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Abstract— An efficient algorithm for the L;-norm joint inver-
sion of gravity and magnetic data using the cross-gradient
constraint is presented. The presented framework incorporates
stabilizers that use Ly-norms (0 < p < 2) of the model
parameters, and/or the gradient of the model parameters. The
formulation is developed from standard approaches for indepen-
dent inversion of single data sets, and, thus, also facilitates the
inclusion of necessary model and data weighting matrices, for
example, depth weighting and hard constraint matrices. Using
the block Toeplitz Toeplitz block structure of the underlying
sensitivity matrices for gravity and magnetic models, when data
are obtained on a uniform grid, the blocks for each layer of the
depth are embedded in block circulant circulant block matri-
ces. Then, all operations with these matrices are implemented
efficiently using 2-D fast Fourier transforms, with a significant
reduction in storage requirements. The nonlinear global objective
function is minimized iteratively by imposing stationarity on
the linear equation that results from applying linearization of
the objective function about a starting model. To numerically
solve the resulting linear system, at each iteration, the conjugate
gradient algorithm is used. This is improved for large scale
problems by the introduction of an algorithm in which updates
for the magnetic and gravity parameter models are alternated
at each iteration, further reducing total computational cost and
storage requirements. Numerical results using a complicated 3-D
synthetic model and real data sets obtained over the Galinge
iron-ore deposit in the Qinghai province, north-west (NW) of
China, demonstrate the efficiency of the presented algorithm.

Index Terms— Block Toeplitz Toeplitz block (BTTB) structure,
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I. INTRODUCTION

OTENTIAL field surveys, gravity and magnetic, have

been reported as effective strategies for delineating sub-
surface geological targets. They are applied in a wide range of
studies including, for example, oil and gas exploration, mining
applications, and mapping the basement topography [1], [2].
These surveys are relatively cheap, nondestructive passive
remote sensing methods and can provide valuable informa-
tion on the subsurface targets. Yet, they only require the
measurement of variations in the Earth’s natural fields that
are caused by changes in the physical properties of the
subsurface rocks. In the interpretation process, the acquired
survey data can be used in an automatic inversion algorithm
for the estimation of specific parameters of a subsurface target,
for example, its geometry or physical properties. It is well
known, however, that the potential field inversion problem is
ill-posed. Thus, a stable and physically relevant solution is
obtained by the application of suitable regularization strate-
gies. An independent solution of the inverse problem for
either gravity, or magnetic, data for the survey area will
only provide information about the density or susceptibility,
respectively, of the subsurface. On the other hand, a comple-
mentary solution of the inverse problem for both data sets can
be used to reveal both density and magnetization variations
present in a subsurface target. Thus, it is more appropriate
to perform a simultaneous joint inversion that uses both
data sets. Combined with regularization, this is an effective
strategy for yielding a reliable subsurface geological model
that simplifies the interpretation of the subsurface target(s).
Thus, the development of efficient and stable joint inversion
algorithms has received increased attention in the geophysical
community.

Many different techniques have been developed for the
simultaneous joint inversion of geophysical data sets. Gener-
ally, these techniques can be categorized into two main groups:
1) petrophysical and 2) structural approaches. Petrophysical
techniques rely on a direct relationship between two or more
physical properties of the subsurface target, for example,
the assumption that the resistivity and the velocity are both
functions of porosity and water saturation [3]. Although this
strategy is attractive, it does depend on finding a reliable
empirical relationship between physical properties. This is a
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difficult task for general geological media because there is
usually no simple or single relationship that approximates the
whole range of effects [3]. Further discussion of the details of
the application of petrophysical techniques for joint inversion
is provided in the literature, including, for example, in [4]-[6].
Structural approaches use, instead, the model topology in
order to enhance the structural similarity of reconstructed
models [3], [7]-[10]. The main idea is that changes, at any
point in the different models, should occur in the same or
opposite spatial directions, or alternatively, changes will only
occur in one of the models. Mathematically, this may be
achieved by forcing the cross product of the gradient of the
different model parameters to be zero everywhere [3], [8], [9].
Indeed, many successful results for simultaneous joint inver-
sion with the inclusion of the cross-gradient constraint have
been reported, [3], [8]-[16]. On the other hand, Zhdanov
et al. [17] observed that the Gramian constraints can be used to
enhance the correlation between different physical properties
and/or their attributes. In this approach, the correlation is
enhanced by minimizing the determinant of the Gram matrices
of multimodel model parameters during the inversion process.
The methodology has been used extensively in the joint
inversion of different data sets, see, for example, [18]-[20].
In this study, we assume that the structure of the subsurface
target(s) yields density and susceptibility model parameters
over an approximately similar structure. Thus, our focus is
on the use of the cross-gradient constraint within a general
L, formulation for efficient simultaneous joint inversion of
gravity and magnetic data sets.

Different types of stabilizers have been adopted for the
inversion of potential field data, dependent on the desired
model features that are to be recovered. For example, it may
be appropriate to reconstruct a model which represents only
the large-scale features of the subsurface under the survey
area without any arbitrary discontinuities. This is achieved
with the maximum smoothness stabilizer which uses a
L,-norm! of the gradient of the model parameters, [21]-[24].
When it is anticipated that the subsurface structure exhibits
discontinuities, stabilization can be achieved by imposing
the Lj-norm, or Lp-norm, on the gradient of the model
parameters [25]-[29]. If the assumed subsurface targets are
localized and compact, it is more appropriate to apply the
L; or Ly-norms directly on the model parameters [18], [26],
[30]-[37]. In the potential field literature, stabilization by the
application of the Lo-norm on the model parameters is usually
referred to as the compactness constraint, whereas application
of the Lj-norm, or Ly-norm, on the gradient is referred to
as total variation (TV) and minimum gradient support (MGS),
stabilization, respectively. A unifying approach for application
of these constraints for single potential field inversion is
presented in [38]. This approach also includes the modification
of the stabilizers to account for additional model and data
weighting matrices, such as required for imposition of depth

'The Lp-norm of a vector x € R" is defined as [|x]|p, = (E:’ |x;|P)1/P,
in which 1 < p < oco. The Lo-norm of vector X, ||x||p, counts the number of
nonzero entries in X.
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weighting and hard constraint conditions, [22], [39]. Here, this
unifying framework is developed for simultaneous joint inver-
sion of gravity and magnetic data sets using the cross-gradient
constraint.

The well-known and widely used formula of Fregoso and
Gallardo [10] for the joint inversion of gravity and magnetic
data with the cross-gradient constraint is based on the use of
the generalized nonlinear least-squares framework developed
by Tarantola and Valette [40]. Here, we adopt a deterministic
viewpoint for parameter estimation and include deterministic
constraints. The nonlinear objective function, that describes
the inclusion of all stabilizing terms and the fit to data mea-
surements, is minimized iteratively by imposing stationarity
on the linear equation that results from applying linearization
of the objective function about a starting model. To perform
the inversion, the iteratively reweighted least-squares (IRLS)
strategy is then used [41]. At each iteration, the conjugate
gradient (CG) algorithm is applied to numerically solve the
resulting linear system, and requires the efficient implementa-
tion of forward and transpose operations with the underlying
sensitivity matrices.

Now, improved efficiency for the joint inversion of grav-
ity and magnetic data is achieved in two ways. First,
we take advantage of the underlying block Toeplitz Toeplitz
block (BTTB) structure of the sensitivity matrices when the
measurement data are obtained on a uniform grid, [42]-[44].
Then, all operations with the sensitivity matrices can be imple-
mented using the 2-D fast Fourier transform (2-DFFT) and
significant reductions in memory requirements are achieved.
MATLAB software that both determines the relevant compo-
nents of the matrices and implements the forward operations
with the matrices using the 2-DFFT is available [45]. More-
over, the development and use of the 2-DFFT for the inversion
of both gravity and magnetic data sets individually is carefully
described in [46]. The application of these techniques within
the joint inversion algorithm yields dramatic improvements in
reduced computational costs and storage. Second, the inversion
algorithm is improved, independent of the use of the structure
of the matrices. A more efficient inversion algorithm in which
the updates for the gravity and magnetic data are alternated,
while maintaining coupling of the two data sets through the
cross-gradient constraint, is introduced. This facilitates the
inversion of large data sets in reasonable time and with reduced
storage requirements.

This article is organized as follows. In Section II, the theo-
retical development of the algorithm is presented, along with
the unifying framework that makes it possible to combine
different types of stabilizers within the context of joint inver-
sion. The novel alternating algorithm for the solution of the
linear system of equations at each step of the CG algorithm
is presented, as is the 2-DFFT approach. In Section III,
the developed algorithm is validated on a large-scale synthetic
example. Practical results are also presented for the inversion
of gravity and magnetic data sets obtained over the Galinge
iron-ore deposit in the Qinghai province, north-west (NW) of
China. Section V is dedicated to a discussion of conclusions
and future topics for research.
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II. JOINT INVERSION METHODOLOGY

To formulate the problem, we use the well-known strat-
egy for linear inversion of potential field data in which the
subsurface is divided into a set of rectangular prisms with
fixed size but unknown physical properties [22], [39]. Here,
it is assumed that there is no remanent magnetization, and
that self-demagnetization effects are also negligible. For ease
of exposition, we first introduce some basic notation for the
stacking of vectors (matrices) and generation of block-diagonal
matrices. We use block_stack(-, -) to indicate the stacking of
vectors (or matrices) with the same number of columns in one
vector (or matrix). Furthermore, block_diag(A, B) indicates a
block diagonal matrix of size (m +mp) X (ns+np) when A
and B are of sizes (m4 xn4) and (mp xnp), respectively. Both
definitions extend immediately for more than two entities.

We suppose that m measurements are taken for two sets
of potential field data.” These are the vertical components of
the gravity and total magnetic fields, and they are stacked
in vectors d‘l’bs, and d‘z’bs, each of length m, respectively. The
unknown physical parameters, the density, and the susceptibil-
ity, of n prisms, are also stacked in vectors m; and my, respec-
tively. The data vectors and model parameters are then stacked
consistently in vectors devs = block_stack(d‘fbs, dgbs) e R¥™,
and m = block_stack(m;, m,) € R*". The measurements are
connected to the model parameters via Gm = d°® where
G = block_diag(G,, G,) € R*"*?", and G, and G, are the
linear forward modeling operators for gravity and magnetic
kernels, respectively. There are different alternative formulas
which can be used to compute the entries of matrices G
and G,. Here, we use the formulas developed by Hadz [47]
for computing the vertical gravitational component, and Rao
and Babu’s [48], for the total magnetic field anomaly, of a
right rectangular prism, respectively. Moreover, we assume
that the measurements are taken at a uniform grid, on or
near the surface, so that the resulting sensitivity matrices
have BTTB structure for each depth layer of the volume,
as described in [46]. Then all operations with these matrices
use the 2-DFFT and require only the storage of the necessary
transform data for each depth layer of the volume domain.
This improves efficiency in reducing computational cost and
memory required to implement operations with the relevant
sensitivity matrices. Details, not replicated here, on how to use
the 2-DFFT for operations using G; and G,, and hence the
block diagonal matrix G, are explained carefully in [46], and
a software MATLAB package for generating the transform
components that are used in place of G; and G, directly is
available at [45].

The goal of the inversion is to find geologically plausible
models m; and m, that predict d$® and dS, respectively,
via a simultaneous joint algorithm that also facilitates the
incorporation of relevant weighting matrices in the algorithm.
We formulate the joint inversion for the determination of the
model parameters m; and m; as the minimization of the global
objective function, in which parameters o and A are relative

2We could assume different numbers of measurements for each field, m; and
my but for simplicity of the discussion we immediately assume m| = my = m.

weighting parameters for the respective terms

P((l,/l)(m) — ”Wd(dobs _ Gm)”%
+a?[WD(m — m*)|3 + 2% tm)[3. (1)

The data misfit term, ||Wq(d®* — Gm)||§, measures how well
the calculated data reproduce the observed data. Diagonal
matrix Wyq = block_diag(Wy,, Wa,) € R*"*®", where Wy,
and Wy, are diagonal weighting matrices for the gravity and
magnetic data, respectively. Here, we suppose that these diag-
onal elements are the inverses of the standard deviations of the
independent, but potentially colored, noise in the data. The sta-
bilizer, || WD(m—maPr)H%, controls the growth of the solution
with respect to the weighted norm and is especially significant
as it determines the structural qualities of the desired solution.
Here, this stabilizer is presented through a general L,-norm
formulation, but we will discuss how different choices of W
and D lead to different Ly-norm stabilizations. Furthermore,
in (1) the vector m*" = block_stack(m{™, m5") € R* is
an initial starting model that may be known from previous
investigations. It is also possible to set m* = 0. The link
between the gravity and magnetic models in this inversion
algorithm is the cross-gradient function t(m) € R*'. For
this study, we assume that the model structures for m; and
m, are approximately the same, and thus that it is important
to measure the structural similarity using the cross-gradient
constraint which will be approximately zero for models with
similar structures. We, therefore, use

t(m):le ()C,y,Z)Xsz (x,y,z) (2)

where V indicates the gradient operator [3] and structural
similarity is achieved when t(m) = 0, see Appendix for
details. As noted already in Section I, this corresponds to
the case in which the gradient vectors are in the same or
opposite direction, or, alternatively, one of them is zero [3],
[8]-[12], [14]. From a geological viewpoint, this means that
if a boundary exists then it must be sensed by both methods
in a common orientation regardless of how the amplitude of
the physical property changes [3]. This means that information
that is contained in one model is relevant to the other model
and vice versa. Therefore, structures determined by one model
can assist with the identification of structures in the other
model, and, as a consequence, the structures of the two
models can correct each other throughout the joint inversion
process [3], [12]. On the other hand, while it is assumed that
both models have similar structures at similar locations, it is
also possible for one model to have a structure in a location
where the other model has none [12]. Further details about
characteristic properties of the cross-gradient constraint are
provided in [3], [9], and [10].

The stabilizing term has a very significant impact on the
solution that is obtained by minimizing (1). Depending on the
type of the desired model to be recovered, there are many
choices that can be considered for this stabilization, and that
have been extensively adopted by the geophysical community.
A stabilizer that is based on using the squared L,-norm of the
gradients of the model parameters produces smooth models
with blurred boundaries. Then, any temptation to over-interpret
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the data is reduced and features of the model that are not
predicted by the data are avoided [21], [22]. Alternatively,
if it is anticipated that a compact model with sharp interfaces
would be an appropriate model, then a sparsity stabilizer based
on either a Lj-norm or a Ly-norm, of the model parameters
should be used. The L;-norm stabilizer induces sparsity most
efficiently among convex stabilizers, p > 1, while the Ly-norm
does not meet the mathematical requirement to be regarded
as a norm. A detailed discussion of the different norms and
sparsity regularization is provided in [49] and [50]. Here,
we show how it is possible to use the given weighted L,-norm
regularizer in (1) to approximate different Ly-norm stabilizers,
0 < p <2, in a joint inversion algorithm.

Suppose D is the identity matrix, D = I,, and W is
selected as W = block_diag(W,;, W>) € R2%21 in which

Wi = (Waeptn)i (Wy)i (W) € R™", i =1,2. (3)

Here, the diagonal weighting matrix (Wy,,); € R"*" is defined,
assuming entries are calculated elementwise, by

(Wr,)i = diag(1/((m; —m™)*> +)FPH) i =1,2. 4)

Taking p = 0 or p = 1, the stabilizing term in (1) is
transformed to a Lo-norm or L;-norm of the model parameters,
respectively. Then, minimizing the objective function (1) leads
to solutions which are compact. The choice p = 2 provides
the L,-norm solution of the model parameters. The parameter
€ is a small positive number, 0 < € <« 1, which is added to
avoid the possibility of division by zero, and has an important
effect on the solution. When ¢ is very small the solutions
are sparse, while for large values the solutions are smooth.
Further discussion on the impact of € is given, for example,
in [30], [25], [32], [33], [51], and [29]. On the other hand,
it is also possible to choose D to provide an approximation to
the gradient of the model parameters. Suppose, for example,
that D; = block_stack (Dx, D,, DZ) e R¥*" where D, D,,
and D, are square and provide discrete approximations for
derivative operators in x-, y-, and z-directions. Then, defining
03, to be the zero matrix of size 3n xn, and setting D, = Dy,
we can use the matrix

_ Dl 03n><n 6nx2n
b= (03n><n D2 €R (5)

so that Dm yields the approximate gradient of m. More
details about the structure of the matrices Dy, D,, and D,
can be found in [52]-[54], and are also used in Appendix .
Then, with this definition for D, and again using element-wise
calculations, (WLp)i in (4) is replaced by

(WL,)i

= diag(l/((Dx (m — m™))’ + (D, (m — m*))’

= 1, 2.
(6)

But now, for the multiplication in the stabilizing term to be
dimensionally consistent, W is replaced by

W = block_diag(Wy, Wi, Wi, Wa, Wa, Wy) € R, (7)

+(D: (m —m™)) + ez)a"’”“) ,

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

In the definition of (W,);, given in (6), picking p = 2
produces a solution with minimum structure yielding a smooth
model with blurred boundaries [21]-[23]. If we anticipate that
there are true discontinuous jumps, then, it is possible to take
p=1orp=0foraTV or MGS stabilization, respectively.
In summary, all aforementioned definitions indicate how,
dependent on the choices of p and D in W, it is possible to use
the objective function (1) with a desired stabilizer. Well-known
stabilizers, including TV, MGS, minimum structure, compact-
ness, and L;-norm can all be incorporated in a joint inversion
methodology. Moreover, this unifying framework allows the
use of additional L,-norms stabilizers, 0 < p < 2, which are
not common in potential field inversion, simply by changing
the choice of p.

In (3), the diagonal depth weighting matrix, (Wgepm)i =
diag(1/(z; + 20)”) is used to counteract the rapid decay of
the kernel with depth [22], [23]. Here, z; is the mean depth
of prism j, zo depends both upon prism size and the height of
the observed data. With the application of appropriate depth
weighting, as determined by parameter f;, all prisms partici-
pate with an approximately equal probability in the inversion
process. The diagonal hard constraint matrix (W,);, is gen-
erally an identity matrix. If geological information, or prior
investigations in the survey area, can provide the values of
the model parameter for some prisms, then, the information
is included in m;™", and the corresponding diagonal entries of
(Wp,); are set to a large value [34], [39], [55]. These known
parameters are kept fixed during the iterative minimization
of P@#)(m). Equivalently, the inversion algorithm searches
only for unknown model parameters. As an important aside,
note that all matrices Dy, D, D;, Wyepm, Wy, and Wi,,
are sparse and can therefore be saved using a MATLAB
sparse format, with very limited demand on the memory.

Now, both Wi, and t(m) depend on the model parame-
ters m. Thus, the objective function P* (m) is nonlinear
with respect to m. We use a simple iterative strategy to
convert P (m) to a linear form, in which to linearize
the cross-gradient constraint, the first-order Taylor expansion
is used [3], [8]-[11]. First, suppose that the superscript ¢
applied to any variable indicates the value of that variable at
iteration £, so that m® is the estimate of the model parameters
at iteration £. Then, we suppose that m) = m®" and rewrite
the objective function as

P4 (m)
= |Wa(@™ — Gm)|3
+a? (WD D@m —mY)|3
+22 [t £ BED@m —mEY) 2 6=2,3,... (8)

Note that W=D indicates W estimated at iteration £ — 1
through the nonlinear definition for Wi, as given in (4)
or (6). Here, t‘=D and BYD = (Vyut D) are the
cross-gradient and the Jacobian matrix of the discrete approx-
imation for the cross-gradient function, respectively, evaluated
at m~1, consistent with the linear Taylor expansion for t
around m‘~1 . The formulae used are given in Appendix .
Taking Vi P (m) = 0 defines the update m) as the
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solution of

~GTWI Wa(d™ — Gm)
+a2DT(W(€—l))T W(f—l)D(m o m(f—l))

+j~2 ((B(f—l))T{t(f—l) + B(f—l)(m _ m(f—l))}) =0.
©)
Equivalently, m© solves

EOm®O — £ (10)

where

E® = (GTWdTWdG +a? DT (W)W D

+j72 (B(f—l))TB(f—l)) (11)
and
f(f) — (GT Wg deObS
+0!2DT(W([71))T W([’*l)Dm(ffl)
_}_/'{Z(B(ffl))T (B(ffl)m(ffl) _ t(f]))) (12)

Numerically the CG algorithm can be used to find m©. Here,
we use the MATLAB function pcg. We should note that at
each iteration of the algorithm lower and upper bounds on
density and susceptibility are imposed. During the inversion
process if an estimated physical property falls outside the
specified bounds, it will be returned back to the nearest bound.
Furthermore, to test the convergence of the solution at each
iteration £, we calculate a y? measure for the respective data
fit term at each iteration

DO = |Wa, (@ — Gm)3, i=1,2. (13

The iteration will terminate at convergence only when
()(,2)([) < m + ~2m, for both i = 1, and i = 2. Otherwise,
the iteration is allowed to proceed to a maximum number of
iterations MAXIT. The steps of the joint inversion algorithm
are summarized in Algorithm 1. Note that all operations using
the block diagonal matrix G are implemented efficiently by
using the 2-DFFT for each column block of the sensitivity
matrices G;, as described in [46].

In the objective function, the parameters o and 21
are the important regularization parameters which give
relative weights to the stabilizer and the cross-gradient
term, respectively. To be more precise, we define o as
block_diag(a;1,, a21,) € R where a; and a, are the
relative weights for the gravity and magnetic terms, respec-
tively. We should note that, although « is a diagonal matrix and
can be used inside the stabilizer, we prefer to put a outside in
order for the formulation to be consistent with the conventional
Tikhonov objective functional. Weighting parameters o, as,
and A have an important effect on the estimated solution. Thus,
they need to be determined carefully. But the application of
an automatic parameter-choice method for determining o, a,
and A is difficult, or potentially impossible, and is outside
the scope of this current study. Therefore, we adopt a simple

but practical strategy for determining suitable values of these
parameters. Previous investigations have demonstrated that it
is efficient if the inversion starts with a large regularization
parameter [34], [56]. We follow that strategy here and start
the inversion with a large a; and a,. In subsequent iterations,
the parameters are reduced slowly dependent on parameters y;
and y,, respectively, using oc{[) = afifl)yl and ag) = aéffl)yz,
where y; and p, are small numbers, 0 K y;,72 < 1.
The process continues until the predicted data of one of the
reconstructed models satisfies the observed data at the noise
level. For that data set, the relevant parameter is then kept
fixed during the following iterations. The parameter A is held
fixed in the implementation, although it is quite feasible that it
is also iteration dependent. The amount of structural similarity
obtained through the joint inversion algorithm can be adjusted
using different choices of 4.

Algorithm 1 Generalized Ly-Norm Joint Inversion of Gravity
and Magnetic Data
Require: d°, m®*, G, Wq, (Wy)1, (Wy)2, Dy, Dy, D., €,
Pmin> Pmaxs Kmin, Kmax, MAXIT, ﬁl» ,827 0651), aéi)’ V1, V2
and A.
1: Calculate (Wgepm)1 and (Wgepm)2 as determined by f; and
[, respectively.
2: Set Wi = (Waepn)1(Wp)1 and Wo = (Waepm)2(Wp)2.
3: If D is the identity matrix, form W = block_diag(W;, W>).
Otherwise set W = block_diag(Wy, Wy, Wy, W, Wa, W).
4: Initialize m® = m*r, (WLP)EI) =1, (WLP)EI) = [, and
{=1.
5: while Not converged, noise level not satisfied, and £ <
MAXIT do
=0+ 1.
7: Compute t“~1 and B~Y, as given in Appendix .
8. Use CG to solve EOm® £, defined by (11)
and (12).
9:  Impose constraints on m®) to force pmin < m'” < prax
and Kmin = mg) = Kmax-
10:  Test convergence criteria, (13), for y7 and y3. Exit loop
if both satisfied.

11: Set aff) = aff_l)yl and aéf) = aéf_l)yz. Update a©).

12:  Determine (W, P)ﬁ"’ and (W, P)g), dependent on D and p,
(4) or (6).

13 Set WO = block_diag(W", W)  when
D is the identity. Otherwise set W© =

block_diag(W,", W, w{”, wi?, wi®, wi?)
14: end while
Ensure: Solution p = mgf), K= mg) T =¢.

A. Alternating Algorithm for Joint Inversion

Algorithm 1 can still be expensive in terms of both storage
and computational overhead, for large-scale problems, even
when the multiplications with matrices G; take advantage of
the 2-DFFT. We now present a modification of Algorithm 1
in which the updates for m; and m, alternate. In this case,
we use an approximate decoupling of the matrix E© for the
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two parameter vectors. First, note that due to the block struc-
ture of G and Wy, WyG = block_diag(Wqg, G, Wa,G») and
G"W{WaG = block_diag(G] W4 Wa, G, G Wq Wa,G»).
Also, WD decouples as a block diagonal matrix
block_diag(W” Dy, W” D,). Based on the form for B given
in (26) of Appendix

BB — (B{B1 B{Bz)

BB, BIB, (14

This does not decouple into block diagonal form. On the
other hand, we can approximate B” B using the block diagonal
block_diag(BlTBl, BZT B,) which implies that the cross-terms
due to BTB, = B! B, are ignored. Then we obtain the inde-
pendent systems of equations to solve for m; and my, which
are coupled through the updates for B and t. In particular,
we obtain

EY = (GiTWdTini G; +o*(W/ D)W D,

_+_/'{2 (Bl(fl))TBl(fl)) (15)

+a2(VVi([71)Di)TVVi(ffl)Dimlfffl)

_i_iZ(Bl(ffl))T (Bl@ﬂ)ml@q) _ t(fl))) (16)
where B and t are updated between the solutions of the
systems

Efm, =9, i=1,2. A7)
The essential steps replacing steps 7-9 in Algorithm 1 are

provided in Algorithm 2.

Algorithm 2 Essential Steps of Alternating Generalized
Lp-Norm Joint Inversion of Gravity and Magnetic Data

Require: Proceed through steps 1-7 of Algorithm 1, replacing
update for B~ by update of Bgf_l).

. Solve E{'m{” = £, defined by (15) and (16).

: Impose constraints ppin < mlf) < Prmax-

. Update t¢‘~1 and BV,

- Solve E"'m{" = £{0 defined by (15) and (16).

: Impose constraints i, < mzf < Kmax-

: Move to step 10 of Algorithm 1.

[ N U R N

We note that the ignored terms in this algorithm for u[))dat-
ing m; are /lzBlTBgmg) on the left and izBlTBzmg_l on
the right. Equivalently A2B’B,(m{ — m{"") is ignored in
the update for m;, and, likewise, ingBl(mgf) — mﬁf_l)) is
ignored in the update for m,. Ignoring these terms amounts
to requiring that [[B7B,(m{” —m{"")|| - 0, (|BIB;(m!" —
m§"‘”)|| — 0) with increasing £, which is not guaranteed,
but is indeed desired for the convergence of the algorithm, for
which not only [[m©® — m“D|| — 0 but also |BIB,| =
IBIBy|| — 0. The alternating Algorithm 2 amounts to
applying a Quasi-Newton method for the minimization of (8).
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Fig. 1.  Synthetic model consisting of six targets with different shapes,
dimensions, and depths. The density contrast and the susceptibility of the
targets are selected as p = 0.6 gr cm3 and k = 0.06 (SI unit), respectively,
embedded in a homogeneous nonsusceptible background.

III. SIMULATIONS

The validity and effectiveness of the presented joint inver-
sion algorithm is evaluated on a complicated model that
consists of six subsurface targets with different shapes, dimen-
sions, and depths. Fig. 1 presents a 3-D iso-surface view of the
model. Furthermore, three plane-sections of the susceptibility
distribution are also shown in the Fig. 2. The density contrast
and the susceptibility of the targets are selected as p =
0.6 gr cm™ and x = 0.06 (SI unit), respectively, embedded
in a homogeneous nonsusceptible background. To generate
the total field anomaly, the intensity of the geomagnetic field,
the inclination, and the declination are selected as 50000 nT,
45° and 45°, respectively. The data on the surface are generated
on a grid with 100 x 50 = 5000 points and grid spacing
100 m. Gaussian noise with zero mean and standard deviation
(r1 (Y| + 7o max(|d§*™))), j = 1...n, is added to
each exact true measurement j, (d$**");. The parameters
pairs (71, 1) are selected as (0.01,0.012) and (0.01,0.01)
for gravity and magnetic data, respectively. These standard
deviations are selected such that the signal to noise ratios
(SNRs), as given by

14712

SNR, =20 10g10 (m

), i=1,2 (18)
are 25.47 and 25.13, respectively. The noise-contaminated
gravity and magnetic data are illustrated in Fig. 3.

To perform the inversion, the subsurface volume is dis-
cretized into 40 000 prisms of sizes 100 m in each dimension.
In all simulations, we use f; = 0.8 and f, = 1.4 in
(Waepin)1 and (Weepin )2, respectively. The maximum number of
iterations of the algorithm is selected as MAXIT = 100. For
all inversions, the bound constraints 0 = ppin < M| < Pyax =
0.6, gr cm™, and 0 = &y < My < Kmax = 0.06, SI unit, are
imposed. The initial re%ularization parameters are selected as
a!V = 20000 and ! = 50000. In Vatankhah er al. [57]
we demonstrated that the gravity and magnetic sensitivity
matrices, G; and G», have different spectral properties and,
therefore, the regularization parameter should be much larger
for the inversion of magnetic data as compared to that used for
the inversion of gravity data. Thus, it is appropriate to control
the speed of convergence for each model with parameters
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Fig. 3.
gravity and magnetic data, respectively, are 25.47 and 25.13.

y1 = 0.9 and y, = 0.95, that are different. We present
the results for the compact inversion using the L;-norm of
the model parameters imposed via D = I, p = 1 and
focusing parameter € = le™ in (4). Further results for the
application of a joint inversion algorithm on different models
and with other stabilizers are presented as supplementary
data in [58]. The alternating joint inversion algorithm is
implemented using MATLAB release 2017b on a desktop
computer with processor: Intel core i7 — 4790 CPU 3.6 GHz,
and with 16.0 GB RAM.

We implement the inversion algorithm using the weight
2 =107 on the cross-gradient constraint. This selection is
based on an analysis of entries of matrix B, which are very
small. If we want to give enough weight to the cross-gradient
term, it is necessary to use a large value for 1. On the other
hand, if 1 is selected too large, the results can be unsatisfac-
tory. To show the effectiveness of applying the hard constraint
matrix, when available information provide the values of some
model parameters, we suppose that the physical properties of
four prisms of the small cube are known. These prisms are
located in the south-west corner of the cube in the second layer
of the model which has a depth from 100 to 200m. Further,
available information also suggests that the prisms above and
below these known prisms, in the first and third layers, do not
have any contrast with the background. The known density
and susceptibility values are included in the initial model,
with other model parameters are set as 0. The corresponding
entries of matrices (W;); and (W,), are set to 100. After
IT = 53 iterations the convergence criteria, yi and yj, are
satisfied and the inversion terminates. In this simulation, the y3
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Three plane-sections of the model shown in Fig. 1. Here, the susceptibility distribution of the model is presented at: (a) depth 100 m; (b) depth
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Noise contaminated anomaly produced by the model shown in Fig. 1. (a) Vertical component of gravity. (b) Total magnetic field. The SNR for

termination is reached at iteration 21. The susceptibility model
is recovered more quickly than the density model, which
requires additional iterations until both termination criteria are
satisfied. The required time for performing the joint inversion
is 2465 s. This compares with running Algorithm 1 without
the alternating component, for which convergence is achieved
in 59 iterations, requiring 4891s.

The 3-D visualizations of the reconstructed density and
susceptibility models are illustrated in Fig. 4. Furthermore,
three plane-sections of the reconstructed models are illustrated
in Figs. 5 and 6, respectively. They are in good agreement with
the original models and have nearly similar structures. The
relative error of the reconstructed density and susceptibility
models is 0.3794 and 0.3994, respectively. It is clear that
sharp and focused images of the subsurface are obtained.
Indeed, the results indicate that the algorithm is practical, can
handle large data sets for the joint inversion in a reasonable
time with a significant reduction in memory. Furthermore,
it is clear that the known model parameters are kept fixed
during the iterations, and, there is no incorrect extension of
the small cube with known values. This demonstrates how
the incorporation of available information for some model
parameters can increase the reliability of the model obtained
using the inverse algorithm. Finally, the gravity and magnetic
data produced by the reconstructed density and susceptibility
models are illustrated in Fig. 7.

In contrast, we also implement the algorithm for the
case in which the cross-gradient constraint is not used
in the inversion process. This is easy to do by select-
ing 4 = 0. All other parameters of the implementation

Authorized licensed use limited to: China University of Geosciences Wuhan Campus. Downloaded on November 26,2020 at 08:14:56 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

~ ~
g o 8000 E o 8000
N— -
< 500 = 500
& )
4000 4000
a 4000 A 4000
3000 2000 3000 2000
2000 . 2000 .
1000 T, Easting (m) 1000 7, Easting (m)
Northing (m) Northing (m)
(@) (b)

Fig. 4. 3-D view of the reconstructed models using the joint inversion algorithm with the Lj-norm of the model parameters as the stabilizer. (a) Density
distribution. (b) Susceptibility distribution.
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Fig. 5. Three plane-sections of the reconstructed density model using the joint inversion algorithm with the L;-norm of the model parameters as the stabilizer.
The plane-sections are presented at: (a) depth 100 m; (b) depth 200 m; and (c) depth 400 m.
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Fig. 6. Three plane-sections of the reconstructed susceptibility model using the joint inversion algorithm with the Lj-norm of the model parameters as the
stabilizer. The plane-sections are presented at: (a) depth 100 m; (b) depth 200 m; and (c) depth 400 m.
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Fig. 7. Data produced by the models shown in Figs. 5 and 6. (a) Vertical component of gravity. (b) Total magnetic field.

are selected as before, with the same termination criteria, models are 0.4353 and 0.4317, respectively. These errors
but without the cross-gradient term. The inversion again are larger than achieved when the cross-gradient is used.
terminates after IT = 53 iterations, but now the rela- The reconstructed models are presented in Figs. 8 and 9.
tive error of the reconstructed density and susceptibility —Although both models are close to the exact models, and
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Fig. 8. Three plane-sections of the reconstructed density model using the inversion algorithm without using the cross-gradient constraint, i.e., for 1 = 0.

The plane-sections are presented at: (a) depth 100 m; (b) depth 200 m; and (c) depth 400 m.
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Three plane-sections of the reconstructed susceptibility model using the inversion algorithm without using the cross-gradient constraint, i.e., for

A = 0. The plane-sections are presented at: (a) depth 100 m; (b) depth 200 m; and (c) depth 400 m.

thus geophysically acceptable, they are not as similar to
each other as is the case when including the cross-gradient
constraint.

We should note here that, without presenting the results,
when parameter A is selected too large, the inversion does
not terminate at MAXIT. This means that it is not possible to
satisfy the data misfit criteria with a large 4. The reconstructed
models are not at all consistent with the original models,
either with respect to the shape or to the maximum values
of the physical properties. Although the main reconstructed
bodies are quite similar to each other, as expected due to the
strong requirement imposed by the use of the cross-gradient
constraint, some additional unrealistic structures appear in the
models. Clearly, the selection of 4 is very important. But, this
is not a difficult task. It is sufficient to consider the entries
of B, or to run the algorithm once, to determine a suitable 1.

IV. REAL DATA

The presented joint inversion strategy is now applied to
the gravity and magnetic data that have been obtained over
the Galinge iron-ore deposit in the Qinghai province, in NW
China. The survey area is located in the center of the Qiman-
tage metallogenic belt, one of the important skarn iron deposits
in the province. In the given area, the bedrock is covered
by a layer of Quaternary gravels with 117-210 m thick-
ness [59]. Fig. 10 illustrates a geological map of the survey
area. The defined stratum sequence, syn-genetic breccia of the
horizons, and volcanic and subvolcanic rocks are the major
factors determining the iron formations [60], [61]. The iron-ore
deposit has probably been formed by volcanic exhalation and
sedimentation as a reformed and superimposed deposit. The
ore minerals mainly consist of magnetite and small amounts
of hematite and siderite. There is a significant physical
contrast between the orebodies and the surrounding rocks.

Fig. 11 illustrates the gridded gravity and magnetic anomalies
over the white rectangle of Fig. 10. Here, the data sets are
gridded onto a grid of size 56 x 38, for a data set of size
2128 with 40 m spacing. The total field anomaly shows an
isolated magnetic target elongated in the NW-SE direction.
The situation for the gravity anomaly is not exactly the same,
some additional anomalies appear in the observed data. This
complicates the individual inversion and interpretation of the
gravity data.

To perform the inversion, the subsurface is divided into
56 x 38 x 15 = 31920 cubes of size 40 m in each
dimension. We assume that the gravity and magnetic data are
contaminated by Gaussian noise with standard deviation at
each datum of (7, |(d}’bs)j| + 1 max(|d}’bs|)), j=1,...,n.
Here, we take (71,72) = (.01,.035) for the gravity data,
and (.01, .025) for the magnetic data. The intensity of the
geomagnetic fields, the inclination and the declination are
53800 nT, 56°, and —4°, respectively. We set MAXIT = 100,
and impose bound constraints on the model parameters. In this
case, these are 0 = pyin < M} < pmax = 0.18 gr cm ™3,
and 0 = wpin < My < Knax = 0.2, SI unit [59], [62].
The inversion algorithm terminates after IT = 60 iterations
and requires 5477s. Note that the computational cost for this
inversion is higher than the example used for the synthetic
model. Although the respective data sets and a number of
model parameters used for the real data are less than their
counterparts for the synthetic data, 2128 < 5000 and 31920 <
40000, the number of layers in the model is increased from
8 to 15 for the real data. Thus, the 2-DFFT that is used per
depth layer is smaller and the operations with the sensitivity
matrices have to be accumulated over more depth layers. This
increases the computational cost for each operation with the
sensitivity matrices, and hence per iteration of the algorithm.
Figs. 12 and 13 illustrate plane-sections of the reconstructed
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Fig. 10. (a) Geological map of the Galinge iron-ore deposit, NW China. The white rectangle indicates the geophysical survey area. (b) Cross section of the

geological map shows bedrock, orebodies, and surrounding rocks [60].
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density and susceptibility models, respectively. The 3-D view
of the models is also shown in Fig. 14. Furthermore, the data
produced by the reconstructed models are shown in Fig. 15.
Generally, the target starts from depth about 160 m and
continues to depth about 560 m, which is consistent with
information from drill-holes and a previous study in the survey
area [59]. The susceptibility model presents a single isolated
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Geophysical data over the Galinge iron-ore deposit, for the white rectangle in Fig. 10. (a) Gravity anomaly. (b) Magnetic total field anomaly.

subsurface target, but there are additional structures in the
density distribution due to the additional gravity anomalies.
As anticipated, the cross-gradient constraint only enforces
structural similarity which is supported by the data; the addi-
tional structure is not imposed on the susceptibility due to the
additional density structures. For comparison, we present the
results of the inversion without the cross-gradient constraint
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Fig. 12. Plane-sections of the reconstructed density model using the joint inversion algorithm for the data shown in Fig. 11. (a) Depth 160 m; (b) depth
300 m; (c) depth 440 m; and (d) depth 550.
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Fig. 13. Plane-sections of the reconstructed susceptibility model obtained using the joint inversion algorithm for the data shown in Fig. 11. (a) Depth 160 m;
(b) depth 300 m; (c) depth 440 m; and (d) depth 550.
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Fig. 15. Data predicted by the model shown in Fig. 14. (a) Gravity anomaly. (b) Magnetic total field anomaly.

in Figs. 16 and 17. The inversion terminates at iteration 84 shallower depths, which is not consistent with the drill-hole
and requires 6310 s. Clearly, there is no similarity between information. The results show how the joint inversion can
the reconstructed models. The density model is extended at improve the accuracy of the reconstructed models.
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Plane-sections of the reconstructed density model without using the cross-gradient constraint for the data shown in Fig. 11. (a) Depth 160 m.
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Fig. 17. Plane-sections of the reconstructed susceptibility model without using the cross-gradient constraint for the data shown in Fig. 11. (a) Depth 160 m.

(b) Depth 300 m. (c) Depth 440 m. (d) Depth 550.

V. CONCLUSION

A framework for the incorporation of Ly-norm stabilizers
in an algorithm for joint inversion of gravity and magnetic
data, in which the cross-gradient constraint provides the link
between the two models, has been developed. This framework
shows how it is possible to incorporate all well-known and
widely used stabilizers, that are used for potential field inver-
sion, within a joint inversion algorithm with the cross-gradient
constraint. By suitable choices of the parameter p and the
weighting matrix, that define the Ly-norm constraint, it is
possible to reconstruct a subsurface target exhibiting smooth,
sparse, or blocky characteristics. The global objective function
for the joint inversion consists of a data misfit term, a general
form for the stabilizer, and the cross-gradient constraint. Their
contributions to the global objective function are obtained
using three different regularization parameters. A simple iter-
ative strategy is used to convert the global nonlinear objective
function to a linear form at each iteration, and the regulariza-
tion weights can be adjusted at each iteration. Depth weighting
and hard constraint matrices are also used in the presented
inversion algorithm. These make it possible to weight prisms
at depth and to include the known values of some prisms
in the reconstructed model. Bound constraints on the model
parameters may also be imposed at each iteration.

To make the algorithm effective for large-scale data sets,
we take advantage of the underlying BTTB structure of the
sensitivity matrices when the measurement data are obtained
on a uniform grid. This allows an implementation in which
all operations with the sensitivity matrices use the 2-DFFT.
Moreover, the storage of the necessary transform matrices
is significantly reduced as compared to the storage of the
sensitivity matrices. Furthermore, we have demonstrated that
it is possible to provide a more efficient inversion algorithm
using alternating updates for the gravity and magnetic model
parameters while maintaining the coupling of the two data

sets through the cross-gradient constraint. This facilitates the
inversion of large data sets in reasonable time and with reduced
storage requirements. Results presented for a synthetic 3-D
multiple model illustrate the performance of the developed
algorithm. These results indicate that, when suitable regu-
larization parameters can be estimated, the joint inversion
algorithm yields suitable reconstructions of the subsurface
structures. These reconstructions are improved in comparison
with reconstructions obtained using independent gravity and
magnetic inversions. The structures of the subsurface targets,
for both density and susceptibility distributions, are similar
and are close to the original models. A simple but practical
strategy for the estimation of the regularization parameters is
provided, by which large values are used at the initial step of
the iteration, with a gradual decrease in subsequent iterations,
dependent on selected scaling parameters for each of the
imposed gravity and magnetic constraint terms. The weight on
the cross-gradient linkage constraint is chosen to balance the
three regularization terms. The results show that this strategy
is effective, particularly given the lack of any known robust
methods for automatically estimating these parameters.

APPENDIX

Although the expressions for the components of t and the
Jacobian matrix B are found in the literature, [8], here we use a
more compact description which corresponds to the implemen-
tation and is designed for computational and storage efficiency.
As illustrated in Fig. 18, the subsurface is commonly divided
into right rectangular prisms. Here, we suppose all prisms
have same dimensions and that m;;; represents the value of
the current estimate for m at (x;, y;, zx) = (iAx, jAy, kAz)
where 0 <i <n, —1,0<y<n,—1land 0 <k <n; —1,
for ny, ny, and n, blocks in x, y and z directions. The
origin, myg, (i = j = k = 0), is at the top left corner of
the domain. All other parameters indexed in the same way
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Fig. 18. Discretization of the subsurface into right rectangular prisms.

by ijk also correspond to the parameter at the given grid
point (x;, y;, zx) of the volume. We also use t*(x,y,z) to
indicate t* (m; (x, y, z), ma(x, y, z)) which is the x component
of the cross-gradient function t. Then, with this notation also
applied for the y and z components, the components of the
cross-gradient function (2) are given by

om; om om; om
t(,y.0)=———"—————€eR" (19
dy 0z 0z Oy
) 6m1 amz 6m1 am2 n
Cord=""%r "o o @
~ 8m1 51112 8m1 51112 n
t(x, y,2) = ox o oy ox eR". 1)

This yields
t(m(x, y, z)) = block_stack (t*, t’, t°) € R¥".

We use forward difference operators to approximate the
derivatives in t, and for compact representation we introduce
D,m as the approximation for the x derivative of vector m at
grid point ijk, with the y and z derivatives defined similarly.
Specifically

Dom = (MLt Mk om '
Ax ox / ik

Using this notation, the approximate components of the
cross-gradient are given by

(22)

tfjk = Dym;D.m; — D,m;D,m, (23)
tlyjk = Dzmlemz - Dxm]Dsz (24)
tfjk = Dm;Dym; — Dym;D,m; (25)

and we see that to calculate t we only need the calculation
the approximate x, y, and z derivatives of m; and m;, at each
grid point (i, j, k).

The Jacobian matrix for the approximate cross-gradient
function is given by

le B2x
Bi, By,
B, By

B = = (B, By) e R7"*" (26)

Require: Ax, Ay, Az, ny, ny, n;, m, n, Dym, Dym, D.m.
1: Bx = sparse(zeros(n)); By = Bx; Bz = Bx; s = 1;
d=n, —1.
2: dmx = reshape(D,ym)(ny, ny, n;);
dmy = reshape(D,m)(n,, ny, n.);
dmz = reshape(D.m)(ny, ny, n;).
:for k=1:n, do
for j=1:n, do
I = s : s+ d; % Diagonal block and i + 1 block
Bx(I,1) = sparse(diag(dym(:, j,k)/Az — dzm(:
s J>sk)/Ay)).
7: By(I,1) = sparse(diag(dzm(:, j,k)/Ax — dxm(:
, J,k)/Az) —diag(dzm(1 : d, j, k)/Ax, 1)).
8: Bz(I,1) = sparse(diag(dxm(, j,k)/Ay — dym(:
, ], k)/Ax) + diag(dym(1 : d, j, k)/Ax, 1)).
9: if j <n, then

> 9 kW

10: J=s+d+1:5+2d—1; % Block j + 1.
11: Bx(1,J) = sparse(diag(dzm(:, j, k)/Ay)).
12: Bz(1,J) = sparse(—diag(dxm(:, j, k)/Ay)).
13: end if
14: if k& < n, then
15: J=s+m:s+m+d-—1; % Block k + 1.
16: Bx(I,J) = sparse(—diag(dym(:, j, k)/Az)).
17: By(I,J) = sparse(diag(dxm(:, j, k)/Az)).
18: end if
19: s =s8+n,
20:  end for
21: end for
22: B =[Bx; By; Bz];
Ensure: B.
where
X y 74
Bi=oo Bu=Sio Bu=io @)

with the equivalent definition for the components of B, as
partial derivatives with respect to m,. Now, using (22), we see
that

p=i+lg=jr=k

d(D,m) 1 . ;
= -1 p=ig=jr=k

om,,  Ax

(28)

0  otherwise.

Applying this for the discrete derivative of t* with respect to
i th

m; and m,, we obtain for the p = i" rows
Dym, Dmy .
— o T Ao 4T =ik
Az Ay
D.m .
B ijkpgr = § —— gr=j+1,k
)
e b r= gk + 1
AZ QD - .]9
D.m D,m
o Gr =ik
B ™
zml .
(BZ x)ijk,pqr = - CI,V=]+1,/€ (29)
Ay
Dyml . k—|—1
)r = b .
Az 1 /
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Algorithm 4 Calculate D,m, Dym, and D.m

Require: Data m, ny, ny, n;, Dy, Dy, D,.

1: m = reshape(m, n., n,, n;);

2: mext = zeros(2n, — 1, ny, n;);

3: mext(l:ny,: ) =m;

4 dm = real(i ££t(Dy. * ££t(mext)));
5:dxm=dmQ@:n;y+1,:,:);

6: m = permute(m, [2, 1, 3]);

7: mext = zeros(2n, — 1, ny, n;);

8: mext(1l:ny,:, ) =m;

9: dm = real(ifft(DA),. * £ft(mext)));

10: dym = permute(dm2:n,+1,:,:),[2,1,3]);
11: m = permute(m, [3, 1, 2]);

12: mext = zeros(2n, — 1, n,, n,);

13: mext(1 : ny,:, ) =m;

14: dm = real(1 ££t(D,. % ££t(mexr)));

15: dzm = permute(dm :n,+1,:,:),[3,2, 1]);
Ensure: dxm,dym, dzm.

Algorithm 5 Calculate D,, ﬁy, and ﬁz

Require: n,, ny, n,, Ax, Ay, Az.

1. r = zeros(2sxn, — 1, 1); r(1 : 2) = [1,—1]/Ax; Dx =
tfe(r);

22r = zeros(2xny, — 1,1); r(1 : 2) = [1,—1]/Ay; Dy =
tfe(r);

37 = zerosQxn, — 1,1); r(1 : 2) = [1,—1]/Az; Dz =
£fe(r);

Ensure: D., ﬁy and D,.

Hence there are just six nonzero column entries in each row,
which are calculated directly from the derivative vectors used
already in (23). The matrices are sparse with a block structure,
and the sum of the entries in any given row is 0, except
for rows that correspond to the last row for a given block
matrix, i = ny, j = n, or k = n;. The entries for B;,
and B;, are calculated similarly. The compact algorithm for
the calculation of B; is given in Algorithm 3, using inputs
D,m;, Dym,, and D m,, along with the problem specific
scalars. A similar approach follows for B, using D,my,
Dym;, D.m;. Here, we note that the algorithm counts over
the row index s which counts through the triples gr for each
block of rows s s + ny — 1, but that it is possible to
generate the same matrices by blocks, employing diag for
the n, and mth upper diagonals. Experiments demonstrated
that this was less efficient. The required partial derivatives are
calculated efficiently using Algorithm 4 which employs the
Fourier coefficients for derivatives in x-, y- and z-directions
obtained using Algorithm 5, and calculated only once before
the start of the inversion.
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