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Abstract. A fast non-convex low-rank matrix decomposition method for po-
tential field data separation is presented. The singular value decomposition
of the large size trajectory matrix, which is also a block Hankel matrix, is

obtained using a fast randomized singular value decomposition algorithm in
which fast block Hankel matrix-vector multiplications are implemented with

minimal memory storage. This fast block Hankel matrix randomized singular
value decomposition algorithm is integrated into the Altproj algorithm, which
is a standard non-convex method for solving the robust principal component
analysis optimization problem. The integration of this improved estimation for
the partial singular value decomposition avoids the construction of the trajec-
tory matrix in the robust principal component analysis optimization problem.
Hence, gravity and magnetic data matrices of large size can be computed and

potential field data separation is achieved with better computational efficiency.
The presented algorithm is also robust and, hence, algorithm-dependent pa-

rameters are easily determined. The performance of the algorithm, with and
without the efficient estimation of the low rank matrix, is contrasted for the

separation of synthetic gravity and magnetic data matrices of different sizes.
These results demonstrate that the presented algorithm is not only computa-
tionally more efficient but it is also more accurate. Moreover, it is possible
to solve far larger problems. As an example, for the adopted computational
environment, matrices of sizes larger than 205×205 generate “out of memory”
exceptions without the improvement, whereas a matrix of size 2001×2001 can
now be calculated in 1062.29s. Finally, the presented algorithm is applied to

separate real gravity and magnetic data in the Tongling area, Anhui province,
China. Areas which may exhibit mineralizations are inferred based on the

separated anomalies.

1. Introduction. To study target geological sources, the target gravity, or mag-
netic anomalies, that are caused by the target sources should be separated from the
total fields which are the superposition of the gravity and magnetic fields caused
by all underground sources. The separated anomalies are used for data inversion
and interpretation of geological features. Therefore, the separation of potential field
data is an important step for high-quality inversion and interpretation. Deep sources
generate large scale smooth anomalies which are called regional anomalies. Resid-
ual anomalies, which are on a small scale, are caused by shallow sources. There are
many methods for separating regional-residual anomalies. They can be classified
into three types. The classical methods of the first group separate the data in the
spatial domain. These include methods such as the moving average, polynomial
fitting, minimum curvature, and empirical mode decomposition, [23, 1, 17, 16].
Methods of the second and third types separate the anomalies in the frequency
or wavelet domains, respectively. These include methods such as matched filter-
ing, Wiener filtering, continuation, and discrete wavelet analysis, [6, 19, 21, 20, 7].
While algorithms that separate the anomalies in the frequency or wavelet domains
are easy to implement [10, 29], the spectral overlapping of the regional and residual
anomalies makes it difficult to obtain satisfactory results [30].

It has been demonstrated in areas of image and signals processing that the use
of a low-rank matrix decomposition for robust principal component analysis (RPCA)
is very effective [5]. The fundamental observation is that practical data from ap-
plied science fields is usually distributed on low-dimensional manifolds in high-
dimensional spaces [13]. Mathematically, for RPCA, it is assumed that the matrix is
a linear combination of a matrix which is of low rank and one which is sparse. Be-
cause RPCA is robust and provides high accuracy separation, it has been applied in

Inverse Problems and Imaging Volume 15, No. 1 (2021), 159–183



FNCLRMD PFS 161

many fields, and there is much research on solving the optimization problem. Gen-
erally, the Lagrange function is used to transform the double-objective optimization
problem into a single-objective optimization problem that is solved using convex op-
timization. Iterative thresholding, accelerated proximal gradient, exact augmented
Lagrange multiplier (EALM), and inexact augmented Lagrange multiplier (IALM) al-
gorithms have been proposed to solve the convex optimization problem [28, 2, 14].
Due to the high computational cost of convex RPCA, a more efficient non-convex
RPCA algorithm, named Altproj, was proposed in [18]. The higher accuracy of
Altproj has lead to its wide adoption.

A low-rank matrix decomposition algorithm for potential field separation (LRMD PFS),

based on RPCA and singular spectrum analysis, is discussed in [32]. Singular spec-
trum analysis is a classical method using the trajectory matrix and the singular value
decomposition (SVD) [22, 3, 24]. An important step in LRMD PFS is the construction
of the trajectory matrix (which is a block Hankel matrix) of the total field. This
is separated into a low-rank matrix and a sparse matrix using convex RPCA. The
separated low-rank and sparse matrices are the approximations of the trajectory
matrices for the regional and residual anomalies, respectively. The sparse features
of the regional anomalies in the frequency domain, and the localization features
of the residual anomalies in the spatial domain, are both considered in LRMD PFS.
Although LRMD PFS separates the anomalies without the use of a Fourier transform
to the frequency domain, it can also be seen as providing a new group of methods
because it provides a combination of the features of the potential field data in both
spatial and frequency domains. Hence, as compared to classical methods, LRMD PFS

is more robust and has higher accuracy. The computational cost of LRMD PFS is,
however, high. There is a large memory demand associated with generating and
storing the large scale trajectory matrix, and a large number of operations are re-
quired to generate the SVD of a large matrix. For example, if the size of the matrix
is 101× 101, then the size of the constructed trajectory matrix is 2601× 2601. The
trajectory matrix then requires memory that is 663 times that of the original data.
For a matrix of size 201 × 201, the size of the trajectory matrix is 10201 × 10201,
and the memory demand increases by a factor of almost 2576. Therefore, the size
of the trajectory matrix increases rapidly with the size of the original matrix.

In this paper, a fast block Hankel matrix randomized SVD (FBHMRSVD) algorithm
that requires minimal storage is proposed. FBHMRSVD is based on fast block Hankel
matrix-vector multiplications (FBHMVM) [27, 15] and the use of a randomized SVD

(RSVD) [12, 11, 25]. A fast non-convex low-rank matrix decomposition for potential
field separation (FNCLRMD PFS) based on the FBHMRSVD is obtained. FBHMRSVD is used
to achieve the SVD of the trajectory matrix without constructing the large trajectory
matrix. The implementation of FBHMRSVD within Altproj yields the approximation
of the trajectory matrices for the regional and residual anomalies without explicit
construction of the trajectory matrix. Thus, the large scale potential field data
matrix can be separated using FNCLRMD PFS and with lower computational cost
and higher accuracy than LRMD PFS. The algorithm is developed and contrasted
with the classical approach for separation of synthetic data sets in Sections 2-4.
Results showing that the algorithm efficiently and effectively separates real gravity
and magnetic data in the Tongling area, Anhui province, China are presented in
Section 5.
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2. The fast block Hankel matrix randomized singular value decomposi-

tion: FBHMRSVD.

2.1. Fast block Hankel matrix-vector multiplication: FBHMVM. Consider a
2D gridded potential field data matrix X = [xmn] ∈ RP×Q, where xmn denotes the
element at the mth row and nth column of the matrix X. Before constructing the
trajectory matrix, the Hankel matrix Tj is constructed using the jth column of X
as follows,

Tj =











x1j x2j · · · x(P−K+1)j

x2j x3j · · · x(P−K+2)j

...
...

...
xKj x(K+1)j · · · xPj











.

Here, generally, K = b(P+1)/2c, where bc denotes the integer part of its argument.

If Tj has sizeK×L, where L = P−K+1, then trajectory matrix T of sizeKK̂×LL̂

is constructed as the block Hankel matrix with K̂×L̂ blocks, where L̂ = (Q−K̂+1),
and is given by

T =











T1 T2 · · · TQ−K̂+1

T2 T3 · · · TQ−K̂+2
...

...
...

TK̂ TK̂+1 · · · TQ











.

Setting K̂ = b(Q+ 1)/2c makes T as near to square as possible. The construction
of T from X is denoted by

(1) T = H(X).

Given a block Hankel matrix the efficient evaluation of matrix-vector products

(2) y = Tb,

is required. Direct evaluation using first (1) to find T and then calculating (2),

uses 8KK̂LL̂−KK̂−LL̂ flops and requires storage of KK̂LL̂+KK̂+LL̂ floating
point entries. But, using Algorithm 1, y can be calculated from X and b without
constructingT withO(PQ log2 PQ) flops and a storage requirement of 3PQ+KK̂+

LL̂ entries. The fast operation that combines (1) and (2) is detailed in Algorithm 1,
and is denoted by

y = FBHMVM(X,b,K, K̂).

Algorithm 1 Fast block Hankel matrix-vector multiplication: y =
FBHMVM(X,b,K, K̂).

1: Input: potential field data matrix X ∈ RP×Q; vector b.
2: Ŵ = ifft2(fft2(Tcirc). ∗ fft2(W)).

3: Output: y = J vec(extract(Ŵ)).

Algorithm 1 uses the exchange matrix J. This is the permutation matrix which
is 0 everywhere except for 1s on the counter diagonal. It is also referred to as
the reversal matrix, backward identity, or standard involutory permutation matrix.
Tcirc is defined by

Tcirc =
[

T̂K̂ · · · T̂1 T̂L̂ · · · T̂2

]

,
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where T̂j is embedded from the jth column of X as follows,

T̂j =
[

xKj · · · x1j xLj · · · x2j

]T
.

W is constructed from b as follows,

W =

[

B 0L(L̂−1)

0(L−1)L̂ 0(L−1)(L̂−1)

]T

.

where b = vec(B), and the operation vec(·) denotes the vectorization operation.
Moreover, the extraction operation is defined by

extract(Ŵ) = Ŵ(1 : L, 1 : L̂).

2.2. Fast block Hankel matrix-matrix multiplication: FBHMMM. Algorithm 1
applied for block Hankel matrix-matrix multiplication

Y = TC,

yields Algorithm 2. Here, C is PC ×QC and the process of Algorithm 2 is denoted
by

Y = FBHMMM(X,C,K, K̂).

Algorithm 2 Fast block Hankel matrix-matrix multiplication: Y =
FBHMMM(X,C,K, K̂).

1: Input: potential field data matrix X ∈ RP×Q; matrix C ∈ RPC×QC ; parame-
ters K and K̂.

2: for j = 1 : QC . do
3: Y(:, j) = FBHMVM(X,C(:, j),K, K̂).
4: end for

5: Output: Y.

2.3. The fast block Hankel matrix randomized SVD: FBHMRSVD. The SVD is
the basis of matrix rank reduction, and it is an important step in RPCA. We use

[U,Σ,V] = SVD(H(X)) = SVD(T)

to denote the SVD T = UΣVT . Here U = [u1,u2, · · · ] and V = [v1,v2, · · · ] are
unitary matrices, u1,u2, · · · are left singular vectors, v1,v2, · · · are right singular
vectors; and Σ = diag(σ1, σ2, · · · ) is a diagonal matrix where σ1 > σ2 > · · · > 0
are the singular values of T.

The cost of obtaining all terms of the SVD is O((LL̂)(KK̂)2), [8], which can be
prohibitive when P and Q are large. For the rank reduction problem not all terms
are required and it can be sufficient to obtain a partial SVD with r terms,

(3) Tr = UrΣrV
T
r ,

where rank(Tr) = r. Generally, low-rank features of T are required and so r is
relatively small. Still, the cost of finding the exact dominant r terms in (3) is high.
On the other hand, the randomized singular value decomposition (RSVD), [12, 11],
has been proposed for efficient determination of a low rank matrix approximation
Tr without the exact calculation of the components in (3). We implement the RSVD
by taking advantage of all steps employing matrix-matrix multiplications with T
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using Algorithm 2, and without explicitly obtaining T. This process, given in
Algorithm 3, is denoted by

[Ur,Σr,Vr] = FBHMRSVD(X,K, K̂, r, p, q).

The integer parameters p and q are integral to the implementation of an RSVD

algorithm. They represent an oversampling and power iteration parameter, respec-
tively. When the required rank r is relatively small with respect to the full rank of
the matrix, it is sufficient to take p = r. While the accuracy of RSVD increases with
increasing q, the cost also increases. But if the spectrum separates into a dominant
larger set of values with σ` � σ`+1, it is sufficient to use a relatively small q, such
as q = 0, 1 or 2, where q > 0 applies q steps of a power iteration to improve the
approximation to the dominant singular values.

Algorithm 3 Fast block Hankel matrix RSVD: [Ur,Σr,Vr] =

FBHMRSVD(X,K, K̂, r, p, q).

1: Input: potential field data matrix X ∈ RP×Q; desired rank r; oversampling
parameter p; power iteration parameter q; parameter K and K̂.

2: ` = r + p, k = 0.

3: Generate a Gaussian random matrix Ω ∈ R`×KK̂ .
4: A(0) = FBHMMM(X,ΩT , L, L̂).

5: QR factorization: [Q(0),∼] = qr(A(0)), where Q(0) ∈ RLL̂×` is an orthonormal
matrix.

6: while q > k do

7: A(1) = FBHMMM(X,Q(0),K, K̂).
8: [Q(1),∼] = qr(A(1)).

9: A(2) = FBHMMM(X,Q(1), L, L̂).
10: [Q(2),∼] = qr(A(2)).
11: Q(0) = Q(2), k = k + 1.
12: end while

13: B = FBHMMM(X,Q(0),K, K̂)

14: Compute the economy SVD of B: [Ũ`, Σ̃`, Ṽ`] = svd(B).

15: Vr = Ṽ`(:, 1 : r); Σr = Σ̃`(1 : r, 1 : r); Ur = Q(0)Ũ`(:, 1 : r)
16: Output: Ur, Σr, Vr.

In Algorithm 3, steps 4, 7, 9, and 13 involve trajectory matrix-matrix multipli-
cations and are replaced by the use of Algorithm 2 in order to avoid calculation of
T. The original equations are

A(0) = TTΩT , A(1) = TQ(0), A(2) = TTQ(1) and B = TQ(0),

where A(0), A(2) ∈ RLL̂×` and A(1), Q(1), B ∈ RKK̂×`. Because Algorithm 3
can be recast without using Algorithm 2 for matrix-matrix multiplications, the
accuracy of the two algorithms is the same, up to floating point arithmetic errors
that may accrue. But the computational cost is much reduced. The computational
cost in terms of flops and storage for each algorithm are detailed, for each step,
in Table 1. The storage and flops required for steps 5, 8, 10, 14, and 15 are the
same for both approaches. But noting that KK̂LL̂ � PQ, the costs are far lower
in steps 4, 7, 9, and 13 when implemented using Algorithm 2. When ` = 2r the
dominant computational costs and storage requirements are then O(rPQ log2 PQ)

Inverse Problems and Imaging Volume 15, No. 1 (2021), 159–183
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Table 1. Computational cost measured in terms of floating point
operations and storage of floating point entries at each step of Al-
gorithm 3 implemented with (FBHMRSVD), and without (RSVD), the
use of FBHMMM for multiplications with T. Here ` = O(r), and
` = 2r when p = r.

FBHMRSVD RSVD

Step Cost in flops Cost in storage Cost in flops Cost in storage

4, 9 O(`PQ log
2
PQ) PQ + `(KK̂ + LL̂) 2`KK̂LL̂ KK̂LL̂ + `(KK̂ + LL̂)

5, 10 2`2(LL̂ − `/3) 2`LL̂ 2`2(LL̂ − `/3) 2`LL̂

7, 13 O(`PQ log
2
PQ) PQ + `(KK̂ + LL̂) 4`KK̂LL̂ KK̂LL̂ + `(KK̂ + LL̂)

8 2`2(KK̂ − `/3) 2`KK̂ 2`2(KK̂ − `/3) 2`KK̂
14 O(`3) 2`2 + ` O(`3) 2`2 + `

15 `r(2` + 3KK̂) r(KK̂ + LL̂) + 2`2 `r(2` + 3KK̂) r(KK̂ + LL̂) + 2`2

+`LL̂ + r + ` +`LL̂ + r + `

and O(rPQ), respectively, for Algorithm 3 as compared to terms that on the order
of O(r(PQ)2) and O((PQ)2) without fast multiplication.

Step 14 of Algorithm 3 generates the required SVD of B using the Matlab func-
tion svd(B, ′econ′). There are multiple other options that may be used, including
svds(B, r) and eig((Y +YT )/2), where Y = BTB, as described in [26]. Generat-
ing Y, however, introduces extra computational costs that increase the overall cost
of obtaining the rank r terms of the SVD. For small r, as here, we have found that it
is generally more efficient to use Step 14 as given, even if in a few cases the required
terms may be achieved more efficiently using eig. Should a larger rank r approxi-
mation be desired for general signal separation, then using eig could be helpful, as
in the RSVD algorithm considered in [26] for obtaining rank r approximations with
r � 10.

While the RSVD has been introduced to improve the efficiency in general for
finding a high accuracy partial SVD, [11], there are other options for efficiently
calculating a high accuracy partial SVD of a block Hankel matrix, e.g. [15]. But,
it is not hard to show that the RSVD is more efficient even for the block Hankel
case. For example, if X is of size 51 × 51 and T of size 676 × 676, then for a test
over 50 runs the average cost as compared to using RSVD is 4.65 times higher. This
relative performance deteriorates with increasing sizes of X and T. With the same
experiment the relative cost increases to 6.74 when X and T increase to 201× 201
and 10201 × 10201, respectively. Thus our interest is the use of the RSVD for this
large scale application.

2.4. Experiments on FBHMRSVD. We now discuss the influence of the parameters
on the accuracy and computational costs of Algorithm 3. We compare the compu-
tational costs with, and without, the use of Algorithm 2 for matrix multiplication,
and the accuracy as compared to the use of the partial SVD. Computations reported
using RSVD and partial SVD are all based on the constructions of the trajectory ma-
trices. These computations are performed on a desktop with 32GB memory and a
4.2GHz Quadcore processor using Matlab 2020a.

Inverse Problems and Imaging Volume 15, No. 1 (2021), 159–183
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(a) Mean computational times. (b) Mean relative computational times.

Figure 1. Experiments for Algorithm 3 for r = 10 with q = 0, 1,
2, and increasing P = Q. Each experiment is repeated 50 times
for each parameter setting. Let Cq be the measured computational
cost in terms of clock time measured in seconds of the algorithm
in each case for given q. Figure 1(a) is the mean of each Cq over
the 50 experiments and Figure 1(b) shows the ratios C1/C0, C2/C0

and C2/C1.

Figure 1 illustrates the impact of the power iteration, parameter, q, on different
sizes of the matrix X, for rank r = 10 and q = 0, 1 and 2. Figure 1(a) shows that
the computational cost increases with q. Figure 1(b) demonstrates an approximate
doubling in cost when going from q = 0 to q = 1, and tripling in going from q = 0 to
q = 2. The improvement in reducing the relative error in the rank r approximation
of X, as measured by ‖X − X̂‖/σr+1

i, where X̂ is the rank r approximation of
X calculated using Algorithm 3, is shown in Table 2. Clearly there is a trade off
between cost and accuracy, thus we recommend q = 1 as a suitable compromise.

Table 2. Comparisons of the rank r relative errors using Algo-
rithm 3 to estimate the rank r partial SVD of X, with the mean
reported over 50 runs in each case.

Matrix size Rank r relative error (r = 10)
X q = 0 q = 1 q = 2

51× 51 1.6056 1.0022 1.0000
81× 81 1.6977 1.0028 1.0002
115× 115 1.4600 1.0150 1.0006
141× 141 1.9577 1.0185 1.0006
171× 171 1.5904 1.0038 1.0001
201× 201 1.4598 1.0063 1.0003

iRecall that the minimum rank r error is σr+1 and is achieved by the exact partial SVD with

r terms.
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Figure 2. Experiments for Algorithm 3 with q = 0, 1, 2 and
increasing r, r = 1 : 4 : 49, and X of size 141 × 141. Each experi-
ment is repeated 50 times for each r and q. The box plots for the
computational times are reported in seconds.

Figure 2 summarizes the influence of r, increasing from 1 to 49 in increments
of 4, on the computational cost of Algorithm 3 with increasing q for an example
matrix X of size of 141 × 141. The computational cost increases approximately
linearly with r for each choice of q with doubling of costs increasing from q = 0 to
q = 1. Because matrix T is assumed to contain significant low-rank features of the
regional anomalies, it is appropriate to assume that r is small.

Table 3 provides a summary of experiments that contrast the computational costs
of Algorithm 3, both with and without use of fast matrix-matrix multiplication,
FBHMRSVD, and RSVD, and for direct calculation using the partial SVD. FBHMVM can
also be realized using the 1DFFT [15], and these experiments are also reported. They
demonstrate that using the 1DFFT generally increases the computational costs. Here
in Algorithm 3 we use r = 10 and q = 1. Each experiment is performed 10 times
and the mean result is reported in each case. It is immediate that FBHMRSVD is most
efficient for all sizes of X, and as the size increases the comparative reduction in
cost is significant, already reaching almost a factor 100 for X of size 401× 401.

A monotonic increase in computational cost with increased size ofX is not always
observed, as in the results forX of size 115×115 given in Table 3. The code is imple-
mented in Matlab and uses the builtin Matlab functions for the FFT and inverse
FFT. But Matlab has a mechanism to chose an optimal FFT algorithm dependent
on the size of the transform that is required. Then a non-monotonic increase in
computational cost can occur. We demonstrate this feature of the Matlab FFT

implementation in Appendix B.
To investigate the performance for a different release of Matlab and compute

environment, we also ran a test on a laptop with Intel(R) Core (TM) i7-6500U CPU
running at 2.50Hz to 2.60Hz with 8.00GB memory, and running Matlab 2016a.

Inverse Problems and Imaging Volume 15, No. 1 (2021), 159–183
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Table 3. Comparisons of the mean computational times over 10
runs, with rank r = 10 and q = 1, for Algorithm 3, both with
and without use of fast matrix-matrix multiplication, FBHMRSVD

and RSVD, respectively, as compared to direct calculation using the
partial SVD. Algorithm 3 is evaluated using both the 1DFFT and
2DFFT for fast calculation. / denotes that an “out of memory”
error is reported.

Matrix sizes Time (seconds)
X T FBHMRSVD(2DFFT) FBHMRSVD(1DFFT) RSVD SVD

81 × 81 1681 × 1681 0.023 0.038 0.13 0.24
115 × 115 3364 × 3364 0.064 0.079 0.41 0.92
141 × 141 5041 × 5041 0.058 0.129 0.78 1.95
171 × 171 7396 × 7396 0.059 0.14 1.45 3.93
201 × 201 10201 × 10201 0.13 0.31 2.80 7.61
311 × 311 24336 × 24336 0.47 0.64 14.09 41.18
401 × 401 40401 × 40401 1.46 1.15 111.14 206.79
601 × 601 90601 × 90601 1.85 2.17 / /

1001 × 1001 251001 × 251001 2.44 3.58 / /
2001 × 2001 1002001 × 1002001 13.93 26.13 / /

The SVD and RSVD calculations without the use of the FFT are out of memory at
206×206 and 241×241. Thus, an advantage of our method is that it can be widely
implemented on general computers.

3. Fast non-convex low-rank matrix decomposition potential field sepa-

ration: FNCLRMD PFS.

3.1. Methodology. We suppose that the total field data matrix of size P ×Q is

X = XD +XS ,

where the gridded data matrices of the regional and residual anomalies are denoted
by XD and XS , respectively. Practically, XD and XS are unknown and the objec-
tive of potential field data separation is their estimation given X. This means that
the block Hankel matrix T = H(X) represents XD and XS , separately,

T = TD +TS = H(XD) +H(XS).

Now, it has been shown in [32] that the elements of matrix X are given by,

xmn =

J
∑

j=1

rje
iφjeiujm+ivjn,

where (uj , vj), rj , and φj denote the 2D wavenumber, amplitude, and phase of the
jth 2D component, respectively. It is also proved in [32] that

rank(T) = J,

and
σj ≈

√

KL(p−K + 1)(q − L+ 1)rj , j = 1, 2, · · · , J,

when r1 > r2 > · · · > rJ and the nonzero singular values of T are σ1 > σ2 · · · >
σJ > 0. Moreover, using JD and JS to represent the number of nonzero wavenumber
components of the regional field data and residual field data, respectively, it is known
that

JD � JS .

Hence,
rank(TD) � rank(TS),

Inverse Problems and Imaging Volume 15, No. 1 (2021), 159–183
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and TD has a much lower rank than TS . On the other hand, TS is sparse because
XS is known to be sparse. Hence, the separation of the two signals can be achieved
by solving the optimization problem

(4) min {rank(TD), ‖TS‖0} subject toT = TD +TS .

The algorithm LRMD PFS introduced in [32] uses a convex method to solve the opti-
mization problem in (4) by transforming to the optimization problem,

(5) min ‖(TD)‖∗ + α‖TS‖1, subject toT = TD +TS ,

where ‖ · ‖∗ denotes the nuclear norm which is the sum of the singular values, and
α > 0 denotes a weighting parameter. Because T is generally large, the solution of
(5) is computationally demanding. The Altproj Algorithm [18] to solve (4) is non-
convex and proceeds by alternately updating TS by projecting T−TD onto the set
of sparse matrices, and TD by projecting T−TS onto the set of low-rank matrices.
At each step the partial SVD of T is required. Thus, it is ideal to implement the
Altproj Algorithm using the FBHMRSVD Algorithm 3 for all estimates of the partial
SVD. The solution of (4) with the application of the Altproj Algorithm combined
with Algorithm 3 is detailed in Algorithm 4, and is denoted by

[X∗

D,X∗

S ] = FNCLRMD PFS(X,K, K̂, r∗, β,M, ε).

Here r∗, β, M , and ε are desired rank, thresholding parameter, an iteration param-
eter, and a convergence tolerance respectively.

3.2. Experiments for synthetic geologic models. Algorithm 4 is applied for
the separation of synthetic geologic models for which the total field, regional anom-
aly, and residual anomaly are shown in Figures 3(a), 3(b), 5(a), and 5(b), respec-
tively. The parameters of these models, for which the matrices are of sizes 201×201,
are detailed in Table 4. The impact of the choice of the parameters on the compu-
tational cost and the quality of the solutions is investigated.

Table 4. The parameters that define the geologic models in Fig-
ures 3(a) and 6(a).

Geologic model Shape Central position Model parameters Density Magnetization
(length, width, depth extent)/radius (g/cm3) (A/m)

model-1 Block (700, 400, 600) (300, 400, 200) 0.5 8000
model-2 sphere (250, 600, 700) 200 0.4 7000
model-3 Block (500, 500, 40) (50, 20, 40) 0.5 5000
model-4 Block (500, 475, 40) (10, 30, 40) 0.5 5000
model-5 sphere (300, 200, 40) 20 5000
model-6 sphere (600, 800, 40) 20 5000
model-7 sphere (200, 200, 40) 20 0.7
model-8 Block (800, 800, 40) (80, 80, 40) 0.5

3.2.1. Parameter settings. The quality of the solution of the separated regional and
residual anomalies depends on the parameters r∗ and β. A default interval for the

adjustment of β, 0 < β < 1/

√

max(KL, K̂L̂) was recommended in [32]. Experiments

demonstrated that the results are consistent for a large subinterval. Figure 4(a)

shows the RMSE as defined by ‖X∗− X̂D‖F /PQ where X∗ is the true regional data.
when applying Algorithm 4 with r∗ = 6 and 10 and different choices for β. The tests
are repeated over 50 runs in each case. While the RMSEs are relatively insensitive
to β ∈ [0.0003, 0.007], it is evident from Figure 4(b), that the computational cost
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depends dramatically on the choice of r∗. This means the computational time is
much more affected by r∗ than β, and Algorithm 4 is relatively robust to the choice
of β.

Using β ∈ [0.0003, 0.007] as indicated from the previous experiment, the total
field is separated for r∗ increasing from 1 to 20. The RMSEs of the results are shown
in Figure 4(c) and it is immediate that the RMSE decreases rapidly for r∗ = 1 : 4, but
is relatively stable and independent of r∗ for r∗ > 4. But, as seen in Figure 4(d), the
computational cost increases with r∗. Thus, there is a trade-off in terms of accuracy
and computational cost in choosing r∗. Practically, the regional anomaly should be
low rank and it is sufficient to take r∗ small, and generally not significantly larger
than 10.

The performance of Algorithm 4 depends on the number of inner iterations M
and convergence tolerance ε. For efficiency M should be small, but for accuracy,
and thus with increased cost, ε should also be small. Here we have used M = 10
and ε = 0.0001 throughout. The results demonstrate that FNCLRMD PFS is much
more efficient than LRMD PFS.

4. Synthetic field data experiments.

4.1. Experiment 1: Magnetic data. The accuracy and the computational cost
of Algorithm 4, dependent on β, for the gridded data matrices in Figure 3(b), for
matrices of different sizes, is contrasted with the results obtained using LRMD PFS

dependent on α. The experiment is repeated for different choices of β and α in the
recommended intervals, and the result with the smallest RMSE is selected as the final
result and reported in Table 5. Here the results are over 10 runs for each parameter
choice. The results are illustrated in Figures 5 for the problem of size 201× 201 by
each algorithm, respectively.

The RMSEs obtained using Algorithm 4 are between 3.52 and 4.19 nT, while the
RMSEs for the same experiments using LRMD PFS are between 13.80 and 16.39 nT,
hence demonstrating the higher accuracy of the new algorithm. It is more sig-
nificant, however, that Algorithm 4 performs better than LRMD PFS with respect to
reducing computational time and memory requirements. In the given computational
environment, it is not possible to obtain the data matrices of sizes much greater
than 201 × 201 using LRMD PFS. In contrast, it is possible to solve the problem for
matrices of sizes 2001 × 2001 using Algorithm 4. For the smaller problem of size
201 × 201, Figures 5(c) and 5(d) show the separated regional and residual anom-
alies using Algorithm 4, while Figures 5(e) and 5(f) show the separated anomalies
obtained using LRMD PFS. It can be seen from Figures 5(c) to 5(f), that Algorithm 4
performs well around the boundaries, but that the two methods are comparable in
the central areas.

4.2. Experiment 2: Gravity data. For this experiment, the synthetic geologic
models, the total field, the regional anomaly and the residual gravity anomaly are
shown in Figures 6(a), 6(b), 7(a), and 7(b), respectively. The parameters that
define the models, all for data matrices of size 201 × 201, are detailed in Table 4,
and the results are illustrated in Figure 7. In contrast to experiment 1, the residual
anomaly is generated for geologic models with different scales. In the application
of Algorithm 4 for the separation of the data we set r∗ = 6 and β = 0.0005. This
yields a RMSE of 0.0028 mGal. In contrast the smallest RMSE using LRMD PFS is 0.017
mGal and is obtained with α = 0.0007. Not only is Algorithm 4 more accurate,
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(a)

(b)

(c)

(d)

Figure 4. These results show tests of the parameters for Algo-
rithm 4. Figures 4(a) and 4(b) are the RMSE and the computational
times for the separations of the data in Figure 3 with different β;
Figures 4(c) and 4(d) are the RMSE and the computational times of
the separations of the data in Figure 3 with different r∗. These are
results over 50 runs in each case.

Inverse Problems and Imaging Volume 15, No. 1 (2021), 159–183









176 Dan Zhu, Rosemary A. Renaut, Hongwei Li and Tianyou Liu

Fenghuangshan copper deposit, which is a famous area in the Tongling region, is
situated in the east central of the Middle-lower Yangtze metallogenic belt. The
mineral deposits are generally of hydrothermal metasomatic type. Thus, the ore
bodies occur in the contact zones between igneous rocks and sedimentary rocks.
Therefore, in order to predict the location of concealed ore bodies, the separation
of anomalies produced by igneous rocks is required.

The study area has three types of rocks. These include sedimentary rocks, ig-
neous rocks, and skarn (or ore body). The physical properties of the sedimentary
rocks are medium densities and non-magnetizations, while the igneous rocks are
low density (with residual density −0.1 g/cm3) and medium magnetization (with
magnetic susceptibility 0 ∼ 3400×10−6×4π SI). In contrast, the skarn and ore bod-
ies are of high density (with residual density 0.7 g/cm3) and strong magnetization
(with magnetic susceptibility larger than 10000×10−6×4π SI). The difference in the
density and magnetic properties of these different rocks makes it effective to study
the igneous rocks and ore bodies through gravity and magnetic exploration. Our
objective is to separate the combination of regional anomalies of low-gravity and
high-magnetism that are produced by igneous rocks, and the combination of local
anomalies of high-gravity and high-magnetism produced by skarn and ore bodies.
Thus providing a basis for inversion and interpretation.

The algorithm is applied for the separation of the anomalies in Figure 8. Fig-
ure 8(a) is a Bouguer gravity anomaly map. The Bouguer gravity anomalies in
the study area are high in the north (about 12mGal) and low in the south (about
3mGal). The data matrix has size 247× 257. In separating the gravity field we use
r∗ = 10 and β = 0.01. The separated regional and residual gravity anomalies are
shown in Figures 9(a) and 9(b), respectively.

The reduce to the pole (RTP) magnetic anomaly is shown in Figure 8(b). There is
a local high magnetic anomaly centered around Xinwuling. The size of the magnetic
data matrix is 197× 199. In separating the RTP magnetic field we use r∗ = 10 and
β = 0.005. The separated regional and residual magnetic anomalies are shown in
Figures 9(c) and 9(d), respectively.

As we can see in Figure 9, the separated regional gravity anomaly reflects the
structures of deep underground sources, and it also reflects the distribution of the
igneous rocks in the deep for the corresponding local low gravity anomaly and known
Fenghuangshan rocks. Due to the good correspondence of the high magnetic anom-
aly with Fenghuangshan rocks, the separated regional magnetic anomaly mainly
reflects the distribution of the igneous rocks in the deep. The gravity anomaly low
and magnetic anomaly highs extend to the north-east of the Fenghuangshan rocks.
Thus, the Fenghuangshan rocks in the deep are deduced to extend to the north-east.
The areas which correspond to local high gravity and magnetic anomalies in Fig-
ures 9(b) and 9(d) are inferred to be skarns or shallow ore bodies which is consistent
with known ore and skarn located in these areas. Therefore, we infer the unknown
areas which may exhibit mineralizations based on the relations of the gravity and
magnetic anomalies in Figures 9(b) and 9(d), as shown in Figure 10.

The computations for the separation of the practical data were also performed
on the laptop with Intel(R) Core (TM) i7-6500U CPU running at 2.50Hz to 2.60Hz
with 8.00GB memory, and running Matlab 2016b.

6. Conclusions and future work. A fast non-convex low-rank matrix decompo-
sition algorithm, FNCLRMD PFS, for the separation of potential field data has been
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(a) (b)

(c) (d)

Figure 9. Figures 9(a) and 9(b) are the separated regional and
residual gravity anomalies of the study area, respectively; Fig-
ures 9(c) and 9(d) are the separated regional and residual magnetic
anomalies of the study area, respectively.

influences the computational time but not the accuracy. The experimental results
demonstrate that the presented algorithm is robust and, thus, the choice of pa-
rameters, provided the interval for β and rank r∗ are chosen as recommended, is
straightforward.

Synthetic data sets were set up for gravity and magnetic data and used to con-
trast the accuracy and computational cost of FNCLRMD PFS with LRMD PFS. These
results demonstrated that FNCLRMD PFS has higher accuracy and is more compu-
tationally efficient than LRMD PFS. Moreover, it is feasible to use FNCLRMD PFS for
matrices of much larger size than is possible with LRMD PFS which exhibits either
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(a)

Figure 10. Predictions of the distributions of areas that may have
sharns or ore bodies based on the separated high-gravity and high-
magnetic fields.

with an extreme requirement on computational time or the report of “out of mem-
ory” for matrices of large size. Specifically, FNCLRMD PFS can be used to compute
large size potential field data with high accuracy at acceptable computational cost.
Finally, FNCLRMD PFS was also used for the separation of real data in the Tongling
area, Anhui province, China. The separated low-gravity and high-magnetic regional
anomalies have good correspondence to the igneous rocks, and the separated high-
gravity and high-magnetic residual anomalies exhibit good correspondence to the
known ore spots. Consequently, unknown areas of mineralizations can be inferred
from the separated anomalies.

We note that an acceleration of the Altproj algorithm for signal separation,
named AAP-Hankel for accelerated alternating projections, is presented in the preprint
[4]. Theoretical convergence results are presented for the separation of 1D signals
and it is stated that the theoretical results extend for problems in signals in higher
dimensions. The computational costs and storage requirements are on the same
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order as FNCLRMD PFS, with the distinction being the unknown constants in the
order terms. Computational experiments demonstrate that AAP-Hankel is faster
than algorithm SAP which is an extension of Altproj for missing data, [31]. In
the future it will be interesting to contrast the performance of FNCLRMD PFS and
AAP-Hankel for the separation of practical potential field data sets.
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Appendix A. Notation. Acronyms and notation used throughout are provided
in Tables 6 and 7.

Table 6. Acronyms used throughout

Acronym Description
FBHMRSVD fast block Hankel matrix randomized SVD algorithm
FBHMMM fast block Hankel matrix-matrix multiplication algorithm
FBHMVM fast block Hankel matrix-vector multiplication Algorithm
FNCLRMD PFS fast non-convex low-rank matrix decomposition algorithm for potential field separation
EALM exact augmented Lagrange multiplier method
IALM inexact augmented Lagrange multiplier method
LRMD PFS low-rank matrix decomposition for potential field separation
RPCA robust principal component analysis
RSVD randomized singular value decomposition
SVD singular value decomposition
RMSE root mean square error
RTP reduce to the pole

Appendix B. The impact of the choice of the FFT used by Matlab on

the computational cost. Our initial investigation of the computational cost of
Algorithm 1 demonstrated a general tendency for the computational cost to in-
crease monotonically with increasing size of the matrices. There were, however,
outlier sizes which were significantly higher in cost and departed from the general
monotonic increase in time. This is illustrated in Figure 11 for which we conducted
an experiment to test the cost of step 1 in Algorithm 1 using the vec(X) with its
dimensions between 215 and 80000. For each matrix dimension, the code is run
80 times, and the average time is calculated. But, because the Matlab function
determines an optimal transform to use for a given matrix size, at greater cost in
the first run, this first run is excluded from the estimate of the average cost for each
matrix size. A spike in cost is seen between 60000 and 70000, actually at 63001,
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Table 7. Notation used throughout

Notation Description

J exchange matrix
X 2D gridded potential field data matrix
Tj Hankel matrix constructed from the jth column of X
T trajectory matrix of X
X1, · · · ,XQ first to Qth columns of X, respectively
U,V,Σ SVD of T, T = UΣV T

Ur,Vr,Σr rank-r partial SVD of T using FBHMRSVD

XD, XS data matrices of regional and residual anomalies, respectively
TD, TS trajectory matrices of XD and XS , respectively
X

∗

D, X∗

S approximations of XD and XS using FNCLRMD PFS, respectively
u1,u2, · · · U = [u1,u2, · · · ], u1,u2, · · · are the left singular vectors of T
v1,v2, · · · V = [v1,v2, · · · ], v1,v2, · · · are the right singular vectors of T
xmn element at mth row and nth column of X
P , Q X is of size P ×Q

K, L Tj is of size K × L

K̂, L̂ T is a block Hankel matrix with K̂ × L̂ blocks
PC , QC C is of size PC ×QC

σ1, σ2, · · · Σ = diag(σ1, σ2, · · · ), where σ1, σ2, · · · are the singular values of T
r desired rank parameter in FBHMRSVD

p oversampling parameter in FBHMRSVD

q power iteration parameter in FBHMRSVD

r∗ desired rank parameter in FNCLRMD PFS

β thresholding parameter in FNCLRMD PFS

α weighting parameter in LRMD PFS

‖ · ‖p, ‖ · ‖∗ `p and nuclear norms, respectively

but overall the tendency is a gradual increase in computational cost and outliers
are not frequent. We note that 63001 = 251 × 251 is not prime but 251 is prime,
and the determination of an optimal transform depends on the factorization of the
transform size. We conclude that there may be cases where the computational cost
of Algorithm 1 spikes because of this situation. On the other hand, for the problem
of this size the calculation of the RSVD with, and without, the use of Algorithm 2
for the matrix multiplications has a computational cost in each case of 2.614s and
30.885s, respectively. Hence, even when the FFT transform is relatively slow, the use
of a fast block Hankel matrix multiplication is still faster than the use of a direct
matrix-multiplication without the use of the FFT.
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