captured by an atomistic view (150). This issue may
474 preclude some energetic effects brought about by the changes in electronic structure, raising
475 concerns about how realistic such a model is. This concern may be partially solved by using
476 QM/MM methods, where part of the system is partitioned into a QM region, and the rest remains
477 in MM views (151). The QM region then can model electronic changes, and the rest can remain
478 in lower cost MM regions. However, the QM region cannot be too large, which precludes cases
479 that require large, complex QM regions (e.g. in metalloenzymes like laccases). Additionally, the
480 QM region adds computational cost and cannot be well-integrated into microsecond timescale
481 calculations.

482 At a relatively high computational cost, QM calculations provide a detailed and
483 comprehensive view of the electronic state of the system. They can provide information about
484 covalent and electronic changes, often necessary for detoxification studies. An example of this is
485 calculating a Fukui function of a molecule, which describes the change in a frontier orbital as the
486 molecule undergoes a redox reaction. Fukui functions have been used to identify the location of
487 redox in an AF-laccase system (152). QM may also be used to study electron transfer in the
488 protein. As a tool for microbiologists, however, QM remains prohibitively expensive both in
489 computational cost and learning curve, and is often used for fine-grained mechanistic studies in
490 collaboration with a QM expert.

491 **Acknowledgements**

492 This work was supported by Boston College through a startup fund and an Ignite grant. This
493 material is partially based upon work supported by the National Science Foundation (NSF-
494 CBET) under Grant No. 2103545. NS is supported by a NIFA-AFRI Predoctoral Fellowship
495 from the USDA (Award No. 2021-67034-35108).

496 **References**

- 497 1. Alshannaq A, Yu J. 2017. Occurrence, Toxicity, and Analysis of Major Mycotoxins in
498 Food. *Int J Environ Res Public Health* 14:632.
- 499 2. Marin S, Ramos AJ, Cano-Sancho G, Sanchis V. 2013. Mycotoxins: Occurrence,
500 toxicology, and exposure assessment. *Food Chem Toxicol* 60:218–237.
- 501 3. Čolović R, Puvača N, Cheli F, Avantaggiato G, Greco D, Đuragić O, Kos J, Pinotti L.
502 2019. Decontamination of Mycotoxin-Contaminated Feedstuffs and Compound Feed.
503 *Toxins (Basel)* 11:617.
- 504 4. Kebede H, Liu X, Jin J, Xing F. 2020. Current status of major mycotoxins contamination
505 in food and feed in Africa. *Food Control* 110:106975.
- 506 5. Edite Bezerra da Rocha M, Freire F da CO, Erlan Feitosa Maia F, Izabel Florindo Guedes
507 M, Rondina D. 2014. Mycotoxins and their effects on human and animal health. *Food
508 Control* 36:159–165.
- 509 6. Bennett JWW, Klich M. 2003. Mycotoxins. *Clin Microbiol Rev* 16:497–516.
- 510 7. Mahato DK, Lee KE, Kamle M, Devi S, Dewangan KN, Kumar P, Kang SG. 2019.
511 Aflatoxins in Food and Feed: An Overview on Prevalence, Detection and Control
512 Strategies. *Front Microbiol* 10:2266.
- 513 8. Liew WPP, Mohd-Redzwan S. 2018. Mycotoxin: Its impact on gut health and microbiota.
514 *Front Cell Infect Microbiol* 8:60.
- 515 9. Bui-Klimke TR, Wu F. 2015. Ochratoxin A and Human Health Risk: A Review of the
516 Evidence. *Crit Rev Food Sci Nutr* 55:1860–1869.
- 517 10. Hueza IM, Raspantini PCF, Raspantini LER, Latorre AO, Górnjak SL. 2014. Zearalenone,
518 an estrogenic mycotoxin, is an immunotoxic compound. *Toxins (Basel)* 6:1080–1095.
- 519 11. Sydenham EW, Shephard GS, Thiel PG, Marasas WFO, Stockenström S. 1991.
520 Fumonisin Contamination of Commercial Corn-Based Human Foodstuffs. *J Agric Food
521 Chem* 39:2014–2018.
- 522 12. Sobrova P, Adam V, Vasatkova A, Beklova M, Zeman L, Kizek R. 2010. Deoxynivalenol
523 and its toxicity. *Interdiscip Toxicol* 3:94–99.

524 13. Pal S, Singh N, Ansari KM. 2017. Toxicological effects of patulin mycotoxin on the
525 mammalian system: An overview. *Toxicol Res (Camb)* 6:764–771.

526 14. Bhatnagar D, Payne G, Cleveland TE, Robens J. 2003. Mycotoxins: Current Issues in
527 U.S.A. | <https://www.ars.usda.gov/research/publications/publication/?seqNo115=151980>.
528 USDA ARS.

529 15. Karlovsky P, Suman M, Berthiller F, De Meester J, Eisenbrand G, Perrin I, Oswald IP,
530 Speijers G, Chiodini A, Recker T, Dussort P. 2016. Impact of food processing and
531 detoxification treatments on mycotoxin contamination. *Mycotoxin Res* 32:179–205.

532 16. Pankaj SK, Shi H, Keener KM. 2018. A review of novel physical and chemical
533 decontamination technologies for aflatoxin in food. *Trends Food Sci Technol* 71:73–83.

534 17. Wu Q, Jezkova A, Yuan Z, Pavlikova L, Dohnal V, Kuca K. 2009. Biological degradation
535 of aflatoxins. *Drug Metab Rev* 41:1–7.

536 18. Singh R, Singh P, Sharma R. 2014. Microorganism as a tool of bioremediation technology
537 for cleaning environment: A review. *Proc Int Acad Ecol Environ Sci* 4:1–6.

538 19. Wang J, Xie Y. 2020. Review on microbial degradation of zearalenone and aflatoxins.
539 *Grain Oil Sci Technol* 3:117–125.

540 20. Grenier B, Loureiro-Bracarense A-P, Leslie JF, Oswald IP. 2014. Physical and Chemical
541 Methods for Mycotoxin Decontamination in Maize, p. 116–129. *In* Mycotoxin Reduction
542 in Grain Chains. John Wiley & Sons, Ltd, Chichester, UK.

543 21. Sadiq FA, Yan B, Tian F, Zhao J, Zhang H, Chen W. 2019. Lactic Acid Bacteria as
544 Antifungal and Anti-Mycotoxicogenic Agents: A Comprehensive Review. *Compr Rev Food
545 Sci Food Saf* 18:1403–1436.

546 22. de Melo Nazareth T, Luz C, Torrijos R, Quiles JM, Luciano FB, Mañes J, Meca G. 2019.
547 Potential application of lactic acid bacteria to reduce aflatoxin B1 and fumonisin B1
548 occurrence on corn kernels and corn ears. *Toxins (Basel)* 12:21.

549 23. Vega MF, Dieguez SN, Riccio B, Aranguren S, Giordano A, Denzoin L, Soraci AL, Tapia
550 MO, Ross R, Apás A, González SN. 2017. Zearalenone adsorption capacity of lactic acid
551 bacteria isolated from pigs. *Brazilian J Microbiol* 48:715–723.

552 24. Alberts JFF, Gelderblom WCACA, Botha A, van Zyl WHH. 2009. Degradation of
553 aflatoxin B1 by fungal laccase enzymes. *Int J Food Microbiol* 135:47–52.

554 25. Moll D. 2019. Enzyme Technology for Detoxification of Mycotoxins in Animal Feed, p.
555 219–254. *In* Industrial Enzyme Applications. John Wiley & Sons, Ltd.

556 26. Alberts J, Schatzmayr G, Moll W-D, Davids I, Rheeder J, Burger H-M, Shephard G,
557 Gelderblom W. 2019. Detoxification of the Fumonisin Mycotoxins in Maize: An
558 Enzymatic Approach. *Toxins (Basel)* 11:523.

559 27. Biomin. Mycofix® | [https://www.biomin.net/solutions/mycotoxin-risk-
560 management/mycotoxin-deactivation/mycofix/](https://www.biomin.net/solutions/mycotoxin-risk-management/mycotoxin-deactivation/mycofix/).

561 28. Taylor MC, Jackson CJ, Tattersall DB, French N, Peat TS, Newman J, Briggs LJ,
562 Lapalikar G V., Campbell PM, Scott C, Russell RJ, Oakeshott JG. 2010. Identification and
563 characterization of two families of F420H2-dependent reductases from Mycobacteria that

564 catalyse aflatoxin degradation. *Mol Microbiol* 78:561–575.

565 29. Wang J, Ogata M, Hirai H, Kawagishi H. 2011. Detoxification of aflatoxin B1 by
566 manganese peroxidase from the white-rot fungus *Phanerochaete sordida* YK-624. *FEMS*
567 *Microbiol Lett* 314:164–169.

568 30. Scarpari M, Bello C, Pietricola C, Zaccaria M, Bertocchi L, Angelucci A, Ricciardi MR,
569 Scala V, Parroni A, Fabbri AA, Reverberi M, Zjalic S, Fanelli C. 2014. Aflatoxin control
570 in maize by *Trametes versicolor*. *Toxins (Basel)* 6:3426–3437.

571 31. Wang X, Qin X, Hao Z, Luo H, Yao B, Su X. 2019. Degradation of Four Major
572 Mycotoxins by Eight Manganese Peroxidases in Presence of a Dicarboxylic Acid. *Toxins*
573 2019, Vol 11, Page 566 11:566.

574 32. Song J, Zhang S, Xie Y, Li Q. 2019. Purification and characteristics of an aflatoxin B1
575 degradation enzyme isolated from *Pseudomonas aeruginosa*. *FEMS Microbiol Lett*
576 366:34.

577 33. Garda-Buffon J, Kupski L, Badiale-Furlong E. 2011. Deoxynivalenol (DON) degradation
578 and peroxidase enzyme activity in submerged fermentation. *Ciência e Tecnol Aliment*
579 31:198–203.

580 34. Heinl S, Hartinger D, Thamhesl M, Vekiru E, Krkska R, Schatzmayr G, Moll WD,
581 Grabherr R. 2010. Degradation of fumonisin B1 by the consecutive action of two bacterial
582 enzymes. *J Biotechnol* 145:120–129.

583 35. Luís Abrunhosa, Rita Serra and, Venâncio* A. 2002. Biodegradation of Ochratoxin A
584 by Fungi Isolated from Grapes. *J Agric Food Chem* 50:7493–7496.

585 36. Abrunhosa L, Inês A, Rodrigues AI, Guimarães A, Pereira VL, Parpot P, Mendes-Faia A,
586 Venâncio A. 2014. Biodegradation of ochratoxin A by *Pediococcus parvulus* isolated from
587 Douro wines. *Int J Food Microbiol* 188:45–52.

588 37. Zhang X, Yang H, Apaliya MT, Zhao L, Gu X, Zheng X, Hu W, Zhang H. 2018. The
589 mechanisms involved in ochratoxin A elimination by *Yarrowia lipolytica* Y-2. *Ann Appl*
590 *Biol* 173:164–174.

591 38. Tang H, Li X, Zhang F, Meng X, Liu B. 2019. Biodegradation of the mycotoxin patulin in
592 apple juice by Orotate phosphoribosyltransferase from *Rhodotorula mucilaginosa*. *Food*
593 *Control* 100:158–164.

594 39. Altalhi AD, El-Deeb B. 2009. Localization of zearalenone detoxification gene(s) in
595 pZEA-1 plasmid of *Pseudomonas putida* ZEA-1 and expressed in *Escherichia coli*. *J*
596 *Hazard Mater* 161:1166–1172.

597 40. Kosawang C, Karlsson M, Véllez H, Rasmussen PH, Collinge DB, Jensen B, Jensen DF.
598 2014. Zearalenone detoxification by zearalenone hydrolase is important for the
599 antagonistic ability of *Clonostachys rosea* against mycotoxigenic *Fusarium graminearum*.
600 *Fungal Biol* 118:364–373.

601 41. Chen S-W, Hsu J-T, Chou Y-A, Wang H-T. 2018. The application of digestive tract lactic
602 acid bacteria with high esterase activity for zearalenone detoxification. *J Sci Food Agric*
603 98:3870–3879.

604 42. Chang X, Liu H, Sun J, Wang J, Zhao C, Zhang W, Zhang J, Sun C. 2020. Zearalenone
605 Removal from Corn Oil by an Enzymatic Strategy. *Toxins* 2020, Vol 12, Page 117
606 12:117.

607 43. Sangare L, Zhao Y, Folly YM inni. E, Chang J, Li J, Selvaraj JN ima., Xing F, Zhou L,
608 Wang Y, Liu Y. 2014. Aflatoxin B₁ degradation by a *Pseudomonas* strain. *Toxins (Basel)*
609 6:3028–3040.

610 44. Alberts J, Engelbrecht Y, Steyn P, Holzapfel W, Zyl, Van W. 2006. Biological
611 degradation of aflatoxin B1 by *Rhodococcus erythropolis* cultures. *Int J Food Microbiol*
612 109:121–126.

613 45. Guan S, Ji C, Zhou T, Li J, Ma Q, Niu T. 2008. Aflatoxin B1 Degradation by
614 *Stenotrophomonas Maltophilia* and Other Microbes Selected Using Coumarin Medium.
615 *Int J Mol Sci* 9:1489–1503.

616 46. Guan S, Zhao L, Ma Q, Zhou T, Wang N, Hu X, Ji C. 2010. In Vitro Efficacy of
617 *Myxococcus fulvus* ANSM068 to Biotransform Aflatoxin B1. *Int J Mol Sci* 11:4063–
618 4079.

619 47. Sato I, Ito M, Ishizaka M, Ikunaga Y, Sato Y, Yoshida S, Koitabashi M, Tsushima S.
620 2012. Thirteen novel deoxynivalenol-degrading bacteria are classified within two genera
621 with distinct degradation mechanisms. *FEMS Microbiol Lett* 327:110–117.

622 48. Adebo OA, Njobeh PB, Gbashi S, Nwinyi OC, Mavumengwana V. 2017. Review on
623 microbial degradation of aflatoxins. *Crit Rev Food Sci Nutr* 57:3208–3217.

624 49. Ji C, Fan Y, Zhao L. 2016. Review on biological degradation of mycotoxins. *Anim Nutr*
625 2:127–133.

626 50. Lyagin I, Efremenko E. 2019. Enzymes for Detoxification of Various Mycotoxins:
627 Origins and Mechanisms of Catalytic Action. *Molecules* 24:2362.

628 51. Zhu R, Feussner K, Wu T, Yan F, Karlovsky P, Zheng X. 2015. Detoxification of
629 mycotoxin patulin by the yeast *Rhodosporidium paludigenum*. *Food Chem* 179:1–5.

630 52. Loi M, Fanelli F, Liuzzi VC, Logrieco AF, Mulè G. 2017. Mycotoxin biotransformation
631 by native and commercial enzymes: Present and future perspectives. *Toxins (Basel)* 9:111.

632 53. Murugesan GR, Ledoux DR, Naehrer K, Berthiller F, Applegate TJ, Grenier B, Phillips
633 TD, Schatzmayr G. 2015. Prevalence and effects of mycotoxins on poultry health and
634 performance, and recent development in mycotoxin counteracting strategies, p. 1298–
635 1315. *In Poultry Science*. Oxford University Press.

636 54. (FEEDAP) EP on A and P or S used in AF, Rychen G, Aquilina G, Azimonti G, Bampidis
637 V, de Lourdes Bastos M, Bories G, Chesson A, Cocconcelli PS, Flachowsky G, Groppe J,
638 Kolar B, Kouba M, López-Alonso M, Mantovani A, Mayo B, Ramos F, Saarela M, Villa
639 RE, Wallace RJ, Wester P, Martelli G, Renshaw D, López Puente S. 2016. Safety and
640 efficacy of fumonisin esterase (FUMzyme®) as a technological feed additive for all avian
641 species. *EFSA J* 14:e04617.

642 55. Agriopoulou S, Stamatelopoulou E, Varzakas T. 2020. Advances in occurrence,
643 importance, and mycotoxin control strategies: Prevention and detoxification in foods.
644 *Foods* 9:137.

645 56. Ciegler A, Lillehoj EB, Peterson RE, Hall HH. 1966. Microbial Detoxification of
646 Aflatoxin. *Appl Microbiol* 14:934.

647 57. Protein BLAST: search protein databases using a protein query |
648 <https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins>.

649 58. Afsharmanesh H, Perez-Garcia A, Zeriouh H, Ahmadzadeh M, Romero D. 2018.
650 Aflatoxin degradation by *Bacillus subtilis* UTB1 is based on production of an
651 oxidoreductase involved in bacilysin biosynthesis. *Food Control* 94:48–55.

652 59. Dellafiora L, Galaverna G, Reverberi M, Dall'Asta C. 2017. Degradation of Aflatoxins by
653 Means of Laccases from *Trametes versicolor*: An In Silico Insight. *Toxins (Basel)* 9:17.

654 60. Li Z, Wang Y, Liu Z, Jin S, Pan K, Liu H, Liu T, Li X, Zhang C, Luo X, Song Y, Zhao J,
655 Zhang T. 2021. Biological detoxification of fumonisin by a novel carboxylesterase from
656 *Sphingomonadales* bacterium and its biochemical characterization. *Int J Biol Macromol*
657 169:18–27.

658 61. Dellafiora L, Gonaus C, Streit B, Galaverna G, Moll WD, Vogtentanz G, Schatzmayr G,
659 Dall'Asta C, Prasad S. 2020. An In Silico Target Fishing Approach to Identify Novel
660 Ochratoxin A Hydrolyzing Enzyme. *Toxins* 2020, Vol 12, Page 258 12:258.

661 62. Risa A, Divinyi DM, Baka E, Krifaton C. 2017. Aflatoxin B1 detoxification by cell-
662 free extracts of *Rhodococcus* strains. *Acta Microbiol Immunol Hung* 64:423–438.

663 63. Humpf HU, Schmelz EM, Meredith FI, Vesper H, Vales TR, Wang E, Menaldino DS,
664 Liotta DC, Merrill AH. 1998. Acylation of naturally occurring and synthetic 1-
665 deoxysphinganines by ceramide synthase: Formation of N-palmitoyl-aminopentol
666 produces a toxic metabolite of hydrolyzed fumonisin, AP1, and a new category of
667 ceramide synthase inhibitor. *J Biol Chem* 273:19060–19064.

668 64. Carere J, Hassan YI, Lepp D, Zhou T. 2018. The enzymatic detoxification of the
669 mycotoxin deoxynivalenol: identification of DepA from the DON epimerization pathway.
670 *Microb Biotechnol* 11:1106–1111.

671 65. Carere J, Hassan YI, Lepp D, Zhou T. 2018. The identification of DepB: An enzyme
672 responsible for the final detoxification step in the deoxynivalenol epimerization pathway
673 in *devosia mutans* 17-2-E-8. *Front Microbiol* 9:1573.

674 66. Hahn I, Kunz-Vekiru E, Twaružek M, Grajewski J, Krska R, Berthiller F. 2015. Aerobic
675 and anaerobic *in vitro* testing of feed additives claiming to detoxify deoxynivalenol and
676 zearalenone. *Food Addit Contam - Part A Chem Anal Control Expo Risk Assess* 32:922–
677 933.

678 67. Catteuw A, Broekaert N, De Baere S, Lauwers M, Gasthuys E, Huybrechts B, Callebaut
679 A, Ivanova L, Uhlig S, De Boevre M, De Saeger S, Gehring R, Devreese M, Croubels S.
680 2019. Insights into *in Vivo* Absolute Oral Bioavailability, Biotransformation, and
681 Toxicokinetics of Zearalenone, α -Zearalenol, β -Zearalenol, Zearalenone-14-glucoside,
682 and Zearalenone-14-sulfate in Pigs. *J Agric Food Chem* 67:3448–3458.

683 68. Wang Y, Zhao C, Zhang D, Zhao M, Peng M, Guo P, Cui Z. 2020. Microbial Degradation
684 of Zearalenone by a Novel Microbial Consortium, NZDC-6, and Its Application on
685 Contaminated Corncob by Semisolid Fermentation. *J Agric Food Chem* 68:1634–1644.

686 69. Bervoets I, Charlier D. 2019. Diversity, versatility and complexity of bacterial gene
687 regulation mechanisms: Opportunities and drawbacks for applications in synthetic
688 biology. *FEMS Microbiol Rev* 43:304–339.

689 70. Haugen SP, Ross W, Gourse RL. 2008. Advances in bacterial promoter recognition and its
690 control by factors that do not bind DNA. *Nat Rev Microbiol* 6:507–519.

691 71. Maffei B, Francetic O, Subtil A. 2017. Tracking proteins secreted by bacteria: What's in
692 the toolbox? *Front Cell Infect Microbiol* 7:221.

693 72. Santero E, Díaz E. 2020. Special Issue: Genetics of Biodegradation and Bioremediation.
694 *Genes* 2020, Vol 11, Page 441 11:441.

695 73. Klucar L, Stano M, Hajduk M. 2009. PhiSITE: Database of gene regulation in
696 bacteriophages. *Nucleic Acids Res* 38:D366-370.

697 74. Stano M, Klucar L. 2011. PhiGENOME: An integrative navigation throughout
698 bacteriophage genomes. *Genomics* 98:376–380.

699 75. Coppens L, Lavigne R. 2020. SAPPHIRE: A neural network based classifier for σ 70
700 promoter prediction in *Pseudomonas*. *BMC Bioinformatics* 21:415.

701 76. Eckweiler D, Dudek CA, Hartlich J, Brötje D, Jahn D. 2018. PRODORIC2: The bacterial
702 gene regulation database in 2018. *Nucleic Acids Res* 46:D320–D326.

703 77. de Avila e Silva S, Echeverrigaray S, Gerhardt GJL. 2011. BacPP: Bacterial promoter
704 prediction-A tool for accurate sigma-factor specific assignment in enterobacteria. *J Theor
705 Biol* 287:92–99.

706 78. Umarov RK, Solovyev V V. 2017. Recognition of prokaryotic and eukaryotic promoters
707 using convolutional deep learning neural networks. *PLoS One* 12:e0171410.

708 79. Osbourn AE, Field B. 2009. Operons. *Cell Mol Life Sci* 66:3755–3775.

709 80. Okuda S, Yoshizawa AC. 2011. ODB: A database for operon organizations, 2011 update.
710 *Nucleic Acids Res* 39:D552.

711 81. ODB4 - Operon Database | <https://operondb.jp/>.

712 82. Chetal K, Janga SC. 2015. OperomeDB: A Database of Condition-Specific Transcription
713 Units in Prokaryotic Genomes. *Biomed Res Int* 2015:318217.

714 83. OperomeDB, Multi Gene Operon Prediction for Bacterial Genomes Database |
715 <https://sysbio.informatics.iupui.edu/operomeDB/#/>.

716 84. Assaf R, Xia F, Stevens R. 2021. Detecting operons in bacterial genomes via visual
717 representation learning. *Sci Rep* 11:2124.

718 85. Taboada B, Estrada K, Ciria R, Merino E. 2018. Operon-mapper: A web server for precise
719 operon identification in bacterial and archaeal genomes. *Bioinformatics* 34:4118–4120.

720 86. Operon Mapper | https://biocomputo.ibt.unam.mx/operon_mapper/.

721 87. Seemann T. 2014. Prokka: Rapid prokaryotic genome annotation. *Bioinformatics*
722 30:2068–2069.

723 88. Eddy SR. 2011. Accelerated profile HMM searches. *PLoS Comput Biol* 7:e1002195.

724 89. Jensen LJ, Kuhn M, Stark M, Chaffron S, Creevey C, Muller J, Doerks T, Julien P, Roth
725 A, Simonovic M, Bork P, von Mering C. 2009. STRING 8 - A global view on proteins
726 and their functional interactions in 630 organisms. *Nucleic Acids Res* 37:D412-6.

727 90. Taboada B, Verde C, Merino E. 2010. High accuracy operon prediction method based on
728 STRING database scores. *Nucleic Acids Res* 38:e130.

729 91. Buchfink B, Xie C, Huson DH. 2014. Fast and sensitive protein alignment using
730 DIAMOND. *Nat Methods* 12:59–60.

731 92. Zaidi SSA, Zhang X. 2017. Computational operon prediction in whole-genomes and
732 metagenomes. *Brief Funct Genomics* 16:181–193.

733 93. Owji H, Nezafat N, Negahdaripour M, Hajiebrahimi A, Ghasemi Y. 2018. A
734 comprehensive review of signal peptides: Structure, roles, and applications. *Eur J Cell
735 Biol* 97:422–441.

736 94. Almagro Armenteros JJ, Tsirigos KD, Sønderby CK, Petersen TN, Winther O, Brunak S,
737 von Heijne G, Nielsen H. 2019. SignalP 5.0 improves signal peptide predictions using
738 deep neural networks. *Nat Biotechnol* 37:420–423.

739 95. Yu NY, Wagner JR, Laird MR, Melli G, Rey S, Lo R, Dao P, Cenk Sahinalp S, Ester M,
740 Foster LJ, Brinkman FSL. 2010. PSORTb 3.0: Improved protein subcellular localization
741 prediction with refined localization subcategories and predictive capabilities for all
742 prokaryotes. *Bioinformatics* 26:1608–1615.

743 96. Bagos PG, Nikolaou EP, Liakopoulos TD, Tsirigos KD. 2010. Combined prediction of
744 Tat and Sec signal peptides with hidden Markov models. *Bioinformatics* 26:2811–2817.

745 97. Bendtsen JD, Nielsen H, Widdick D, Palmer T, Brunak S. 2005. Prediction of twin-
746 arginine signal peptides. *BMC Bioinformatics* 6:167.

747 98. Nielsen H, Engelbrecht J, Brunak S, Von Heijne G. 1997. Identification of prokaryotic
748 and eukaryotic signal peptides and prediction of their cleavage sites. *Protein Eng* 10:1–6.

749 99. Krogh AS, Nielsen H. 1998. Prediction of signal peptides and signal anchors by a hidden
750 Markov model., p. 122–130. *In Proc Int Conf Intell Syst Mol Biol*. AAAI Press.

751 100. Bendtsen JD, Nielsen H, Von Heijne G, Brunak S. 2004. Improved prediction of signal
752 peptides: SignalP 3.0. *J Mol Biol* 340:783–795.

753 101. Petersen TN, Brunak S, Von Heijne G, Nielsen H. 2011. SignalP 4.0: Discriminating
754 signal peptides from transmembrane regions. *Nat Methods* 8:785–786.

755 102. Farinas ET, Bulter T, Arnold FH. 2001. Directed enzyme evolution. *Curr Opin Biotechnol*
756 12:545–551.

757 103. Lutz S, Patrick WM. 2004. Novel methods for directed evolution of enzymes: Quality, not
758 quantity. *Curr Opin Biotechnol* 15:291–297.

759 104. Goldsmith M, Tawfik DS. 2012. Directed enzyme evolution: Beyond the low-hanging
760 fruit. *Curr Opin Struct Biol* 22:406–412.

761 105. Morley KL, Kazlauskas RJ. 2005. Improving enzyme properties: When are closer
762 mutations better? *Trends Biotechnol* 23:231–237.

763 106. Chica RA, Doucet N, Pelletier JN. 2005. Semi-rational approaches to engineering enzyme
764 activity: Combining the benefits of directed evolution and rational design. *Curr Opin*
765 *Biotechnol* 16:378–384.

766 107. Siedhoff NE, Schwaneberg U, Davari MD. 2020. Machine learning-assisted enzyme
767 engineering, p. 281–315. *In* *Methods in Enzymology*. Academic Press Inc.

768 108. Damborsky J, Brezovsky J. 2014. Computational tools for designing and engineering
769 enzymes. *Curr Opin Chem Biol* 19:8–16.

770 109. Welborn VV, Head-Gordon T. 2018. Computational Design of Synthetic Enzymes. *Chem*
771 *Rev* 119:6613–6630.

772 110. Berland M, Offmann B, André I, Remaud-Siméon M, Charton P, Arnold F. 2014. A web-
773 based tool for rational screening of mutants libraries using ProSAR, p. 375–381. *In*
774 *Protein Engineering, Design and Selection*. Oxford University Press.

775 111. Fox RJ, Davis SC, Mundorff EC, Newman LM, Gavrilovic V, Ma SK, Chung LM, Ching
776 C, Tam S, Muley S, Grate J, Gruber J, Whitman JC, Sheldon RA, Huisman GW. 2007.
777 Improving catalytic function by ProSAR-driven enzyme evolution. *Nat Biotechnol*
778 25:338–344.

779 112. Alley EC, Khimulya G, Biswas S, AlQuraishi M, Church GM. 2019. Unified rational
780 protein engineering with sequence-based deep representation learning. *Nat Methods*
781 16:1315–1322.

782 113. Schymkowitz J, Borg J, Stricher F, Nys R, Rousseau F, Serrano L. 2005. The FoldX web
783 server: An online force field. *Nucleic Acids Res* 33:W382.

784 114. Craig DB, Dombkowski AA. 2013. Disulfide by Design 2.0: A web-based tool for
785 disulfide engineering in proteins. *BMC Bioinformatics* 14:346.

786 115. He W-J, Zhang L, Yi S-Y, Tang X-L, Yuan Q-S, Guo M-W, Wu A-B, Qu B, Li H-P, Liao
787 Y-C. 2017. An aldo-keto reductase is responsible for Fusarium toxin-degrading activity in
788 a soil Sphingomonas strain. *Sci Reports* 2017 71 7:1–13.

789 116. Sun J, Xia Y, Ming D. 2020. Whole-Genome Sequencing and Bioinformatics Analysis of
790 *Apiostrichum mycotoxinivorans*: Predicting Putative Zearalenone-Degradation Enzymes.
791 *Front Microbiol* 10:1866.

792 117. Millacura FA, Cárdenas F, Mendez V, Seeger M, Rojas LA. 2017. Degradation of
793 benzene by the heavy-metal resistant bacterium *Cupriavidus metallidurans* CH34 reveals
794 its catabolic potential for aromatic compounds. *bioRxiv* 164517.

795 118. Kernan T, West AC, Banta S. 2017. Characterization of endogenous promoters for control
796 of recombinant gene expression in *Acidithiobacillus ferrooxidans*. *Biotechnol Appl*
797 *Biochem* 64:793–802.

798 119. Ibraim IC, Parise MTD, Parise D, Sfeir MZT, de Paula Castro TL, Wattam AR, Ghosh P,
799 Barh D, Souza EM, Góes-Neto A, Gomide ACP, Azevedo V. 2019. Transcriptome profile
800 of *Corynebacterium pseudotuberculosis* in response to iron limitation. *BMC Genomics*
801 2019 20:1 20:1–24.

802 120. Lee M, Ryu M, Joo M, Seo Y-J, Lee J, Kim H-M, Shin E, Yeom J-H, Kim Y-H, Bae J,

803 Lee K. 2021. Endoribonuclease-mediated control of hns mRNA stability constitutes a key
804 regulatory pathway for *Salmonella Typhimurium* pathogenicity island 1 expression. PLOS
805 Pathog 17:e1009263.

806 121. Wuisan ZG, Kresna IDM, Böhringer N, Lewis K, Schäberle TF. 2021. Optimization of
807 heterologous Darobactin A expression and identification of the minimal biosynthetic gene
808 cluster. Metab Eng 66:123–136.

809 122. Martinez-Amador P, Castañeda N, Loza A, Soto L, Merino E, Gutierrez-Rios RM. 2019.
810 Prediction of protein architectures involved in the signaling-pathway initiating sporulation
811 in Firmicutes. BMC Res Notes 2019 121 12:1–3.

812 123. Grünberger F, Reichelt R, Bunk B, Spröer C, Overmann J, Rachel R, Grohmann D,
813 Hausner W. 2019. Next Generation DNA-Seq and Differential RNA-Seq Allow Re-
814 annotation of the *Pyrococcus furiosus* DSM 3638 Genome and Provide Insights Into
815 Archaeal Antisense Transcription. Front Microbiol 10:1603.

816 124. Otero IVR, Ferro M, Bacci M, Ferreira H, Sette LD. 2017. De novo transcriptome
817 assembly: a new laccase multigene family from the marine-derived basidiomycete
818 *Peniophora* sp. CBMAI 1063. AMB Express 2017 71 7:1–11.

819 125. Khatoon H, Rai JPN. 2020. Optimization studies on biodegradation of atrazine by *Bacillus*
820 *badius* ABP6 strain using response surface methodology. Biotechnol Reports 26:e00459.

821 126. Zaveri P, Iyer AR, Patel R, Munshi NS. 2021. Uncovering Competitive and Restorative
822 Effects of Macro- and Micronutrients on Sodium Benzoate Biodegradation. Front
823 Microbiol 12:316.

824 127. Lonsdale R, Harvey JN, Mulholland AJ. 2012. A practical guide to modelling enzyme-
825 catalysed reactions. Chem Soc Rev 41:3025–3038.

826 128. Yang Z, Mahmood R, Wang M, Qi HW, Steeves AH, Kulik HJ. 2019. Revealing quantum
827 mechanical effects in enzyme catalysis with large-scale electronic structure simulation.
828 React Chem Eng 4:298–315.

829 129. Wang X, Li R, Cui W, Li Q, Yao J. 2018. QM/MM free energy Simulations of an efficient
830 Gluten Hydrolase (Kuma030) Implicate for a Reactant-State Based Protein-Design
831 Strategy for General Acid/Base Catalysis. Sci Reports 2018 81 8:1–11.

832 130. Fritze KM, Roden RBS, Lee J-H, Shi Y, Peabody DS, Chackerian B. 2016. Identification
833 of Anti-CA125 Antibody Responses in Ovarian Cancer Patients by a Novel Deep
834 Sequence–Coupled Biopanning Platform. Cancer Immunol Res 4:157–164.

835 131. Nian R, Kim DS, Nguyen T, Tan L, Kim CW, Yoo IK, Choe WS. 2010. Chromatographic
836 biopanning for the selection of peptides with high specificity to Pb²⁺ from phage
837 displayed peptide library. J Chromatogr A 1217:5940–5949.

838 132. Ang EL, Obbard JP, Zhao H. 2009. Directed evolution of aniline dioxygenase for
839 enhanced bioremediation of aromatic amines. Appl Microbiol Biotechnol 2008 816
840 81:1063–1070.

841 133. Yang Y, Zhang S, Howe K, Wilson DB, Moser F, Irwin D, Thannhauser TW. 2007. A
842 Comparison of nLC-ESI-MS/MS and nLC-MALDI-MS/MS for GeLC-Based Protein
843 Identification and iTRAQ-Based Shotgun Quantitative Proteomics. J Biomol Tech 18:226.

844 134. Fornelli L, Parra J, Hartmer R, Stoermer C, Lubeck M, Tsybin YO. 2013. Top-down
845 analysis of 30–80 kDa proteins by electron transfer dissociation time-of-flight mass
846 spectrometry. *Anal Bioanal Chem* 2013 40526 405:8505–8514.

847 135. Chowdhury R, Maranas CD. 2020. From directed evolution to computational enzyme
848 engineering—A review. *AIChE J* 66:e16847.

849 136. Hu D, Hu S, Wan W, Xu M, Du R, Zhao W, Gao X, Liu J, Liu H, Hong J. 2015. Effective
850 Optimization of Antibody Affinity by Phage Display Integrated with High-Throughput
851 DNA Synthesis and Sequencing Technologies. *PLoS One* 10:e0129125.

852 137. Lim CC, Woo PCY, Lim TS. 2019. Development of a Phage Display Panning Strategy
853 Utilizing Crude Antigens: Isolation of MERS-CoV Nucleoprotein human antibodies. *Sci
854 Reports* 2019 91 9:1–15.

855 138. Shin J-E, Riesselman AJ, Kollasch AW, McMahon C, Simon E, Sander C, Manglik A,
856 Kruse AC, Marks DS. 2021. Protein design and variant prediction using autoregressive
857 generative models. *Nat Commun* 2021 121 12:1–11.

858 139. Saka K, Kakuzaki T, Metsugi S, Kashiwagi D, Yoshida K, Wada M, Tsunoda H,
859 Teramoto R. 2021. Antibody design using LSTM based deep generative model from
860 phage display library for affinity maturation. *Sci Reports* 2021 111 11:1–13.

861 140. Richman SA, Healan SJ, Weber KS, Donermeyer DL, Dossett ML, Greenberg PD, Allen
862 PM, Kranz DM. 2006. Development of a novel strategy for engineering high-affinity
863 proteins by yeast display. *Protein Eng Des Sel* 19:255–264.

864 141. Legendre D, Soumillion P, Fastrez J. 1999. Engineering a regulatable enzyme for
865 homogeneous immunoassays. *Nat Biotechnol* 1999 171 17:67–72.

866 142. Mathieu V, Fastrez J, Soumillion P. 2010. Engineering allosteric regulation into the hinge
867 region of a circularly permuted TEM-1 β -lactamase. *Protein Eng Des Sel* 23:699–709.

868 143. Huang W, Beharry Z, Zhang Z, Palzkill T. 2003. A broad-spectrum peptide inhibitor of β -
869 lactamase identified using phage display and peptide arrays. *Protein Eng Des Sel* 16:853–
870 860.

871 144. Zhou J, Zhu L, Chen J, Wang W, Zhang R, Li Y, Zhang Q, Wang W. 2020. Degradation
872 mechanism for Zearalenone ring-cleavage by Zearalenone hydrolase RmZHD: A
873 QM/MM study. *Sci Total Environ* 709:135897.

874 145. Tomin M, Tomić S. 2019. Oxidase or peptidase? A computational insight into a putative
875 aflatoxin oxidase from *Armillariella tabescens*. *Proteins Struct Funct Bioinforma* 87:390–
876 400.

877 146. Souza PCT, Alessandri R, Barnoud J, Thallmair S, Faustino I, Grünewald F, Patmanidis I,
878 Abdizadeh H, Bruininks BMH, Wassenaar TA, Kroon PC, Melcr J, Nieto V, Corradi V,
879 Khan HM, Domański J, Javanainen M, Martinez-Seara H, Reuter N, Best RB, Vattulainen
880 I, Monticelli L, Periole X, Tielemans DP, de Vries AH, Marrink SJ. 2021. Martini 3: a
881 general purpose force field for coarse-grained molecular dynamics. *Nat Methods* 18:382–
882 388.

883 147. Wang J, Chmiela S, Müller KR, Noé F, Clementi C. 2020. Ensemble learning of coarse-
884 grained molecular dynamics force fields with a kernel approach. *arXiv* 152:194106.

885 148. Guterres H, Im W. 2020. Improving Protein-Ligand Docking Results with High-
886 Throughput Molecular Dynamics Simulations. *J Chem Inf Model* 60:2189–2198.

887 149. Peterson L. 2020. In Silico Molecular Dynamics Docking of Drugs to the Inhibitory
888 Active Site of SARS-CoV-2 Protease and Their Predicted Toxicology and ADME. *SSRN*
889 *Electron J* <https://doi.org/10.2139/ssrn.3580951>.

890 150. Aljoudi A, Bjij I, El Rashedy A, Soliman MES. 2020. Covalent Versus Non-covalent
891 Enzyme Inhibition: Which Route Should We Take? A Justification of the Good and Bad
892 from Molecular Modelling Perspective. *Protein J* 39:97–105.

893 151. Yu T, Guo H. 2020. Understanding Enzyme Catalysis Mechanism Using QM/MM
894 Simulation Methods, p. 121–137. *In ACS Symposium Series*. American Chemical
895 Society.

896 152. Zaccaria M, Dawson W, Kish DR, Reverberi M, Bonaccorsi Di Patti MC, Domin M,
897 Cristiglio V, Dellafiora L, Gabel F, Nakajima T, Genovese L, Momeni B. 2021.
898 Mechanistic Insight from Full Quantum Mechanical Modeling: Laccase as a Detoxifier of
899 Aflatoxins. *bioRxiv* 2020.12.31.424992.

900

901 **Figure and Table Legends**

902 **Figure 1.** Simplified representation of the cellular machinery involved in (A) extracellular versus
903 (B) intracellular detoxification.

904

905 **Figure 2.** Conceptual breakdown of major questions of interest where computational tools can
906 facilitate more efficient removal of toxins.

907

908 **Table 1.** Representative examples of identified bacterial and fungal enzymes with the capability
909 to degrade major mycotoxins are listed. Those hypothesized but not yet confirmed are marked by
910 an asterisk (*).

911

912 **Table 2.** Representative examples of applications of computational biology tools for usages
913 outlined in the previous section are listed. Those used for bioremediation are marked by an
914 asterisk (*).