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ABSTRACT 
Nearly every artifact of the modern engineering design 

process is digitally recorded and stored, resulting in an 
overwhelming amount of raw data detailing past designs. 
Analyzing this design knowledge and extracting functional 
information from sets of digital documents is a difficult and time-
consuming task for human designers. For the case of textual 
documentation, poorly written superfluous descriptions filled 
with jargon are especially challenging for junior designers with 
less domain expertise to read. If the task of reading documents 
to extract functional requirements could be automated, 
designers could actually benefit from the distillation of massive 
digital repositories of design documentation into valuable 
information that can inform engineering design. This paper 
presents a system for automating the extraction of structured 
functional requirements from textual design documents by 
applying state of the art Natural Language Processing (NLP) 
models. A recursive method utilizing Machine Learning-based 
question-answering is developed to process design texts by 
initially identifying the highest-level functional requirement, and 
subsequently extracting additional requirements contained in 
the text passage. The efficacy of this system is evaluated by 
comparing the Machine Learning-based results with a study of 
75 human designers performing the same design document 
analysis task on technical texts from the field of 
Microelectromechanical Systems (MEMS). The prospect of 
deploying such a system on the sum of all digital engineering 
documents suggests a future where design failures are less likely 
to be repeated and past successes may be consistently used to 
forward innovation. 

Keywords: Design Automation, Design Representation, 
Functional Reasoning, Neural Networks, Product Development, 
Product Design  

1. INTRODUCTION
From customer interview transcripts, to 2D sketches and 3D

models, to component manufacturing and final assembly, to 
legal documentation protecting IP, to published reports and 
papers describing performance; massive amounts of information 
are generated during the product development process. Over the 
past two decades, design and manufacturing processes have been 
digitalized so thoroughly that now more than 109 Terabytes of 
new industrial data is generated every year [1]. While this 
explosion in available Big Data has proven especially 
instrumental for certain Machine Learning based fields, others, 
including engineering design, have experienced the curse of 
dimensionality: the overwhelming number of dimensions, or 
data attributes and features, needed to be considered in order to 
extract useful knowledge [2]. Too often, the data resulting from 
smart manufacturing and digitalization of design practice 
disappears into archives because the task of combing through 
design documentation to identify, extract, and structure 
functional requirements is too monumental for human designers 
to perform themselves on vast amounts of data. Functional 
requirements (FRs) are what a design must achieve, and the set 
of FRs for a design opportunity define the functional domain of 
the design. How these FRs are satisfied is up to the designer, who 
may choose design parameters (DPs), which are essentially 
physical design solutions which address the FRs of a problem. 
Each what-how pair may spawn new FRs needing to be 
addressed, resulting in a large design hierarchy for complex 
problems. Automatically identifying the highest-level FR and 
extracting the underlying functional structure is the key 
motivation of this work. 

The notion of Functional Requirements cuts across multiple 
approaches to thinking about design. In Systematic Engineering 
Design [3], establishing a functional structure with the goal of 
identifying the overall function of a system is the paramount goal 
of design practice. In Axiomatic Design thinking [4] highest-
level FRs must be identified prior to mapping function to the 
physical domain where design parameters are established to 
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define designed solutions satisfying requirements. In Product 
Design and Development [5] the identification and 
decomposition of customer/user needs is the critical initial step 
in product planning. For this work, we will refer to the definition 
of a Functional Requirement from Axiomatic Design as “the 
minimum set of independent requirements that completely 
characterize the design objectives for a specific need” [4]. 

If documentation from past designs could be automatically 
processed to accurately extract functional requirements, the 
resultant database would be invaluable for guiding product 
design practice. Analogous to how coding libraries of pre-tested 
subroutines enable good software design, extracted functional 
requirements from past designs can be used to guide early-stage 
product design. Often detailed legacy design documentation is 
available but difficult to digest by junior designers or those 
without familiarity in a specialized sub-domain. An example is 
Microelectromechanical Systems (MEMS) design and 
fabrication, which involve solving complex problems with many 
functional requirements at high prototyping cost, low batch 
yields, and long lead times. If such design processes could be 
informed by automatically processed past documentation, 
innovation may be accelerated in these fields. 

While this paper describes a fully automated process 
requiring no human intervention, this work is a part of our effort 
to pursue the paradigm of Hybrid Intelligence, where repetitive 
design tasks requiring deep memory and computational power 
are automated by Machine Learning (ML) based methods to 
process data which may interactively inform the creative work 
of human designers [6]. An important factor to consider when 
applying ML to design processes is usability. Despite recent 
advances in artificially intelligent systems, it is impossible to 
perfectly replicate the analytic work that an experienced human 
designer can perform to distill documentation. However, the 
time and cost of dedicating experienced professionals to 
repetitive tasks can be significant. If an ML-based system can 
automate a repetitive task, such as processing design 
documentation to extract functional requirements, above an 
acceptable accuracy threshold, at a fraction of the time and cost, 
then the benefit of instantly accessing orders of magnitude more 
structured information justifies this application of technology to 
design. 

This research applies ML models, specifically in the domain 
of Natural Language Processing (NLP), to automate the task of 
extracting a hierarchical structure of key functional requirements 
from long-form textual design documentation. Based on the 
assumption that valuable design information exists in a 
document, the method proposed in this paper will extract it. 
Abstracts of research papers describing designs should contain 
at least one high-level FR as well as how this FR is addressed. 
This is not representative of design document artifacts from 
industry but provides a rich test-bed for our extraction method. 
To validate this work, excerpts taken from published papers 
describing MEMS designs are automatically decomposed and 
key functional requirements are identified using this method. 
The NLP-automated results are evaluated against the judgement 
of a human subject-matter expert and compared to the baseline 

performance of 75 participating engineering designers 
completing the same task on the same paper excerpts. 

2. BACKGROUND
In this work, design documentation in textual form is

primarily considered for automating the task of extracting 
functional requirements. The core operations of the system 
presented are performed using the advanced language 
representation model “BERT” developed by Google AI in 2018 
[7]. Therefore, this section provides background in the field of 
Natural Language Processing (NLP), and applications of NLP in 
engineering design are overviewed. 

2.1 ML-Based Natural Language Processing 
A key goal in NLP is to represent language quantitatively. 

In 2003, a seminal paper [8] was published describing a 
probabilistic framework for effectively converting words to 
multi-dimensional vectors encoding semantic meaning, which 
was quickly implemented using neural networks by a number of 
academic and NLP industry research organizations. As neural 
network architectures grew more sophisticated, so did the 
capabilities of the language models they trained. In 2017, 
researchers at Google unveiled a novel neural network 
architecture which was dubbed the Transformer [9] and 
demonstrated how sequences could be processed using 
Attention. The Attention mechanism is a method by which an 
ML model can consider a language sequence intelligently by 
giving more weight or “paying attention” to more contextually 
relevant words.  

Based on the Transformer network architecture, in 2018 
Google AI released the language model Bidirectional Encoder 
Representations from Transformers or BERT [7]. In addition to 
outperforming other existing language models in benchmark 
NLP metrics at the time of its release, BERT was specifically 
designed to be accessible by the scientific community. The bulk 
of computationally intensive pre-training, which allows BERT 
to learn word meaning and sentence context over a massive 
dataset of 3.3 billion words, is de-coupled from a second “fine-
tuning” training phase, typically requiring a dataset of about only 
105 examples, which fine-tunes model parameters on a specific 
task. This allows users of BERT to benefit from the performance 
of a highly trained model (pre-trained by Google), while 
retaining the flexibility of adapting its function (by fine-tuning 
with a manageable dataset) to address a specialized NLP task. 
Such applied tasks vary based on use, and may include forms of 
sentiment analysis, text summarization, and translation. The task 
primarily applied in this work is that of question-answering. The 
benefit of applying an AI-based model for this task is that in 
practice, FRs and DPs stated in design documentation may not 
necessarily strictly follow theoretical formats, i.e., “verbs” for 
requirements and “nouns” for design parameters. NLP models 
trained on language comprehension do not rely on part-of-speech 
tagging or keyword searching to perform extraction, which is 
detailed in the following subsection. 

2.2 Question-Answering with BERT 
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Question-answering is a fundamental information retrieval 
task in NLP, with well-defined inputs and outputs. Simply, given 
context and a question, the answer must be identified within the 
given context, if an answer exists. In the case of extractive 
question-answering, the answer is extricated, unmodified, as a 
single sub-sequence (or span) from the context. Therefore, if we 
consider a context containing N number of words, the answer can 
be defined as the span of words from the ith word to the jth word 
where i ≤ j ≤ N.  

(1) 

The task of extractive question-answering can then be modeled 
as a function f with two textual inputs and two numerical outputs, 
as shown in expression (1). The first text input is the “question” 
span Q, and the second is the “context” span C. The two 
numerical outputs are the indexes demarcating the answer span 
within C with the indices i (start index) and j (end index). The 
initial pre-training step of BERT results in a Transformer Neural 
Network (TransNN) with trained parameters which can take in a 
word and output a D dimensional vector encoding the word’s 
semantic information. If we consider the question as a sequence 
containing M words Q = (q1, q2, …, qM) and the context similarly 
containing N words C = (c1, c2, …, cN), then these word 
sequences may be encoded into vector arrays Q ∈ RM×D and C ∈ 
RN×D in a feature space of D dimensions, as illustrated in 
expression (2). For the BERT model utilized in this work, D = 
1024. 

(2) 

As previously stated, following the initial pre-training step 
where the model essentially learns to convert words into vectors, 
there is a fine-tuning step requiring a new task-specific dataset. 
For question-answering, one of the largest and most well-curated 
datasets is the Stanford Question Answering Dataset (SQuAD) 
[10], which is a set of 100,000 crowd-sourced examples of 
contexts, questions, and correct answers. SQuAD examples are 
generally nontechnical and cover a wide range of topics, 
meaning the model may be applied to various design topics, but 
there is opportunity to further fine-tune on domain specific 
literature if a single design domain is of particular interest. 

For the specific case of fine-tuning BERT on SQuAD to 
perform the task of question-answering, the developers of BERT 
introduce two new vectors S ∈ RD and E ∈ RD, the elements of 
which are learnable parameters. While iterating through the 
question-context-answer examples, the elements in the new 
vector S are optimized such that when the dot product between S 
and any vectorized word from the context sequence ci is taken, a 
measure of likelihood of that particular word being the start of 
the answer, is returned. The same is true for the new vector E 
being trained to identify the end position of the answer. The exact 
probabilities are found by normalizing exponentially over all 
other N word vectors in C, as shown in the equations in (3). 

(3) 

The answer span is then identified by the pair of indices [i, j] 
with the highest summed probability where j ≥ i. BERT, fine-
tuned on SQuAD, is capable of performing question-answering 
rivaling human reading comprehension, and if the correct inputs 
are used, may be applied to engineering design to help extract 
functional information given context.  

2.3 NLP for Automating Requirement Extraction 
While some creative steps in design are a true artistic craft 

which only humans are capable of executing, other steps are 
repetitive, painstaking and prone to human error. Hybrid 
Intelligence in design [6] is a model for collaboration between 
human designers and machines where critical tasks, which may 
benefit from the computational power of machines able to 
process vast amounts of data, are automated with ML-based 
models. The contributions of this work adhere to this principle 
and follow a path of research applying NLP to distill design 
requirements automatically from documentation. In previous 
work [11], we characterized designed systems in terms of 
functional coupling solely based on textual descriptions of their 
functional requirements (FRs) and associated physical solutions 
designed to address a given functional requirement. This 
research demonstrated that the semantic domain of language is 
mirrored by the functional domain of design, i.e. that word 
meaning similarity could be used to approximate the degree to 
which certain FRs may be affected by a given DP. By obtaining 
vector representations of succinct design descriptions from pre-
trained neural networks, similar to those in the expression in (2), 
measures of functional independence in simple systems could be 
accurately quantified.  

Given the demonstrated feasibility of applying ML methods 
to process design documentation, we have developed a process 
[12] for helping designers read design documentation by 
applying clustering methods to structure design-related 
information extracted using the information retrieval function of 
BERT, fine-tuned on SQuAD. By embedding short, extracted 
spans with NLP-based representation methods into feature 
vectors, a large pool of such spans from a variety of different 
documents describing the same design opportunity could be 
structured by clustering the vectors based on semantic similarity. 
In this way, a hierarchy of functional requirements could be 
surfaced from long-form documentation.  

3. METHOD
The problem being addressed can be described as follows.

Given a text passage of around 300-500 words, identify all the 
functional requirements (FRs) and design parameters (DPs) 
explicitly stated in the passage, and extract a structured hierarchy 
of these FRs and DPs as a representation of the design, from the 
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text narrative. The system for extracting and structuring FRs and 
DPs from text introduced in this work is based on a recursive 
algorithm for decomposing designs inspired by the interplay 
between the functional and physical domains in principles of 
Axiomatic Design [4]. This section is divided into two 
subsections detailing the recursive algorithm and demonstrating 
its use with a case study with documentation from 
Microelectromechanical System (MEMS) design. MEMS design 
processes are well-documented in publicly available literature, 
address complex design problems with many FRs, and require 
specialized domain knowledge for gaining expertise. Although 
in industry, design documentation is often less structured and 
more succinct, the reason for using published paper abstracts was 
the expectation that well-structured paper abstracts should 
densely contain functional requirements that would provide a 
rich context for demonstrating information extraction.  

3.1 Method of Extracting Functional Requirements 
The method for extracting functional requirements (FRs) 

from a text passage describing a design is based on the 
assumption that a hierarchy of FRs exists, with the “root node” 
or highest-level FR defining the overarching aim of the design. 
The objective of this method is to identify all information in the 
passage which may be relevant to defining FRs in such a 
hierarchy, decomposing thoroughly from the top-down until all 
the lowest-level “leaf nodes” have been identified. The method 
implemented to extract such a hierarchical structure is a form of 
tree traversal, initialized by identifying the “root node” highest-
level FR and decomposing downwards. Extractive question-
answering is implemented recursively, with the input question Q 
and context C continuously updating with every extracted FR. 
The following subsections describe this method in detail. 

3.1.1 Identifying the Highest-Level FR 
The tool used for extracting functional requirements (FRs) 

is Google AI’s language model BERT fine-tuned for extractive 
question-answering on SQuAD. In order to obtain the indices [i, 
j] accurately demarcating the position of the FR of interest within
the context C, the correct question Q must be posed. The case of 
identifying the highest-level FR, which can be denoted as FR0, 
poses a unique challenge because, in accordance with the top-
down strategy of decomposition, no information has yet been 
extracted which might have been used as referential material. 
The question chosen to elicit FR0 from context to initialize the 
top-down decomposition is a simple “What”-type query 
prompting the return of the most overarching design goal, such 
as Q0 shown in (4).  

Q0 : What is the aim? (4) 

The wording of this question was determined after 
experimenting with various synonyms and phrasing choices in a 
previous study [12] based on the definition of functional 
requirements describing “What, not How,” [5] and embodying 
“What we want to achieve” [4]. It was found that, in order to 
elicit the highest-level FR which is expected to encompass the 

entire functional domain of the design, such a broad generalized 
question was needed. Q0 can be generalized to initialize the top-
down decomposition for any design document by supplying 
multiple question permutations using synonyms, and identifying 
FR0 based on the maximum confidence score returned by the 
model. 

3.1.2 Recursion for Extracting Hierarchical Structure 
The method by which the remaining functional 

requirements (FRs) are identified is a form of tree traversal, 
which started with the highest-level FR0. The hierarchical 
structure is extracted in a top-down approach. At each structural 
level, there exists a discrete number of nodes, each of which 
contains one FR, or a “what” of the design. Any number of these 
FRs may be paired with a design parameter (DP), or “how” the 
design addresses the “what” defined by the given FR. 
Hierarchically superior to all the nodes on this level must exist a 
node containing a higher-level FR-DP pair, as it is this completed 
“what-how” combination which is able to be decomposed into 
the FRs existing in the nodes on each subsequent level. In a fully 
defined design, every “what” (FR) is addressed by a “how” (DP), 
but when extracting such a structure from documentation, 
incomplete functional information is natural and expected. 
Where FRs are not defined or explicitly addressed by a DP in 
documentation, the decomposition along that node is terminated, 
as shown in Figure 1. 

FIGURE 1: Example hierarchical structure of the functional 
domain, to be extracted from textual documentation  

Apart from FR0, which has no superior and is identified as 
detailed in section 3.1.1, every other FR can be identified using 
question-answering where the same question format is 
recursively posed. This question contains the “what-how” 
information of the previous superior node, which are termed 
FRsup and DPsup in the expression below. 

QFR : What is needed for {DPsup} to {FRsup}? (5) 

Following the identification of each FR on a given structural 
level, question-answering can be used to identify an associated 
DP addressing that FR using the query expressed below. 

QDP : How does it {FR}? (6) 

If a DP addressing the FR does not exist in the context, a null 
answer is returned. In such instances, that lone FR node cannot 

4 Copyright © 2021 by ASME



be further decomposed. After each FR-DP pair is identified (or 
at least queried), the context C is updated by removing any 
retrieved content so that the next time the question (5) is 
prompted, a new result will be returned. The decomposition of 
the superior node is terminated when the answer to (5) posed to 
the updated context is null, and the process continues for each 
FR-DP pair identified. This recursive method is ultimately 
terminated when either all yielded answers are null, or the 
context updates have resulted in an empty sequence C from 
which no more information may be extracted. The full process is 
detailed with pseudo-code in Table 1, and results in an extracted 
tree of structured functional requirements pertaining to a single 
key highest-level FR of the design. 

Table 1: Design Decomposition Algorithm 
Input:  

Context C0 (text document describing design) 
Definitions: 

Q0 : What is the aim? 
QFR : What is needed for {DPsup} to {FRsup}? 

QDP : How does it {FR}?   
BERT-QA: 
Function which takes a context C and a question Q as inputs, and extractively 
returns an answer span as a subsequence of C 
INITIALIZE: 

FR0 = BERT-QA (C0 , Q0) 
if FR0 is None then: 

terminate 
else  

DP0 = BERT-QA (C0 , QDP{FR0}) 
if DP0 is None then: 

output FR0 
terminate 

else 
C1 = C0 – (FR0 and DP0) 
output FR0 , DP0 , C1 
Goto DECOMPOSE 

end 
end 

DECOMPOSE: 
Inputs: FR0 , DP0 , C1 
i = 1 
while FRi is NOT None : 

FRi = BERT-QA (Ci , QFR{ FR0 , DP0}) 
DPi = BERT-QA (Ci , QDP{FRi}) 
Ci+1 = Ci – (FRi and DPi) 
Output FRi , DPi , Ci+1 
i = i + 1 

when FRi is None : 
for every (FRi , DPi) pair that is NOT None : 

if Ci+1 is empty: 
terminate 

else: 
recursively repeat DECOMPOSE (FRi , DPi , Ci+1) 

end 
end 

end 

3.2 MEMS Case Study 
In order to demonstrate the operation of the automated 

system for extracting a hierarchical structure of functional 
requirements (FRs) from textual design documentation, a case in 
the field of Microelectromechanical Systems (MEMS) design is 

chosen. The primary reason for selecting this field is the 
scientific nature in which design specifications are documented 
through publications which can be expected to be rich with the 
“what” (FRs) and “how” (DPs) being sought by our system. 
Published papers in this field provide us with real textual design 
data with which to run such a case study and publicly share 
results. However, the eventual aspiration of this research is to 
deploy such an automated system on larger sets of (possibly 
proprietary) design data so that designers in industry may easily 
benefit from decades of documented design efforts.  

3.2.1 Low-Frequency Vibrational Energy Harvesting 
This design problem in MEMS Energy Harvesting seeks to 

bridge a gap between a real-world opportunity, and the 
limitations of physics. In remote or mobile environments, 
sources of electric power can be scarce, but ambient vibrations 
naturally occurring in the surroundings may be harvested and 
converted to usable electric power. For such cases, energy 
harvesting systems employing the properties of piezoelectric 
materials may be applied. The piezoelectric effect is exhibited by 
special materials which, when experiencing mechanical 
deformation, accumulate electric charge which may be stored 
and converted into usable electric power. This is a highly 
applicable feature for vibrational energy harvesting but requires 
repeated straining of piezoelectric materials in order to work. 

The key design challenge for vibrational energy harvesting 
via micro-scale piezoelectric structures is that ambiently 
occurring vibrations are generally low frequency (below 100Hz), 
while natural linear resonance scales inversely with size [13-14]. 
As illustrated in (7), natural resonance ω0 can be expressed as a 
function of stiffness k and mass m, where the micro-scale 
dimensions L of MEMS piezoelectric beams can be related to 
very small masses through density P as shown in (8).  

(7) (8) 

For background, common types of FRs for MEMS 
vibrational energy harvesters define system goals which include 
the requirements which the design must meet to operate and 
perform the desired functionality, such as “harvesting energy” or 
“resonating at [desired] frequency range.” For piezoelectric 
energy harvesting specifically, DPs satisfying the identified FRs 
may detail how material deformation may produce energy, and 
how geometric structures may enable resonance at a target 
frequency range. This specific low-frequency vibrational energy 
harvesting design problem can be addressed by eschewing linear 
resonance as the primary means of exciting a dynamic response 
in the piezoelectric material, and instead relying on nonlinear 
methods to generate strain from low frequencies at the 
microscale.  

3.2.2 Results from Automated FR Extraction 
Following the algorithm detailed in Table 1, two abstracts 

from published papers were taken as the input context C0 and 
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FRs were extracted starting with the highest-level FR0. The 
results of this experiment are presented by showing the identified 
FRs in context in Figure 2, as well as the extracted “What” (FR) 
– “How” (DP) structure in Table 2.

Table 2: Extracted “What” (FR) – “How” (DP) Structure 
Extracted Structure from Abstract 1 [13] 

“What” “How” 
FR0 lowering the 

operating frequency 
window below 100hz 
for the first time at the 
mems scale 

DP0 bistable buckled beam 
energy harvester 

FR1 buckling of 200 µm DP1 bistable 

FR1.1 progressive residual 
stress control of the 
deposition processes 
along the fabrication 
steps 

DP1.1 multilayer beam 
structure with residual 
stress induced buckling 

FR1.2 input energy 
overcomes an energy 
threshold 

DP1.2 large snapping motion 
of the beam at very low 
frequencies 

FR1.3 50 % bandwidth under 
70hz at 0 .5g input 

DP1.3 operating conditions that 
have not been 
demonstrated by mems 
vibration energy 
harvesters before 

FR1.1.1 vibration energy
harvesters based on 
the resonance 

DP1.1.1 work effectively only
when the operating 
frequency window of the 
beam resonance 
matches with the 
available vibration 
source 

FR1.3.1 none of the resonating
mems structures can 
operate with low 
frequency, low 
amplitude, and 
unpredictable ambient 
vibrations 

DP1.3.1 the resonant frequency
goes up very high as the 
structure gets smaller 

Extracted Structure from Abstract 2 [14] 
“What” “How” 

FR0 harvests energy from 
parasitic ambient 
vibration 

DP0 piezoelectric effect 

FR1 bending strain DP1 None 

FR2 robust power 
generation 

DP2 wide bandwidth of 
resonance enables a 
robust power generation 
amid the uncertainty of 
the input vibration 
spectrum 

FR3 passive feedback and 
consequently a wide-
band resonance 

DP3 stiffness nonlinearity 
due to the stretching 

FR4 tensile stretching strain DP4 in doubly-anchored 
beams 

FR5 low power density DP5 prevents them from 
practical use 

FR6 ultra wide-bandwidth DP6 None 

FR7 nonlinear DP7 wide-bandwidth 

FR8 power density DP8 comparing the 
frequency response of 
the system with that of 
an equivalent linear 

harvester with a similar 
q - factor 

Abstract 1, from [13] 
Vibration energy harvesters based on the resonance of the beam structure 
work effectively only when the operating frequency window of the beam 
resonance matches with the available vibration source. None of the 
resonating MEMS structures can operate with low frequency, low 
amplitude, and unpredictable ambient vibrations since the resonant 
frequency goes up very high as the structure gets smaller. Bistable buckled 
beam energy harvester is therefore developed for lowering the operating 
frequency window below 100Hz for the first time at the MEMS scale. 
This design does not rely on the resonance of the MEMS structure but 
operates with the large snapping motion of the beam at very low 
frequencies when input energy overcomes an energy threshold. A fully 
functional piezoelectric MEMS energy harvester is designed, monolithically 
fabricated, and tested. An electromechanical lumped parameter model is 
developed to analyze the nonlinear dynamics and to guide the design of 
the nonlinear oscillator based energy harvester. Multilayer beam structure 
with residual stress induced buckling is achieved through the progressive 
residual stress control of the deposition processes along the fabrication 
steps. Surface profile of the released device shows bistable buckling of 
200µm which matches well with the amount of buckling designed. Dynamic 
testing demonstrates the energy harvester operates with 50% bandwidth 
under 70Hz at 0.5g input, operating conditions that have not been 
demonstrated by MEMS vibration energy harvesters before. 

Abstract 2, from [14] 
An ultra wide-bandwidth resonating thin film PZT MEMS energy harvester 
has been designed, modeled, fabricated and tested. It harvests energy 
from parasitic ambient vibration at a wide range of amplitude and 
frequency via piezoelectric effect. At the present time, the designs of most 
piezoelectric energy devices have been based on high-Q linear cantilever 
beams that use the bending strain to generate electrical charge via 
piezoelectric effect. They suffer from very small bandwidth and low power 
density which prevents them from practical use. Contrarily, the new design 
utilizes the tensile stretching strain in doubly-anchored beams. The 
resultant stiffness nonlinearity due to the stretching provides a passive 
feedback and consequently a wide-band resonance. This wide bandwidth 
of resonance enables a robust power generation amid the uncertainty of 
the input vibration spectrum. The device is micro-fabricated by a 
combination of surface and bulk micro-machining processes. Released 
devices are packaged, poled and electro-mechanically tested to verify the 
wide-bandwidth nonlinear behavior of the system. Two orders of magnitude 
improvement in bandwidth and power density is demonstrated by 
comparing the frequency response of the system with that of an equivalent 
linear harvester with a similar Q-factor. 

Key: Functional Requirement   Highest-level FR0

FIGURE 2: Functional requirements automatically identified, 
highlighted in context from [13-14] 

4. HUMAN DESIGN EVALUATION: SURVEY STUDY
In order to evaluate the performance of this automated NLP-

based system, we may compare the results to the judgements of 
a MEMS expert with first-hand knowledge of the designs 
documented in each abstract. The principal investigator of the 
group where the research [13,14] was performed provided the 
“ground truth” for the highest-level requirements and solutions 
(FR0 and DP0) in each design. This human Subject-Matter Expert 
(SME) judgement is used to evaluate the accuracy of the NLP 
performance on identifying the highest-level design information. 

While the “ground truth” established from the SME is 
necessary to measure accuracy, we are also interested in 
comparing the NLP-based results to a “baseline” measure of how 
manual analysis of design documentation is currently performed. 
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The baseline was established by surveying 75 human designers, 
with varying degrees of familiarity in MEMS, who performed 
the same design decomposition tasks on the two passages. In this 
section, the ground truth from the SME and the baseline results 
from the survey are used to evaluate the NLP-based system’s 
performance. 

4.1 Survey Design 
The survey was implemented using Qualtrics XM software. 

The respondents were designers of varying levels of experience 
from the MIT community. The survey was distributed to 
graduate researchers, research scientists, and faculty members in 
the MEMS research community at MIT, and to undergraduate, 
graduate, post-doctoral, and faculty members of the Mechanical 
Engineering department, and also to graduate students in the 
Systems Design Management program. Participation in the 
survey was incentivized by the chance to win prizes in a raffle.  

FIGURE 3: Demographic information of survey participants 

The first part of the survey collected demographic identifiers 
shown in Figure 3. The second section of the survey trained the 
respondents on the software’s user interface for labeling text 
spans, and also established an understanding of the definition of 
functional requirements and a top-down hierarchical method of 
extracting FR structure starting with the highest-level FR0. This 
consisted of three examples with easily recognizable FRs and 
DPs (which were termed “requirements” and “solutions” 
respectively for survey respondents), as well as obvious 
examples of extraneous information. Respondents were able to 
highlight words and choose from suggested labels what type of 
information they were identifying. Following each trivial task, 
the “correct” answers were shown to the respondent to reinforce 
the goals of the training exercise. In the third section of the 
survey, the two MEMS design texts from the case study in 
Section 3 were shown to respondents for analysis. Respondents 

were asked to label just one highest-level FR0 and DP0, and then 
subsequently to also label as many other FRs and DPs as they 
could identify, using the same tools and definitions learned 
during the training exercises.  

4.2 Survey Results 
In total, 75 respondents completed the entirety of the survey 

questions out of a total of 165 individuals who started the survey. 
The average time taken to complete the design decomposition 
tasks were 5:56 and 5:35 minutes for the abstracts 1 and 2. 
Respondents completed design decompositions of the MEMS 
abstracts by using the highlighting tool from the training 
exercises to first identify one highest-level requirement (FR0) 
and then one highest-level solution (DP0). Based on this highest-
level information, they next identified any other FRs which they 
believed to be requirements for the design defined by the high-
level FR0-DP0 they initially selected. We can compare the NLP 
model-based results to the judgements of the SME and human 
designer results by visualizing the number of human “votes” for 
where these selections were made in the passage context. In 
Figures 4-5, the distribution of these votes is plotted with respect 
to the indexed sequence of words from the MEMS context for 
the highest-level FR0 and DP0 selections for both passages, 
alongside their textual form for a complete visualization. The 
most popular spans, where most respondents indicated a high-
level “what” or “how” occurred and the span selected by the NLP 
model and the SME are indicated.  

The second part of the respondents’ task was to identify the 
lower-level functional requirements (FRs) stated in each 
passage, shown in Figures 6-7. Because in this case, the task 
involved identifying multiple FRs, a representative fragment 
selection of 12 of the 75 total individual respondent’s labels is 
also displayed (bottom-left of each figure) to illustrate a typical 
individual designer’s analysis of the text. For the selected 
individual responses, 3 individuals from each of the four 
categories of MEMS expertise are displayed. On average, each 
individual designer selected between 3 and 4 FRs for each 
passage, while the NLP-based system identified 7 and 9 
respectively. For such an information retrieval task, commonly 
used metrics for performance are precision and recall. Precision 
measures how many selected FRs are actual FRs (ratio of true 
positives to true positives plus false positives). Recall measures 
how many actual FRs are selected (ratio of true positives to true 
positives plus false negatives). The baseline comparison used for 
calculating these metrics for the precision and recall of lower-
level FRs was established according to the consensus of all the 
survey respondents. The local maxima exceeding a threshold of 
5 votes were used to determine the peaks which indicated the 
baseline FRs. The resulting scores are shown in Table 3. 

Table 3: Precision and Recall Scores of NLP-based system 
Precision Recall 

Abstract 1 0.71 0.55 
Abstract 2 0.89 0.89 
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FIGURE 4: Comparison of highest level “what” (FR0) and “how” (DP0) choices of NLP-based system, 
Human Designers Surveyed, and the Subject-Matter Expert (SME) for Abstract 1 [13] 

FIGURE 5: Comparison of highest level “what” (FR0) and “how” (DP0) choices of NLP-based system, 
Human Designers Surveyed, and the Subject-Matter Expert (SME) for Abstract 2 [14] 
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FIGURE 6: Comparison of Functional Requirement labeling between selected human individuals (bottom), 
 human aggregate (top) and NLP-based system (highlights) for Abstract 1 [13] 

FIGURE 7: Comparison of Functional Requirement labeling between selected human individuals (bottom), 
 human aggregate (top) and NLP-based system (highlights) for Abstract 2 [14] 

5. DISCUSSION
The performance of the NLP-based system on the primary

task of processing a text passage and returning the highest-level 
“what” and “how” are generally in agreement with consensus of 
the 75 human designers surveyed. In Figure 4, we observe that 
the consensus for the highest-level FR is divided among 3 
different peaks which relate to semantically similar spans of text 
all describing the requirement of lowering the operating 
frequency window for the designed device. The NLP selection is 
one of these 3 peaks, while the SME judgement settled for a 

fourth span in the text. For the highest-level DP of the first 
passage, there is clear agreement between the human consensus, 
the SME, and the NLP selection. In the second passage shown in 
Figure 5, there is agreement between the survey consensus 
identifying the highest-level FR and the NLP selection. For the 
highest-level DP, neither the SME nor the NLP selection point 
to the human popular consensus. Because the method by which 
the “how” (DP) is mapped from the identified “what” (FR) 
involves identifying literally how the FR is addressed by the 
design (as detailed in Table 1), the NLP model chooses a span 
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from the same sentence as the highest-level FR as this is where 
this information is explicitly stated, despite not correctly 
describing the highest-level design parameter in the passage.  

When evaluating the performance of the NLP-based system 
for extracting all FRs contained in each passage, the precision 
and recall metrics indicate higher performance on the second 
passage (0.89 for both precision and recall) than the first passage 
(0.71 precision and 0.55 recall). It is noted that the NLP-based 
system extracted more FRs (9) for the second passage than for 
the first (7) before the algorithm terminated, suggesting that the 
full hierarchical tree structure of design information may not 
have been completely traversed when analyzing the first passage. 
Individual humans identified between 3 and 4 FRs on average 
for each passage, still suggesting a more thorough traversal of 
the design tree by the model when compared to a given 
individual, but not perfect when compared to the consensus of 
75 designers. It is also noted that humans averaged 5:56 and 5:35 
minutes for analyzing each passage respectively, while the 
execution of the pre-trained NLP-based system took 
approximately 10 seconds on a common CPU. The comparison 
with the survey suggests the NLP-based system accurately 
identifies highest-level functional requirements. This 
discrepancy between the SME and survey results also reinforces 
the difficult nature of this decomposition task.   

One family of designs where multiple DPs may address a 
single FR, is uncommon after the product development cycle, but 
the algorithm may easily be modified to do so by repeating the 
“How”-type question-answering search for the same FR to 
extract multiple DPs, and recurrently pursue these new extracted 
branches. 

This work focuses on extracting design information from 
free text and was tested on passages taken from peer-reviewed 
academic literature which documented design. In industry, 
however, documentation can be less structured and more terse. 
While NLP models, such as those used in this work, have 
demonstrated the ability to process shorthand note-like 
documentation, the effort to compile enough textual data from a 
variety of formats including presentations, online collaborative 
tools, and other electronic communication used in the design and 
production industry, is not trivial. Before the NLP-based system 
presented in this paper can be deployed directly for analysis in 
industry, a concentrated effort to compile and curate design 
documentation is required. Additionally, a next step of this work 
is to consider how extracted design trees may be meaningfully 
presented to designers; a fully decomposed hierarchy may still 
require further abstraction to become informative. Constructing 
a searchable knowledge base of many structured FRs will require 
compiling multiple trees together for a comprehensive result.  

6. CONCLUSION
Based on the opportunity provided by abundant digitalized

data in industry, a system for automatically processing design 
documentation has been developed using models from Machine 
Learning-based Natural Language Processing. An algorithm 
utilizing recursive question-answering to traverse a hierarchical 
tree structure of interrelated functional requirements and design 

parameters was introduced. Its performance was evaluated in 
comparison to the analysis by a human subject-matter expert and 
designers of two passages documenting MEMS design via a 
survey study. Agreement between the NLP-based system and the 
human respondents suggest an opportunity for changing the way 
design data is processed at the industry level.  

Next, this research aims to distill design documentation 
from every step of the production cycle to be able to relate 
functional requirements, design parameters, and process 
variables and accurately model interdependencies between these 
domains. The goal is to leverage data from industry in order to 
aid designers and maximize the probability of success for future 
design innovation. 
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