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ABSTRACT

Nearly every artifact of the modern engineering design
process is digitally recorded and stored, resulting in an
overwhelming amount of raw data detailing past designs.
Analyzing this design knowledge and extracting functional
information from sets of digital documents is a difficult and time-
consuming task for human designers. For the case of textual
documentation, poorly written superfluous descriptions filled
with jargon are especially challenging for junior designers with
less domain expertise to read. If the task of reading documents
to extract functional requirements could be automated,
designers could actually benefit from the distillation of massive
digital repositories of design documentation into valuable
information that can inform engineering design. This paper
presents a system for automating the extraction of structured
functional requirements from textual design documents by
applying state of the art Natural Language Processing (NLP)
models. A recursive method utilizing Machine Learning-based
question-answering is developed to process design texts by
initially identifying the highest-level functional requirement, and
subsequently extracting additional requirements contained in
the text passage. The efficacy of this system is evaluated by
comparing the Machine Learning-based results with a study of
75 human designers performing the same design document
analysis  task on technical texts from the field of
Microelectromechanical Systems (MEMS). The prospect of
deploying such a system on the sum of all digital engineering
documents suggests a future where design failures are less likely
to be repeated and past successes may be consistently used to
forward innovation.

Keywords: Design Automation, Design Representation,
Functional Reasoning, Neural Networks, Product Development,
Product Design

1. INTRODUCTION

From customer interview transcripts, to 2D sketches and 3D
models, to component manufacturing and final assembly, to
legal documentation protecting IP, to published reports and
papers describing performance; massive amounts of information
are generated during the product development process. Over the
past two decades, design and manufacturing processes have been
digitalized so thoroughly that now more than 10° Terabytes of
new industrial data is generated every year [1]. While this
explosion in available Big Data has proven especially
instrumental for certain Machine Learning based fields, others,
including engineering design, have experienced the curse of
dimensionality: the overwhelming number of dimensions, or
data attributes and features, needed to be considered in order to
extract useful knowledge [2]. Too often, the data resulting from
smart manufacturing and digitalization of design practice
disappears into archives because the task of combing through
design documentation to identify, extract, and structure
functional requirements is too monumental for human designers
to perform themselves on vast amounts of data. Functional
requirements (FRs) are what a design must achieve, and the set
of FRs for a design opportunity define the functional domain of
the design. How these FRs are satisfied is up to the designer, who
may choose design parameters (DPs), which are essentially
physical design solutions which address the FRs of a problem.
Each what-how pair may spawn new FRs needing to be
addressed, resulting in a large design hierarchy for complex
problems. Automatically identifying the highest-level FR and
extracting the underlying functional structure is the key
motivation of this work.

The notion of Functional Requirements cuts across multiple
approaches to thinking about design. In Systematic Engineering
Design [3], establishing a functional structure with the goal of
identifying the overall function of a system is the paramount goal
of design practice. In Axiomatic Design thinking [4] highest-
level FRs must be identified prior to mapping function to the
physical domain where design parameters are established to
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define designed solutions satisfying requirements. In Product
Design and Development [5] the identification and
decomposition of customer/user needs is the critical initial step
in product planning. For this work, we will refer to the definition
of a Functional Requirement from Axiomatic Design as “the
minimum set of independent requirements that completely
characterize the design objectives for a specific need” [4].

If documentation from past designs could be automatically
processed to accurately extract functional requirements, the
resultant database would be invaluable for guiding product
design practice. Analogous to how coding libraries of pre-tested
subroutines enable good software design, extracted functional
requirements from past designs can be used to guide early-stage
product design. Often detailed legacy design documentation is
available but difficult to digest by junior designers or those
without familiarity in a specialized sub-domain. An example is
Microelectromechanical ~ Systems (MEMS) design and
fabrication, which involve solving complex problems with many
functional requirements at high prototyping cost, low batch
yields, and long lead times. If such design processes could be
informed by automatically processed past documentation,
innovation may be accelerated in these fields.

While this paper describes a fully automated process
requiring no human intervention, this work is a part of our effort
to pursue the paradigm of Hybrid Intelligence, where repetitive
design tasks requiring deep memory and computational power
are automated by Machine Learning (ML) based methods to
process data which may interactively inform the creative work
of human designers [6]. An important factor to consider when
applying ML to design processes is usability. Despite recent
advances in artificially intelligent systems, it is impossible to
perfectly replicate the analytic work that an experienced human
designer can perform to distill documentation. However, the
time and cost of dedicating experienced professionals to
repetitive tasks can be significant. If an ML-based system can
automate a repetitive task, such as processing design
documentation to extract functional requirements, above an
acceptable accuracy threshold, at a fraction of the time and cost,
then the benefit of instantly accessing orders of magnitude more
structured information justifies this application of technology to
design.

This research applies ML models, specifically in the domain
of Natural Language Processing (NLP), to automate the task of
extracting a hierarchical structure of key functional requirements
from long-form textual design documentation. Based on the
assumption that valuable design information exists in a
document, the method proposed in this paper will extract it.
Abstracts of research papers describing designs should contain
at least one high-level FR as well as how this FR is addressed.
This is not representative of design document artifacts from
industry but provides a rich test-bed for our extraction method.
To validate this work, excerpts taken from published papers
describing MEMS designs are automatically decomposed and
key functional requirements are identified using this method.
The NLP-automated results are evaluated against the judgement
of a human subject-matter expert and compared to the baseline

performance of 75 participating engineering designers
completing the same task on the same paper excerpts.

2. BACKGROUND

In this work, design documentation in textual form is
primarily considered for automating the task of extracting
functional requirements. The core operations of the system
presented are performed using the advanced language
representation model “BERT” developed by Google Al in 2018
[7]. Therefore, this section provides background in the field of
Natural Language Processing (NLP), and applications of NLP in
engineering design are overviewed.

2.1 ML-Based Natural Language Processing

A key goal in NLP is to represent language quantitatively.
In 2003, a seminal paper [8] was published describing a
probabilistic framework for effectively converting words to
multi-dimensional vectors encoding semantic meaning, which
was quickly implemented using neural networks by a number of
academic and NLP industry research organizations. As neural
network architectures grew more sophisticated, so did the
capabilities of the language models they trained. In 2017,
researchers at Google unveiled a novel neural network
architecture which was dubbed the Transformer [9] and
demonstrated how sequences could be processed using
Attention. The Attention mechanism is a method by which an
ML model can consider a language sequence intelligently by
giving more weight or “paying attention” to more contextually
relevant words.

Based on the Transformer network architecture, in 2018
Google Al released the language model Bidirectional Encoder
Representations from Transformers or BERT [7]. In addition to
outperforming other existing language models in benchmark
NLP metrics at the time of its release, BERT was specifically
designed to be accessible by the scientific community. The bulk
of computationally intensive pre-training, which allows BERT
to learn word meaning and sentence context over a massive
dataset of 3.3 billion words, is de-coupled from a second “fine-
tuning” training phase, typically requiring a dataset of about only
105 examples, which fine-tunes model parameters on a specific
task. This allows users of BERT to benefit from the performance
of a highly trained model (pre-trained by Google), while
retaining the flexibility of adapting its function (by fine-tuning
with a manageable dataset) to address a specialized NLP task.
Such applied tasks vary based on use, and may include forms of
sentiment analysis, text summarization, and translation. The task
primarily applied in this work is that of question-answering. The
benefit of applying an Al-based model for this task is that in
practice, FRs and DPs stated in design documentation may not
necessarily strictly follow theoretical formats, i.e., “verbs” for
requirements and “nouns” for design parameters. NLP models
trained on language comprehension do not rely on part-of-speech
tagging or keyword searching to perform extraction, which is
detailed in the following subsection.

2.2 Question-Answering with BERT
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Question-answering is a fundamental information retrieval
task in NLP, with well-defined inputs and outputs. Simply, given
context and a question, the answer must be identified within the
given context, if an answer exists. In the case of extractive
question-answering, the answer is extricated, unmodified, as a
single sub-sequence (or span) from the context. Therefore, if we
consider a context containing N number of words, the answer can
be defined as the span of words from the i word to the j* word

where i £ j < N.
f1Q.C) =i ] (1)

The task of extractive question-answering can then be modeled
as a function f'with two textual inputs and two numerical outputs,
as shown in expression (1). The first text input is the “question”
span O, and the second is the “context” span C. The two
numerical outputs are the indexes demarcating the answer span
within C with the indices 7 (start index) and j (end index). The
initial pre-training step of BERT results in a Transformer Neural
Network (TransNN) with trained parameters which can take in a
word and output a D dimensional vector encoding the word’s
semantic information. If we consider the question as a sequence
containing M words Q = (g1, ¢2, ..., gu) and the context similarly
containing N words C = (ci, ¢2, ..., ¢N), then these word
sequences may be encoded into vector arrays Q € RM*P and C €
R¥P in a feature space of D dimensions, as illustrated in
expression (2). For the BERT model utilized in this work, D =
1024.

Q=4q1,92,....qm = TransNN(q1,q2, .-..qm)
C=¢1,¢2,...,eN = TransNN(cy,c2,...,¢N) ©)

As previously stated, following the initial pre-training step
where the model essentially learns to convert words into vectors,
there is a fine-tuning step requiring a new task-specific dataset.
For question-answering, one of the largest and most well-curated
datasets is the Stanford Question Answering Dataset (SQuAD)
[10], which is a set of 100,000 crowd-sourced examples of
contexts, questions, and correct answers. SQUAD examples are
generally nontechnical and cover a wide range of topics,
meaning the model may be applied to various design topics, but
there is opportunity to further fine-tune on domain specific
literature if a single design domain is of particular interest.

For the specific case of fine-tuning BERT on SQuAD to
perform the task of question-answering, the developers of BERT
introduce two new vectors S € R” and E € RP, the elements of
which are learnable parameters. While iterating through the
question-context-answer examples, the elements in the new
vector S are optimized such that when the dot product between S
and any vectorized word from the context sequence ¢; is taken, a
measure of likelihood of that particular word being the start of
the answer, is returned. The same is true for the new vector F
being trained to identify the end position of the answer. The exact
probabilities are found by normalizing exponentially over all
other N word vectors in C, as shown in the equations in (3).

eS-ci
Fi = —Eszl e
P eE-Cj
I T N _Ec
e %k
Li=1 3)

The answer span is then identified by the pair of indices [, ;]
with the highest summed probability where j > i. BERT, fine-
tuned on SQuAD, is capable of performing question-answering
rivaling human reading comprehension, and if the correct inputs
are used, may be applied to engineering design to help extract
functional information given context.

2.3 NLP for Automating Requirement Extraction

While some creative steps in design are a true artistic craft
which only humans are capable of executing, other steps are
repetitive, painstaking and prone to human error. Hybrid
Intelligence in design [6] is a model for collaboration between
human designers and machines where critical tasks, which may
benefit from the computational power of machines able to
process vast amounts of data, are automated with ML-based
models. The contributions of this work adhere to this principle
and follow a path of research applying NLP to distill design
requirements automatically from documentation. In previous
work [11], we characterized designed systems in terms of
functional coupling solely based on textual descriptions of their
functional requirements (FRs) and associated physical solutions
designed to address a given functional requirement. This
research demonstrated that the semantic domain of language is
mirrored by the functional domain of design, i.e. that word
meaning similarity could be used to approximate the degree to
which certain FRs may be affected by a given DP. By obtaining
vector representations of succinct design descriptions from pre-
trained neural networks, similar to those in the expression in (2),
measures of functional independence in simple systems could be
accurately quantified.

Given the demonstrated feasibility of applying ML methods
to process design documentation, we have developed a process
[12] for helping designers read design documentation by
applying clustering methods to structure design-related
information extracted using the information retrieval function of
BERT, fine-tuned on SQuAD. By embedding short, extracted
spans with NLP-based representation methods into feature
vectors, a large pool of such spans from a variety of different
documents describing the same design opportunity could be
structured by clustering the vectors based on semantic similarity.
In this way, a hierarchy of functional requirements could be
surfaced from long-form documentation.

3. METHOD

The problem being addressed can be described as follows.
Given a text passage of around 300-500 words, identify all the
functional requirements (FRs) and design parameters (DPs)
explicitly stated in the passage, and extract a structured hierarchy
of these FRs and DPs as a representation of the design, from the
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text narrative. The system for extracting and structuring FRs and
DPs from text introduced in this work is based on a recursive
algorithm for decomposing designs inspired by the interplay
between the functional and physical domains in principles of
Axiomatic Design [4]. This section is divided into two
subsections detailing the recursive algorithm and demonstrating
its use with a case study with documentation from
Microelectromechanical System (MEMS) design. MEMS design
processes are well-documented in publicly available literature,
address complex design problems with many FRs, and require
specialized domain knowledge for gaining expertise. Although
in industry, design documentation is often less structured and
more succinct, the reason for using published paper abstracts was
the expectation that well-structured paper abstracts should
densely contain functional requirements that would provide a
rich context for demonstrating information extraction.

3.1 Method of Extracting Functional Requirements

The method for extracting functional requirements (FRs)
from a text passage describing a design is based on the
assumption that a hierarchy of FRs exists, with the “root node”
or highest-level FR defining the overarching aim of the design.
The objective of this method is to identify all information in the
passage which may be relevant to defining FRs in such a
hierarchy, decomposing thoroughly from the top-down until all
the lowest-level “leaf nodes” have been identified. The method
implemented to extract such a hierarchical structure is a form of
tree traversal, initialized by identifying the “root node” highest-
level FR and decomposing downwards. Extractive question-
answering is implemented recursively, with the input question O
and context C continuously updating with every extracted FR.
The following subsections describe this method in detail.

3.1.1 Identifying the Highest-Level FR

The tool used for extracting functional requirements (FRs)
is Google AI’s language model BERT fine-tuned for extractive
question-answering on SQuAD. In order to obtain the indices [J,
j1accurately demarcating the position of the FR of interest within
the context C, the correct question Q must be posed. The case of
identifying the highest-level FR, which can be denoted as FRo,
poses a unique challenge because, in accordance with the top-
down strategy of decomposition, no information has yet been
extracted which might have been used as referential material.
The question chosen to elicit FRy from context to initialize the
top-down decomposition is a simple “What”-type query
prompting the return of the most overarching design goal, such
as Qoshown in (4).

Qo :What is the aim? 4)

The wording of this question was determined after
experimenting with various synonyms and phrasing choices in a
previous study [12] based on the definition of functional
requirements describing “What, not How,” [5] and embodying
“What we want to achieve” [4]. It was found that, in order to
elicit the highest-level FR which is expected to encompass the

entire functional domain of the design, such a broad generalized
question was needed. Qo can be generalized to initialize the top-
down decomposition for any design document by supplying
multiple question permutations using synonyms, and identifying
FRy based on the maximum confidence score returned by the
model.

3.1.2 Recursion for Extracting Hierarchical Structure

The method by which the remaining functional
requirements (FRs) are identified is a form of tree traversal,
which started with the highest-level FRo. The hierarchical
structure is extracted in a top-down approach. At each structural
level, there exists a discrete number of nodes, each of which
contains one FR, or a “what” of the design. Any number of these
FRs may be paired with a design parameter (DP), or “how” the
design addresses the “what” defined by the given FR.
Hierarchically superior to all the nodes on this level must exist a
node containing a higher-level FR-DP pair, as it is this completed
“what-how” combination which is able to be decomposed into
the FRs existing in the nodes on each subsequent level. In a fully
defined design, every “what” (FR) is addressed by a “how” (DP),
but when extracting such a structure from documentation,
incomplete functional information is natural and expected.
Where FRs are not defined or explicitly addressed by a DP in
documentation, the decomposition along that node is terminated,
as shown in Figure 1.

bvq x b“"“i ¥ov o
FIGURE 1: Example hierarchical structure of the functional
domain, to be extracted from textual documentation
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Apart from FRy, which has no superior and is identified as
detailed in section 3.1.1, every other FR can be identified using
question-answering where the same question format is
recursively posed. This question contains the “what-how”
information of the previous superior node, which are termed
FRgp and DPy,, in the expression below.

O :What is needed for {DPy,} to {FRy}? (5)
Following the identification of each FR on a given structural
level, question-answering can be used to identify an associated
DP addressing that FR using the query expressed below.

Opp : How does it {FR}? (6)

If a DP addressing the FR does not exist in the context, a null
answer is returned. In such instances, that lone FR node cannot
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be further decomposed. After each FR-DP pair is identified (or
at least queried), the context C is updated by removing any
retrieved content so that the next time the question (5) is
prompted, a new result will be returned. The decomposition of
the superior node is terminated when the answer to (5) posed to
the updated context is null, and the process continues for each
FR-DP pair identified. This recursive method is ultimately
terminated when either all yielded answers are null, or the
context updates have resulted in an empty sequence C from
which no more information may be extracted. The full process is
detailed with pseudo-code in Table 1, and results in an extracted
tree of structured functional requirements pertaining to a single
key highest-level FR of the design.

Table 1: Design Decomposition Algorithm
Input:
Context Cy (text document describing design)
Definitions:
O :What is the aim?
Orr:What is needed for {DPy,} to {FRg,}?
Opp: How does it {FR}?
BERT-QA:
Function which takes a context C and a question Q as inputs, and extractively
returns an answer span as a subsequence of C
INITIALIZE:
FRy = BERT-QA (Co, Qo)
if FRyis None then:
terminate
else
DPy =BERT-QA (Cy, Opr{FRo})
if DPyis None then:
output FR,
terminate
else
C1 = C() = (FR() and DPo)
output FR,, DPy, C;
Goto DECOMPOSE
end
end
DECOMPOSE:
Inputs: FR,, DP,, C;
i=1
while FR;is NOT None :
FR; = BERT-QA (Ci, Or{ FRo, DP})
DP; = BERT-QA (Ci, Oor{FRi})
Ci+| = Ci — (FR; and DP,)
Output FR;, DP;, Ciyy
i=i+1
when FR;is None :
for every (FR;, DP;) pair that is NOT None :
if G is empty:
terminate
else:
recursively repeat DECOMPOSE (FR;, DP;, Ci+)
end
end
end

3.2 MEMS Case Study

In order to demonstrate the operation of the automated
system for extracting a hierarchical structure of functional
requirements (FRs) from textual design documentation, a case in
the field of Microelectromechanical Systems (MEMS) design is

chosen. The primary reason for selecting this field is the
scientific nature in which design specifications are documented
through publications which can be expected to be rich with the
“what” (FRs) and “how” (DPs) being sought by our system.
Published papers in this field provide us with real textual design
data with which to run such a case study and publicly share
results. However, the eventual aspiration of this research is to
deploy such an automated system on larger sets of (possibly
proprietary) design data so that designers in industry may easily
benefit from decades of documented design efforts.

3.2.1 Low-Frequency Vibrational Energy Harvesting

This design problem in MEMS Energy Harvesting seeks to
bridge a gap between a real-world opportunity, and the
limitations of physics. In remote or mobile environments,
sources of electric power can be scarce, but ambient vibrations
naturally occurring in the surroundings may be harvested and
converted to usable electric power. For such cases, energy
harvesting systems employing the properties of piezoelectric
materials may be applied. The piezoelectric effect is exhibited by
special materials which, when experiencing mechanical
deformation, accumulate electric charge which may be stored
and converted into usable electric power. This is a highly
applicable feature for vibrational energy harvesting but requires
repeated straining of piezoelectric materials in order to work.

The key design challenge for vibrational energy harvesting
via micro-scale piezoelectric structures is that ambiently
occurring vibrations are generally low frequency (below 100Hz),
while natural linear resonance scales inversely with size [13-14].
As illustrated in (7), natural resonance o can be expressed as a
function of stiffness & and mass m, where the micro-scale
dimensions L of MEMS piezoelectric beams can be related to
very small masses through density P as shown in (8).

_ |k _ pr3
wy = \/g m—= PL .

For background, common types of FRs for MEMS
vibrational energy harvesters define system goals which include
the requirements which the design must meet to operate and
perform the desired functionality, such as “harvesting energy” or
“resonating at [desired] frequency range.” For piezoelectric
energy harvesting specifically, DPs satisfying the identified FRs
may detail how material deformation may produce energy, and
how geometric structures may enable resonance at a target
frequency range. This specific low-frequency vibrational energy
harvesting design problem can be addressed by eschewing linear
resonance as the primary means of exciting a dynamic response
in the piezoelectric material, and instead relying on nonlinear
methods to generate strain from low frequencies at the
microscale.

3.2.2 Results from Automated FR Extraction

Following the algorithm detailed in Table 1, two abstracts
from published papers were taken as the input context Cy and
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FRs were extracted starting with the highest-level FRo. The
results of this experiment are presented by showing the identified
FRs in context in Figure 2, as well as the extracted “What” (FR)
— “How” (DP) structure in Table 2.

Table 2: Extracted “What” (FR) — “How” (DP) Structure

Extracted Structure from Abstract 1 [13]

mems structures can
operate with low
frequency, low
amplitude, and
unpredictable ambient
vibrations

“What” “HOW”

FRy lowering the DP, bistable buckled beam
operating frequency energy harvester
window below 100hz
for the first time at the
mems scale

FR, buckling of 200 pm DP; bistable

FR; progressive residual DP; multilayer beam
stress control of the structure with residual
deposition processes stress induced buckling
along the fabrication
steps

FRi, input energy DP,>» large snapping motion
overcomes an energy of the beam at very low
threshold frequencies

FR,; 50 % bandwidth under DP;3 operating conditions that
70hz at 0 .5g input have not been

demonstrated by mems
vibration energy
harvesters before

FR,;; Vibrationenergy DP;,; Work effectively only
harvesters based on when the operating
the resonance frequency window of the

beam resonance
matches with the
available vibration
source

FR,3; none of the resonating DP,;,; theresonantfrequency

goes up very high as the
structure gets smaller

Extracted Structure from Abstract 2 [14]

harvester with a similar
q - factor

Abstract 1, from [13]

Vibration energy harvesters based on the resonance of the beam structure
work effectively only when the operating frequency window of the beam
resonance matches with the available vibration source. None of the
resonating MEMS structures can operate with low frequency, low
amplitude, and unpredictable ambient vibrations since the resonant
frequency goes up very high as the structure gets smaller. Bistable buckled
beam energy harvester is therefore developed for lowering the operating
frequency window below 100Hz for the first time at the MEMS scale.
This design does not rely on the resonance of the MEMS structure but
operates with the large snapping motion of the beam at very low
frequencies when input energy overcomes an energy threshold. A fully
functional piezoelectric MEMS energy harvester is designed, monolithically
fabricated, and tested. An electromechanical lumped parameter model is
developed to analyze the nonlinear dynamics and to guide the design of
the nonlinear oscillator based energy harvester. Multilayer beam structure
with residual stress induced buckling is achieved through the progressive
residual stress control of the deposition processes along the fabrication
steps. Surface profile of the released device shows bistable buckling of
200um which matches well with the amount of buckling designed. Dynamic
testing demonstrates the energy harvester operates with 50% bandwidth
under 70Hz at 0.5g input, operating conditions that have not been
demonstrated by MEMS vibration energy harvesters before.

bstract 2, from [14]

An ultra wide-bandwidth resonating thin film PZT MEMS energy harvester
has been designed, modeled, fabricated and tested. It harvests energy
from parasitic ambient vibration at a wide range of amplitude and
frequency via piezoelectric effect. At the present time, the designs of most
piezoelectric energy devices have been based on high-Q linear cantilever
beams that use the bending strain to generate electrical charge via
piezoelectric effect. They suffer from very small bandwidth and low power
density which prevents them from practical use. Contrarily, the new design
utilizes the tensile stretching strain in doubly-anchored beams. The
resultant stiffness nonlinearity due to the stretching provides a passive
feedback and consequently a wide-band resonance. This wide bandwidth
of resonance enables a robust power generation amid the uncertainty of
the input vibration spectrum. The device is micro-fabricated by a
combination of surface and bulk micro-machining processes. Released
devices are packaged, poled and electro-mechanically tested to verify the
wide-bandwidth nonlinear behavior of the system. Two orders of magnitude
improvement in bandwidth and power density is demonstrated by
comparing the frequency response of the system with that of an equivalent
linear harvester with a similar Q-factor.

N

“What” “HOW”
FR, harvests energy from DP, piezoelectric effect
parasitic ambient
vibration
FR, bending strain DP; None
FR, robust power DP, wide bandwidth of
generation resonance enables a
robust power generation
amid the uncertainty of
the input vibration
spectrum
FR; passive feedback and DP; stiffness nonlinearity
consequently a wide- due to the stretching
band resonance
FR4 tensile stretching strain | DP, in doubly-anchored
beams
FRs low power density DP;s prevents them from
practical use
FRg ultra wide-bandwidth DP¢ None
FR, nonlinear DP; wide-bandwidth
FRg power density DPg comparing the

frequency response of
the system with that of

an equivalent linear

Key: Functional Requirement Highest-level FRo |

FIGURE 2: Functional requirements automatically identified,
highlighted in context from [13-14]

4. HUMAN DESIGN EVALUATION: SURVEY STUDY
In order to evaluate the performance of this automated NLP-
based system, we may compare the results to the judgements of
a MEMS expert with first-hand knowledge of the designs
documented in each abstract. The principal investigator of the
group where the research [13,14] was performed provided the
“ground truth” for the highest-level requirements and solutions
(FRoand DPy) in each design. This human Subject-Matter Expert
(SME) judgement is used to evaluate the accuracy of the NLP
performance on identifying the highest-level design information.
While the “ground truth” established from the SME is
necessary to measure accuracy, we are also interested in
comparing the NLP-based results to a “baseline” measure of how
manual analysis of design documentation is currently performed.
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The baseline was established by surveying 75 human designers,
with varying degrees of familiarity in MEMS, who performed
the same design decomposition tasks on the two passages. In this
section, the ground truth from the SME and the baseline results
from the survey are used to evaluate the NLP-based system’s
performance.

4.1 Survey Design

The survey was implemented using Qualtrics XM software.
The respondents were designers of varying levels of experience
from the MIT community. The survey was distributed to
graduate researchers, research scientists, and faculty members in
the MEMS research community at MIT, and to undergraduate,
graduate, post-doctoral, and faculty members of the Mechanical
Engineering department, and also to graduate students in the
Systems Design Management program. Participation in the
survey was incentivized by the chance to win prizes in a raffle.

Other Basic Understanding
2%

5% Undergraduate Professional
129% Proficiency
17%

Faculty
%

Postdac
4%

N

Native
Graduate Speaker

Gradugte (Masters) 31%
35%

(Dactaral)
41%
Occupation English Reading Proficiency
Expertise . -
- 5% 20
Working
Familiarity 18
12% 216
£
Unfamiliar o
42% E“
g12
g
& 10
T 8
2
£ 8
. I I I
2
Y | Iiial.l Lan.
o 1 2z 3 4 5 & 7 & 9
Years

Basic
Knowledge
A%

MEMS Expertise

Design Experience

FIGURE 3: Demographic information of survey participants

The first part of the survey collected demographic identifiers
shown in Figure 3. The second section of the survey trained the
respondents on the software’s user interface for labeling text
spans, and also established an understanding of the definition of
functional requirements and a top-down hierarchical method of
extracting FR structure starting with the highest-level FRo. This
consisted of three examples with easily recognizable FRs and
DPs (which were termed “requirements” and “solutions”
respectively for survey respondents), as well as obvious
examples of extraneous information. Respondents were able to
highlight words and choose from suggested labels what type of
information they were identifying. Following each trivial task,
the “correct” answers were shown to the respondent to reinforce
the goals of the training exercise. In the third section of the
survey, the two MEMS design texts from the case study in
Section 3 were shown to respondents for analysis. Respondents

were asked to label just one highest-level FRo and DPy, and then
subsequently to also label as many other FRs and DPs as they
could identify, using the same tools and definitions learned
during the training exercises.

4.2 Survey Results

In total, 75 respondents completed the entirety of the survey
questions out of a total of 165 individuals who started the survey.
The average time taken to complete the design decomposition
tasks were 5:56 and 5:35 minutes for the abstracts 1 and 2.
Respondents completed design decompositions of the MEMS
abstracts by using the highlighting tool from the training
exercises to first identify one highest-level requirement (FRo)
and then one highest-level solution (DPy). Based on this highest-
level information, they next identified any other FRs which they
believed to be requirements for the design defined by the high-
level FRo-DPy they initially selected. We can compare the NLP
model-based results to the judgements of the SME and human
designer results by visualizing the number of human “votes” for
where these selections were made in the passage context. In
Figures 4-5, the distribution of these votes is plotted with respect
to the indexed sequence of words from the MEMS context for
the highest-level FRy and DPy selections for both passages,
alongside their textual form for a complete visualization. The
most popular spans, where most respondents indicated a high-
level “what” or “how” occurred and the span selected by the NLP
model and the SME are indicated.

The second part of the respondents’ task was to identify the
lower-level functional requirements (FRs) stated in each
passage, shown in Figures 6-7. Because in this case, the task
involved identifying multiple FRs, a representative fragment
selection of 12 of the 75 total individual respondent’s labels is
also displayed (bottom-left of each figure) to illustrate a typical
individual designer’s analysis of the text. For the selected
individual responses, 3 individuals from each of the four
categories of MEMS expertise are displayed. On average, each
individual designer selected between 3 and 4 FRs for each
passage, while the NLP-based system identified 7 and 9
respectively. For such an information retrieval task, commonly
used metrics for performance are precision and recall. Precision
measures how many selected FRs are actual FRs (ratio of true
positives to true positives plus false positives). Recall measures
how many actual FRs are selected (ratio of true positives to true
positives plus false negatives). The baseline comparison used for
calculating these metrics for the precision and recall of lower-
level FRs was established according to the consensus of all the
survey respondents. The local maxima exceeding a threshold of
5 votes were used to determine the peaks which indicated the
baseline FRs. The resulting scores are shown in Table 3.

Table 3: Precision and Recall Scores of NLP-based system

Precision Recall
Abstract 1 0.71 0.55
Abstract 2 0.89 0.89
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Vibration energy harvesters based on the resonance of the beam structure work effectively only when the operating frequency window
of the beam resonance matches with the available vibration source. None of the resonating MEMS structures can operate with low
frequency, low amplitude, and unpredictable ambient vibrations since the resonant frequency goes up very high as the structure gets
o smaller. Bistable buckled beam energy harvester is therefore developed for lowering the operating frequency window below 100Hz
for the first time at the MEMS scale. This design does not rely on the resonance of the MEMS structure but operates with the large
snapping motion of the beam at very low frequencies when input energy overcomes an energy threshold. A fully functional
piezoelectric MEMS energy harvester is designed, monolithically fabricated, and tested. An electromechanical lumped parameter
model is developed to analyze the nonlinear dynamics and to guide the design of the nonlinear oscillator based energy harvester.
Multilayer beam structure with residual stress induced buckling is achieved through the progressive residual stress control of the
deposition processes along the fabrication steps. Surface profile of the released device shows bistable buckling of 200 which matches
well with the amount of buckling designed. Dynamic testing demonstrates the energy harvester operates with 50% bandwidth under
70Hz at 0.5g input, operating conditions that have not been demonstrated by MEMS vibration energy harvesters before.

|Leg9nd: Survey-voted FRo  Survey-voted DPy  NLP Model Choice Human SME Judgement |

FIGURE 4: Comparison of highest level “what” (FRg) and “how” (DPy) choices of NLP-based system,
Human Designers Surveyed, and the Subject-Matter Expert (SME) for Abstract 1 [13]
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o An ultra wide-bandwidth resonating thin film PZT MEMS energy harvester has been designed, modeled, fabricated and tested. It
harvests energy from parasitic ambient vibration at a wide range of amplitude and frequency via piezoelectric effect. At the
present time, the designs of most piezoelectric energy devices have been based on high-Q linear cantilever beams that use the
bending strain to generate electrical charge via piezoelectric effect. They suffer from very small bandwidth and low power density
which prevents them from practical use. Contrarily, the new design utilizes the tensile stretching strain in doubly-anchored beams.
The resultant stiffness nonlinearity due to the stretching provides a passive feedback and consequently a wide-band resonance. This
wide bandwidth of resonance enables a robust power generation amid the uncertainty of the input vibration spectrum. The device is o
micro-fabricated by a combination of surface and bulk micro-machining processes. Released devices are packaged, poled and
electro-mechanically tested to verify the wide-bandwidth nonlinear behavior of the system. Two orders of magnitude improvement in
bandwidth and power density is demonstrated by comparing the frequency response of the system with that of an equivalent linear
harvester with a similar Q-factor.

[Legend: Survey-voted FRs Survey-voted DPo NLP Model Choice  Human SME Judgement |

FIGURE 5: Comparison of highest level “what” (FRo) and “how” (DPy) choices of NLP-based system,
Human Designers Surveyed, and the Subject-Matter Expert (SME) for Abstract 2 [14]
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FIGURE 6: Comparison of Functional Requirement labeling between selected human individuals (bottom),
human aggregate (top) and NLP-based system (highlights) for Abstract 1 [13]
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FIGURE 7: Comparison of Functional Requirement labeling between selected human individuals (bottom),
human aggregate (top) and NLP-based system (highlights) for Abstract 2 [14]

5. DISCUSSION

The performance of the NLP-based system on the primary
task of processing a text passage and returning the highest-level
“what” and “how” are generally in agreement with consensus of
the 75 human designers surveyed. In Figure 4, we observe that
the consensus for the highest-level FR is divided among 3
different peaks which relate to semantically similar spans of text
all describing the requirement of lowering the operating
frequency window for the designed device. The NLP selection is
one of these 3 peaks, while the SME judgement settled for a

fourth span in the text. For the highest-level DP of the first
passage, there is clear agreement between the human consensus,
the SME, and the NLP selection. In the second passage shown in
Figure 5, there is agreement between the survey consensus
identifying the highest-level FR and the NLP selection. For the
highest-level DP, neither the SME nor the NLP selection point
to the human popular consensus. Because the method by which
the “how” (DP) is mapped from the identified “what” (FR)
involves identifying literally how the FR is addressed by the
design (as detailed in Table 1), the NLP model chooses a span
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from the same sentence as the highest-level FR as this is where
this information is explicitly stated, despite not correctly
describing the highest-level design parameter in the passage.

When evaluating the performance of the NLP-based system
for extracting all FRs contained in each passage, the precision
and recall metrics indicate higher performance on the second
passage (0.89 for both precision and recall) than the first passage
(0.71 precision and 0.55 recall). It is noted that the NLP-based
system extracted more FRs (9) for the second passage than for
the first (7) before the algorithm terminated, suggesting that the
full hierarchical tree structure of design information may not
have been completely traversed when analyzing the first passage.
Individual humans identified between 3 and 4 FRs on average
for each passage, still suggesting a more thorough traversal of
the design tree by the model when compared to a given
individual, but not perfect when compared to the consensus of
75 designers. It is also noted that humans averaged 5:56 and 5:35
minutes for analyzing each passage respectively, while the
execution of the pre-trained NLP-based system took
approximately 10 seconds on a common CPU. The comparison
with the survey suggests the NLP-based system accurately
identifies  highest-level  functional requirements. This
discrepancy between the SME and survey results also reinforces
the difficult nature of this decomposition task.

One family of designs where multiple DPs may address a
single FR, is uncommon after the product development cycle, but
the algorithm may easily be modified to do so by repeating the
“How”-type question-answering search for the same FR to
extract multiple DPs, and recurrently pursue these new extracted
branches.

This work focuses on extracting design information from
free text and was tested on passages taken from peer-reviewed
academic literature which documented design. In industry,
however, documentation can be less structured and more terse.
While NLP models, such as those used in this work, have
demonstrated the ability to process shorthand note-like
documentation, the effort to compile enough textual data from a
variety of formats including presentations, online collaborative
tools, and other electronic communication used in the design and
production industry, is not trivial. Before the NLP-based system
presented in this paper can be deployed directly for analysis in
industry, a concentrated effort to compile and curate design
documentation is required. Additionally, a next step of this work
is to consider how extracted design trees may be meaningfully
presented to designers; a fully decomposed hierarchy may still
require further abstraction to become informative. Constructing
a searchable knowledge base of many structured FRs will require
compiling multiple trees together for a comprehensive result.

6. CONCLUSION

Based on the opportunity provided by abundant digitalized
data in industry, a system for automatically processing design
documentation has been developed using models from Machine
Learning-based Natural Language Processing. An algorithm
utilizing recursive question-answering to traverse a hierarchical
tree structure of interrelated functional requirements and design

10

parameters was introduced. Its performance was evaluated in
comparison to the analysis by a human subject-matter expert and
designers of two passages documenting MEMS design via a
survey study. Agreement between the NLP-based system and the
human respondents suggest an opportunity for changing the way
design data is processed at the industry level.

Next, this research aims to distill design documentation
from every step of the production cycle to be able to relate
functional requirements, design parameters, and process
variables and accurately model interdependencies between these
domains. The goal is to leverage data from industry in order to
aid designers and maximize the probability of success for future
design innovation.
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