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Abstract

Biological organisms carry a rich potential for removing toxins from our environment, but
identifying suitable candidates and improving them remain challenging. We explore the use of
computational tools to discover strains and enzymes that detoxify harmful compounds. In
particular, we will focus on mycotoxins—fungi-produced toxins that contaminate food and
feed—and biological enzymes that are capable of rendering them less harmful. We discuss the
use of established and novel computational tools to complement existing empirical data in three
directions: discovering the prospect of detoxification among underexplored organisms, finding
important cellular processes that contribute to detoxification, and improving the performance of
detoxifying enzymes. We hope to create a synergistic conversation between researchers in
computational biology and those in the bioremediation field. We showcase open bioremediation
questions where computational researchers can contribute and highlight relevant existing and

emerging computational tools that could benefit bioremediation researchers.
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1. Background and Motivation

1.1. Context: detoxifying contaminated food and feed

Fungi that grow on foodstuffs are one of the major sources of contamination in food and
feed; these fungi-produced toxins are called mycotoxins. Currently, an estimated 25% of world
crops is thought to get contaminated with mycotoxins each year (1, 2), putting a major burden on
agriculture and public health. Preventing contamination or detoxifying mycotoxins is a major
safety priority (3). In what follows, we briefly describe the threat of mycotoxins, and the
potentials of biological organisms to address this threat via detoxifying enzymes. We will then
investigate and explore the use of computational approaches to discover and improve such
potentials. We will primarily discuss three aspects: (1) the use of bioinformatics tools to search
genomic databases for candidate species and enzymes, (2) the use of genetics and genomics data
to investigate how the detoxification performance can be improved, and (3) the use of
computational tools to improve the detoxifying enzymes. While we discuss established
computational methods used in identifying mycotoxin degrading enzymes, we also consider the

use of novel, field-adjacent methods that have potential in mycotoxin detoxification.
1.2. Mycotoxins are prevalent and harmful

Mycotoxins are secondary metabolites produced by a variety of filamentous fungi that
contaminate common food crops and cause negative health effects in animals and humans. More
than 300 types of mycotoxins have been identified so far, all of which would be candidates for
detoxification (1). Among these, six major types are of particular interest and the focus of this

review because of their detrimental health impact and because they routinely contaminate foods
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and animal feed (4, 5): aflatoxin (AF), ochratoxin (OT), zearalenone (ZEA), fumonisin,

deoxynivalenol (DON), and patulin.

Aflatoxins, produced by Aspergillus species, are one of the most carcinogenic naturally
occurring substances and active inducers of mutations, liver cancer, congenital malformations,
hormone disorders, and immunodepression (6, 7). Ochratoxin is also produced by Aspergillus
species, as well as certain Penicillium species, and is a nephrotoxin, immunosuppressant, potent
teratogen, and renal carcinogen (6, 8, 9). Zearalenone and fumonisins are produced by Fusarium
species. ZEA acts through estrogen mimicry to dysregulate the hormone receptor and antagonize
the estrogen pathway leading to reproductive disorders, hormone imbalance, and breast cancer
(6, 10). Fumonisins have been linked to esophageal cancer in humans as well as a variety of
health complications in animals such as pulmonary edema and hepatotoxicity (6, 11). Produced
by Fusarium graminearum, DON is a vomitoxin, causing emetic and nauseous effects after
ingestion (12). Finally, patulin is produced by ascomycetes such as Penicillium, Aspergillus, and
Byssochlamys species and is commonly found in fruit and vegetable products, especially rotten
apples and apple juice (13). Patulin ingestion is linked to a number of health complications,
namely immune suppression, ulcers, gastrointestinal inflammation and embryotoxicity (13).
There are a variety of food crops that these mycotoxins contaminate, including cereal crops such
as wheat, barley, corn, and oats (6, 11). Due to the serious health implications of mycotoxin
contamination, economic losses arise from reduction of crop and livestock yields as well as the
cost of decontamination efforts. Annually, the United States faces an estimated $932 million
economic losses from AFs, fumonisins, and DON alone (14). This sizable economic burden is
faced across agriculture and livestock producers globally and requires efficient and cost-effective

measures as a solution.
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Mycotoxins build up on foodstuff necessitates methods of decontamination in order to
supply safe foods for consumption. Currently, decontamination is limited to physical and
chemical methods. Physical methods, including sorting and cleaning, have been shown to be
effective in some but not all cases of mycotoxin contaminations. Chemical methods, which use
chemical agents to reduce or convert mycotoxins into less toxic byproducts, include ozonation
and ammoniation. While these physical and chemical methods have been used to reduce
mycotoxin contamination, they suffer from high operational costs and limited reliability and may
decrease the quality or nutritional value of the food (3, 14—16). These limitations expose the need

to look for better solutions.

1.3. Toxin removal by biological processes is a promising solution

Bioremediation, or the use of biological entities to detoxify or remove toxins in the
environment, is a promising alternative to current decontamination methods. Bioremediation
offers lower costs, fewer undesired environmental side-effects, and potentially higher efficiency
and reliability (17—19). The use of microbes is a particularly attractive choice in bioremediation,
offering faster activity and the feasibility of strain evolution and engineering for improved
performance (20). There are six key factors that make a good bioremediator: 1) fast and efficient
at degradation, 2) safe degradation products, 3) non-pathogenic to plants, animals, or humans, 4)
not detrimental to the quality of the food/feed, 5) applicable outside of lab settings, and 6)
applicable to multiple pollutants (17). Among identified mycotoxin degraders none effectively fit
all of these factors, with speed and efficiency often being subpar. Additionally, the mechanisms
of degradation by these identified microorganisms are often unknown or understudied, limiting

the ability to improve upon the native degradation performance. Therefore, identifying new



88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

species that possess mycotoxin degradation ability and elucidating the mechanisms of

degradation are beneficial in making this capability effective and commercially viable.

1.4. Modes of biological detoxification

In the context of microbial interventions for removing mycotoxins, the two main modes
of detoxification are adsorption and biotransformation. In adsorption, mycotoxins are physically
bound to polysaccharides and proteins in the outer cell structures (21, 22). Biotransformation
utilizes microbes and their enzymes to convert mycotoxins into non-toxic compounds (23, 24).
In this paper we are solely concerned with methods to identify and improve biotransformation
processes. Biotransformation can be further broken into two categories (schematically shown in
Fig. 1): secretion of enzymes (extracellular degradation) and uptake of the toxin into the cell
(intracellular degradation). Intracellular degradation of toxins more closely follows normal
metabolic processing of molecules by microbes inside the cell. Microbes that mitigate
mycotoxins through extracellular degradation are more likely to produce stable enzymes that can
be isolated and used in practice; this has been the strategy for several existing commercial
products (25-27). Table 1 shows some of the bacterial and fungal enzymes that have been found

to degrade major mycotoxins.

Enzymatic degradation has been suggested in a number of studies; however,
identification of the degrading enzymes has proven difficult. Sangare et al. show a Pseudomonas
species capable of degrading AFB from cell-free culture supernatant, suggesting that an
extracellular enzyme is responsible for the degradation (43). Screening for the effect of common
functional cofactors may potentially help identify the enzyme class. Similar extracellular

degradation has been reported for Rhodococcus spp., Stenotrophomonas spp., and Myxococcus
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spp. (44—46). DON has been observed to be assimilated as a carbon source in some, but not all
strains (47). Other extracellular enzymes with mycotoxin degrading abilities include
oxidoreductase, dehydrogenase, aldo-keto reductases, and peroxidases (48—50). While there has

been less focus on intracellular mechanisms, intracellular enzymatic degradation has been shown

by Zhu et al. (51).

1.5. Bacteria and fungi carry a rich repertoire of enzymes capable of removing mycotoxins

Biotransformation of mycotoxins into non-toxic products by bacterial and fungal
enzymes has already been demonstrated (19, 48, 52, 53). The detoxification performance can be
improved by identifying and characterizing the enzymes with degradation/detoxification
capability. On one side, uncovering the cellular machinery of degradation (schematically shown
in Fig. 1 and explored in Section 2.3) allows us to select conditions to express the enzyme (when
searching for candidates) or engineer strains to improve their performance. On the other hand,
the enzyme itself can be modified and improved. Structural modelling and design of experiments
(DOE) techniques can shed light on the identification of key structural components that

contribute to degradation (52).

In the remainder of this work, we will limit the scope to extracellular bacterial and fungal
detoxifying enzymes. We make this choice to offer a more focused view on recent developments
in computational tools for biological enzymes, but also because deploying enzymes (versus live
organisms) in food/feed applications is a more practical approach (23, 52). The use of enzymes
for reducing the threat of mycotoxins has reached industrial applications, even if only in a few
cases. Mycofix® line of products (27) combine different modalities, including biotransformation

and adsorption to remove several mycotoxins from feed. FUMzyme® is a commercially
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available fumonisin estrase produced in a genetically modified strain of Komagataella pastoris
(54) that has shown success in removing the contamination from feed (26). However, more

research is still needed to improve the performance of mycotoxin removal.

Several previous reports have cataloged specific enzymes that act on mycotoxins (17, 48,
55) and Table 1 lists representative examples for the major mycotoxins explored in this review.
Here instead we focus on current challenges and questions in the field of mycotoxin
detoxification that can be addressed by computational tools. In this context, we survey some of
the existing tools that have already been applied in this field and then propose emerging tools

that have the potential to lead to transformative progress.

2. Current Challenges and Computational Solutions

How can we effectively remove mycotoxins using biological organisms? Conceptually, we break
down this search into two steps: (1) finding organisms that have this capability, and (2)
optimizing the performance by modifying the environmental conditions, the detoxifying strain,
or the target enzymes. We survey existing computational tools that can facilitate this process
(Fig. 2). We focus our discussions on genomic and structural biology tools. We acknowledge
that there are other useful tools—including proteomics—that can offer additional insights, but

are beyond the scope of this mini-review.

2.1. Finding candidate organisms: who can do the job?

Discovering organisms that can degrade mycotoxins poses a number of challenges that

can be met both through experimental and computational approaches. In terms of enzymatic
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degradation, there are three challenges to be addressed. First, organisms must have the genes
necessary to produce enzymes and possibly cofactors involved in degradation. Second, the
organisms must have favorable regulatory mechanisms for these enzymes. Third, the method of
obtaining and isolating the enzymes must be favorable to the end use case. One can describe the
search space as being largely defined by these characteristics that may be specific to the use

cases, but are still conceptually similar among different cases.

From the experimental front, high-throughput screening may be used both to identify
candidate organisms as well as explore mutations for optimizing degradation potential.
Environmental isolates are a traditional source for identifying mycotoxin degraders. Isolates can
be cultivated and tested for degradation, especially when high-throughput screening is possible.
As an example, Ciegler et al. screened ~1000 organisms, both prokaryotes and eukaryotes, for
their aflatoxin-degradation capability (56). Screening can also be used for optimizing the
environmental conditions or the enzyme itself. However, unless feasible high-throughput assays
are available, this process is resource and time expensive. Therefore, looking to computational

methods to screen for new organisms will be beneficial.

As an example, there is a known, highly specific two-step enzymatic process in the
detoxification of fumonisin, which involves a carboxylesterase and an aminotransferase (34).
This becomes a useful bottleneck in the search space, as candidate organisms must contain both
enzyme-encoding genes to be viable degraders. Toward this end, tools such as BLASTp (57) can
be utilized in cases where genome sequences are available. Simply put, the presence of these two
genes largely dictates whether or not an organism is a fumonisin degrader. On the other hand, in
the example of AF detoxification, many species can possess hydrolases or oxidases related to

those that are known to degrade AF (24, 48, 58). The search space is instead constrained on a
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separate manifold involving the specificity and affinity of the hydrolase for AFs. That is, the
presence of the same hydrolase gene may not be sufficient to identify degradation potential,
since it may be optimized for a different substrate. The sequence-to-function relationship then
becomes critical, which is not guaranteed to be captured by sequence similarity a /la BLASTp.
This shortcoming can be thought of as a signal to noise ratio, where key amino acids involved in
the active site mechanism are sparse signals, and the rest of the sequence functions primarily to
provide the correct structural shape and may be noisy in this regard. This is witnessed in the
work by Dellafiora and colleagues (59), where two related, AF-degrading oxidases shared only
72% sequence similarity, despite using the same mechanism for degradation. In a more extreme
example, a recently identified carboxylesterase that degrades fumonisin shows only around 34%

sequence similarity to previously reported fumonisin-degrading carboxylesterases (60).

Similarity in sequence does not necessarily overlap with similarity in function. Sequence
similarity may be used to imply functional similarity; however, such a predicate does not include
enzymes that share functional similarity without sequence similarity. High sequence similarity
among closely related species might not fully overlap with functional similarity either.
Therefore, searches should be conducted on a sequence-to-function relationship model. While
this method loses the high-throughput optimizations of BLAST-based sequence similarity, it may
be modeled via a reductive filter pipeline to maintain reasonable complexity. It also loses the
generalizability of sequence similarity, and instead pipelines must be custom designed for each
case. Dellafiora ef al. have combined an in silico screen with an enzymatic assay to address this
challenge in search of hydrolyzing enzymes that can degrade ochratoxin A (61). In the example
of AFs, initial work has been performed to design a structure-to-function reductive filter model

using a number of filters. Furthermore, this model does not necessarily require a labeled, positive
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enzyme to seed the search, rather it only requires characteristics to build the filters. Prior
research by Risa and colleagues (62) has identified that excreted enzymes can be responsible for
degrading AFs. SignalP is able to predict protein excretion in bacteria, and can be used as an
initial filter to narrow down proteomes. These sequences can be passed through both size and
sequence-based enzyme classification filters based on facile experimental determinations to
further reduce the candidate pool. From here, 3D structures may be built, the binding pockets
predicted, and AF docked to identify high affinity interactions that then may be confirmed
experimentally. These computational processes will be expanded below. The reductive filter
model uses low-complexity tools at its head, increasing in complexity towards the tail to ensure
efficiency. Similarly, its modular nature allows for easy insertion or upgrading of components as

advances occur in each domain.

2.2. Community-level detoxification: when the task needs to be divided

Mycotoxin degradation may require multiple reactions to reach byproducts with complete
or significantly decreased toxicity. There are several examples where a single enzyme is
insufficient for complete degradation and two or more enzymatic steps are required for the
detoxification process. In such cases, we need to better understand how multiple enzymes from
the same, or even different, species are required for degradation of a single mycotoxin. While
this increases the difficulty and cost of searching for degrading enzymes that can work together,
the outcome of complete degradation and reduced toxicity is desirable for application in
agriculture where mycotoxin levels must fall under set regulatory limits. For degradation of
fumonisin B1 by Sphingopyxis sp. MTA144, Heinl ef al. found that two enzymes were involved
(34). A carboxylesterase facilitated the initial deesterification step to form a hydrolyzed

fumonisin B, which is less active in its known ceramide synthase inhibitory pathway but still
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possesses significant toxic effect (34, 63). A second enzyme, an aminotransferase, deaminated
the hydrolyzed byproduct of the first reaction resulting in complete degradation and loss of toxic
effects (34). Similarly, Carere et al. elucidated a two component enzymatic pathway involved in
the epimerization of DON by Devosia mutans 17-2-E-8 (64, 65). The enzymes, designated DepA
and DepB, first oxidize DON into 3-keto-DON (DepA) (64) and subsequently reduce 3-keto-
DON into 3-epi-DON (DepB) (65), significantly reducing toxicity. These examples highlight the
need to understand all the enzymes playing a role in complete degradation.

In some instances, mycotoxin biotransformation does not lead to complete detoxification
(52); DON degradation above as an example leads to end products that are less toxic than the
starting substrate, but still retain some toxicity. In biotransformation of ZEA, there are cases
where microbial breakdown results in byproducts, a-zearalenol and -zearalenol, that are even
more toxic than the original compound (39, 66, 67). In such cases, we need to identify additional
species or enzymes that can take the byproducts and convert them into non-toxic compounds in a
multi-step process.

Multi-step degradation underscores the possible need to look beyond single
microorganisms and employ microbial consortia to complete the job; as an example, Wang et al.
discovered a microbial consortium that utilizes multiple species across various taxa working in
unison to transform ZEA to non-toxic byproducts (68). Bioinformatic searches for identifying
multiple enzymes necessary for a particular case would be an extension of the single-enzyme
searches discussed in the previous section, using the similar tools. Of note could be searching for
individual organisms that carry two or more necessary enzymes that have previously been

identified in multiple species/strains.
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2.3. Regulation: even when the detoxification capability exists in an organism, its

availability may be under regulation

Even after organisms have been identified that are capable of detoxifying target
pollutants, the availability of the relevant enzymes depends on whether the environmental
context induces the relevant genes of enzyme production and secretion effectively. These
considerations point to the need to explore the internal regulation of the production and secretion
of detoxification enzymes. Microorganisms respond to cellular and environmental changes
through regulatory decisions that could impact the availability of degradation machinery for
target pollutants (69). Production of enzymes is regulated through different mechanisms, such as
transcription factors binding in and around promoter regions that contributes to the amount of
enzyme produced by the cell. These mechanisms are likely influenced by nutrient availability
and overall conditions of the cell (i.e. growth phase) (70). Secreted enzymes have an added layer
of regulation due to the high energy cost of secretion. While these enzymes have beneficial
effects, often being employed to breakdown macromolecules in the environment for cellular
uptake, they also incur an energy/biomass cost (71). Therefore, certain enzymes targeted for
secretion are up- or down-regulated by the presence of nutrients in the environment that

respectively do or do not require extracellular breakdown.

Here, we primarily emphasize the existing native potential as the starting point, even
though ultimately the deployment likely happens in a safe and tractable host organism. Our
discussion on regulation and the detoxification machinery in the native context has two purposes.
(1) It reveals the preferred conditions for the expression of the detoxification machinery to
enable more effective screening for functions of interest. (2) It allows us to better understand the
diversity of possibilities and the ideal machinery to be transferred to a host organism.

12
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Understanding the influence of regulation on production and secretion of the enzyme is also
necessary for strain optimization to factor in the cost-benefit balance of increased enzyme

production and secretion.

Several existing bioinformatic tools can help us uncover aspects of bacterial gene
regulation, such as promoter and DNA binding sites, operon regions, and secretion signals,
which are touched on in the following sections. The usefulness of these tools in the context of
bioremediation is that they allow researchers to uncover possible mechanisms of regulation that
control the detoxification process. Insight from regulation, for example similarity to a known
catabolic pathway, can also be used to choose suitable environmental conditions or infer the

mechanism of degradation.

Promoter Prediction. Identifying promoter regions and DNA binding sites are important in that
transcription initiation is the most frequently regulated step in gene expression. Promoters
contain an intrinsic strength that governs the amount of transcription a gene undergoes and when
transcription occurs according to environmental factors such as nutrient availability (70). It is
important to properly regulate gene expression to ensure the degrading enzyme is sufficiently
expressed, but only when the particular substrate is present to limit wasteful production of
enzymes that are disadvantageous to the cell without the substrate (72). By uncovering promoters
associated with genes/enzymes of interest in bioremediation, we can understand how the cell
naturally regulates its expression and better manipulate it toward improved expression for
application in agriculture. There are several existing tools for predicting and cataloging promoter
regions in different organisms, such as phiSITE (73, 74), SAPPHIRE (75), PRODORIC2 (76),

BacPP (77), and PPCNN (78). We will expand on the latter three.
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PRODORIC?2 is a transcription factor binding site (TFBS) database that possesses one of
the largest collections of DNA binding sites in prokaryotic organisms (76). In 2018, its most
recent update, PRODORIC2 expanded its database to host the genomic information of 2274
bacterial strains and their 5191 replicons (76). This database is curated to only include
experimentally validated binding sites, limiting the expanse of bacterial species it contains but
ensuring accuracy in its TFBS inventory. De Avila e Silva et al. created a bioinformatic tool,
BacPP, to predict promoter sequences in Escherichia coli strains through neural network
simulations (77). BacPP is able to recognize and predict promoter sites with varying levels of
accuracy (all above 83%) across the different sigma factors crucial for prokaryotic transcription
initiation (77). Additionally, BacPP has 76% prediction accuracy among other enterobacteria
species (77). The advantage of this method is in its ability to classify promoter sequences by its
sigma factor, an important distinguishing feature that was a shortcoming of previous tools.
However, BacPP is currently limited to E. coli and, to a lower accuracy, enterobacteria. Another
promoter prediction tool is Promoter Prediction Convolutional Neural Network (PPCNN),
developed for both eukaryotic and prokaryotic prediction and implemented into the CNNProm
program. This approach uses deep learning neural networks for its prediction models (78). For
prokaryotes, PPCNN was trained on E. coli and Bacillus subtilis, offering insight into both
Gram-positive and Gram-negative species. A highlight of this method is its applicability to other
sequenced species because it predicts promoters without prior knowledge of specific promoter

features (78).

Operon Prediction. Metabolically or functionally related genes within prokaryotic genomes are
often arranged in contiguous segments called operons and are co-transcribed along the same

messenger RNA (79). This organization imparts an added layer of regulation on the genes within
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the operon. Specifically, in the context of bioremediation, if an enzyme of interest is encoded
within an operon, it opens up new genes that could help play a role in degradation, either
functionally or through regulation. As an example, Heinl et a/. identified two fumonisin
degrading enzymes that were held within a gene cluster organized in two operons and
subsequently determined other genes in the operon held importance to transcriptional regulation
and transport of the degrading enzymes, as well as additional enzymes that might play a role in
further breakdown on the degradation byproducts (34). Additionally, downstream utilization of
the enzyme-encoding gene(s) can be affected by its placement within an operon. For example,
Altahli and El-Deeb transferred ZEA degradation capability in Pseudomonas putida into E. coli
via a plasmid encoding detoxification genes (39). Multiple genes were shown to be expressed for
detoxification; however, they were unable to separate these genes due to their organization in
operons. Therefore, understanding the genomic organization of these genes within operons can
aid in their use for degradation. Determining operons computationally has been a field of interest
for a number of years, leading to tools such as Operon DataBase (80, 81), OperomeDB (82, 83),
Operon Hunter (84), and Operon-mapper (85, 86), with recent advances in de novo prediction of

operons from genomic data, which is expanded on below.

Operon-mapper, a web-based server for operon prediction, was developed in 2018 and is
the first publicly available tool for operon prediction that only requires genome sequences as the
input (85, 86). Operon-mapper uses a five step procedure: (1) open reading frame (ORF)
prediction using Prokka software (87, 88); (2) homology gene determination using the
hmmsearch program based on Hidden Markov Models (85, 88); (3) intergenic distance
evaluation using a custom program (85); (4) operon prediction using an artificial neural network

with intergenic distance and a score defining functional relatedness of protein products as the
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input arguments (85, 89, 90); and (5) gene function assignment using the DIAMOND algorithm
(91). The accuracy of this method in predicting operons was ~90% across eight tested genomes
with varying size and GC content, and outperformed other algorithms in a recent evaluation of

correlation to experimentally validated operons (92). Operon-mapper also has the advantage of

providing ORF identification and functional annotation of protein (85).

Secreted Protein Prediction. A signal peptide (SP) is a sequence of amino acids in a newly
synthesized protein that targets the protein into or across the membranes in the cell (93).
Determining whether and how an enzyme is secreted outside the cell enables better utilization of
the degradation machinery (schematically represented in Fig. 1A). To predict secreted proteins,
several algorithms to identify SPs within a proteome have been developed: SignalP (94), Psort

(95), Pred-Tat (96), and TatP (97).

Of note, SignalP is able to determine these secretion signals and distinguish between the
type of secretion pathway. The current version, SignalP 5.0, uses deep neural networks in
combination with conditional random field classification and optimized transfer learning to
determine SPs in prokaryotes, eukaryotes, and archaea (94). This update builds upon previous
versions based on artificial neural networks (98), with added improvements of hidden Markov
models (99), enhanced cleavage site predictions (100), and discrimination of signal peptides and
transmembrane helices (101). For prokaryotes, there are two main secretion pathways, Sec and
Tat, with three enzymes, signal peptidases I-III (SPase I-I1I), needed to cleave proteins for
secretion. SignalP 5.0 is able to distinguish between three types of SPs: (1) Sec substrates
cleaved by SPase I; (2) Sec substrates cleaved by SPase II; and (3) Tat substrates cleaved by
SPase I (94). Unfortunately, due to limited training data sets, SignalP 5.0 is unable to predict Sec

substrates processed by SPase III or Tat substrates processed by SPase II. However, the current
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ability to determine between the three secretion pathways is important in understanding how the
protein will be secreted and the regulation of the secretion process. SignalP 5.0 is available either
through their webserver or as a standalone package, making it an accessible tool for secreted
protein prediction. SignalP has already been used in the context of determining mycotoxin
degrading enzymes: Carere et al. utilized this predictive power in conjunction with an
experimental approach to narrow down gene candidates for the identification of DepA in the
DON degradation pathway by D. mutans (64). This example highlights the application this tool

has in aiding mycotoxin degradation research.

2.4. Sub-optimal enzymes: naturally evolved enzymes may not be the best match

Enzymes found capable of degrading mycotoxins may not be naturally optimized for
targeting the mycotoxin of interest. Importantly, some of the detoxifying enzymes belong to
common categories such as oxidases and hydrolases; however, it is not well understood what
features of the particular enzymes separates efficient detoxifiers from nonefficient ones. Thus,
there is a need to better understand what aspects determine the efficacy of the enzymes and how
they can be improved. Enzyme optimization often involves adaptation of a wild-type isolate to a
new substrate or reaction environment. New reaction environments often involve changes of
temperature, pH, and solvent conditions, all of which non-trivially affect the structure and
activity of the enzyme. One technique that is agnostic to fundamental understanding of these
effects is directed evolution (102—104). In directed evolution, genetic diversity is introduced via
random mutations and the resultant mutant proteins are screened/selected for improved
performance. There is some evidence that restricting directed evolution to residues close to the
active site leads to a higher probability of displaying meaningful contributions to its activity

(105). However, it remains unclear how such a process is achieved through traditionally
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structure-agnostic in vitro mutagenesis. Often, directed evolution is applied iteratively to further
improve strong performing mutants (106). Though directed evolution conveniently creates a
black-box optimization method, it does so at the cost of efficiency, where screening for fitness
can become a major bottleneck in the process (107). As an alternative, a variety of computational

tools have been developed for targeted enzyme engineering (e.g. those reviewed in (108, 109)).

Protein sequence activity relationship (ProSAR) models can assist the search algorithm
by creating a statistical model that links the protein sequence to its activity (i.e., fitness) (110,
111). ProSAR relies on a mutant library generated from mutagenesis with a constraint of
constant protein sequence length, along with the corresponding activities of interest (catalytic
constant, thermostability, etc.). A statistical model is built that links the presence or absence of
individual mutations to a contribution to the activity, from which some subset of the highest
contributing mutations can be fixed for the next round of mutagenesis. Unlike the close
mutations described earlier by Morely ef al. (105), this method is able to link individual
mutations to activity contributions without explicit knowledge of the 3D structure. The
traditional statistical methods for ProSAR involved partial least square regression and genetic
algorithm, while more recently traditional statistical methods could be replaced with Recurrent

Neural Network architectures (112).

Focused evolution, where targeted mutations are introduced based on rational mutation
hypotheses, can increase the efficiency of optimization by narrowing the search space; however,
current robust methods require 3D structures of the enzyme. When optimizing for known
properties such as thermostability and where reasonable 3D models are available, such as
homology models, a small subset of rational mutations can feasibly be explored through

computational methods and the final mutations evaluated experimentally. Rational mutation
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methods rely on heuristic evaluation methods like FoldX (113) to predict changes in Gibbs free
energy from mutations, or predictive methods like DbD2 (114), which predicts mutations to
introduce disulfide bonds that potentially have stabilizing effects on the protein for given
conditions. Potential mutations identified via heuristic methods are then commonly evaluated as
a narrow combinatorial library. Although not strictly necessary, to reduce cost and labor for the
in vitro experiments, the mutated proteins are often computationally evaluated for stability to
further narrow down viable mutations. Because of their heuristic nature, it is always necessary to
be able to introduce the mutations in vitro and evaluate them experimentally under the target

conditions to confirm the mutated protein is improved.

3. Future Outlook

Computational biology tools we have discussed above—although not comprehensive—represent
a range of traditional applications for better understanding the mechanisms and ultimately
improving the performance of toxin biodegradation. Some of these tools have already been used
in this context, whereas others have the potential to yield helpful insights. Table 2 captures the
current landscape, using representative examples from the literature. Next, we explore ongoing
and future advancements in computational methods that would further facilitate answering

pertinent questions in the field of mycotoxin bioremediation.

3.1. Taking the next step: combining machine learning with high-throughput

experimentation

Both the use of machine learning and automated, high-throughput laboratory experiments

are becoming increasingly prevalent for enzyme optimization. Enzyme engineering may become

19



426  auseful tool for the optimization of known degrading enzymes, especially when only sequences,
427  rather than solved crystallographic structures, are known (135). Models for directed evolution
428  can be experimentally realized in parallel and incrementally updated, moving towards an optimal
429  sequence. Like directed evolution, biopanning assays, also known as phage display assays, are a
430  technique often used to determine novel antibodies with high affinity to some known antigen
431 (136, 137). Biopanning involves washing a random peptide library over a target ligand

432  immobilized on some substrate. The non-binding peptides may be washed away, after which the
433 peptides with high affinity remain bound to the ligand and can be separately identified. Like a
434  genetic algorithm, these peptides form the seed for the next round of mutation and panning.

435  While this technique does not offer per-sequence performance metrics, we obtain partitioned
436  sequence datasets resulting from the pannings. Such partitioned datasets have been used in

437  unsupervised, autoregressive sequence models for nanobodies to generate novel sequences that
438  overlap with the high-affinity partition without needing to perform additional physical

439  experiments (138, 139). While further evaluation is needed to obtain specific performance

440  estimates for these novel sequences, the method aims to narrow the search space needed in

441  optimization. Biopanning has been previously shown to optimize TEM-1 beta-lactamase and
442  biotin ligase, indicating it may be feasible to use in optimizing mycotoxin degrading enzymes

443 (140-143).

444 Complemented by high-throughput assays, machine learning approaches are gradually
445  taking charge to bring out patterns, similarities, and dependencies—for example in sequence-
446  function relation of an enzyme family—that may otherwise be too cryptic. The use of machine

447  learning is in particular expanding in situations when an a priori model does not exist.

20



448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

3.2. Computational chemistry can further advance our understanding of enzymatic

processes

Towards the understanding of enzymatic mechanisms, advancements in quantum
mechanics (QM) and molecular mechanics (MM, atomistic) studies will be vital for
characterizing reaction mechanisms and exploring the chemical space available via mutations
(144). Additionally, crystallographic structures can be slow and expensive to solve; therefore,
recent advances in protein 3D structure prediction will be instrumental to develop high-

throughput pipelines.

Molecular mechanics provides a view of a system at the atomic level. It is often used for
molecular dynamics (MD) simulations, where a system (e.g. a protein-substrate interaction) is
studied using Newtonian physics, often at nanosecond to microsecond timescales. For some
protein systems, this timescale is sufficient to study the relevant mechanisms, such as in the case
of using steered MD simulations to characterize an aflatoxin oxidase enzyme isolated from
Armillariella tabescens as a member of the dipeptidyl peptidase III family of enzymes (145).
However, for larger proteins, or proteins involving large conformational shifts, extensive
computation may be needed. For these systems, a coarse-grained approach is taken where
moieties in the system are combined to reduce the total atom count, reducing the computational
cost (146, 147). Some examples are coarse-grained water models, as well as proteins where the
side chains are often reduced to a single pseudo-atom. Coarse-grained models face issues in

faithfully reproducing the system, and current research is focused in this area (147).

Atomistic models allow some insight into the interaction between the protein and the

toxin. Such models are often sufficient to determine if the toxin will sterically fit in the binding
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pocket, and may also help to determine pose, electrostatic favorability of the binding, and
conformational changes of the protein-ligand complex (148, 149). Unlike the more common use
for MM in evaluating non-covalent inhibitors, some difficulty emerges in the inherent covalent
nature of detoxification, which cannot be captured by an atomistic view (150). This issue may
preclude some energetic effects brought about by the changes in electronic structure, raising
concerns about how realistic such a model is. This concern may be partially solved by using
QM/MM methods, where part of the system is partitioned into a QM region, and the rest remains
in MM views (151). The QM region then can model electronic changes, and the rest can remain
in lower cost MM regions. However, the QM region cannot be too large, which precludes cases
that require large, complex QM regions (e.g. in metalloenzymes like laccases). Additionally, the
QM region adds computational cost and cannot be well-integrated into microsecond timescale

calculations.

At a relatively high computational cost, QM calculations provide a detailed and
comprehensive view of the electronic state of the system. They can provide information about
covalent and electronic changes, often necessary for detoxification studies. An example of this is
calculating a Fukui function of a molecule, which describes the change in a frontier orbital as the
molecule undergoes a redox reaction. Fukui functions have been used to identify the location of
redox in an AF-laccase system (152). QM may also be used to study electron transfer in the
protein. As a tool for microbiologists, however, QM remains prohibitively expensive both in
computational cost and learning curve, and is often used for fine-grained mechanistic studies in

collaboration with a QM expert.
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Figure and Table Legends

Figure 1. Simplified representation of the cellular machinery involved in (A) extracellular versus
(B) intracellular detoxification.

Figure 2. Conceptual breakdown of major questions of interest where computational tools can
facilitate more efficient removal of toxins.

Table 1. Representative examples of identified bacterial and fungal enzymes with the capability
to degrade major mycotoxins are listed. Those hypothesized but not yet confirmed are marked by
an asterisk (*).

Table 2. Representative examples of applications of computational biology tools for usages
outlined in the previous section are listed. Those used for bioremediation are marked by an
asterisk (*).
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