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ABSTRACT: Gas hydrates offer solutions in areas like CO2
sequestration and desalination. However, their formation is
severely limited by long induction (wait) times for nucleation,
which range from hours to days. Many existing nucleation
promotion techniques involve chemical additives, which invite
environmental and process-related concerns. Here, we report a
simple, passive, and environmentally friendly technique to
significantly promote the nucleation of CO2 hydrates: magnesium
(in pure and alloy forms) triggers nucleation almost instanta-
neously. We report induction times of less than 1 min, which is the
fastest induction time reported for any gas hydrate under stagnant
conditions. This translates to Mg-promoted nucleation rates being
3000 times higher than the baseline. Statistically meaningful
measurements of nucleation kinetics (in milliliter and liter-scale reactors), direct visualization of nucleation, and X-ray photoelectron
spectroscopy (XPS)/Fourier-transform infrared spectroscopy (FTIR) analysis uncover several chemistry-related insights associated
with Mg-based promotion. Importantly, the three-phase line of magnesium−water−CO2 gas is key to promotion. Porous oxide
layers, generation of H2 nanobubbles, and chemisorption of CO2 on Mg surfaces are other factors responsible for accelerated
nucleation. Interestingly, Mg alloys exhibit faster nucleation promotion than pure Mg, which is significant in salt water medium.
Overall, our work opens up pathways for faster synthesis of hydrates, which is critical to realizing applications.
KEYWORDS: CO2 hydrates, nucleation, magnesium, induction time, magnesium alloy, magnesium oxide, nanobubbles

■ INTRODUCTION

Gas hydrates are icelike crystalline solids consisting of cages of
water molecules enclosing a “guest molecule” and form under
high-pressure, low-temperature conditions. CO2 hydrates offer
a promising and novel route to large-scale decarbonization,1

wherein CO2 from industrial processes, or CO2 extracted from
the air, could be used to synthesize CO2 hydrates and then
sequestered (stored) in geologic formations under the ocean
floor.1 Gas hydrates have also been proposed as solutions in
other diverse areas such as desalination, gas separation, gas
storage, transportation, etc.2−4 The potential of hydrates as
solutions to multiple environmental and sustainability-related
issues can only be realized by overcoming multiple
thermodynamic and kinetic challenges to the synthesis of gas
hydrates.5 Slow nucleation of hydrates is one of the key
challenges associated with hydrate formation. Nucleation refers
to the formation of the first “stable” crystal of hydrate that can
subsequently grow.6−9 While nucleation is undoubtedly
influenced by thermodynamic conditions, the induction
(wait) time for hydrates to nucleate can range from hours to
days in the absence of any external promotion techniques.10

Additional key challenges associated with hydrate formation

involve slow growth rates and low gas-to-hydrate conversion.
We note that the present group recently published a related
article on the kinetics of film growth of hydrates.11

There have been several advancements to address this well-
known issue of highly stochastic, long induction times.
Surfactants, ionic liquids, and proteins are well-known kinetic
promoters that accelerate the rate of hydrate nucleation.12−22

Traditionally, anionic surfactants such as sodium dodecyl
sulfate (SDS) have been used to effectively promote
nucleation.23−28 However, in general, surfactants are not
considered environmentally friendly, are expensive, and lead
to process-related issues due to foaming. Alternatively,
mechanical stirring can significantly decrease the nucleation
time; however, it increases the complexity of the high-pressure
reactor in terms of plugging and requires energy input.26,29,30
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Thermodynamic promoters, which alter the hydrate equili-
brium curve, can also influence the induction time for hydrate
nucleation.31−34 Thermodynamic promoters are often com-
bined with kinetic promoters to enhance hydrate forma-
tion.35−38 However, these promoters again involve the use of
chemicals such as tetra-n-butylammonium bromide (TBAB) or
tetrahydrofuran (THF), which are often required in large
quantities and not considered environmentally friendly. Other
methods, such as utilizing hydrate seeds, supersaturation, ice
melts, amino acids, electronucleation, and acoustics have also
been studied to facilitate the nucleation of hydrates.39−45

Electronucleation has been studied by the authors of this
study: even though it can enable fast nucleation, it introduces
additional complexities in the reactor.45

There have been a limited number of studies on surface-
promoted nucleation of hydrates (a passive technique for
nucleation promotion). Metals and metal oxide suspensions
have been experimentally shown to assist in nucleation
promotion and have also been studied in conjunction with
surfactants.46−64 Passive promotion and the underlying
mechanisms have also been studied via molecular dynamics
simulations.65−69 A recent discovery by the present group
involved the use of aluminum surfaces to promote the
nucleation of CO2 hydrates.

70 Statistically significant measure-
ments showed CO2 hydrates nucleating in ∼3 h on aluminum
surfaces (with no nucleation observed in the absence of
aluminum). It was hypothesized that hydrogen bubbles
generated at the aluminum−water interface were responsible
for such promotion.
Presently, we report that magnesium (Mg) can induce

nucleation of CO2 hydrates within a few minutes; this
represents a 500 times increase in nucleation rate, compared
to our previous results on aluminum-based promotion.70 Our
best current results show nucleation occurring in less than 1
min, which is very close to the instantaneous, on-demand
nucleation that is required for practical applications. Carefully

conducted experiments and direct visualization of nucleation
enable statistically meaningful measurements of nucleation,
which are often lacking in literature. Both pure Mg and a
common Mg alloy (AZ31) result in significant nucleation
promotion with the use of pure or salt water. X-ray
photoelectron spectroscopy (XPS) and Fourier-transform
infrared spectroscopy (FTIR) measurements provide insights
into the interfacial chemistry and reactions that result in such
accelerated nucleation. Overall, this work has uncovered a
novel and passive technique for ultrafast CO2 hydrate
nucleation.

■ EXPERIMENTAL SETUP
Figure 1 shows a schematic of the experimental setup. A custom-built,
450 mL pressure vessel (Parr Instruments) with sapphire windows
(for visualization) was used. Experiments were conducted in 3 mL
capacity polystyrene spectrophotometric cuvettes; four cuvettes could
be accommodated and visualized per experiment. The pressure vessel
was located in an environmental chamber (ESPEC). Hydrate
nucleation was visually detected using a Nikon DSLR 850 camera
fitted with a Tokina macro lens. The temperature was monitored with
T-type, 1 mm diameter grounded thermocouples (Omega) connected
to a DAQ (National Instruments). Mirror-polished (surface rough-
ness: 137 nm) Mg alloy (AZ31) plates (from Goodfellow) and pure
Mg rods (99.9% purity, from Sigma-Aldrich) were used. The Mg alloy
plates had dimensions of 28 mm by 6.25 mm with a thickness of 1
mm, whereas the pure Mg rods were 28 mm long with a diameter of
1.5 mm. The Mg alloy had a bulk composition of 96% Mg, 3% Al, and
1% Zn with tolerances within 5%.

All surfaces were cleaned with deionized (DI) water and isopropyl
alcohol followed by drying with nitrogen gas (99.99% purity). All
experiments were conducted at 1 °C and 475 psi (3.28 MPa), which
avoids any possibility of ice formation. After Mg was placed in
cuvettes filled with water, the pressure vessel was first purged with
CO2 gas at 15 psi to remove air. The temperature in the pressure
vessel was then stabilized to 1 °C, by allowing it to rest for 1 h; this
eliminates any temperature gradients inside the pressure vessel. The
temperature was measured using two thermocouples, one placed near
the top of the vessel and the other near the center. After thermal

Figure 1. Schematic illustration of the experimental setup.

ACS Sustainable Chemistry & Engineering pubs.acs.org/journal/ascecg Research Article

https://doi.org/10.1021/acssuschemeng.1c03041
ACS Sustainable Chem. Eng. XXXX, XXX, XXX−XXX

B

https://pubs.acs.org/doi/10.1021/acssuschemeng.1c03041?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acssuschemeng.1c03041?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acssuschemeng.1c03041?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acssuschemeng.1c03041?fig=fig1&ref=pdf
pubs.acs.org/journal/ascecg?ref=pdf
https://doi.org/10.1021/acssuschemeng.1c03041?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


equilibration, both thermocouples measured 1 °C with an accuracy of
±0.2 °C. After the rest period, the vessel was pressurized by CO2
(99.99% purity) to 475 psi. Induction time was estimated from the
time that the temperature and pressure conditions entered the
thermodynamic hydrate stability region, based on the equilibrium
curve of CO2 hydrate formation.10 The data reported in this study is
the average of eight repeats for a particular configuration. More details
on the experimental procedure are available in the Supporting
Information.

■ RESULTS AND DISCUSSION
Nucleation Experiments in Cuvettes. Figure 2 shows

images of CO2 hydrate formation in four cuvettes (in one
experiment) containing inclined Mg alloy plates. The
configuration of the plate is shown in Figure 3a and pure
Mg rods also had a similar configuration. A sequence of time-
lapse images is shown with significant hydrate formation
observed in the last image (Figure 2h). Nucleation is seen to
occur in each of the four cuvettes at various times (highlighted
by the green arrow in Figure 2c−f). This direct visualization
allows accurate detection of nucleation and measurement of
the induction time. We note that getting high-quality, high-
magnification images is very challenging in such high-pressure,
confined access systems. Video 1 in the Supporting
Information shows nucleation occurring inside the cuvettes.
Table 1 summarizes the induction time measurements from

this work. No nucleation was detected even after 15 h in the
control experiments (no Mg). In contrast, both pure Mg and
Mg alloy exhibited significant nucleation promotion, with
average nucleation times of ∼13 and ∼9 min, respectively, with
minimum nucleation times of ∼7 to 8 min. Interestingly,
nucleation was always observed to initiate at the three-phase
contact line of water−CO2 gas−Mg. Video 1 included in the
Supporting Information clearly captures this phenomenon.
There was no influence of the volume of water (in the cuvette)

on the nucleation time as long as the three-phase contact line
was in play. Furthermore, pure Mg resulted in higher
nucleation times than Mg alloy; a hypothesis to explain this
difference is outlined later. Data on all of the induction time
measurements is included in the Supporting Information.
Similar experiments were also conducted with sodium

chloride solutions (concentration of 35 g/L) to mimic CO2
hydrate formation in seawater. This is an important
consideration since applications such as oceanic sequestration
of CO2 and seawater desalination will involve hydrate
formation with salt water. The average nucleation time showed
a significant increase to ∼24 min and ∼2 h for Mg alloy and
pure Mg, respectively, with minimum nucleation times of ∼11
to 19 min (Table 1). This increase is expected and can be
attributed to the salt-induced shift in the equilibrium
temperature of hydrate formation.71,72 Dissociation of ionic
salts creates hydration shells, which makes it harder for water
molecules to orient suitably for hydrate formation. It is noted
that the average induction time for Mg alloy is still very
favorable (compared to state of the art); however, it is
significantly higher for pure Mg. Possible mechanisms, which
explain this difference, are outlined in a subsequent section.
Next, we have investigated the influence of the three-phase

line and geometrical configurations of the Mg alloy plate on
nucleation. Figure 3a−d shows the different configurations of
Mg alloy plates. Table 2 shows the induction time comparison
of all of these configurations. First, the average nucleation time
increased from ∼9 min for the configuration in Figure 3a to
∼46 min for the configuration in Figure 3b. The configuration
in Figure 3a has the three-phase contact line of water−CO2
gas−Mg, whereas the configuration in Figure 3b does not,
since the Mg plate is completely submerged. Very interestingly,
nucleation for the configuration in Figure 3b was observed to
originate not on the Mg plate, but rather near the three-phase

Figure 2. Time-lapse image sequence showing hydrate formation. Four cuvettes partially filled with water and containing an inclined Mg alloy plate
each, are shown in each image from (a−h). Red squares show the CO2 gas−water interface and yellow arrows show the Mg alloy plates. The
specific state of each image is as follows: (a) temperature of 1 °C, just before pressurization. (b) Just after pressurization with CO2 to 475 psi at 1
°C. (c−f) Green arrows show the nucleation location of CO2 hydrates on the CO2 gas−water interface of each cuvette. Each image is just after
nucleation on the respective cuvette. Nucleation occurs at different times reflecting the stochastic nature of the behavior. (g) Hydrate growth after
15 min of pressurization. (h) Significant conversion of water to CO2 hydrates after 45 min.
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contact line of the cuvette surface (water−CO2 gas−
polystyrene). It is likely that magnesium oxide particles
attached to the rising hydrogen gas bubbles (generated on
the Mg surface) trigger nucleation on the gas−water interface.
These gas bubbles can be seen in Video 2 (included as the
Supporting Information) and are generated due to the reaction
of Mg with water, as discussed in a later section. We note that a
previous study analyzed the influence of Mg oxide powders
(assisted by mechanical stirring) on the nucleation of natural
gas hydrates.56 Our findings clearly highlight the importance of
the three-phase contact line on nucleation; this aspect of
nucleation has also been captured in molecular dynamics
(MD) simulations.73 We note that nucleation of hydrates can
sometimes occur inside bulk water for supersaturated
systems.74,75 However, in our setup, the bulk of water was

largely undersaturated due to the absence of stirring and
surfactants.
Next, we outline the configuration which resulted in the

fastest nucleation in the cuvette-based experiments. Figure 3c,d
shows upright Mg alloy plates protruding above the water level,
with the plate in Figure 3c being centered, while the plate in
Figure 3d being flush against the polystyrene wall of the
cuvette. The plates were maintained upright by cementing
them at the bottom with paraffin wax. Control experiments
were conducted with just paraffin wax and water (no Mg),
where no nucleation was observed in 15 h. The centered plate
(Figure 3c) did not show a significant difference in the
nucleation time from the inclined plate configuration (Figure
3a). However, the configuration in Figure 3d showed a
noticeably faster average nucleation time of 2.9 min (Table 2).
In some experiments, it resulted in nucleation time as low as

Figure 3. Various configurations of Mg alloy plates. (a) Inclined Mg alloy plate, (b) Mg alloy plate completely submerged, (c) upright and centered
Mg alloy plate, and (d) Mg alloy plate upright and flush with side wall of the cuvette.

Table 1. Summary of Induction Time Data for Various Experiments with Mg alloy and pure Mg.

promoter water
mean induction time

(min)
standard deviation

(min)
minimum induction time

(min)
maximum induction time

(min)

Mg alloy plate (AZ31) pure 8.76 0.90 7.3 10.0
salt water (35 g/L) 23.52 7.40 11.0 29.5

pure Mg rod pure 13.26 4.21 7.9 20.8
salt water (35 g/L) 120.78 93.77 19.4 239.6

none pure no nucleation (>15 h)
salt water (35 g/L) no nucleation (>15 h)

Table 2. Summary of Induction Times for Various Configurations of Mg Alloy Platesa

configuration mean induction time (min)
standard deviation

(min) minimum induction time (min) maximum induction time (min)

inclined (a) 8.76 0.90 7.3 10.0
immersedno three-phase line (b) 46.4 4.21 37 50.1
upright and centered (c) 10.36 1.77 8.8 13.5
upright and flush with side (d) 2.92 1.96 1.12 6.47

aConfigurations (a)−(d) are shown in Figure 3.
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1.1 min, which is a noteworthy finding for nucleation under
stagnant conditions. Overall, placing the Mg alloy plate flush
with the cuvette walls (such that the three-phase contact line
exists) yields the fastest nucleation for CO2 hydrates. We note
that we expect gaps on the order of 100 μm between the plate
surface and the cuvette wall. This suggests that confinement-
related effects can possibly accelerate nucleation and are
discussed later in the paper. Such promotion effects resulting
from two surfaces in close vicinity have been experimentally
reported for hydrate formation in porous media and have also
been captured in MD simulations.67,76,77 Mechanistic pathways
captured through MD simulations show the formation of
nanobubbles and stabilization of hydrate clusters through
hydrogen bonding on the adjacent surfaces.
Finally, we compare Mg-based nucleation promotion of CO2

hydrates with surfactant-based promotion via experiments with
sodium dodecyl sulfate (SDS), which is widely used for
promoting hydrate nucleation and growth. Two thousand parts
per million solutions of SDS in DI water were placed in
polystyrene cuvettes (no Mg) and the previously outlined
experimental procedure was followed to induce nucleation. We
measured induction times of about 5 h. The concentration of
SDS was not varied, and it will indeed influence the nucleation
time to a certain extent. However, the large difference in the
induction times with Mg and with SDS clearly highlight the
relative benefits of Mg over surfactants in promoting
nucleation, noting that different mechanisms are at play for
Mg-promoted and surfactant-promoted nucleation.
Nucleation Experiments with Larger Volumes of

Water. While the experiments clearly highlight the promise
of Mg in promoting CO2 hydrate nucleation, they were
conducted with only 1.5 mL of water. Additional experiments
were conducted with larger water volumes to highlight the
scalability of Mg-based nucleation promotion. The pressure
vessel was filled up with 350 mL of water. A Mg alloy AZ31
plate (of the same size as those used in the cuvette-based
experiments) was stuck to the side of the pressure vessel while
ensuring that there exists a three-phase contact line of CO2−
water−Mg. This setup essentially mimicked the configuration
in Figure 3d, where we observed the fastest nucleation. It is
noted that despite scaling up the water volume by a factor of
233, the plate size was kept the same. The rest of the
experimental procedure was the same as before.
Interestingly, these bulk water experiments revealed that

CO2 hydrates nucleated in 0.7 ± 0.1 min (based on eight
experiments). CO2 hydrates nucleated during the pressuriza-
tion stage at pressures ranging between 350 and 400 psi.
Nucleation occurred in the thermodynamic hydrate stability
region (as discussed earlier) even before pressurization to 475
psi was complete. To the best of our knowledge, this is the
fastest nucleation of any gas hydrate ever reported; the results
are even more remarkable considering the complete absence of
traditional approaches to trigger nucleation (surfactants,
promoters, mechanical stirring, etc.). Control experiments
conducted in the absence of the Mg alloy plate yielded
nucleation times of 53 ± 17.1 min (based on eight
experiments). These results clearly show that Mg can trigger
near-instantaneous, on-demand nucleation of CO2 hydrates.
These results also reveal that Mg-based nucleation promotion
is scalable. This should be expected since heterogeneous
nucleation is a surface-dependent phenomenon and does not
depend upon the volume of the reactor. Nucleation and the
subsequent growth of the hydrate film on the gas−water

interface in these experiments are shown in Video 3. Data on
all of the induction time measurements is included in the
Supporting Information.
Faster nucleation in a large volume reactor (350 mL of

water) as compared to smaller-scale (1.5 mL of water)
experiments in polystyrene cuvettes is a very noteworthy aspect
of the present experiments. The size of the Mg alloy plate is the
same in both experiments; therefore, the difference in
nucleation times can be attributed to the stainless steel walls
of the reactor. In large volume water experiments, the
hydrophilic stainless steel walls likely work in conjunction
with the Mg alloy plate to assist nucleation. The nucleation
promotion influence of stainless steel has been reported in
literature.78−80 More research is needed to understand the
synergistic influence of two different surfaces in close contact.
However, it should be clear that the influence of Mg is much
stronger than that of stainless steel.

Estimating Nucleation Rates from Induction Time
Measurements. While the previous sections detailed the
induction time benefits of Mg-assisted nucleation promotion,
this section quantifies the measured nucleation rate. Compar-
ison of the nucleation rate with those in other experiments is
more meaningful than a direct comparison of induction times.
Presently, we use a formulation (based on classical nucleation
theory) developed by Maeda,81,82 to estimate nucleation rates
from the measured induction times. The method of
determining nucleation rates relies on estimating survival
probabilities as determined by eq 1. F(t) is the survival
probability, defined as the probability that a particular sample
does not nucleate after time t. k is the nucleation rate which is
determined from the slope of ln F(t) vs t. Additional details on
this method are outlined in Maeda.81,82 Since our experiments
showed the three-phase contact line to be a key factor for
nucleation, our estimates are based per unit length of the three-
phase contact line.

= −F t ktln ( ) 0.693 (1)

For the experimental results of nucleation in cuvettes,
measurements indicate a nucleation rate of 1.2 Hz m−1 for the
fastest nucleating configuration (Figure 3d), where the Mg
plate is placed close to the reactor walls (with a three-phase
contact line). In the absence of a Mg plate in the cuvette, no
nucleation occurred in 15 h, and the nucleation rate would
theoretically be zero (if we assume no nucleation). In the large
volume water case (with reactor walls of stainless steel), the
measured nucleation rates were larger. The average nucleation
rate in the presence of Mg was ∼9.3 Hz m−1. Since nucleation
occurred during pressurization of the vessel, the reported
nucleation rate is an average for a pressure of ∼380 psi. In the
large volume experiments without Mg, the nucleation rate was
0.003 Hz m−1. The observed enhancement factor due to Mg is
therefore >3000.
We also provide comparisons with our previous work70 on

aluminum-based promotion; the measured induction times of a
few hours translate to nucleation rates of 0.02 Hz m−1

(adjusted to relevant experimental conditions). Mg-based
promotion is therefore ∼500 times faster than Al-based
promotion.70 We can also compare the present results with
the comprehensive assessment of nucleation rates of CO2
hydrates obtained by Maeda.83 Mg-promoted nucleation rates
from our present experiments (large water volume) are ∼70
times larger than Maeda’s measurements using a HP-ALTA
apparatus; this again highlights the benefits of Mg.
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Interestingly, our baseline nucleation rates (without the
presence of Mg) are lower than those reported by Maeda.83

We recognize that we have only eight sets of measurements per
experimental configuration, which is not a very large sample
size from a statistical standpoint. Nevertheless, the obtained
results do highlight the benefits of Mg, as highlighted by a
comparison of the nucleation rates.
Understanding the Mechanisms Underlying Nuclea-

tion. This section discusses various aspects of the experimental
results and possible mechanisms and hypothesis underlying the
Mg-based nucleation promotion. XPS and FTIR character-
ization of pure Mg and Mg alloy surfaces was conducted post
experiments to obtain insights into the chemical composition
on the surface. XPS spectra were recorded using a commercial
X-ray photoelectron spectrometer (Kratos Axis Ultra DLD,
Manchester, U.K.), utilizing a monochromated Al Ka X-ray
source (hv = 1486.5 eV), hybrid optics (employing a magnetic
and electrostatic lens simultaneously), and a multichannel plate
coupled to a hemispherical photoelectron kinetic analyzer. The
base pressure in the analysis chamber was ∼5 × 10−9 Torr. The
spectrometer was calibrated according to ISO 15472:2001 with
an accuracy better than ±0.05 eV. Spectra were collected with
a pass energy of 20 at 0.1 eV per step, and four sweeps. Casa
XPS analysis software was used for peak analysis and the
stoichiometry of samples was determined using the procedure
outlined in Mangolini et al..84 All peaks were calibrated with
respect to the metallic Mg signal at 49.6 eV. FTIR spectra were
collected with a commercial FTIR (model Infinity Gold FTIR

manufactured by Thermo Mattson). Spectra were obtained
using a liquid nitrogen cooled Narrow Band MCT detector
(700−4800 cm−1) and collected 256 scans at 4 cm−1

resolution. An attenuated total reflection cell (ATR, model
MIRacle single reflection manufactured by Pike Technologies),
equipped with Ge crystal, was used to collect all spectra under
ambient conditions.
Post experiments, the Mg alloy plates showed two distinctly

colored regions, where the part immersed under water was
much darker than the part exposed to CO2 gas (Figure 4a−c).
A wide XPS spectra (Figure 4d) on the two regions revealed
the presence of minor alloying elements, Zinc (Zn) and
aluminum (Al), on the surface of the dark region, which was
absent on the light region. The presence of Zn and Al makes
the dark (submerged) region resistant to corrosion−erosion.
Corrosion is an exothermic process,85 which will raise the
temperature locally and delay nucleation if the heat dissipation
from the site is slow. This finding also offers an explanation for
the faster nucleation on Mg alloy plates, as compared to pure
Mg rods (Table 1). Pure Mg (which did not have the
corrosion−erosion protection accorded by Al and Zn) was
seen (visually) to erode, thereby raising the local temperature
and slowing down nucleation. This erosion was especially
severe in salt water, with the resulting oxide layer seen to peel
off eventually. Pure Mg resulted in average nucleation times of
∼2 h compared to ∼24 min of Mg alloy. Our findings suggest
that corrosion/erosion resistant Mg alloys would be better
candidates for nucleation promotion than pure Mg, especially

Figure 4. (a, b) Image of a Mg alloy plate held by a copper grounding prior to XPS characterization. Image (a) shows the Mg alloy plate before
hydrate formation and image (b) shows the plate after hydrate formation. (c) Magnified view of the light to dark region on the Mg alloy plate
where the water−gas interface was present. The tentative gas−water interface is marked with a green arrow. (d) Wide XPS spectra of Mg alloy
plates post experiment, showing difference in compositions between light (unsubmerged) and dark (submerged) regions. The peaks are marked
according to the binding energies of different elements. (e) Plot shows the FTIR spectra depicting strong absorption bands at 1420 cm−1 due to the
presence of carbonates and bicarbonates on postexperiment Mg alloy plates and pure Mg rods.
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in offshore, marine environments. It is noted that such
distinctly colored regions were absent on the pure magnesium
rods, post experimentation.
High-resolution XPS spectra of the peaks could not be

obtained accurately, hence, any knowledge of the oxidation
states of the elements was not reliable. Strong distortion of the
peaks and abnormal peak positions were observed due to
differential charging of the surfaces. Such differential charging
effects can be attributed to the porous oxide layers on the Mg
surface, which creates a nonuniform electric field in the vicinity
of the surface. However, FTIR spectra revealed interesting
information on the functional groups present on the surface.
FTIR spectra obtained on both pure Mg rods and Mg alloy
plates (postreaction) showed CO2 chemisorption on the
surfaces. Strong absorption peaks at wavenumber 1420 cm−1

with an intense shoulder at higher wavenumbers indicate the
presence of significant carbonate and bicarbonate groups on
the surface as shown in Figure 4e. Such absorption peaks were
absent on Mg surfaces before the experiment. It is noted that
multiple studies56,86−91 suggest that carbon adsorption on
surfaces promotes nucleation of hydrates formed from
hydrocarbons. Our results show that such surface chem-
isorption assists in nucleation promotion of CO2 hydrates as
well.
One highlight of the experimental results (Table 2) was the

importance of the three-phase contact line of Mg−water−CO2
in reducing the induction time. Contact line-based promotion
can be attributed to a rich CO2 aqueous phase present in the
vicinity of the three-phase line and also to the generation of
surface nanobubbles of hydrogen in the porous oxide layers of
Mg.92 These nanobubbles are generated due to the slow
displacement reaction of water with Mg. Nanobubbles provide
high-pressure points for heterogeneous nucleation on the oxide
surface. The influence of bubbles on nucleation has been
previously observed by our group, and bubble-promoted
nucleation has been hypothesized in several other stud-
ies.70,93−99 In particular, Li and Wang clearly concluded that
the three-phase contact line helps in nucleation promotion of
methane hydrates.95

The key result in Table 2 is the significant reduction in
nucleation time if the Mg alloy plate is placed very close to the
cuvette surface. These findings are complemented by the
results of experiments conducted with 350 mL of water, in
which nucleation consistently occurred in less than 1 min.
While we do not study the phenomena resulting in such rapid
nucleation, it is possible that capillary-related effects100−102 in
narrow spaces (gap between plate and cuvette surface) could
be responsible. Another possibility is the influence of
confinement on nucleation, noting that the role of confinement
on hydrate formation has been previously studied.67,77

A natural extension of this work is to study Mg-promoted
nucleation of other hydrate formers like methane. Mechanisms
underlying nucleation promotion will be different for methane
hydrates. As an illustration, methane would not corrode the
surface of Mg significantly, as CO2 does, methane solubility in
water is lower than that of CO2, and methane adsorption on
Mg surfaces would be lower; however, bubble generation on
Mg surfaces should still act as a promoting mechanism.

■ CONCLUSIONS
Presently, we describe the significant benefits of pure Mg and
Mg alloy AZ31 for promoting the nucleation of CO2 hydrates.
Results from more than 80 experiments clearly demonstrate

that Mg-based promotion can trigger hydrate nucleation in a
few minutes, with the fastest nucleation obtained in less than a
minute. The importance of this discovery is magnified by the
complete absence of any other traditional nucleation-
promoting technique (surfactants, chemicals, stirring, etc.).
Importantly, this concept is promising at larger volumes. Our
experiments affirm the importance of the three-phase line in
nucleation promotion. Additionally, our experimental and
surface characterization efforts suggest multiple interfacial
phenomena that harmoniously work to achieve ultrafast
nucleation. Overall, we believe that this simple and passive
alternative for nucleation promotion opens up new avenues for
faster hydrate formation, which is critical to realizing the
benefits of hydrates in practical applications.
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