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Abstract: Axiomatic Design (AD) provides a powerful thinking framework for solving complex 

engineering problems through the concept of design domains and diligent mapping and 

decomposition between functional and physical domains. Despite this utility, AD is yet to be 

implemented for widespread use by design practitioners solving real world problems in industry 

and exists primarily in the realm of academia. This is due, in part, to a high level of design 

expertise and familiarity with its methodology required to apply the AD approach effectively. It 

is difficult to correctly identify, extract, and abstract top-level functional requirements (FRs) 

based on early-stage design research. Furthermore, guiding early-stage design by striving to 

maintain functional independence, the first Axiom, is difficult at a systems level without explicit 

methods of quantifying the relationship between high-level FRs and design parameters (DPs). 

To address these challenges, Artificial Intelligence (AI) methods, specifically in deep learning 

(DL) assisted Natural Language Processing (NLP), have been applied to represent design 

knowledge for machines to understand, and, following AD principles, support the practice of 

human designers. NLP-based question-answering is demonstrated to automate early-stage 

identification of FRs and to assist design decomposition by recursively mapping and traversing 

down along the FR-DP hierarchical structure. Functional coupling analysis could then be 

conducted with vectorized FRs and DPs from NLP-based language embeddings. This paper 

presents a framework for how AI can be applied to design based on the principles of AD, which 

will enable a virtual design assistant system based on both human and machine intelligence. 

1.  Introduction 

Since first introduced to the ASME and CIRP community in the late 1970s, Axiomatic Design (AD) 

has provided principles for complex systems design and has been advanced as a powerful methodology 

for reducing complexity and formalizing the process by which latent needs are translated into concrete 

functional requirements (FRs) and systematically addressed by design parameters (DPs) [1-3]. The 

range of AD applications has been very wide and broad. AD has been successfully applied to product 

design in various fields including automotive [4], electronics [5], manufacturing equipment [6], and 

MEMS devices [7]. Another popular area of application is manufacturing processes [8] and 

manufacturing systems design [9]. More recent applications include large, complex socio-technical 

systems such as healthcare systems [10], enterprise systems, transportation systems, supply chain 

management, and information system architecture. Although AD has its root in manufacturing and 

product design, it has also been applied to software design and software development [11].  

Despite the value that AD brings to engineering design and production practice, it has not seen 

widespread adoption in industry, with training in AD remaining limited to mostly academic settings 

[12]. While AD is a useful thinking framework for expert designers, extensive familiarity with its 

methodology is required to implement it in design practice. Correctly identifying FRs and abstracting 
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them into top-down hierarchical structure while mapping them to the physical domain is difficult for 

junior designers with little exposure to this methodology. Even for seasoned designers, identifying 

functional coupling, extracting FR-DP structures, and analyzing design matrices become challenging 

when a problem scales up and decomposition goes beyond a few levels along the hierarchy [13].  

At the time of AD’s conception in the 1970s and until quite recently, the paradigm for 

computational design aids has been rule-based. However, with the current resurgence of AI bolstered 

by low-cost computing hardware, novel neural network architectures, and an abundance of digitalized 

data, the move away from rule-based methods towards models built on learned parameters from data 

(so-called Deep Learning) has proven transformational for certain fields. The field of computer vision, 

which historically relied on image filters carefully designed by experts, was revolutionized when 

convolutional neural networks (CNN) trained on examples of handwriting to learn these filters and 

outperform the status quo [14]. Similarly, the field of natural language processing (NLP) has benefitted 

tremendously from the application of deep neural networks trained on massive text datasets to learn 

representations of language [15] which can be used to perform a number of automated language tasks.  

While design has benefited from computational aids such as CAD/CAM tools and use of machine 

learning for generative design models [16], the field of design has yet to be transformed by AI in the 

manner by which computer vision and NLP have been. By representing design knowledge for machines 

to comprehend for storage, manipulation, and retrieval, in a similar way to how language has been 

represented in NLP, the field of design can truly begin to benefit from methods in AI. In this paper, we 

propose and show how Axiomatic Design with AI tools provides the necessary framework for 

formalizing design knowledge representations which has the potential to transform AD thinking from 

a framework to an accessible methodology. 

2.  Background 

2.1.  Axiomatic Design relates the functional domain to the physical domain by modeling 

interdependencies in design with a matrix framework where functional requirements and design 

parameters can now be represented as vectors in design space with AI-based Natural Language 

Processing (NLP) technology. This section provides an overview on these design knowledge 

representations as well as background on recent advances in AI and NLP. 

2.2.  Functional Structure in Axiomatic Design  
The first step of applying Axiomatic Design (AD) to a problem is identifying the functional 

requirements (FRs) which must be addressed by design parameters (DPs). AD starts by identifying the 

highest-level, most overarching FR (what) of a problem, and mapping it to the highest-level DP (how). 

The highest FR-DP pair need to be decomposed top-down as shown in Figure 1. This FR-DP tree 

structure is a useful framework for representing design not only because it preserves the hierarchical 

relationships between perceived needs and conceptualized solutions, but also because it lays a 

foundation for mapping designs with computational methods. 

However, in practice, identifying the key FR and conducting a correct decomposition has been 

challenging. Differentiating FRs from DPs can be difficult without training in AD theory, and for a 

complex problem, a multi-level functional hierarchy may need to be abstracted to extract the highest-

level FR. As problems scale in breadth, domain expertise across a wide range of fields may be required 

for a designer to comprehensively identify all necessary FRs and matching DPs for a design concept. A 

thorough AD analysis is very valuable but very laborious in terms of the human expertise required to 

complete it.  

 

 
Figure 1: Structured decomposition of functional requirements and design parameters 
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2.3.  Evaluating Functional Coupling 

Once the FRs and DPs of a design are identified, their functional coupling needs to be evaluated to 

assure and maintain the functional independence of the design; this is a critical metric for a good design. 

One of the fundamental relationships defined in AD is between the functional domain (what) and the 

physical domain (how). FRs are related to DPs through the design equation, shown in (1), which 

represents one layer of the hierarchy introduced in Figure 1. 

 

{
𝐹𝑅1

⋮
𝐹𝑅𝑛

} = [

𝐴11 ⋯ 𝐴1𝑛

⋮ 𝐴𝑖𝑗 ⋮

𝐴𝑛1 ⋯ 𝐴𝑛𝑛

] {
𝐷𝑃1

⋮
𝐷𝑃𝑛

}    (1) 

 

The terms of the design matrix Aij represent the effect each DP has on each FR. Terms along the diagonal 

where i = j should equal 1 as a given DPn is designed to address FRn. For a design exhibiting perfect 

functional independence, where each DP addresses and affects only one FR, the number of DPs will 

correspond to the number of FRs, and the matrix A will be diagonal, where Aij = 0 when i ≠ j. Such 

functionally independent designs are the holy grail of systems engineering. As designs scale in number 
of FRs and complexity, coupling between the functional and physical domain may result in performance 

inefficiency, as in the case of pre-industrial revolution steam engines [17], and even catastrophic safety 

issues when designs are updated without an understanding of functional interdependencies. Conversely, 

functionally independent systems are much simpler to modify, and often result in better performance 

even experienced by end users as in the classic AD example of the uncoupled faucet where separate 

vertical and horizontal levers to control water flow rate and temperature are easier to use than dual knob 

faucets [18]. 

Identifying and measuring functional coupling is not trivial in practice, however, especially for 

systems containing many FRs and DPs. Furthermore, many real-world design cases are not easily 

characterized into the discrete categories of “uncoupled,” “decoupled,” or “coupled.” To address this 

issue, metrics of functional independence have been developed [19-20] based on the matrix relationship 

in (1). These metrics seek to characterize not only if a system is coupled or not, but also how coupled a 

system may be. Based on the values of the design matrix A, the metrics of Reangularity (R) and 

Semiangularity (S), expressed in (2), (3) reflect the degree to which DPs affect each other, and affect 

the set of FRs defining the functional domain. R and S values close to 1 indicate ideal functional 

independence, and values close to 0 indicate worst-case total functional coupling.  
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(2) (3) 

 

The challenge with implementing such metrics to evaluate real-world designs is that design matrix 

elements are difficult to quantify, especially in the case of heterogeneous units of measure and 

qualitative FRs in text form. For example, in the classic AD case of faucet design, if one FR pertains to 

flow rate, measured in units of volume or mass over time, and another FR pertains to temperature, 

quantifying how a physical DP affects each FR is not straight forward. Furthermore, while simple 

systems of few FRs and DPs with quantifiable values can be characterized using designers’ intuition, 

when problems scale up with numerous FRs, accurately computing measurements like R and S can be 

challenging, which is why such metrics, while theoretically powerful in characterizing systems, have 

not seen widespread use. 

For such challenging cases, AI and NLP models can now be used as a method for representing FRs 

and DPs in a multi-dimensional vector space where R and S can be quantitatively measured, and thereby 

functional independence can be quantitatively determined. In our study with NLP modeling, 210 

dimensional vector space is used to represent FRs and DPs. 
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2.4.  AI-based Natural Language Processing 

In early-stage design, user needs are often communicated with words and sentences, and upstream 

design efforts such as stakeholder interviews, process proposals, and design specifications are often 

documented and stored in textual format. In order to analyze such textual data with methods beyond 

conventional keyword searches relying on rule-based taxonomies, AI methods specifically in natural 

language processing (NLP) may be applied.  

A key functionality in NLP is representing language sequences in a manner which is 

computationally accessible. Strings of alphabetical characters have no inherent quantitative meaning, 

but neural networks trained on large document datasets can be trained to embed semantic meaning of 

language into vectors based on probabilistic modeling tasks [21]. State of the art language models utilize 

deep neural network architectures trained on billions of words to comprehensively encode language 

meaning and may be further trained or “fine-tuned” to perform specific tasks. Bidirectional Encoder 
Representations from Transformers (BERT) is one such language model developed by Google AI [15]. 

BERT is a machine learning-based language model which is able to represent sequences of language 

(words in sentences) by producing vector representations where words which have similar meaning are 

placed nearby each other in a multi-dimensional semantic feature space. Vector representations from 

BERT are contextually dynamic in that the same word’s vector will change slightly depending on the 

context it exists in (neighboring language).  BERT is trained in two steps. The first pre-training step is 

a general training process and is “unsupervised” meaning the model learns from un-annotated text 

documents, training on tasks such as predicting the identity of randomly masked words in a sentence, 

and if two sentences should follow one another consecutively. The second fine-tuning step depends on 

the application of BERT and is usually supervised learning meaning that example inputs and target 

output pairs are provided. Due to the manner in which design decomposition can be conducted by 

extracting the answers to “what” and “how” type questions, BERT fine-tuned on the NLP task of 

question-answering can be applied as a form of Hybrid Intelligence [22] to automate many of the steps 

in AD. We have previously demonstrated how highest-level FRs can be extracted with question-

answering [23], how Design Reading can be automated with recursive question-answering to extract 

and structure large numbers of FRs for a design case [24], and that such extracted functional hierarchies 

demonstrate agreement with the judgements made by human designers [25]. In this work, we 

demonstrate how applying such AI-based NLP models can aid with challenging tasks in Axiomatic 

Design to make it more accessible to the engineering design community and for wider-spread use in 

industry. 

3.  Method 

The key tasks of a designer using Axiomatic Design involve identifying functional requirements (FRs), 

decomposing FRs from the top-down to produce a hierarchical structure, and determining functional 

interdependencies to evaluate a designed system. Representations of language from AI-based models 

can be used to automate the difficult aspects of these tasks. 

3.1.  Question-Answering for Identifying and Structuring FRs 

Detailed designs may be developed by identifying a key FR and zigzagging between the functional and 

physical domains to identify corresponding DPs and decompose to a hierarchical structure. Depending 

on the complexity of the problem and the designer’s expertise in AD theory, this can be a difficult 

process, but AI-based NLP can be leveraged to provide aid.  

AD clearly defines the functional domain as the “what” and the physical domain as the “how” of 

design. For example, FRs are “what we want to achieve” and DPs are “how we achieve them” [1]. 

While such prompting statements are simple, answering them accurately to identify FRs and DPs can 

be challenging for those less familiar with AD. However, if sufficient documentation about a design 

space is available, the extraction and structuring of FRs and DPs can be automated using NLP-based 

question-answering. Language models such as BERT can be fine-tuned on the task of question-

answering, which is a standard information retrieval task in the field of NLP. This task considers a 

context document and a question as inputs, and probabilistically determines the span of text within the 

context which has the maximum likelihood of being the answer to the input question, and returns the 

indices of the answer as output. BERT can be trained on this task with a dataset of crowd-sourced 
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context-question-answer examples, such as the Stanford Question Answering Dataset (SQuAD) [26] 

and applied to AD decomposition. By choosing “what” and “how” type questions that build in 

specificity with information content previously retrieved, high-level FRs and DPs may be decomposed 

automatically into detailed lower-level FRs, where the questions prompting their retrieval are informed 

by a previously extracted hierarchy, as visualized in Figure 2.  

 

 
Figure 2: Question-Answering for Axiomatic Design Decomposition 

 

An example of the automated decomposition steps described in Figure 2 can be considered to 

further elucidate the power of question-answering for application to AD. While actual design 

specification documents from industry are the ideal target of deploying this automated decomposition 

method, we will demonstrate an example based on the abstract of an academic paper describing the 

design of a bio-inspired compliant locking device [27]. Paper abstracts are not only publicly available 

and distributable, but also can be expected to be rich with high-level FRs and DPs and make a dense 

testing ground for demonstrating an extraction method.  

As a result of this recursive application of question-answering, we can automatically produce an 

AD decomposition and a set of structured FRs and DPs without any prior taxonomical information 

about this design. Due to the extractive nature of the information retrieval, the grammatical syntax of 

some of the questions juxtaposed with FRs are nonstandard, such as “How does stability?” but they 

elicit DPs from the context, i.e., “split locking mechanism.” With this method, design documentation 

can be processed to determine an Axiomatic Design functional structure, allowing designers to 

experience the benefits of this analysis without expertise in AD theory that would have been required 

to manually produce these decompositions.  

 
Table 1: Recursive Question-Answering Example of Axiomatic Design Decomposition 

Design context document [27]: 
A device reminiscent of the mammalian spine has been 

designed and built with the ability to lock each individual 

joint in a string of ball joints. The assembly may be 

controlled in a manner similar to other hyper-redundant 

robots, with the added advantage of locking in a straight 

or axial position. Locking is achieved by orienting two 

mating collars in a singular configuration that forces 

compression against neighboring collars and prohibits 

bending or rotation. Locking is desirable for added 

strength in supporting objects, as well as for stabilization 

and power efficiency when bending is not necessary. The 

split locking mechanism represents a biologically inspired 

structure with added strength and stability for use in 

robotics. 
 

Legend: 

Functional Requirement  

Design Parameter  

Q: What is the goal? 

FR: added strength in supporting objects 

 

Q: How does {added strength in supporting objects}? 

DP: locking 

 

Q: What is the requirement for {locking} to {added strength in 

supporting objects}? 

FR1: stability 

Q: How does {stability}? 

DP1: split locking mechanism 

 

FR2: prohibits bending or rotation 

Q: How does {prohibits bending or rotation}? 

DP2: forces compression against neighboring collars 

 

FR3: straight or axial position 

Q: How does {straight or axial position}? 

DP3: locking 

 

FR4: string of ball joints 

Q: How does {string of ball joints}? 

DP4: spine 
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3.2.  Axiomatic Design Analysis with Language Vector Embeddings 

Once the FRs and DPs of a designed system have been defined, such a system may be evaluated in 

Axiomatic Design with respect to the first axiom regarding maintenance of functional independence. 

While the definitions of a “coupled” versus “uncoupled” system are quite clear, identifying functional 

interdependencies and measuring them can be difficult in practice when units of measure do not align 

and FRs are qualitative in nature. For such challenging cases, NLP models may be used as a method for 

representing FRs and DPs in a feature space where interdependencies may be quantitatively measured. 

We have previously demonstrated [28-29] how metrics of functional independence may be accurately 

estimated for the classic AD example of coupling in faucet design, and we will show an extension of 

this case with the following study.  

The pre-trained language model BERT (fine-tuned previously on the task of question-answering) 

may also be used to produce vector representations of language. Consequently, sentence spans 

describing FRs and DPs may be converted into vector form by averaging the vectors of words making 

up the descriptions. Such representations are designed to encode the semantic meaning of language into 

vector space such that more similar words occur closer together. As a result, semantic similarity can be 

quantified in terms of the cosine similarity between word vectors. For example, the semantic similarity 

between the words “motor” and “engine” is 0.834, while the similarity between words “motor” and 

“donut” is 0.383, using vector representations from BERT. If we consider the case of faucet design, we 

can note that the FRs of the design refer to controlling water (1) “temperature” and (2) “flow rate.” If 

we consider descriptions of DPs for the coupled case in Design A, we can note that both DPs reference 

temperature (“hot” or “cold”) and “flow rate”. However, the DPs of uncoupled Design B are also 

semantically uncoupled in that there is no mention of “flow rate” in DP1 and no mention (explicit or 

similar to) “temperature” in DP2. To quantify these semantic relationships in the functional domain, we 

can obtain vectors of each FR and DP description and use these quantitative representations to estimate 

the design matrix A relating the functional to physical domain in AD. In turn, metrics for coupling 

Reangularity (R) and Semiangularity (S) may be computed. We can reproduce our previous study in 

[29] to visualize how differently phrased descriptions, all of which are similar to those explicitly stated 

in the left of Figure 3, describing faucet designs. The descriptions of the designs cluster around R and 

S values accordingly, and the semantic representations reflect the metrics of functional independence 

from Axiomatic Design. 

 

 
Functional Requirements of a Faucet System: 

FR1: allow control of water temperature 

FR2: allow control of water flow rate 

 

  
Design A (coupled): 

DP1: One valve to control 

flow rate of hot water 

DP2: One valve to control 

flow rate of cold water 

Design B (uncoupled): 

DP1: One lever to control 

temperature of water 

DP2: One lever to control 

flow rate of water 

Images are under Creative Commons license  

 
Figure 3: left: images and descriptions of faucet design; right: plot of R and S metrics of coupling for the faucet design based on vectorized 

descriptions of FRs and DPs from [29] 
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4.  Discussion and Conclusion 

Early-stage design can be subjective, requiring expertise to practice. Axiomatic Design provides a 

powerful framework for resolving customer needs into concrete functional requirements, and mapping 

these to the physical domain, but actually implementing these steps can be challenging, and training 

junior designers to practice AD is difficult. While understanding a design space and answering the key 

questions of AD decomposition is challenging for junior designers, NLP models trained specifically on 

retrieving information in a question-answering format are able to perform the identification of FRs, 

mapping to DPs from textual design descriptions, and decomposing them to lower levels. A recursive 

implementation of Google’s language model BERT, fine-tuned for question-answering demonstrated 

that NLP was applied to automate the fundamental steps of AD. This automated decomposition method 

can be extended beyond the functional and physical domains to link process variables to early-stage 

design and create a holistic, digitalized AD-based design knowledge of production steps. The difficulty 

of manually producing such design decompositions has hindered the implementation of AD in industry, 

but using the AI-based automated or human-assisted hybrid methods, industry may finally truly benefit 

from the power of Axiomatic Design thinking. 

By producing vector representations of designs based on textual descriptions, semantic similarity 

can be translated into AD metrics for functional independence. If the detection of functional coupling 

could be automated using the NLP-based knowledge representation methods shown in this work, 

functional interdependencies of large-scale systems could be quickly assessed to highlight bad designs 

and to avoid any potentially catastrophic safety issues.  

Axiomatic Design has provided powerful thinking framework for designers but has been also 

challenging to use and implement at industrial practices. By applying AI-based models to perform the 

most challenging steps of Axiomatic Design, namely extracting and structuring functional 

requirements, and evaluating designed systems on the basis of functional independence, we have shown 

that design knowledge can be represented in a form that machines can understand. We believe that this 

will enable Axiomatic Design to finally become an accessible method to benefit practitioners of design 

in a range of industries.  

5.  Acknowledgements 

This work was supported by the National Science Foundation (NSF) Leading Engineering for 

America’s Prosperity, Health, and Infrastructure (LEAP HI) program, award number 1854833.  

References 

[1] Suh NP, 1990. The Principles of Design. New York: Oxford University Press. 

[2] Suh NP, Bell AC, Gossard DC, 1978. On an axiomatic approach to manufacturing and 

manufacturing systems. 

[3] Jahanmir S, Saka N, Tucker III C, Kim SG, 2015. Advances in Multidisciplinary Engineering, 

ASME Press, NY. 

[4] Bae S, Lee JM, Chu CN. Axiomatic design of automotive suspension systems. CIRP Annals. 

2002 Jan 1;51(1):115-8. 

[5] Schuh G, Rudolf S, Breunig S. Modular platform design for mechatronic systems using axiomatic 

design and mechatronic function modules. Procedia CIRP. 2016 Jan 1;50:701-6. 

[6] Babic B. Axiomatic design of flexible manufacturing systems. International Journal of 

Production Research. 1999 Mar 1;37(5):1159-73. 

[7] Schlipf M, Bathurst S, Kippenbrock K, Kim SG, Lanza G. A structured approach to integrate 

MEMS and Precision Engineering methods. CIRP Journal of Manufacturing Science and 

Technology. 2010 Jan 1;3(3):236-47. 

[8] Salonitis K. Design for additive manufacturing based on the axiomatic design method. The 

International Journal of Advanced Manufacturing Technology. 2016 Oct;87(1):989-96. 

[9] Gu P, Rao HA, Tseng MM. Systematic design of manufacturing systems based on axiomatic 

design approach. CIRP Annals. 2001 Jan 1;50(1):299-304. 
[10] Peck J, Nightingale D, Kim SG. Axiomatic approach for efficient healthcare system design and 

optimization. CIRP annals. 2010 Jan 1;59(1):469-72. 



The 14th International Conference on Axiomatic Design (ICAD 2021)
IOP Conf. Series: Materials Science and Engineering 1174  (2021) 012005

IOP Publishing
doi:10.1088/1757-899X/1174/1/012005

8

 
 
 

  

[11] Kim SJ, Suh NP, Kim SG. Design of software systems based on axiomatic design. Robotics and 

Computer-Integrated Manufacturing. 1991 Jan 1;8(4):243-55. 

[12] Nordlund M, Tate D, Suh NP. Growth of axiomatic design through industrial practice. In3rd 

CIRP Workshop on Design and the Implementation of Intelligent Manufacturing Systems 

1996 Jun 19 (pp. 77-84). 

[13] Brown CA. Teaching axiomatic design to engineers—Theory, applications, and software. Journal 

of Manufacturing Systems. 2005 Jan 1;24(3):186-95. 

[14] LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document 

recognition. Proceedings of the IEEE. 1998 Nov;86(11):2278-324. 

[15] Devlin J, Chang MW, Lee K, Toutanova K. Bert: Pre-training of deep bidirectional transformers 

for language understanding. arXiv preprint arXiv:1810.04805. 2018 Oct 11. 

[16] Chen W, Ahmed F. PaDGAN: Learning to Generate High-Quality Novel Designs. Journal of 

Mechanical Design. 2021 Mar 1;143(3). 

[17] Cavique M, Fradinho J, Gabriel-Santos A, Mourão A, Gonçalves-Coelho A. Recovery of waste 

heat from engines: an AD view. InMATEC Web of Conferences 2018 (Vol. 223, p. 01007). 

EDP Sciences. 

[18] Foley JT, Puik E, Cochran DS. The Faucet Reloaded: Improving Axiomatic Design by Example. 

InMATEC Web of Conferences 2017 (Vol. 127, p. 01009). EDP Sciences. 

[19] Rinderle JR. Measures of functional coupling in design (Doctoral dissertation, Massachusetts 

Institute of Technology). 

[20] Suh NP, Rinderle JR. Qualitative and quantitative use of design and manufacturing axioms. Cirp 

Annals. 1982 Jan 1;31(1):333-8. 

[21] Bengio Y, Ducharme R, Vincent P, Janvin C. A neural probabilistic language model. The journal 

of machine learning research. 2003 Mar 1;3:1137-55. 

[22] Kim SG, Yoon SM, Yang M, Choi J, Akay H, Burnell E. AI for design: Virtual design assistant. 

CIRP Annals. 2019 Jan 1;68(1):141-4. 

[23] Akay H, Kim SG. Extracting Functional Requirements from Design Documentation using 

Machine Learning. Procedia CIRP. 2021. 

[24] Akay H, Kim SG. Reading functional requirements using machine learning-based language 

processing. CIRP Annals. 2021 Apr 24. 

[25] Akay H, Yang M, Kim SG. Automating Design Requirement Extraction from Text with Deep 

Learning. ASME IDETC Proceedings. 2021. 

[26] Rajpurkar P, Zhang J, Lopyrev K, Liang P. Squad: 100,000+ questions for machine 

comprehension of text. arXiv preprint arXiv:1606.05250. 2016 Jun 16. 

[27] Kern NI, Majewski TJ, Triolo RJ, Kobetic R, Quinn RD. A locking compliant device inspired by 

the anatomy of the spine. Journal of Mechanical Design. 2009 Jan 1;131(1). 

[28] Akay H, Kim SG. Measuring functional independence in design with deep-learning language 

representation models. Procedia CIRP. 2020 Jan 1;91:528-33. 

[29] Akay H, Kim SG. Design transcription: Deep learning based design feature representation. CIRP 

Annals. 2020 Jan 1;69(1):141-4. 


	2.2.   Functional Structure in Axiomatic Design
	2.3.   Evaluating Functional Coupling
	2.4.   AI-based Natural Language Processing
	3.1.   Question-Answering for Identifying and Structuring FRs
	3.2.   Axiomatic Design Analysis with Language Vector Embeddings



