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Abstract 8 

Biological organisms carry a rich potential for removing toxins from our environment, but 9 

identifying suitable candidates and improving them remain challenging. We explore the use of 10 

computational tools to discover strains and enzymes that detoxify harmful compounds. In 11 

particular, we will focus on mycotoxins—fungi-produced toxins that contaminate food and 12 

feed—and biological enzymes that are capable of rendering them less harmful. We discuss the 13 

use of established and novel computational tools to complement existing empirical data in three 14 

directions: discovering the prospect of detoxification among underexplored organisms, finding 15 

important cellular processes that contribute to detoxification, and improving the performance of 16 

detoxifying enzymes. We hope to create a synergistic conversation between researchers in 17 

computational biology and those in the bioremediation field. We showcase open bioremediation 18 

questions where computational researchers can contribute and highlight relevant existing and 19 

emerging computational tools that could benefit bioremediation researchers. 20 

 21 
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1. Background and Motivation 22 

1.1. Context: detoxifying contaminated food and feed 23 

Fungi that grow on foodstuffs are one of the major sources of contamination in food and 24 

feed; these fungi-produced toxins are called mycotoxins. Currently, an estimated 25% of world 25 

crops is thought to get contaminated with mycotoxins each year (1, 2), putting a major burden on 26 

agriculture and public health. Preventing contamination or detoxifying mycotoxins is a major 27 

safety priority (3). In what follows, we briefly describe the threat of mycotoxins, and the 28 

potentials of biological organisms to address this threat via detoxifying enzymes. We will then 29 

investigate and explore the use of computational approaches to discover and improve such 30 

potentials. We will primarily discuss three aspects: (1) the use of bioinformatics tools to search 31 

genomic databases for candidate species and enzymes, (2) the use of genetics and genomics data 32 

to investigate how the detoxification performance can be improved, and (3) the use of 33 

computational tools to improve the detoxifying enzymes. While we discuss established 34 

computational methods used in identifying mycotoxin degrading enzymes, we also consider the 35 

use of novel, field-adjacent methods that have potential in mycotoxin detoxification.  36 

1.2. Mycotoxins are prevalent and harmful 37 

Mycotoxins are secondary metabolites produced by a variety of filamentous fungi that 38 

contaminate common food crops and cause negative health effects in animals and humans. More 39 

than 300 types of mycotoxins have been identified so far, all of which would be candidates for 40 

detoxification (1). Among these, six major types are of particular interest and the focus of this 41 

review because of their detrimental health impact and because they routinely contaminate foods 42 
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and animal feed (4, 5): aflatoxin (AF), ochratoxin (OT), zearalenone (ZEA), fumonisin, 43 

deoxynivalenol (DON), and patulin. 44 

Aflatoxins, produced by Aspergillus species, are one of the most carcinogenic naturally 45 

occurring substances and active inducers of mutations, liver cancer, congenital malformations, 46 

hormone disorders, and immunodepression (6, 7). Ochratoxin is also produced by Aspergillus 47 

species, as well as certain Penicillium species, and is a nephrotoxin, immunosuppressant, potent 48 

teratogen, and renal carcinogen (6, 8, 9). Zearalenone and fumonisins are produced by Fusarium 49 

species. ZEA acts through estrogen mimicry to dysregulate the hormone receptor and antagonize 50 

the estrogen pathway leading to reproductive disorders, hormone imbalance, and breast cancer 51 

(6, 10). Fumonisins have been linked to esophageal cancer in humans as well as a variety of 52 

health complications in animals such as pulmonary edema and hepatotoxicity (6, 11).  Produced 53 

by Fusarium graminearum, DON is a vomitoxin, causing emetic and nauseous effects after 54 

ingestion (12). Finally, patulin is produced by ascomycetes such as Penicillium, Aspergillus, and 55 

Byssochlamys species and is commonly found in fruit and vegetable products, especially rotten 56 

apples and apple juice (13). Patulin ingestion is linked to a number of health complications, 57 

namely immune suppression, ulcers, gastrointestinal inflammation and embryotoxicity (13). 58 

There are a variety of food crops that these mycotoxins contaminate, including cereal crops such 59 

as wheat, barley, corn, and oats (6, 11). Due to the serious health implications of mycotoxin 60 

contamination, economic losses arise from reduction of crop and livestock yields as well as the 61 

cost of decontamination efforts. Annually, the United States faces an estimated $932 million 62 

economic losses  from AFs, fumonisins, and DON alone (14). This sizable economic burden is 63 

faced across agriculture and livestock producers globally and requires efficient and cost-effective 64 

measures as a solution. 65 



4 

 

Mycotoxins build up on foodstuff necessitates methods of decontamination in order to 66 

supply safe foods for consumption. Currently, decontamination is limited to physical and 67 

chemical methods. Physical methods, including sorting and cleaning, have been shown to be 68 

effective in some but not all cases of mycotoxin contaminations. Chemical methods, which use 69 

chemical agents to reduce or convert mycotoxins into less toxic byproducts, include ozonation 70 

and ammoniation. While these physical and chemical methods have been used to reduce 71 

mycotoxin contamination, they suffer from high operational costs and limited reliability and may 72 

decrease the quality or nutritional value of the food (3, 14–16). These limitations expose the need 73 

to look for better solutions. 74 

1.3. Toxin removal by biological processes is a promising solution 75 

Bioremediation, or the use of biological entities to detoxify or remove toxins in the 76 

environment, is a promising alternative to current decontamination methods. Bioremediation 77 

offers lower costs, fewer undesired environmental side-effects, and potentially higher efficiency 78 

and reliability (17–19). The use of microbes is a particularly attractive choice in bioremediation, 79 

offering faster activity and the feasibility of strain evolution and engineering for improved 80 

performance (20). There are six key factors that make a good bioremediator: 1) fast and efficient 81 

at degradation, 2) safe degradation products, 3) non-pathogenic to plants, animals, or humans, 4) 82 

not detrimental to the quality of the food/feed, 5) applicable outside of lab settings, and 6) 83 

applicable to multiple pollutants (17). Among identified mycotoxin degraders none effectively fit 84 

all of these factors, with speed and efficiency often being subpar. Additionally, the mechanisms 85 

of degradation by these identified microorganisms are often unknown or understudied, limiting 86 

the ability to improve upon the native degradation performance. Therefore, identifying new 87 



5 

 

species that possess mycotoxin degradation ability and elucidating the mechanisms of 88 

degradation are beneficial in making this capability effective and commercially viable. 89 

1.4. Modes of biological detoxification 90 

In the context of microbial interventions for removing mycotoxins, the two main modes 91 

of detoxification are adsorption and biotransformation. In adsorption, mycotoxins are physically 92 

bound to polysaccharides and proteins in the outer cell structures (21, 22). Biotransformation 93 

utilizes microbes and their enzymes to convert mycotoxins into non-toxic compounds (23, 24). 94 

In this paper we are solely concerned with methods to identify and improve biotransformation 95 

processes. Biotransformation can be further broken into two categories (schematically shown in 96 

Fig. 1): secretion of enzymes (extracellular degradation) and uptake of the toxin into the cell 97 

(intracellular degradation). Intracellular degradation of toxins more closely follows normal 98 

metabolic processing of molecules by microbes inside the cell. Microbes that mitigate 99 

mycotoxins through extracellular degradation are more likely to produce stable enzymes that can 100 

be isolated and used in practice; this has been the strategy for several existing commercial 101 

products (25–27). Table 1 shows some of the bacterial and fungal enzymes that have been found 102 

to degrade major mycotoxins.  103 

Enzymatic degradation has been suggested in a number of studies; however, 104 

identification of the degrading enzymes has proven difficult. Sangare et al. show a Pseudomonas 105 

species capable of degrading AFB1 from cell-free culture supernatant, suggesting that an 106 

extracellular enzyme is responsible for the degradation (43). Screening for the effect of common 107 

functional cofactors may potentially help identify the enzyme class. Similar extracellular 108 

degradation has been reported for Rhodococcus spp., Stenotrophomonas spp., and Myxococcus 109 
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spp. (44–46). DON has been observed to be assimilated as a carbon source in some, but not all 110 

strains (47). Other extracellular enzymes with mycotoxin degrading abilities include 111 

oxidoreductase, dehydrogenase, aldo-keto reductases, and peroxidases (48–50). While there has 112 

been less focus on intracellular mechanisms, intracellular enzymatic degradation has been shown 113 

by Zhu et al. (51).  114 

1.5. Bacteria and fungi carry a rich repertoire of enzymes capable of removing mycotoxins 115 

Biotransformation of mycotoxins into non-toxic products by bacterial and fungal 116 

enzymes has already been demonstrated (19, 48, 52, 53).  The detoxification performance can be 117 

improved by identifying and characterizing the enzymes with degradation/detoxification 118 

capability. On one side, uncovering the cellular machinery of degradation (schematically shown 119 

in Fig. 1 and explored in Section 2.3) allows us to select conditions to express the enzyme (when 120 

searching for candidates) or engineer strains to improve their performance. On the other hand, 121 

the enzyme itself can be modified and improved. Structural modelling and design of experiments 122 

(DOE) techniques can shed light on the identification of key structural components that 123 

contribute to degradation (52) .  124 

In the remainder of this work, we will limit the scope to extracellular bacterial and fungal 125 

detoxifying enzymes. We make this choice to offer a more focused view on recent developments 126 

in computational tools for biological enzymes, but also because deploying enzymes (versus live 127 

organisms) in food/feed applications is a more practical approach (23, 52). The use of enzymes 128 

for reducing the threat of mycotoxins has reached industrial applications, even if only in a few 129 

cases. Mycofix® line of products (27) combine different modalities, including biotransformation 130 

and adsorption to remove several mycotoxins from feed.  FUMzyme® is a commercially 131 
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available fumonisin estrase produced in a genetically modified strain of Komagataella pastoris 132 

(54) that has shown success in removing the contamination from feed (26). However, more 133 

research is still needed to improve the performance of mycotoxin removal. 134 

Several previous reports have cataloged specific enzymes that act on mycotoxins (17, 48, 135 

55) and Table 1 lists representative examples for the major mycotoxins explored in this review. 136 

Here instead we focus on current challenges and questions in the field of mycotoxin 137 

detoxification that can be addressed by computational tools. In this context, we survey some of 138 

the existing tools that have already been applied in this field and then propose emerging tools 139 

that have the potential to lead to transformative progress.  140 

 141 

2. Current Challenges and Computational Solutions 142 

How can we effectively remove mycotoxins using biological organisms? Conceptually, we break 143 

down this search into two steps: (1) finding organisms that have this capability, and (2) 144 

optimizing the performance by modifying the environmental conditions, the detoxifying strain, 145 

or the target enzymes. We survey existing computational tools that can facilitate this process 146 

(Fig. 2). We focus our discussions on genomic and structural biology tools. We acknowledge 147 

that there are other useful tools—including proteomics—that can offer additional insights, but 148 

are beyond the scope of this mini-review.  149 

2.1. Finding candidate organisms: who can do the job? 150 

Discovering organisms that can degrade mycotoxins poses a number of challenges that 151 

can be met both through experimental and computational approaches. In terms of enzymatic 152 
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degradation, there are three challenges to be addressed. First, organisms must have the genes 153 

necessary to produce enzymes and possibly cofactors involved in degradation. Second, the 154 

organisms must have favorable regulatory mechanisms for these enzymes. Third, the method of 155 

obtaining and isolating the enzymes must be favorable to the end use case. One can describe the 156 

search space as being largely defined by these characteristics that may be specific to the use 157 

cases, but are still conceptually similar among different cases.  158 

From the experimental front, high-throughput screening may be used both to identify 159 

candidate organisms as well as explore mutations for optimizing degradation potential. 160 

Environmental isolates are a traditional source for identifying mycotoxin degraders. Isolates can 161 

be cultivated and tested for degradation, especially when high-throughput screening is possible. 162 

As an example, Ciegler et al. screened ~1000 organisms, both prokaryotes and eukaryotes, for 163 

their aflatoxin-degradation capability (56). Screening can also be used for optimizing the 164 

environmental conditions or the enzyme itself. However, unless feasible high-throughput assays 165 

are available, this process is resource and time expensive. Therefore, looking to computational 166 

methods to screen for new organisms will be beneficial. 167 

As an example, there is a known, highly specific two-step enzymatic process in the 168 

detoxification of fumonisin, which involves a carboxylesterase and an aminotransferase (34). 169 

This becomes a useful bottleneck in the search space, as candidate organisms must contain both 170 

enzyme-encoding genes to be viable degraders. Toward this end, tools such as BLASTp (57) can 171 

be utilized in cases where genome sequences are available. Simply put, the presence of these two 172 

genes largely dictates whether or not an organism is a fumonisin degrader. On the other hand, in 173 

the example of AF detoxification, many species can possess hydrolases or oxidases related to 174 

those that are known to degrade AF (24, 48, 58). The search space is instead constrained on a 175 
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separate manifold involving the specificity and affinity of the hydrolase for AFs. That is, the 176 

presence of the same hydrolase gene may not be sufficient to identify degradation potential, 177 

since it may be optimized for a different substrate. The sequence-to-function relationship then 178 

becomes critical, which is not guaranteed to be captured by sequence similarity à la BLASTp. 179 

This shortcoming can be thought of as a signal to noise ratio, where key amino acids involved in 180 

the active site mechanism are sparse signals, and the rest of the sequence functions primarily to 181 

provide the correct structural shape and may be noisy in this regard. This is witnessed in the 182 

work by Dellafiora and colleagues (59), where two related, AF-degrading oxidases shared only 183 

72% sequence similarity, despite using the same mechanism for degradation. In a more extreme 184 

example, a recently identified carboxylesterase that degrades fumonisin shows only around 34% 185 

sequence similarity to previously reported fumonisin-degrading carboxylesterases (60). 186 

Similarity in sequence does not necessarily overlap with similarity in function. Sequence 187 

similarity may be used to imply functional similarity; however, such a predicate does not include 188 

enzymes that share functional similarity without sequence similarity. High sequence similarity 189 

among closely related species might not fully overlap with functional similarity either. 190 

Therefore, searches should be conducted on a sequence-to-function relationship model. While 191 

this method loses the high-throughput optimizations of BLAST-based sequence similarity, it may 192 

be modeled via a reductive filter pipeline to maintain reasonable complexity. It also loses the 193 

generalizability of sequence similarity, and instead pipelines must be custom designed for each 194 

case. Dellafiora et al. have combined an in silico screen with an enzymatic assay to address this 195 

challenge in search of hydrolyzing enzymes that can degrade ochratoxin A (61). In the example 196 

of AFs, initial work has been performed to design a structure-to-function reductive filter model 197 

using a number of filters. Furthermore, this model does not necessarily require a labeled, positive 198 
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enzyme to seed the search, rather it only requires characteristics to build the filters. Prior 199 

research by Risa and colleagues (62) has identified that excreted enzymes can be responsible for 200 

degrading AFs. SignalP is able to predict protein excretion in bacteria, and can be used as an 201 

initial filter to narrow down proteomes. These sequences can be passed through both size and 202 

sequence-based enzyme classification filters based on facile experimental determinations to 203 

further reduce the candidate pool. From here, 3D structures may be built, the binding pockets 204 

predicted, and AF docked to identify high affinity interactions that then may be confirmed 205 

experimentally. These computational processes will be expanded below. The reductive filter 206 

model uses low-complexity tools at its head, increasing in complexity towards the tail to ensure 207 

efficiency. Similarly, its modular nature allows for easy insertion or upgrading of components as 208 

advances occur in each domain. 209 

2.2. Community-level detoxification: when the task needs to be divided 210 

Mycotoxin degradation may require multiple reactions to reach byproducts with complete 211 

or significantly decreased toxicity. There are several examples where a single enzyme is 212 

insufficient for complete degradation and two or more enzymatic steps are required for the 213 

detoxification process. In such cases, we need to better understand how multiple enzymes from 214 

the same, or even different, species are required for degradation of a single mycotoxin. While 215 

this increases the difficulty and cost of searching for degrading enzymes that can work together, 216 

the outcome of complete degradation and reduced toxicity is desirable for application in 217 

agriculture where mycotoxin levels must fall under set regulatory limits. For degradation of 218 

fumonisin B1 by Sphingopyxis sp. MTA144, Heinl et al. found that two enzymes were involved 219 

(34). A carboxylesterase facilitated the initial deesterification step to form a hydrolyzed 220 

fumonisin B1, which is less active in its known ceramide synthase inhibitory pathway but still 221 
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possesses significant toxic effect (34, 63). A second enzyme, an aminotransferase, deaminated 222 

the hydrolyzed byproduct of the first reaction resulting in complete degradation and loss of toxic 223 

effects (34). Similarly, Carere et al. elucidated a two component enzymatic pathway involved in 224 

the epimerization of DON by Devosia mutans 17-2-E-8 (64, 65). The enzymes, designated DepA 225 

and DepB, first oxidize DON into 3-keto-DON (DepA) (64) and subsequently reduce 3-keto-226 

DON into 3-epi-DON (DepB) (65), significantly reducing toxicity. These examples highlight the 227 

need to understand all the enzymes playing a role in complete degradation.  228 

In some instances, mycotoxin biotransformation does not lead to complete detoxification 229 

(52); DON degradation above as an example leads to end products that are less toxic than the 230 

starting substrate, but still retain some toxicity. In biotransformation of ZEA, there are cases 231 

where microbial breakdown results in byproducts, α-zearalenol and β-zearalenol, that are even 232 

more toxic than the original compound (39, 66, 67). In such cases, we need to identify additional 233 

species or enzymes that can take the byproducts and convert them into non-toxic compounds in a 234 

multi-step process.  235 

Multi-step degradation underscores the possible need to look beyond single 236 

microorganisms and employ microbial consortia to complete the job; as an example, Wang et al. 237 

discovered a microbial consortium that utilizes multiple species across various taxa working in 238 

unison to transform ZEA to non-toxic byproducts (68). Bioinformatic searches for identifying 239 

multiple enzymes necessary for a particular case would be an extension of the single-enzyme 240 

searches discussed in the previous section, using the similar tools. Of note could be searching for 241 

individual organisms that carry two or more necessary enzymes that have previously been 242 

identified in multiple species/strains.  243 
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2.3. Regulation: even when the detoxification capability exists in an organism, its 244 

availability may be under regulation  245 

Even after organisms have been identified that are capable of detoxifying target 246 

pollutants, the availability of the relevant enzymes depends on whether the environmental 247 

context induces the relevant genes of enzyme production and secretion effectively. These 248 

considerations point to the need to explore the internal regulation of the production and secretion 249 

of detoxification enzymes. Microorganisms respond to cellular and environmental changes 250 

through regulatory decisions that could impact the availability of degradation machinery for 251 

target pollutants (69). Production of enzymes is regulated through different mechanisms, such as 252 

transcription factors binding in and around promoter regions that contributes to the amount of 253 

enzyme produced by the cell. These mechanisms are likely influenced by nutrient availability 254 

and overall conditions of the cell (i.e. growth phase) (70). Secreted enzymes have an added layer 255 

of regulation due to the high energy cost of secretion. While these enzymes have beneficial 256 

effects, often being employed to breakdown macromolecules in the environment for cellular 257 

uptake, they also incur an energy/biomass cost (71). Therefore, certain enzymes targeted for 258 

secretion are up- or down-regulated by the presence of nutrients in the environment that 259 

respectively do or do not require extracellular breakdown.  260 

Here, we primarily emphasize the existing native potential as the starting point, even 261 

though ultimately the deployment likely happens in a safe and tractable host organism. Our 262 

discussion on regulation and the detoxification machinery in the native context has two purposes. 263 

(1) It reveals the preferred conditions for the expression of the detoxification machinery to 264 

enable more effective screening for functions of interest. (2) It allows us to better understand the 265 

diversity of possibilities and the ideal machinery to be transferred to a host organism. 266 
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Understanding the influence of regulation on production and secretion of the enzyme is also 267 

necessary for strain optimization to factor in the cost-benefit balance of increased enzyme 268 

production and secretion. 269 

Several existing bioinformatic tools can help us uncover aspects of bacterial gene 270 

regulation, such as promoter and DNA binding sites, operon regions, and secretion signals, 271 

which are touched on in the following sections. The usefulness of these tools in the context of 272 

bioremediation is that they allow researchers to uncover possible mechanisms of regulation that 273 

control the detoxification process. Insight from regulation, for example similarity to a known 274 

catabolic pathway, can also be used to choose suitable environmental conditions or infer the 275 

mechanism of degradation.   276 

Promoter Prediction. Identifying promoter regions and DNA binding sites are important in that 277 

transcription initiation is the most frequently regulated step in gene expression. Promoters 278 

contain an intrinsic strength that governs the amount of transcription a gene undergoes and when 279 

transcription occurs according to environmental factors such as nutrient availability (70). It is 280 

important to properly regulate gene expression to ensure the degrading enzyme is sufficiently 281 

expressed, but only when the particular substrate is present to limit wasteful production of 282 

enzymes that are disadvantageous to the cell without the substrate (72). By uncovering promoters 283 

associated with genes/enzymes of interest in bioremediation, we can understand how the cell 284 

naturally regulates its expression and better manipulate it toward improved expression for 285 

application in agriculture. There are several existing tools for predicting and cataloging promoter 286 

regions in different organisms, such as phiSITE (73, 74), SAPPHIRE (75), PRODORIC2 (76), 287 

BacPP (77), and PPCNN (78). We will expand on the latter three. 288 
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PRODORIC2 is a transcription factor binding site (TFBS) database that possesses one of 289 

the largest collections of DNA binding sites in prokaryotic organisms (76). In 2018, its most 290 

recent update, PRODORIC2 expanded its database to host the genomic information of 2274 291 

bacterial strains and their 5191 replicons (76). This database is curated to only include 292 

experimentally validated binding sites, limiting the expanse of bacterial species it contains but 293 

ensuring accuracy in its TFBS inventory. De Avila e Silva et al. created a bioinformatic tool, 294 

BacPP, to predict promoter sequences in Escherichia coli strains through neural network 295 

simulations (77). BacPP is able to recognize and predict promoter sites with varying levels of 296 

accuracy (all above 83%) across the different sigma factors crucial for prokaryotic transcription 297 

initiation (77). Additionally, BacPP has 76% prediction accuracy among other enterobacteria 298 

species (77). The advantage of this method is in its ability to classify promoter sequences by its 299 

sigma factor, an important distinguishing feature that was a shortcoming of previous tools. 300 

However, BacPP is currently limited to E. coli and, to a lower accuracy, enterobacteria. Another 301 

promoter prediction tool is Promoter Prediction Convolutional Neural Network (PPCNN), 302 

developed for both eukaryotic and prokaryotic prediction and implemented into the CNNProm 303 

program. This approach uses deep learning neural networks for its prediction models (78). For 304 

prokaryotes, PPCNN was trained on E. coli and Bacillus subtilis, offering insight into both 305 

Gram-positive and Gram-negative species. A highlight of this method is its applicability to other 306 

sequenced species because it predicts promoters without prior knowledge of specific promoter 307 

features (78). 308 

Operon Prediction. Metabolically or functionally related genes within prokaryotic genomes are 309 

often arranged in contiguous segments called operons and are co-transcribed along the same 310 

messenger RNA (79). This organization imparts an added layer of regulation on the genes within 311 
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the operon. Specifically, in the context of bioremediation, if an enzyme of interest is encoded 312 

within an operon, it opens up new genes that could help play a role in degradation, either 313 

functionally or through regulation. As an example, Heinl et al. identified two fumonisin 314 

degrading enzymes that were held within a gene cluster organized in two operons and 315 

subsequently determined other genes in the operon held importance to transcriptional regulation 316 

and transport of the degrading enzymes, as well as additional enzymes that might play a role in 317 

further breakdown on the degradation byproducts (34). Additionally, downstream utilization of 318 

the enzyme-encoding gene(s) can be affected by its placement within an operon. For example, 319 

Altahli and El-Deeb transferred ZEA degradation capability in Pseudomonas putida into E. coli 320 

via a plasmid encoding detoxification genes (39). Multiple genes were shown to be expressed for 321 

detoxification; however, they were unable to separate these genes due to their organization in 322 

operons. Therefore, understanding the genomic organization of these genes within operons can 323 

aid in their use for degradation. Determining operons computationally has been a field of interest 324 

for a number of years, leading to tools such as Operon DataBase (80, 81), OperomeDB (82, 83), 325 

Operon Hunter (84), and Operon-mapper (85, 86), with recent advances in de novo prediction of 326 

operons from genomic data, which is expanded on below.  327 

Operon-mapper, a web-based server for operon prediction, was developed in 2018 and is 328 

the first publicly available tool for operon prediction that only requires genome sequences as the 329 

input (85, 86). Operon-mapper uses a five step procedure: (1) open reading frame (ORF) 330 

prediction using Prokka software (87, 88); (2) homology gene determination using the 331 

hmmsearch program based on Hidden Markov Models (85, 88); (3) intergenic distance 332 

evaluation using a custom program (85); (4) operon prediction using an artificial neural network 333 

with intergenic distance and a score defining functional relatedness of protein products as the 334 



16 

 

input arguments (85, 89, 90); and (5) gene function assignment using the DIAMOND algorithm 335 

(91). The accuracy of this method in predicting operons was ~90% across eight tested genomes 336 

with varying size and GC content, and outperformed other algorithms in a recent evaluation of 337 

correlation to experimentally validated operons (92). Operon-mapper also has the advantage of 338 

providing ORF identification and functional annotation of protein (85).  339 

Secreted Protein Prediction. A signal peptide (SP) is a sequence of amino acids in a newly 340 

synthesized protein that targets the protein into or across the membranes in the cell (93). 341 

Determining whether and how an enzyme is secreted outside the cell enables better utilization of 342 

the degradation machinery (schematically represented in Fig. 1A). To predict secreted proteins, 343 

several algorithms to identify SPs within a proteome have been developed: SignalP (94), Psort 344 

(95), Pred-Tat (96), and TatP (97).  345 

Of note, SignalP is able to determine these secretion signals and distinguish between the 346 

type of secretion pathway. The current version, SignalP 5.0, uses deep neural networks in 347 

combination with conditional random field classification and optimized transfer learning to 348 

determine SPs in prokaryotes, eukaryotes, and archaea (94). This update builds upon previous 349 

versions based on artificial neural networks (98), with added improvements of hidden Markov 350 

models (99), enhanced cleavage site predictions (100), and discrimination of signal peptides and 351 

transmembrane helices (101). For prokaryotes, there are two main secretion pathways, Sec and 352 

Tat, with three enzymes, signal peptidases I-III (SPase I-III), needed to cleave proteins for 353 

secretion. SignalP 5.0 is able to distinguish between three types of SPs: (1) Sec substrates 354 

cleaved by SPase I; (2) Sec substrates cleaved by SPase II; and (3) Tat substrates cleaved by 355 

SPase I (94). Unfortunately, due to limited training data sets, SignalP 5.0 is unable to predict Sec 356 

substrates processed by SPase III or Tat substrates processed by SPase II. However, the current 357 
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ability to determine between the three secretion pathways is important in understanding how the 358 

protein will be secreted and the regulation of the secretion process. SignalP 5.0 is available either 359 

through their webserver or as a standalone package, making it an accessible tool for secreted 360 

protein prediction. SignalP has already been used in the context of determining mycotoxin 361 

degrading enzymes: Carere et al. utilized this predictive power in conjunction with an 362 

experimental approach to narrow down gene candidates for the identification of DepA in the 363 

DON degradation pathway by D. mutans (64). This example highlights the application this tool 364 

has in aiding mycotoxin degradation research. 365 

2.4. Sub-optimal enzymes: naturally evolved enzymes may not be the best match 366 

Enzymes found capable of degrading mycotoxins may not be naturally optimized for 367 

targeting the mycotoxin of interest. Importantly, some of the detoxifying enzymes belong to 368 

common categories such as oxidases and hydrolases; however, it is not well understood what 369 

features of the particular enzymes separates efficient detoxifiers from nonefficient ones. Thus, 370 

there is a need to better understand what aspects determine the efficacy of the enzymes and how 371 

they can be improved. Enzyme optimization often involves adaptation of a wild-type isolate to a 372 

new substrate or reaction environment. New reaction environments often involve changes of 373 

temperature, pH, and solvent conditions, all of which non-trivially affect the structure and 374 

activity of the enzyme. One technique that is agnostic to fundamental understanding of these 375 

effects is directed evolution (102–104). In directed evolution, genetic diversity is introduced via 376 

random mutations and the resultant mutant proteins are screened/selected for improved 377 

performance. There is some evidence that restricting directed evolution to residues close to the 378 

active site leads to a higher probability of displaying meaningful contributions to its activity 379 

(105). However, it remains unclear how such a process is achieved through traditionally 380 



18 

 

structure-agnostic in vitro mutagenesis. Often, directed evolution is applied iteratively to further 381 

improve strong performing mutants (106). Though directed evolution conveniently creates a 382 

black-box optimization method, it does so at the cost of efficiency, where screening for fitness 383 

can become a major bottleneck in the process (107). As an alternative, a variety of computational 384 

tools have been developed for targeted enzyme engineering (e.g. those reviewed in (108, 109)).  385 

Protein sequence activity relationship (ProSAR) models can assist the search algorithm 386 

by creating a statistical model that links the protein sequence to its activity (i.e., fitness) (110, 387 

111). ProSAR relies on a mutant library generated from mutagenesis with a constraint of 388 

constant protein sequence length, along with the corresponding activities of interest (catalytic 389 

constant, thermostability, etc.). A statistical model is built that links the presence or absence of 390 

individual mutations to a contribution to the activity, from which some subset of the highest 391 

contributing mutations can be fixed for the next round of mutagenesis. Unlike the close 392 

mutations described earlier by Morely et al. (105), this method is able to link individual 393 

mutations to activity contributions without explicit knowledge of the 3D structure. The 394 

traditional statistical methods for ProSAR involved partial least square regression and genetic 395 

algorithm, while more recently traditional statistical methods could be replaced with Recurrent 396 

Neural Network architectures (112). 397 

Focused evolution, where targeted mutations are introduced based on rational mutation 398 

hypotheses, can increase the efficiency of optimization by narrowing the search space; however, 399 

current robust methods require 3D structures of the enzyme. When optimizing for known 400 

properties such as thermostability and where reasonable 3D models are available, such as 401 

homology models, a small subset of rational mutations can feasibly be explored through 402 

computational methods and the final mutations evaluated experimentally. Rational mutation 403 
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methods rely on heuristic evaluation methods like FoldX (113) to predict changes in Gibbs free 404 

energy from mutations, or predictive methods like DbD2 (114), which predicts mutations to 405 

introduce disulfide bonds that potentially have stabilizing effects on the protein for given 406 

conditions. Potential mutations identified via heuristic methods are then commonly evaluated as 407 

a narrow combinatorial library. Although not strictly necessary, to reduce cost and labor for the 408 

in vitro experiments, the mutated proteins are often computationally evaluated for stability to 409 

further narrow down viable mutations. Because of their heuristic nature, it is always necessary to 410 

be able to introduce the mutations in vitro and evaluate them experimentally under the target 411 

conditions to confirm the mutated protein is improved. 412 

 413 

3. Future Outlook  414 

Computational biology tools we have discussed above—although not comprehensive—represent 415 

a range of traditional applications for better understanding the mechanisms and ultimately 416 

improving the performance of toxin biodegradation. Some of these tools have already been used 417 

in this context, whereas others have the potential to yield helpful insights. Table 2 captures the 418 

current landscape, using representative examples from the literature. Next, we explore ongoing 419 

and future advancements in computational methods that would further facilitate answering 420 

pertinent questions in the field of mycotoxin bioremediation. 421 

3.1. Taking the next step: combining machine learning with high-throughput 422 

experimentation 423 

Both the use of machine learning and automated, high-throughput laboratory experiments 424 

are becoming increasingly prevalent for enzyme optimization. Enzyme engineering may become 425 
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a useful tool for the optimization of known degrading enzymes, especially when only sequences, 426 

rather than solved crystallographic structures, are known (135). Models for directed evolution 427 

can be experimentally realized in parallel and incrementally updated, moving towards an optimal 428 

sequence. Like directed evolution, biopanning assays, also known as phage display assays, are a 429 

technique often used to determine novel antibodies with high affinity to some known antigen 430 

(136, 137). Biopanning involves washing a random peptide library over a target ligand 431 

immobilized on some substrate. The non-binding peptides may be washed away, after which the 432 

peptides with high affinity remain bound to the ligand and can be separately identified. Like a 433 

genetic algorithm, these peptides form the seed for the next round of mutation and panning. 434 

While this technique does not offer per-sequence performance metrics, we obtain partitioned 435 

sequence datasets resulting from the pannings. Such partitioned datasets have been used in 436 

unsupervised, autoregressive sequence models for nanobodies to generate novel sequences that 437 

overlap with the high-affinity partition without needing to perform additional physical 438 

experiments (138, 139). While further evaluation is needed to obtain specific performance 439 

estimates for these novel sequences, the method aims to narrow the search space needed in 440 

optimization. Biopanning has been previously shown to optimize TEM-1 beta-lactamase and 441 

biotin ligase, indicating it may be feasible to use in optimizing mycotoxin degrading enzymes 442 

(140–143).  443 

 Complemented by high-throughput assays, machine learning approaches are gradually 444 

taking charge to bring out patterns, similarities, and dependencies—for example in sequence-445 

function relation of an enzyme family—that may otherwise be too cryptic. The use of machine 446 

learning is in particular expanding in situations when an a priori model does not exist.   447 
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3.2. Computational chemistry can further advance our understanding of enzymatic 448 

processes 449 

Towards the understanding of enzymatic mechanisms, advancements in quantum 450 

mechanics (QM) and molecular mechanics (MM, atomistic) studies will be vital for 451 

characterizing reaction mechanisms and exploring the chemical space available via mutations 452 

(144). Additionally, crystallographic structures can be slow and expensive to solve; therefore, 453 

recent advances in protein 3D structure prediction will be instrumental to develop high-454 

throughput pipelines.  455 

Molecular mechanics provides a view of a system at the atomic level. It is often used for 456 

molecular dynamics (MD) simulations, where a system (e.g. a protein-substrate interaction) is 457 

studied using Newtonian physics, often at nanosecond to microsecond timescales. For some 458 

protein systems, this timescale is sufficient to study the relevant mechanisms, such as in the case 459 

of using steered MD simulations to characterize an aflatoxin oxidase enzyme isolated from 460 

Armillariella tabescens as a member of the dipeptidyl peptidase III family of enzymes (145). 461 

However, for larger proteins, or proteins involving large conformational shifts, extensive 462 

computation may be needed. For these systems, a coarse-grained approach is taken where 463 

moieties in the system are combined to reduce the total atom count, reducing the computational 464 

cost (146, 147). Some examples are coarse-grained water models, as well as proteins where the 465 

side chains are often reduced to a single pseudo-atom. Coarse-grained models face issues in 466 

faithfully reproducing the system, and current research is focused in this area (147). 467 

Atomistic models allow some insight into the interaction between the protein and the 468 

toxin. Such models are often sufficient to determine if the toxin will sterically fit in the binding 469 
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pocket, and may also help to determine pose, electrostatic favorability of the binding, and 470 

conformational changes of the protein-ligand complex (148, 149). Unlike the more common use 471 

for MM in evaluating non-covalent inhibitors, some difficulty emerges in the inherent covalent 472 

nature of detoxification, which cannot be captured by an atomistic view (150). This issue may 473 

preclude some energetic effects brought about by the changes in electronic structure, raising 474 

concerns about how realistic such a model is. This concern may be partially solved by using 475 

QM/MM methods, where part of the system is partitioned into a QM region, and the rest remains 476 

in MM views (151). The QM region then can model electronic changes, and the rest can remain 477 

in lower cost MM regions. However, the QM region cannot be too large, which precludes cases 478 

that require large, complex QM regions (e.g. in metalloenzymes like laccases). Additionally, the 479 

QM region adds computational cost and cannot be well-integrated into microsecond timescale 480 

calculations.  481 

At a relatively high computational cost, QM calculations provide a detailed and 482 

comprehensive view of the electronic state of the system. They can provide information about 483 

covalent and electronic changes, often necessary for detoxification studies. An example of this is 484 

calculating a Fukui function of a molecule, which describes the change in a frontier orbital as the 485 

molecule undergoes a redox reaction. Fukui functions have been used to identify the location of 486 

redox in an AF-laccase system (152). QM may also be used to study electron transfer in the 487 

protein. As a tool for microbiologists, however, QM remains prohibitively expensive both in 488 

computational cost and learning curve, and is often used for fine-grained mechanistic studies in 489 

collaboration with a QM expert.  490 
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Figure and Table Legends 901 

Figure 1. Simplified representation of the cellular machinery involved in (A) extracellular versus 902 

(B) intracellular detoxification. 903 

 904 

Figure 2. Conceptual breakdown of major questions of interest where computational tools can 905 

facilitate more efficient removal of toxins.  906 

 907 

Table 1. Representative examples of identified bacterial and fungal enzymes with the capability 908 

to degrade major mycotoxins are listed. Those hypothesized but not yet confirmed are marked by 909 

an asterisk (*).  910 

 911 

Table 2. Representative examples of applications of computational biology tools for usages 912 

outlined in the previous section are listed. Those used for bioremediation are marked by an 913 

asterisk (*).  914 


