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Abstract

Design documentation is presumed to contain massive amounts of valuable information and expert knowledge that is useful for learning from the
past successes and failures. However, the current practice of documenting design in most industries does not result in big data that can support a
true digital transformation of enterprise. Very little information on concepts and decisions in early product design has been digitally captured, and
the access and retrieval of them via taxonomy-based knowledge management systems are very challenging because most rule-based classification
and search systems cannot concurrently process heterogeneous data (text, figures, tables, references). When experts retire or leave a design unit,
industry often cannot benefit from past knowledge for future product design, and is left to reinvent the wheel repeatedly. In this work, we present
Al-based Natural Language Processing (NLP) models which are trained for contextually representing technical documents containing texts, figures
and tables, to do a semantic search for the retrieval of relevant data across large corpora of documents. By connecting textual and non-textual
data through the use of an associative database, the semantic search question-answering system we developed can provide more comprehensive
answers in the context of users’ questions. For the demonstration and assessment of this model, the semantic search question-answering system is
applied to the Intergovernmental Panel on Climate Change (IPCC) Special Report 2019, which is more than 600 pages long and difficult to read
and understand, even by most experts. Users can input custom queries relating to climate change concerns and receive evidence from the report
that is contextually meaningful. We expect this method can transform current repositories of design documentation of heterogeneous data forms
into structured knowledge-bases which can return relevant information efficiently as well as can evolve to embody manageable big data for the
true digital transformation of design.
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1. Introduction

The process of design combines human ingenuity and
intuition with the aggregation of knowledge and experience that
individuals have built up by designing, building, and testing
systems, learning from others’ experiences, and educating
themselves on phenomena and governing principles. This
knowledge base that designers amass is crucial to the evolution
of design, as evidenced by the rapid advancement of civilization
as information has become more widely accessible.

Design documentation contains rich information detailing
past designs that describe functions that are fulfilled, physical
objects that are developed, principles that are applied,
experiments that are performed, data that is collected and
analyzed, known failures and limitations, potential applications,
and many other relevant insights. Each document of stored
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design data holds valuable knowledge that could take an
individual or team years to develop independently. The iterative
process of design requires applying knowledge and intuition
to develop parameters that fulfill certain functions. When the
currently attained knowledge and intuition are not enough to
develop a solution, one must search past design documentation,
as well as other resources, to discover new information. It is
important to be able to store and disseminate the body of past
design experience to the design community in such a way that
users may retrieve relevant information with ease and accuracy
in order to improve upon designs and apply findings in their
own work.

Due to the massive breadth and depth of topics within the
field of design, which span many domains and years, users may
not be completely aware of the designs or concepts that exist
that may contain solutions to their problems. Users may not be
aware of the specific books or journals that they must read, the
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Fig. 1: Semantic similarity of sentence encodings using Google Research’s Universal Sentence Encoder. Adapted from [1].

correct keywords to search, or which questions to ask to the
right people to get the answers they need. To improve upon
designers’ ability to search and retrieve specific information
that is not fully understood from large corpora, such as answers
to questions, it is necessary to provide a system that is more
sophisticated than simple keyword searching.

Data driven design comes with many heterogeneous forms
of data that have historically not been easy to be quantified
and represented for machine learning, such as textual language,
graphical depictions, and tabular data. These multiple forms of
data are crucial to conveying the necessary information to fully
pass on the knowledge of the design. When accessing textual
information for design purposes, much of the meaning is lost
if the graphics and data are not included, especially since this
documentation is written with the intention of readers being
able to view it all at once.

This work discusses methods in machine learning that
may be applied to large corpora of design documentation -
proprietary or otherwise - to perform meaningful search that
returns relevant design information. The methods allow for
relevant heterogeneous design data to be related, stored, and
retrieved quickly from an associative database. This framework
will allow the current fragmented design knowledge base to
grow towards big data for design.

2. Background
2.1. Textual Data Representation

In order for design documentation to be stored, manipulated,
and retrieved, it must be represented quantitatively for
computational methods [2]. Representation of textual design
data is challenging because unlike graphical and numerical
data, the elemental alphabetic characters of language do
not correspond to an intrinsic quantitative value. The field
of Natural Language Processing (NLP) focuses on the
representation of language for computational purposes. Prior
to the transformation of the field by Artificial Intelligence,
NLP language models relied on rule-based approaches to
represent text passages and automate systems for tasks such as
question-answering [3] with limited performance.

Recent developments in neural network architecture for
modeling language sequences, buoyed by the availability of
massive datasets and computational power, has transformed the
field of NLP with machine learning methods. Feed-forward
neural networks have demonstrated how words in a dataset can

be represented by a distribution of vectors in a semantic space
[4]. Words occurring in similar contexts are represented by
vectors with close proximity meaning that the distance between
vector representations can be used as a metric for semantic
similarity.

Neural network architectures such as the Transformer
have been introduced [5] and are designed specifically for
representing sequences of words. The language model BERT
[6] by Google Research uses this architecture to represent
language quantitatively, and allows further Fine Tune training to
modify the model’s outputs depending on application-specific
needs. For example, BERT can be fine-tuned on the
NLP information retrieval task of question-answering by
subsequently training the model on crowd-sourced datasets
[7] to extractively return answer spans from context passages,
based on questions provided.

The Transformer language modeling architecture has also
been applied to encode entire sentences into vectors for
returning information from long-form documents. Google
Research’s Universal Sentence Encoder (USE) [1] leverages
these encoded sentence embeddings, pre-trained on many
language modeling tasks, to create models that encode any
sentence into a high-dimensional vector that represents the
semantic meaning of the sentence. These sentence embeddings
may be directly compared with each other through vector
similarity metrics to produce scores quantifying the similarity
of pairs of sentences, as shown in Figure 1. These embeddings
may be stored in a database to produce a semantic search
system which takes a sentence as input and returns the most
semantically similar sentences from the corpus.

By introducing an additional neural layer to estimate
the relationship between language of questions and answers,
Google Research extended the USE by allowing the model to
take a question as an input sentence and return the sentence
in the corpus that best resembles a semantic answer to the
question. [8] Google’s “Talk to Books” [9] website applies a
similar system to every sentence in the Google Books corpus,
creating a publicly available conversational system where users
may input a sentence, and the model returns the sentence
that most naturally follows in a conversation. By pre-encoding
the entire corpus once, these models return outputs extremely
quickly to custom user inputs by encoding the input and using a
fast nearest-neighbor search algorithm for vector spaces to find
the output [10].
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1.2.2  Global versus Regional and Seasonal Warming

Warming is not observed or expected to be spatially or seasonally

associated with warming substantially greater than 1.5°C in many
land regions, and less than 1.5°C in most ocean regions. This is
illustrated by Figure 1.3;-whi ows an estimate of the observed
change in annual and seasonal averag ures between
the 1850-1900 pre-industrial reference period and the

2006-2015 in the Cowtan-Way dataset. These regional changes are
associated with an observed GMST increase of 0.91°C in the dataset
shown here, or 0.87°C in the four-dataset average (Table 1.1)..This
observed patter reflects an on-going transient warming: featul
such as enhanced warming over land may be less pronounced, but still
present, in equilibrium (Collins et al., 2013):This fiqure i the

Sentencel:
Text: “Warming is not observed...”
References:
“Collins et al., 2013"

Sentence3:
Text: “This is illustrated in Figure...”
{——p Figures:
Figure1.3:

ImageURL: “https://www.ipcc...”
Caption: “Spatial and seasonal...”

magnitude of spatial and seasonal differences, with many iocations,
particularly in Northern Hemisphere mid-latitude winter (December—
February), already experiencing regional warming more than double
the global average. Individual seasons may be substantially warmer,
or cooler, than these expected changes in the long-term average.

Sentences:

References:
“Collins et al., 2013"

Text: “This observed pattern reflects...”

97

ImageURL: “https:/www.ipcc...”
Caption: “Observed increase in..."

Fig. 2: Creation of associative array database for storing textual data within a document along with references to non-textual data for retrieval.

2.2. NLP for Design

We have examined how textual design data may be
utilized to guide structured early-stage design. By using
Al-based language models to represent textual descriptions
of designed systems, we have demonstrated how semantic
vector space corresponds to the design requirements in the
functional domain and also how the quality of designs may be
characterized with regard to metrics of functional independence
[11].

Axiomatic Design was first introduced to CIRP [12] as a
principled methodology for structuring functional requirements
and mapping them to design concepts in the form of physical
solutions. Although these principles can be challenging
for non-experts to implement in their design practice, this
hierarchical and structured representation of design provides
a useful framework for leveraging computational systems for
processing design data at the stage of conceptual design [13].

Al-based language models can be used to both quantitatively
represent textual data and train on applied tasks such as
information retrieval. The specific task of question-answering
can be applied to retrieve high-level design information from
documentation. Based on Axiomatic Design principles of
mapping the functional domain to the physical domain, we
have demonstrated how recursive question-answering can be
used to extract structured functional requirements and design
parameters from otherwise unstructured free text [14]. This
process was validated by comparing the NLP-based results to
those of real human designers completing identical tasks of
identifying requirements from design documentation [15].

However, this past research only processed design data of
textual form. Since design documentation differs from other
textual documents in that it is heavily reliant on figures, tables,
and the relationships between the functional and physical
domain, novel methods are needed to make use of this past
data. The system presented in this work demonstrates how
heterogeneous forms of design documentation can be processed
to answer questions and make use of big data in textual and
graphical form.

3. Methods
3.1. Data Preparation

In order for the various forms of data within design to
be utilized by machine learning algorithms, the data must be
pre-processed and organized such that models may understand
which data is intrinsically linked. As human readers of design
documentation, it may be trivial to understand which graphics
are related to certain sections of text simply by reading where
figures and tables are referenced. However, computers cannot
read and make these associations without an algorithm that can
create structures for storing and retrieving these forms of data.

We have created a set of methods for storing these
heterogeneous forms of data and their relationships in a
document-based associative array. Creating an entry in the
database for each design document, we store the relevant
sentences contained in the document. We also store the
available information for every non-textual form of data within
each document, such as figures, tables, and citations. These
non-textual forms of data contain information such as captions
for figures and tables, URLs for images and webpages, and any
other relevant information. An algorithm is created to search
the text citing those captions of non-textual data such that the
relevant textual data explaining each non-textual data is easily
discoverable.

Figure 2 shows an overview of creating the associative array
database for an excerpt of text within a document. The use of
the database allows data from documents with varying formats
to have a common storage and retrieval system. However, as
design documentation is not created with a uniform system
for referencing non-textual data, it is necessary to alter the
algorithms depending on the specific set of documents used in
order to store the relevant data.

Since not all data necessary to produce a system for
storing and outputting image files are contained within design
documentation, some manual intervention is required. For
example, URLs for images are rarely included in PDF files of
research papers. Ideally, human designers could structure their
design documentation such that references to images and tables
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Fig. 3: Answer retrieval from custom user queries using USE-QA and ANN. Adapted from [10].

are readily available to be read by an algorithm with minimal
alterations.

3.2. Sentence-Level Semantic Search

Utilizing our database of textual data and references, we
apply Google’s Universal Sentence Encoder for Question
Answering (USE-QA) to encode each sentence in each
document into a 512-dimensional vector space as if it were an
answer to a question. Each sentence embedding is stored in an
index that maintains references to the original sentence in the
associative database through a unique identifier. To represent
the non-textual elements in each document, such as figures and
tables, their captions and citing sentences are also encoded and
stored in the index. By inputting a query in natural language,
we search this index for the most reasonable answer to the
question using an Approximate Nearest Neighbors (ANN)
algorithm [16]. Since we encoded the non-textual elements into
the searchable index, figures and tables may appear as answers
to user queries. The use of ANN and pre-encoded candidate
responses provides near-instant answers to questions without
having to check every single sentence in the database, which
could contain many thousands of sentences.

Figure 3 shows a flowchart of the process of retrieving
textual answers as well as related non-textual data sources from
custom user queries. Once sentence-level answers are found
to the input questions, the non-textual data is accessed via
the sentence’s unique identifiers. Information in the database
may be used to output the data however is best for the desired
application.

3.3. Span-Level Question Answering

After retrieving the sentences that appear to contain
answers to user queries, we attempt to discover the span-level
answers to questions. Google Research’s BERT fine-tuned
on question-answering data (BERT-QA), described earlier,
provides a pre-trained model to perform this function.
BERT-QA takes as input a question and a context and returns
the most likely starting and ending position of the answer within
the context. Due to BERT-QA’s complexity and necessity to run
the model on both the question and context, it is infeasible to
ask the question to every sentence in our corpus every time
the user wants to find an answer to a new question. Instead,

we may use BERT-QA to find span-level answers within
the candidate responses that USE-QA produces. This 2-stage
semantic search process greatly reduces run-time and the
number of computations [17]. Additionally, we may leverage
our associative database to run BERT-QA on all of the textual
information that is related to our candidate answer sentences,
such as related figure captions or adjacent sentences, to attempt
to get better answers to our questions from relevant sources
covering both textual and non-textual data.

In our previous papers, a similar method is used to extract
functional requirements from text documents. Applying this
in conjunction with sentence-level semantic search on a large
corpus allows users to quickly filter the amount of text to search
and extract design information.

4. Case Study
4.1. Data Preparation

Design documentation, particularly in industry, is generally
proprietary and not available to the public. Additionally, design
documentation on a specific domain is not usually collected
in one place or formatted such that individuals outside of a
company may access and alter the data as necessary. Much
design documentation that is publicly available, such as patent
reports, are not written with the intent of disseminating the
knowledge within, but instead are written so as to obscure
intricate details that may be necessary to reproduce the design.
Due to the lack of available large-scale design data, we test our
methods on a long-form research document over a specific topic
as a proxy for a design documentation corpus, which discusses
design parameters required to achieve certain functions and
intends to educate its audience.

We apply our data preparation and semantic search
systems to the Special Report on Global Warming of 1.5
°C (SR1.5) by the Intergovernmental Panel on Climate
Change (IPCC) [18]. The SR1.5 discusses the “impacts of
global warming of 1.5 °C above pre-industrial levels and
related global greenhouse gas emission pathways, in the
context of strengthening the global response to the threat
of climate change, sustainable development, and efforts to
eradicate poverty.” It is an influential document that is utilized
by policymakers, researchers, and the general public for
making important decisions on reducing human impact on
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the environment and ensuring longevity of civilization. As in
the field of design, climate change research involves many
graphical depictions with textual descriptions in order to relay
information, and it is important for users of the research to be
able to retrieve informative answers to questions in order to
improve upon their practice.

Question:
How much has the planet warmed since pre-industrial times?
Most likely answers to the question:

1. The ‘warming experience at 1.5°C’ is that of regional climate change (temperature, rainfall, and other
changes) at the time when global average temperatures, as defined in Section 1.2.1, reach 1.5°C
above pre-industrial (the same principle applies to impacts at any other global mean temperature).
Over the decade 2006-2015, many regions have experienced higher than average levels of
warming and some are already now 1.5°C or more warmer with respect to the pre-industrial
period (Figure 1.3).

Referenced Figures: Figure 1.3

Regional warming in the decade 2006-2015 relative to preindustrial
Annual average warming

X s
/_Ji
- 0.7

/--- [

December-January-February

June-July-August -

" Estimated warming relative to 1850-1900 (" C)

Figure Caption:

‘Spatial and seasonal pattem of present-day warming: Regional warming for the 20062015 decade relative to 18501900 for the annual mean (top)
the average of December, January, and February (bottom left) and for June, July, and August (botiom right). Warming is evalualed by regressing
regional changes in the Cowtan and Way (2014) dataset onto the total (combined human and natural) externally forced warming (yellow line in Figure
1.2). See Supplementary Material 1.SM for further details and versions using alternative datasets. The definition of regions (green boxes and labels in
top panel) is adopted from the ARS (Christensen et al., 2013).

Fig. 4: Question answering for retrieving sentences and related figures from a
large corpus with USE-QA.

Question:
How to reduce carbon emissions?
Most likely answers to the question:

1. Energy are key to reducing CO, emi from end sectors
for low-carbon pathways. The upstream energy reductions can be from several times to an order
of magnitude larger than the initial end-use demand reduction.

~

Emissions would need to decline rapidly across all of society’s main sectors, including buildings,
industry, transport, energy, and agriculture, forestry and other land use (AFOLU). Actions that can
reduce emissi i for p out coal in the energy sector, increasing the
amount of energy p from , electrifying transport, and reducing the
‘carbon footprint’ of the food we consume.

w

. The above are examples of ‘supply-side’ actions. Broadly speaking, these are actions that can
reduce greenhouse gas emissions through the use of low-carbon solutions. A different type of
action can reduce how much energy human society uses, while still ensuring increasing levels of
development and well-being.

Fig. 5: Span-level identification of answers to questions from a large corpus
with BERT-QA after retrieving sentence-level answers.

However, the report is very substantial and contains a wide
range of information and recommendations from hundreds of
research studies, totaling 7,760 sentences along with 84 figures
and 36 tables, which is hard for any one person to read and
comprehend. With such a large number of sentences, many
relating to topics of global warming, it can be very difficult to
use keyword searching to find relevant answers to questions.
Simply searching keywords like “warming”, “temperature”,
and "increase” can return thousands of possible sentences. In
order to make this report and other IPCC documents more
accessible, we create a question answering system that allows

users to quickly get the top-N sentences and contexts that
answer their question, along with relevant figures, tables, and
citations for further reading.

To prepare the data for our associative database, we use the
Natural Language Toolkit [19] to separate the unstructured text
from the corpus into sentences. The SR1.5 has a consistent
method for referencing figures, tables, and paper citations, such
that references are labeled as “Figure X.Y” or "Table X.Y”. We
create a substring-searching algorithm to find these references
within each sentence. The SR1.5 website contains image URLs
for every figure in the report, which we manually add to our
database. We use MongoDB [20], a cloud database system for
associative arrays that allows fast searching based on unique
identifiers, to store our data in a publicly accessible way.

4.2. Semantic Search

To create our semantic search system through question
answering, we use USE-QA to encode each sentence as an
answer, then store the embedding and unique identifier for the
sentence within a data structure. After embedding the user’s
input question, we utilize Spotify’s ANN algorithm [21] to
search for the nearest answers. Once the best answers are found,
the database is searched to find the attached figures, tables, and
citations. We use HTML to output the results to the user.

Figure 4 shows an example of the output when asking
a question that users may be interested in. The sentence
containing the best answer is displayed in bold print. Since this
sentence contains a reference to a figure, the figure URL and
caption are found using the database and displayed. We observe
that both the sentence and figure are very relevant and directly
answer the question while providing additional context.

4.3. Span-Level Question Answering

After retrieving the N most relevant answers to questions,
we may search each sentence for a span of text that provides
a more direct answer to the user’s question using BERT-QA.
Figure 5 shows the results of finding span-level answers on
how to reduce carbon emissions after searching for the 3
sentences that best answer the question. These sentences and
their contexts do not contain any non-textual data references,
so none are outputted. We observe that both the sentence-level
and span-level answers appear to answer the question directly.

4.4. Limitations

The models used in this case study are trained on general
language data, such as the English Wikipedia, to understand
what words mean in specific contexts. The vast majority of
words in the IPCC report occur in everyday natural language, so
pre-trained language models performed fairly well. However,
when applying these methods to a corpus of documents that
contain very uncommon words, or common words that have
unusual meanings, it may be necessary to fine-tune the language
model on domain-specific data. Future work may address this
need and the performance improvements of fine-tuning.
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5. Conclusion

The eventual goal of this work is to develop a knowledge
management framework for design. Documentation of past
design successes and failures should be rich with learnable
information, thinking, decisions, and knowledge that can be
used to guide and evaluate current and future generations
of product design. Current knowledge management systems
provide keyword-based searches and do not capture and
manage conceptual design thinking and high-level decisions in
a manner machines can understand, store and retrieve when
needed. It is also challenging for current NLP systems to
represent design documents with heterogeneous data formats.
Design data representation is a major bottleneck to create big
data in design, together with current design documentation
practice in industry which neglects to collect and structure
generated knowledge during the design process.

In order to represent design data from textual descriptions,
figures and numerical simulations, we developed an Al-based
knowledge management system by which designers can seek
out and discover answers to specific questions based on
a rich history of previous design experiences from similar
contexts. By applying Al-based NLP models pre-trained
on vast amounts of textual data, we could develop a
system for reading design documentation into a vectorized
database for performing rapid semantic retrieval of answers
to user questions. Utilizing structured relationships between
images and the citing descriptions within the text, we have
demonstrated the ability to incorporate relevant non-textual
graphical data into the searchable text database. In a case
study involving long-form documentation, answers and relevant
figures from aggregated climate change research reports could
be retrieved based on user-inputted queries.

We envision widespread application of our semantic
search-based knowledge management system for processing
existing fragmented and heterogeneous format design
documentation to build a structured knowledge-base. This will
help to achieve the true digital transformation of design and
the design efforts and knowledge will not be siloed but to be
shared within the enterprise to maximize likelihood of success
when addressing complex problems. This research is intended
to enable the digital transformation of the practice of design.
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