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ABSTRACT

Fast computation of three-dimensional gravity and magnetic forward models is considered. When the
measurement data is assumed to be obtained on a uniform grid which is staggered with respect to the
discretization of the parameter volume, the resulting kernel sensitivity matrices exhibit block-Toeplitz-Toeplitz-
block (BTTB) structure. These matrices are symmetric for the gravity problem but unsymmetric for the
magnetic problem. In each case, the structure facilitates fast forward computation using two-dimensional fast
Fourier transforms. The construction of the kernel matrices and the application of the transform for fast forward
multiplication, for each problem, is carefully described. But, for purposes of comparison with the non-transform
approach, the generation of the unique entries that define a given kernel matrix is also explained. It is also
demonstrated how the matrices, and hence transforms, are adjusted when padding around the volume domain
is introduced. The transform algorithms for fast forward matrix multiplication with the sensitivity matrix and
its transpose, without the direct construction of the relevant matrices, are presented. Numerical experiments
demonstrate the significant reduction in computation time and memory requirements that are achieved using
the transform implementation. Thus, it becomes feasible, both in terms of reduced memory requirements and
computational time, to implement the transform algorithms for large three-dimensional volumes. All presented
algorithms, including with variable padding, are coded for optimal memory, storage and computation as an
open source MaTtraB code which can be adapted for any convolution kernel which generates a BTTB matrix,
whether or not it is symmetric. This work, therefore, provides a general tool for the efficient simulation of
gravity and magnetic field data, as well as any formulation which admits a sensitivity matrix with the
required structure.

1. Introduction

Fast computation of geophysics kernel models has been considered

modeling. The Gauss FFT was also used by Zhao et al. (2018) for the
development of a high accuracy forward modeling approach for the
gravity kernel. Moreover, in earlier work, Shin et al. (2006) designed

by a number of authors, including calculation within the Fourier do-
main as in Li et al. (2018), Pilkington (1997), Shin et al. (2006) and
Zhao et al. (2018), and through discretization of the operator and cal-
culation in the spatial domain as in Chen and Liu (2018) and Zhang and
Wong (2015). Pilkington (1997) introduced the use of the Fast Fourier
Transform (FFT) for combining the evaluation of the magnetic kernel
in the Fourier domain with the conjugate gradient method for solv-
ing the inverse problem to determine magnetic susceptibility from
measured magnetic field data. Li et al. (2018) considered the use
of the Gauss FFT for fast forward modeling of the magnetic kernel
on an undulated surface, combined with spline interpolation of the
surface data. Their work focused on the implementation of the model
in the wave number domain and only applied the method for forward

* Corresponding author.

a Fortran code for fast forward and inverse modeling of the gravity
model using the Fourier domain method using the FFT for achieving
fast computation. On the other hand, Gémez-Ortiz and Agarwal (2005)
provided a Matiae code for computing the geometry of a density
interface related to a known gravity anomaly by also employing the
FFT to achieve fast computation, but which is not related to forward
modeling for gravity models.

Bruun and Nielsen (2007), and subsequently, Zhang and Wong
(2015) introduced the use of the Block-Toeplitz—-Toeplitz-Block (BTTB)
structure of the modeling sensitivity matrix for fast three-dimensional
inversion of three-dimensional gravity and magnetic data. For a
matrix with BTTB structure, it is possible to embed the information
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within a matrix of Block-Circulant Circulant-Block (BCCB) structure
that facilitates fast forward multiplication using a two-dimensional
FFT (2DFFT), see e.g. Chan and Jin (2007) and Vogel (2002). For
three-dimensional modeling, Zhang and Wong (2015) exploited the
two-dimensional multi-layer structure of the kernel, that provides BTTB
structure for each layer of the domain, and performed the inverse
operation iteratively over all layers of the domain. The technique is
flexible to depth layers of variable heights, and permits the inclusion
of smoothness stabilizers in the inversion, for each layer of the do-
main. Zhang and Wong (2015) adopted the preconditioning of the
BTTB matrix using optimal preconditioning operators as presented
in Chan and Jin (2007) for implementing efficient and effective solvers
for the inversion. On the other hand, Geng et al. (2019) used the
BTTB structure for the development of a Bayesian inversion of gravity
data, using an interesting inclusion of available a priori data, again
referencing the Toeplitz literature, Chan and Jin (2007), but without
providing extensive implementation details.

A fast forward modeling of the gravity field was developed
by Chen and Liu (2018), using the three-dimensional modeling of
the gravity kernel as given in e.g. Boulanger and Chouteau (2001)
and Haaz (1953). Their work extends the techniques of Zhang and
Wong (2015) for taking advantage of the symmetric BTTB structure of
the sensitivity matrix associated with a single layer of the gravity
kernel, but offers greater improvements in the implementation of the
forward kernel through the presentation of an optimized calculation
of the kernel entries in this matrix. When the stations are on a grid
that is uniformly staggered with respect to the coordinate grid on the
top surface of the coordinate domain, redundant operations in the
calculation of the sensitivity matrix can be eliminated.

Here we consider the specific case in which uniform discretizations
of first kind convolution Fredholm integral operators, combined with
measurements obtained on uniform staggered grids in the x and y
dimensions, yield sensitivity matrices with BTTB structure for each
depth layer of the volume. These are symmetric for the gravity
kernel, symmetric BTTB (symBTTB), Boulanger and Chouteau (2001),
but symmetry is lost for the magnetic kernel, Bhaskara Rao and
Ramesh Babu (1991). Hence further analysis for efficient computation
of the general BTTB matrix is required. Here we demonstrate that it is
feasible to optimize the calculation of the entries of the magnetic ker-
nel matrix, but due to lack of symmetry the computation requirements
are increased as compared to the gravity kernel. Still, remarkable
savings in generating the matrix are achieved. Moreover, while it is
not immediately possible to take advantage of BTTB structure when
the stations are not on a uniform grid, the calculation of the underlying
kernel matrices can still be optimized for arbitrary stations locations,
by reuse of common vectors and arrays for each depth layer of the
coordinate volume. Furthermore, it is also feasible to interpolate from
stations that are not on a uniform grid to a uniform grid, without
significant loss of accuracy, as discussed in Bruun and Nielsen (2007).
Thus, the approach is useful also for a broader class of practical
problems, and in particular due to reduced storage requirements, makes
it possible to carry out forward modeling for a finer resolution of the
volume domain.

Overview of main scientific contributions. Our approach implements
and extends the BTTB algorithm for forward modeling with the mag-
netic kernel, and for the inclusion of padding around the domain. (i)
We present a detailed derivation of the implementation of the algorithm
presented in Chen and Liu (2018) for the forward modeling of the
gravity problem; (ii) The algorithm is extended to include arbitrary
domain padding in x and y directions; (iii) The use of the 2DFFT for
matrix transpose multiplication is explained, (needed for solution of
the associated inverse problem); (iv) The algorithm applies for general
BTTB matrices; (v) The approaches are coded for optimal memory,
storage and computation as an open source MatLaB code, https://
github.com/renautra/FastBTTB with example simulations at https://
math.la.asu.edu/~rosie/research/bttb.html. This can be adapted for

any Earth modeling using a convolution kernel that can be used to
generate a sensitivity matrix with BTTB structure for each depth layer
of the domain when the measurement data are obtained on, or can be
interpolated to, a uniform grid.

The paper is organized as follows. In Section 2 we present the
general kernel-based forward model, and specifically convolutional ker-
nels, Section 2.1. We demonstrate in Section 2.1.1 how the placement
of the measurement stations as uniformly staggered with respect to the
coordinate domain yields a distance vector for distances from coordi-
nates to stations that is efficiently stored as a one-dimensional instead
of two-dimensional vector, also for padded domains, Section 2.1.2. We
then show in Section 2.2 how operators that are spatially invariant
yield matrix operators with BTTB structure, and explicitly explain how
the relevant entries of the matrices are calculated. In Section 3 we
show how these entries are built into the formulation that facilitates
the use of the 2DFFT, following the discussions in Chan and Ng (1996)
and Vogel (2002). Specific examples are given in Section 4 for the
efficient derivation of the entries in the operators for gravity and
magnetic kernels, following Chen and Liu (2018) and Bhaskara Rao
and Ramesh Babu (1991), in Sections 4.1 and 4.2, respectively. The pre-
sented numerical results in Section 5 validate that the given algorithms
are efficient and facilitate forward modeling for problems that are
significantly larger as compared to the case when the BTTB structure is
not utilized for fast computation with the 2DFFT. Indeed, estimates of
the storage requirements demonstrate that it is not possible to store the
sensitivity matrices for large problems on standard desktop computers.
Software availability is discussed in Section 6 and conclusions with
topics for future work are discussed in Section 7. The adopted notation
and algorithms are presented in Appendices A and B, respectively.

2. Forward modeling

We consider a forward model described by the Fredholm integral
equation of the first kind

d(a,b,c):///h(a,b,c,x,y,z)C(x,y,z)dxdydz, (€8]

for which discretization leads to the forward model d = Gm. Here G is
the sensitivity matrix, and d and m are the discretizations of 4 and ¢,
respectively. We suppose that data measurements for d(a, b,c), on the
surface with ¢ = 0, are made at m = s,s, arbitrary station locations
denoted by

Sij = (aijvb,’j)s 1<i< Sxs 1 <j< Sy- (2)

The volume domain, without padding, is discretized into n = s
uniform prisms, c,,,, with coordinates!

xSylz

par?

x,=(@-D4, x,=pd, 1<p<s,,
V-1 =(g—D4, y,=4q4, 1<qg<s, 3)
z,_1=(r-D4, z.=rd4,, 1<r<n,.

The geometry is illustrated in Fig. 1, in which the configuration of
station at location (i, j) relative to volume prism pqr is shown.

The entries in G depend on the integral of kernel 4 and correspond
to the unit contribution from a given prism to a particular station.
The ordering of the entries depends on the organization of the volume
domain into a vector of length, n = n,n n,. We assume the depth-based
multilayer model that yields

G = [G(l),G(z),...,G("Z)]. 4

Each G has size s,s,Xn.n, = mxn,, where there are n, prisms in layer
r, and maps from the prisms in depth layer r, with depth coordinates

z,_, and z,, to the stations. Further, G* decomposes as a block matrix

1 Note that there are, for example in the x—dimension, s, blocks and hence
s, + 1 coordinates describing these blocks.
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Fig. 1. The configuration of prism pgr in the volume relative to a station at location
s;; = (a;;, b;;). The blocks in the z-direction define depth z > 0 pointing down. Here we
assume there is one station located above each prism, giving s, and s, blocks in the
x and y-directions, respectively.

with block entries G(; ) 1 <)< sy, 1 < g < n, each of size s, X n,

Equivalently, a given layer of the volume with s,n, blocks is mapped to
a one dimensional vector using row-major ordering; we sweep through
the prisms in the slice for increasing x and fixed y direction. Entry
(G, 1 <k < sy5,, 1 < £ < nyn, represents the contribution from
prism £ = (¢ — Dn, +p, for 1 <q < n, and 1 < p < n,, for depth slice

r, to station k = (j — s, +i, 1 <j <5y, | <i < 5,. Using h(sj)pq, to

denote the function that calculates the contribution to station s;; from
prism c,,,,
(G = Hsij)pgr k=G = Ds,+i. £=(g=Dn, +p. (5)

In the following we discuss the derivation of the matrix for a given layer
r and remove the dependence of % on depth, using A(s; )pq to indicate
the contribution to station s;; = (a;;,b;;) due to block number p in x
and ¢ in y. Although the discussion is applied under the assumption
of a uniform depth interval, 4,, the approach applies equally well
for problems in which the layers have different heights, (4,),, see
e.g. Zhang and Wong (2015).

2.1. Spatially invariant kernels

Our discussion focuses on kernels that are spatially invariant in all
dimensions:

h(a,b,c,x,y,z) = h(x —a,y— b,z —c).

For fixed r, calculation of A(s; 1)pqr depends on the differences (x—a) and
(y — b) for all station and prism coordinates, (2) and (3), respectively.
Using matrices

(DX);;p = (x,—ay;
DY) 4 =g — b))
the distances for block pg, 1 < p < n, and 1 < g < n, are obtained

from distance matrices (DX),_; and (DX), in x, and likewise for y. For
uniform prisms in the x— and y—dimensions,

<p<
Ospsmly oo 1<j<s,
0<g<n, Y

(DX), = (DX),_, + 4, 1 <p<n,, (DY), =(DY), ;+4, 1<q<n,

and (DX), and (DY), can be obtained directly from (DX), and (DY),.
They are also independent of the layer, regardless of the locations of the
stations relative to the prisms. It is practical, therefore, to store (DX),
and (DY), entirely, and update an entire slice of the domain without

Sy

/[ [/ /S [ S S
7 7 I e e
] T[]+ o [ [ [ e e [ s [ 7
] I/ e[ o e oo ]+ o fo 5] 7 n,
VeI ET YT E VLTI T A

\
\
1 \ /

)
[CNR A

C
P Y%

Fig. 2. The configuration of the volume domain with padding, explicitly assuming no
stations in the padded regions.

recalculating (DX), and (DY), across layers. For the uniform station
grid in which g;; is independent of j and b;; is independent of i, the
sizes of matrices (DX), and (DY), are reduced in the first dimension
to s, and s, respectively, and greater optimization is achieved.

2.1.1. Placement of the stations at the center of the cells

Following Boulanger and Chouteau (2001) and
Chen and Liu (2018), suppose that the two coordinate systems for the
stations and the volume domain, are uniformly staggered in the x—y

. S . o1
plane stations, such that a; = (i — DA 1< <s, and b; = (j - 24,5
1 <j <s,. Then,

(DX), =x,-a =@-Da-G-34, =@p-i-3}4, 1<p<n -+l
(DY), =y,=b, =@-Da-G-4, =@-j-34, 1<g<n+1,

and for all pairs of indices (i, p) and (j, q), the possible paired distances
are obtained from the vectors

X, =(-s,-DA, 1<¢<2s,

(6)

-Ha

Y, =k=-s5,-3 1 <k<2sy.

s
2.1.2. Introducing padding around the domain

Suppose now that padding is introduced around the domain, with
an extra p, and p, blocks in the x-direction. Then the x—coordinates
are (—p, : (s¢ + py )4, for a total of s, coordinate blocks within the
domain, but a total number of blocks n, = (s, +p,, +p,,). Blocks 1 to p,,
are in the padded region to the left of the domain, and blocks s, +p,, +1
to n, are within the padded region to the right. Thus, the coordinates
of block p are adjusted to (p =Py, — DA 10 (p—p, )4, consistent with
(3) for Py, =0. Likewise, the y coordinates extend from =Py, (s, +py)
and n, = (s, + Py, + Py ) see Fig. 2. Hence, (6) is replaced by

X, == (s +py)— 3)40
Y, =Gk=(,+p,)- E)AY’

1< <2s, +pyy + P =0+ 5 @

l§k§2sy+pyL+pyR:ny+sy.

To calculate all possible paired distances we only need to store vectors
X and Y, as given by (7). This is negligible as compared to the entire
storage of the mn entries in the matrix G.

2.2. Matrix structure for spatially invariant kernels

We now consider the structure of the matrices that arise for spatially
invariant kernels, for domains without padding in Section 2.2.1, and
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then the modifications that are required when domain padding is
introduced, Section 2.2.2. The summary of the discussion is detailed
in the presented Algorithms in Appendix A, and can be ignored if the
intent is to only use the provided codes.

2.2.1. Symmetric kernel matrices with Toeplitz block structure without
domain padding

Suppose block matrix G is symBTTB and is defined by its first row
block GE’; = G,(;), 1 < g <n,. Then, with n, =s, and n, = s

y’

(r) (r) (r) (r)

G" G G, G,
(r) (r) (r) (r)

Gy G G G

G =| . | (8)

(r) (r) (r) (r)

G G, G, .. G

Each Gf]r) is symmetric and defined by its first row,

glq g2q g3q gnxq
82 81q 824 g(nx—l)q

G =
q

[85cq  8(sp-Dg  8(s,-2q 81q
MartLAB notation can be used to write these matrices compactly in terms

of the defining first row (column),

G\ = toeplitz(r,), ¥y = (814 829> 83¢> -+ > &nrg)s ©

and, with abuse of the same notation as applied to matrices,
G = toeplitz(R), R=(G\.GY.GV,....G"). (10
y

From (9) and (10) it is immediate, as discussed in Boulanger and
Chouteau (2001) and Chen and Liu (2018), that the generation of G
requires only the calculation of its first row. But the first row represents
the contributions of all prisms to the first station. Thus, G’ requires
only the calculation of

Gy =h(si)pg £ =(q—Dn,+p, 1<p<n, 1<qg<n, or
an

(Gi’))lznxny=( | ‘ r, ‘ ‘ T, ) where
r,= (71(511)11,’il(su)ijl(sn)gq, ,71(511)nxq), 1<g<n, (12)

Equivalently, it is sufficient to calculate only the distances (DX), , =
(p—3/2)4, and (DY), 4 = (q-3/2)4,, fori<p<n+landl<q<n,+l,
and (6) is replaced by

X, =( —3§)Ax, 1<Z<(n +1) 13)
YVi=(k=3)4, 1<k<@®m+1D.
2.2.2. Symmetric kernel matrices with Toeplitz block structure and domain
padding

Suppose now that the domain is padded in the x and y directions,
with no real stations within the padded region. To illustrate we take a
one-dimensional example with s, = 4, p, = 2 and p, = 1. Suppose
first that there are artificial stations in the first two blocks, blocks 1, 2,
and in the final block, block 7. Then, the single square and symmetric
Toeplitz that defines G is

& 8 | & 84 8 86 | &7 Stat%on 1(Art%f%c%al)
© ol & oau g | g Station 2(Artificial)

& & | & & & & | & Station 3 = Px t 1
GY) =1 & 8 | & 8 8 83| & e

8& 8 |8 & & 8 | & Station 5

% & |le & & & | & Station 6 = Py, Sk
8 8 | 8 81 8 8 | 81 |

Station 7(Artificial)

This depends on

r = (81,883 848586, 87) = (;l(sl)pil(sl)z,il(ﬁ)y e 7’1(51)7)~

But the contribution to the first real station due to all prisms is given
by the third row, row p,, +1 of G(l’), which is

(G); = (83.82- 81 2. 83 84- 85) -

and, using symmetry, the contributions for the real stations are deter-
mined by

& & 8 & 8 84 &
g 8 & & & & &
8& 8 8 & 8 & &
8 & 81 & & & &

(G py 1 py +5,.0) =

= toeplitz(c, r) where

¢ = (83,8485, 86) and r = (83-82- 81825830 84> 85)-

More generally, in one dimension,

c= (gpr-{-l?gpr-}-Za 7gpr+sX) = (h(sl)pr+1a h(sl)PxL+2’ cees h(Sl)pr+gx)
and
T = (8, 410 82: 810822 8nepy )

= (il(Sl)prH, 5;1(51)27 71@1)1’ 71(31)27 ’;l(sl)"x*DxL )-
Extending to the two-dimensional case, and assuming that the first

artificial station is in the (1, 1) block of the padded domain, then szr),
for any ¢, is also Toeplitz and is given by

O — toepli
G, = toeplitz(c,.r,), 1 < g <ny, a4
¢q = (10, 41> BS1DG, 420+ BG11 g, 45,09) a0d 1s)

r,= (;1(511)(pr+1)¢ e 7’1(511)211» 71(511)11,, 71(511)24, s il(sn)(nx_pr)q)-

16

This is consistent with (11)-(12) for the unpadded case. But notice,
also, that the maximum distance between station and coordinates in
the x—coordinate is max(n, — py , iy = Py )4y = Max(sy + Py s Sy + Py Ay

It remains to apply the same argument to the structure of the matrix
G, as to the structure of its individual components, to determine
the structure of the symBTTB matrix when padding is applied. Then,
consistent with (14)-(16), (10) is replaced by

G = toeplitz(C, R), a7
—_ (" (r)
C= (prLH, 2G4, ) and 18)
iG] ) ~(r) A ~() (r)
R—(prLH,..A,GZ .G/.6.6GY G . 19)

Moreover, since this matrix depends on the first row of the symmetric
matrix, defined with respect to the artificial station at s,, it is sufficient
to still use (13) for the calculation of the relevant distances between
the first station and all coordinate blocks. But, from (15)-(16), and
(18)—(19), just as we do not calculate all entries g in Gf,’), we also
do not calculate all the blocks Gflr), rather the blocks needed are for
g =1 : max(n, — p, ,ny, = py). Thus, some savings in memory and
computation can be made, when padding is significant relative to s,
and s,, by using

X, =(f- %)Ax, 1<Z < s +max(p.py ) + 1 20)
Y, = (k= )4, )+ 1.

1<k<s,+ max(pyR,pyL
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2.2.3. Unsymmetric kernel matrices with block structure
Consider the unsymmetric BTTB matrix

(r) (r) (r) (r)
GE) G%) G?) ((;,,)y
A~ r r r
G2 Gl GZ Gny—l

GV =| o | @D

SR It a0

G, G, G, .. .. G

where, without padding, n, = s,. G depends on the first block row
and column only, and, is given by

G = toeplitz(C, R), C = (G, G, ....G"), R=(G".GV.....G").
y y
(22)

We use G_;') to denote the contributions below the diagonal, and Gf]r) for
the contributions above the diagonal. None of the block matrices are
symmetric and, therefore, to calculate G it is necessary to calculate
columns and rows that define C and R. Calculating R uses just the first
row entries Gf,’), but since each of these is unsymmetric we need also
the first columns ¢, of each block in Gf,').

Using (5), the Gé’) are given by (14) with
t, = (h(s1D)1g: h(s11)2gs -+ s RGs1D 0) 1 < g <y (23
¢ = (ACs1)1g Alsap)igs - jl(sxxl)lq), 1<q<n,. @24

Rather than calculating all (s4ny)n, entries in the first block row of G,
for each matrix of the block we calculate just (s, +n,)n, entries for its
first row and column.

This leaves the calculation of the G_;.’), 2 < j < s,, which by the

Toeplitz structure only use G_y), given by

GV = toeplitz(€;, F)), 2<j <5, (25)
¢ =(il(slj)“,il(szj)“,...,h(ssxj)“), 2<j<s, and
F; = (R )11, BGs1 D015 o5 Bs )0 1), 2 <) < sy, (26)

This requires not only all distances between the first station and all
prism coordinates, as in (13), but also for all stations and the first
coordinate block (for the first column of G*)) which uses X, =+
l)Ax, —s, < ¢ <0, and likewise for Y,. Thus, we require the full set of
differences (6).

2.2.4. Unsymmetric kernel matrices with block structure and domain
padding

As for the discussion on domain padding with the symmetric kernel
in Section 2.2.2, we first present an example using one dimension. We
again assume s, = 4, p, =2 and p,, = 1 and that there are artificial
stations in the first two blocks, blocks 1, 2, and in the final block, block
7. Then, the single square but unsymmetric Toeplitz matrix that defines
G is

Station 1(Artificial)
Station 2(Artificial)

& & |8 & & & | &
2. 81 | & & 81+ 8 | &
3 T2 |8 & 8 8 |8 Station 3 = p, + 1
GY) =l va 3|2 & & 8 | & Station 4

Ys Ya |V Y2 & & | & Station 5

Yo Vs | Ya V3 Y2 8 | & Station 6 = p, + s,
1% | V5 Y4 V3 T2 | 81

] Station 7(Artificial)

This depends on

r =(81,82- 83> 84585 86-87) = (71(31)1’71(31)2, 771(51)6’71(51)7)
€ =(81,72:73: Y4 ¥5: V6> ¥7) = (71(5|)17 71(52)1’ e 7’1(3(,)17 il(57)1)-

But again the required rows of G(lr) correspond to the real stations

Y3 72 81 & 83 & &
Yo V3 T2 & & & &
Ys Ya V3 T2 8 & &
Yo Vs Ya V3 T2 & &

G)py +1:p +5,.0)=

= toeplitz(c, r) where
¢ =(73,Y4:Y5-¥6) andr = (V3,72 815 82> 83+ 84> &5)-

More generally,

c= (7pr+1,}’pr+2, ,VprHX) = (h(sprJrl)]s h(SpXL+2)17 ceey h(SPxL+5x)1)
and

r= (Vpr+1,J/pXL, e V2,81:825 - »gnx_pr)

= (71(S,,XL+|)1, ;l(SPxL)l’ e B 1, R(s )1, AGs ) e 5il(sl)nx—pXL ).

Extending to the two-dimensional case, with the same assumptions as
in Section 2.2.2, fo) is obtained as

" = ;

Gq’ = toeplitz(c,,r,), 1 < g <n, 27)
¢ = (s, 41D1g> MG 421> -+ Al 45, 91)1) @0
r, = (il(s(px“l)l)lq,h(s,,XLl)lq, e sy )1 h(s g - ,ﬁ(sll)(nx_pr)q).

This is consistent with (23)-(24) for the unpadded case.

Turning to the column block entries, first observe that G(l') = GY),
and so we examine G_;.’) which represents stations 1 to n, (both real and
artificial) in the x-direction for a fixed j coordinate in the y-direction.
Then, with the same example for choices of s, p, and p,,,

& & | & & & & |&
72 8 | & & & 8 | &
3 72 |8 & & & | & Station 3=py +1
G;r) Sl B & & 8|8 Station 4
Bs Tl o & & | & et
Vo Vs |Va V3 T2 81| & Station 6 = p, +s,
77 Ve | Vs T4 73 T2 | &

Station 1(Artificial)
Station 2(Artificial)

| | Station 7(Artificial)
This depends on
T =(Z1,82,83-84-85.86:87) = (71(51,‘)11,71(511')213 ’7’1(51]')61, ;l(slj)71)
€=1(8,72: 73 Ya-¥5: 76> 77) = (7’1(31,')11,;1(52]')117 171(561')117 71(S7j)11)~
But again, since stations 1 to 2 and 7 are artificial, we only need
Vi o & & & & &

A Va V3 N & & & &
(G;r))(pr +1ip, 450 = i s o & & & &
Vs Vs V3 72 &1 & &
Vo Vs Y4 T3 T & &

= toeplitz(c, r) where
€= (73,74-75:76) a0 T = (73,75, &> &+ &3+ &4 &5)-

Thus, in two dimensions, the first column block entries are G_;’), 1<j<
n,, with
G;r) = toeplitz(€;, F)), 1 <j < s, +py +py,,

¢ = (h(s(ﬂxL+1)/)“’ h(s(pr+2)j)11’ vy h(s(pr"'sx)j)”) and (28)

r; = (il(s(pr+l)j)ll’ il(SpXLj)ll’ ’h(SZj)ll’ h(slj)ns s il(slj)(nx—pr)l)'

But now (22) is replaced by the block Toeplitz matrix

G = toeplitz(C, R), @9
— (@™ 5
C= (GﬁyL“’ ’GPyL“y) and

— (" ~(r) ~(r) (1) )
R_(pr +1’prL"“’G2 GG ).

L "y =Py,
Here each block matrix is the subset of rows corresponding to the real
stations, as noted in (27) and (28). Moreover, we conclude that (27) is
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Fig. 3. Required entries from a matrix G” in order to generate all entries G using
the BTTB structure. This shows considerable savings can be accrued in calculating the
entries of G when using the structure.

applied only for 1 < ¢ <n, =Dy, =Sy +py and (28) for 1 < j < Py, 5y
reducing the dimension of the required Y in the y—direction. Likewise,
X is reduced because of the padding impacting the required entries for
generating both Gf,’) and (_?;.'). Thus while the required vectors are given
by (6), with n, replacing s, and n, replacing s, their lengths can be
reduced as for the symmetric case, (20), by using

Xy = (€ = (s, +max(p. py ) = 34 1 <6 <2s, +max(pg.py,)
Yy = (k= (s, +max(py,, by ) = Ay, 1 <k <2s, +max(py, . py, ))-

(30)

This effectively assumes the calculation of G_Y) as well as GY), whereas
only one is calculated in practice, since Gi’) = Gi’).

The plot in Fig. 3 illustrates the unique entries from G’ that define
its BTTB structure. We note that, while the discussion is focused on the
situation in which observation points are on a uniform grid and exactly
staggered with respect to the coordinate domain, it is sufficient for
generating matrices with the BTTB structure that the observation points
are uniform with respect to a coordinate domain which is uniform in
the x— and y— dimensions.

3. Circulant operators and the 2D FFT

Definition 1 (Circulant). The Toeplitz matrix in which the defining
vectors ¢ and r, each of length 25, — 1, have entries that are related
by r; = ¢ 41-i) for 2 <i <2s, — 1, is circulant.

A circulant matrix is defined solely by its first column or first row.
Here we will use the first column. Any Toeplitz matrix can be embedded
in its circulant extension, as illustrated for the simple example with
s,=n,=3

& & 8 |73 N
2 & & | & 73
V3 V2 81 |8 &
& 73 1| & &
& 8 V3|72 &

In the same way, a BTTB matrix can be embedded in a block circulant
matrix. Thus, matrices (8) and (21) can be embedded in block circulant
matrices, in which also each Toeplitz block G;r) and G;’) is embedded
in a 2s, — 1) X (25, — 1) circulant matrix. This yields a matrix that is
Block Circulant with Circulant Blocks (BCCB). It is the structure of a
BCCB matrix that facilitates the use of the 2DFFT to efficiently evaluate
forward matrix multiplication with a BTTB matrix. Specifically, BTTB
matrix-vector multiplication can be applied at reduced computational

cost by using a BCCB extension combined with the FFT for implement-
ing a discrete convolution, Vogel (2002). The required components that
provide the FFT approach are now discussed.

Definition 2 (Exchange Matrix). The exchange matrix is the m x m
matrix J,, which is everywhere 0 except for 1’s on the principal counter
diagonal.

Given arbitrary vector x of length m, with entries x;, 1 <i < m, then
J,x =y wherey; =x,,_,,; it is the vector with the order of the entries
reversed. Equivalently, for matrix A with rows a;, 1 < i < m, then
J,A = B where B is the matrix with rows in reverse order, b, = a,,_;, .
Further, multiplying on the right reorders the columns in reverse order.
Specifically, JT = J,,, and thus y” = (J,x)T = xTJT =xTJ, and the
column entries of y are in reverse order as compared to x. In the same
way, AJ,, gives the matrix with the columns in reverse order. In MatLAB
the exchange matrix is implemented using the functions flipud and
fliplr, for “up-down” and “left-right”, for multiplication with J,, on
the left and right, respectively.

The exchange matrix yields a compact notation for the entries that
define the circulant extension of a Toeplitz matrix. For matrix G;’)
which depends on rj, as given in (9), then the defining first row for
the circulant extension for each symmetric Gfl’) is given by

ext __ l'q
ret = <‘st_qu(2 : Sx)>. 31D

For the unsymmetric case for G,(Ir), as given in (23)-(24), the circulant
extension uses

ext _ cq ext _ I'q
% <Jsx,qu(2 : sx)> and r, <Jsx,lcq(2 : sx)>‘ (32

An equivalent expression applies for the circulant extension for each
G_E.r) as defined in (25)-(26) using the extension for ¢; and ¥;. While
(31) and (32) can be used as the defining vectors to explicitly generate
the extensions (G and (G_y))CirC as Toeplitz matrices, again using
toepl itz(cj"‘, rj.’“), we note that the intent is to define the vectors that
define the extensions but not to generate the extensions. Moreover,
r;’“ is as noted defined explicitly from cfl’“ and we focus entirely on
the columns ¢%*'. We also note that this definition for generating the
extension differs from that used in Li et al. (2018), Vogel (2002) and
Zhang and Wong (2015); the extra 0 is omitted for convenience. We
also directly define the circulant extension instead of performing a
series of transformations.

We now turn to the defining set of vectors needed for the circulant
extension of (21), which depends on its first block row and column as
given in (22). Using the same analogy as with the block Toeplitz matrix
and using Definition 1, the extension for G requires the extensions
of C and R in (22), thus for entries G;’) and G for 1 < j < Sy
Moreover, the circulant extension, as in the one-dimensional case will
depend entirely either on the extension of C or R, denoted by C**' and
R, but again we do not form toeplitz(C®™', R%"). We assume the use
of the extension for C only, and note that C**' is completely defined by
T¢re, dropping the dependence on slice r. Then, using (32)

circ _ [gext ... gext
Teire — (cl csy

gt ), (33)

y
and is of size (25, — ) x (25, — 1)

Using u = vec(U) to denote the vectorization of matrix U, the two-
dimensional convolution product G™u, can be computed using T°"
which defines the circular extension of G, Vogel (2002). Suppose that
(G")eire is defined by T°™, and let w = vec(W). Then, the reshaped
convolution product array((G™)“*°w), where array() is the inverse of
vec(), can be computed by

array((G")w) = T % W = if££2(££82(T°"°). « ££62(W)).  (34)

Here x denotes convolution, fft2 denotes the two-dimensional FFT,
and ifft2 denotes the inverse two-dimensional FFT, and we introduce
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Teire = £££2(T°") and W = £ft2(W). To obtain GMu from this
product, notice that G is in the upper left block of (G")¢". Thus,
defining W of size (25, — 1) X (25, — 1) by

W= U 0s,(5,-1) , (35)

O, —ns,  Ots=1ys,-1)

using 0,,, to denote a matrix of zeros of size m X n, and with U of size
5, X 5,, array(G"u) is the upper left s, xs, block of array((G")"w) in
(34). Moreover, array((G")“®) does not need to be formed explicitly
for this product. Instead elements of T° are calculated using (33).

It is immediate that a set of equivalent steps can be used to calculate
(G™MTy, where v = vec(V) for matrix V, since (G")T is also BTTB,
and the defining first column for ((G®)")7 is the first row of (G")cire,
Thus, as shown by Bruun and Nielsen (2007), multiplication using the
transpose matrix is then represented by the circulant extension as

array((G)™)Ty) = ifft2(conj(f£62(T))- * F££2(W)). (36)

Although computing conj(££t2(7°")) once and storing the result may
provide small computational reduction in some situations, this is gen-
erally unnecessary.

3.1. Convolution with domain padding

Suppose that padding is introduced around the domain and, consis-
tent with (14) and (28), assume that the indices for r, and c, are from
the first row and column of the padded domain. Then, for the case of

the symBTTB matrix, (31) is replaced by

re’“ = l'q > N Cext = ( Cq > . (37)
q <Jsx_]cq(2 T sy) q Ty 2t ny)

where r, and ¢, are defined using (15) and (16), respectively. But now
since r, is defined by ¢, for the symmetric case we can use just c*'.
Each vector is of length s, for [ and n, — 1 for J, _ 10,2 ny)). Then
using (18), the BCCB extension is defined by the replacement of (33)
by the matrix

circe — cexl cexl ccxl cexl cexl ccxl
T ( L4py, Sytpy, Sy Py 2 1 Py )

(38)

of size (s, +n, — 1) X (s, + n, — 1). For the unsymmetric case (38) is
replaced by
ire =( goxt ot eoxt c;’“ éTX[ ot ), (39)

HF&L Si‘ﬂ’yL s)+p),R Py
where é?’“ is obtained as in (37) but using ¢ ] and iy from (28). In any
case in which py, =0 the end block is removed. Moreover, due to
G"u of size 5,5, when u is of size n.n,, the definition of W in (35) is
replaced by
w U
O(SX—l)ny

Onx(xy—l)

0 , UeR™, (40)
(s,=1)(s,~1)

The transpose operation can still be obtained directly from T, but
notice that for v of size s,s,, (G")Tv and in this case
(35) is replaced by

W 14
O(nx—l)sy

We illustrate in Fig. 4 the matrix T°" that is generated using the row
and column entries from the BTTB matrix G as shown in Fig. 3.

is of size nn,,

0
=Dy e gy, (41)
O(rlx—l)(n},—l)

4. Optimizing the calculations for specific kernels

Chen and Liu (2018) demonstrated that considerable savings are
realized in the generation of T°" through optimized calculations of
the entries for forward modeling of the gravity problem. Here we

[e]
-
(gl
~
(]
w
(g]
F
(]
w
(el
N

Fig. 4. The configuration of 7", where the arrow denotes the direction of the vector
in ascending order. The dotted line indicates that the first elements of each r, and 7,
are omitted in the construction of T°rc.

focus on both improving that optimization, and with the generation of
an optimized and stable calculation for the entries of the magnetic
kernel, Bhaskara Rao and Ramesh Babu (1991).

4.1. Gravity kernel calculation

The gravity kernel generates a symBTTB matrix for each slice in
depth (z-direction). According to Boulanger and Chouteau (2001), and
as used in Chen and Liu (2018), the contribution of the kernel from
the prism at point (p, ¢) on the volume grid, (where x points East and
y points North), to the station at location (a, b,0), is given by

2
D (=D =1 (=D

1 =1

XiY;
7, arctan 7k

k™ ij

™
MN

h(a,b,¢)yg =71

I
=~

i

=X, In (P4 +0,) =1, 1n (P +X,.)>.

Here y is the gravitational constant and

Xy=x, 1 — Xy=x,—a

Y=y, =b Yy=y,-b

Zi=z,_1—¢, Zy=z.—c (42)
_x2 2 k _  [p2 2
=X[+7T; Pi=2/R,+7Z.

Specifically, we need

XY XY),
Z z(—l)iﬂﬂ <<Z] arctan ( ) — 7, arctan ( )u ) _
tJ Zi(Ry); Z,(R

2ij

X, (In((R));; + ;) = In((Ry);; + Y )) = T; (In((R)),; + X;) — In((Ry);; +X,))) -

Here

=4/RM2+72, Ry=1/RA2+72,

and operations involve elementwise powers and multiplications. Using
the notation in Chen and Liu (2018), we write the summand, ignoring
Zj(_l)iJerrl, as

((Z((CMS),; — Zy(CM6),;) — X, ((CM3),; — (CM4);;)

- T, ((CML),; - (CM2),;)).

Notice that (CM3),; — (CM4);; is a logarithmic difference (and also for
(CM1);; — (CM2);;). Thus, the differences can be replaced by

X+ R T+R
CMX=In L and CMY =1n L (43)
X+ R, T+R,

Moreover, we can directly calculate

XT);; XT);
CMSZ:Zlau'ctan R
Zy(Ry)y;

————, and CM6Z = Z, arctan
l(Rl)Ij
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Fig. 5. Running times for generating G using Algorithms 1 and 3 and 7' using Algorithms 2 and 4 with 0% padding in Fig. 5(a), and with 5% padding in Fig. 5(b).

Hence, the summand of the triple sum is replaced by
(((cM52),; - (CM62),;) - X,(CMY),; - T;(CMX),;) =CM,,.

Now, X, X, are entries from X, and T, T, are entries from Y.
Thus, given (7) and assuming that X and Y are stored in row vectors
we can form matrices XY = X(:). # Y and R? = X(:)."2 + Y.*2 which
are of size (n, + 1) X (n, + 1), and are independent of the z coordinates.
Thus, we save substantial computation by only calculating XY and R?
once for all slices, and for each slice we only calculate one row of the
matrix. Since these are based on matrices we can calculate the double
sum for multiple coordinates by shifting each ij matrix to the right in
i and in j with the appropriate sign, and obtain the entire sum in one
line by correct indexing into the matrices. Suppose that CM has size
(n, +1)X(n,+1) then we obtain a matrix that can be reshaped to a row
vector

g=CMQA :n,1:n)-CM1 :n,2:n,+1)-CMQ2:n,+1,1:ny)

+CMQ2 :n +1,2:n,+1)
h(a;,b;,0) = —yg().

Thus, we calculate the first row of depth block r by an evaluation of (5)
for all coordinate contributions to station 1 in one step. Note that the
simplification (43) is a further optimization of the calculation of entries
for G as compared to that given in Chen and Liu (2018). The details
of the use and application of the gravity problem in the context of
forward algorithms for symBTTB matrices are provided in Algorithms
1-2 with the gravity function in Algorithm 5.

X

4.2. Magnetic kernel

We now extend the idea of the optimization of the gravity
kernel calculation to the calculation of the magnetic kernel, under
the assumption that there is no remanence magnetization or self-
demagnetization, so that the magnetization vector is parallel to the
Earth’s magnetic field.” Although the magnetic kernel is not sym-
metric, its discretization does lead to a BTTB matrix, and hence the
discussion of Section 2.2.3 is relevant. We apply the simplifications
of Bhaskara Rao and Ramesh Babu (1991) for the evaluation of the

magnetic kernel. Using their notation
Bhaskara Rao and Ramesh Babu (1991, eq. (3))
h(a,b,0),, = HG In F, + G,In F, + G5 In F; + G, F, + G5 F). (44

2 We assume that the total field is measured in nano Teslas; introducing a
scaling factor 10° in the definitions.

The constants g; = HG,> depend on the volume orientation and
magnetic constants, Bhaskara Rao and Ramesh Babu (1991), and
here we assume that x points North and y points East. Taking advantage
of the notation in (42), the variables F; are given by

F - P2+ X)(PL, + X)(P1, + X D@, + X))
(Pl +X)(P2, + X)(P2, + X (P, + X))
£ e (P2, + T)(PL, + TP+ To)(P2, +Ty)
@1+ TD@E + L@, + T)PL, + Ty)
F = P2, + 2P}, + Z)(P), + Z))(P3, + Zy)
(P, + Zy)(P3, + Z))(P2, + Z))(P), + Z,)

X7y X2y X7y Xi1Zy
F, = arctan 5 — arctan 5 — arctan 5 + arctan -
nT2 P, LSTRS LSTRS
X7, X472, X7,
arctan + arctan + arctan —
»T2 P, Ty Py T
124
— arctan ;
nTl
Y,Z Z
Fs5 = arctan 22 2 _ arcta 22 2 _arcta ) +arctan — 2
P22X2 P12X1 P21X2 P“X,
arctan ! + arctan ] + arctan 11 !
22X2 P12X1 l:’21X2
1,7,
— arctan 1
1%

Hence calculating (44) we can use (42) to calculate X, Y and R? once
for all slices. We note that minor computational savings may be made
by calculating for example R, + X; within the calculations for & but
these are not calculations that can be made independent of the given
slice. It may appear also that one could calculate ratios X/, with
modification of the calculations for F, and Fs, but the stable calculation
of the arctan requires the ratios as given. Otherwise sign changes in
the numerator or denominator passed to arctan can lead to changes
in the obtained angle. In MatLaB we use atan2 rather than atan for
improved stability in the calculation of the angle. The details of the
use and application of the magnetic problem in the context of the
forward algorithms for BTTB matrices are provided in Algorithms 3-4
with the magnetic function in Algorithm 6.

3 Note that constants G, are unrelated to the sensitivity matrices.
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Fig. 6. Mean running times over 100 trials for forward multiplication using Gi..yicy> Gragnetics> Tgravitys @A Tpagnersc (left y-axis) and mean errors over 100 trials E,,,,;, and
Eagnersc for forward multiplication using Gip,ysyy Versus T,y and Gpugneesc versus Tp,....;. respectively (right y-axis) are shown for 0% padding in Fig. 6(a), and 5% padding
in Fig. 6(b).
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Fig. 7. Mean running times over 100 trials for transpose multiplication using Gy .yivys Guagnesic> Tgravitys @Nd Tpagersc (left y-axis) and mean errors over 100 trials Eg,,;,, and
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in Fig. 7(b).
Table 1

Dimensions of the volume used in the experiments labeled as problems 1 to 12
corresponding to scaling each dimension in (25,15,2) by the problem number (Prob.)
and increasing m by a factor 8 for each row. In the last two columns the memory
requirements, in Gigabytes (GB), calculated in Marias, where the entries for rows 7 to
12 are the estimates given by MartLas using try zeros(m,n), which gives an exception
for matrices that are too large for storage in the given environment and reports the
estimated requirements in GB to just one decimal place.

Prob. (Sy» Sy n,) m n n (p=0.05%) GB G GB frir
1 (25,15,2) 375 750 918 .000225 .000005
2 (50,30,4) 1500 6000 7616 .007200 .000037
3 (75,45,6) 3375 20250 24402 .054675 .000127
4 (100, 60, 8) 6000 48000 58080 .230400 .000303
5 (125,75,10) 9375 93750 113710 703125 .000594
6 (150,90, 12) 13500 162000 199200 17.4960  .001028
7 (175,105,14) 18375 257250 310730 35.2 .001634
8 (200,120,16) 24000 384000 464640 68.7 .002441
9 (225,135,18) 30375 546750 662450 123.7 .003478
10 (250,150,20) 37500 750000 916 320 209.5 004774
11 (275,165,22) 45375 998250 1206500 337.5 006358
12 (300,180,24) 54000 1296000 1568200 521.4 .008258

5. Numerical validation

We now validate the fast and efficient methods for generating both
the symmetric and unsymmetric kernels relating to gravity and
magnetic problems. We compare the computational cost of direct

calculation of the entries of the matrix G that are required for matrix
multiplications, with the entries that are required for the transform
implementation of the multiplications. We also compare the storage
requirements for these matrices. Thus, we compare Algorithms 1 and 2
with all entries calculated using Algorithm 5, and Algorithms 3 and
4 with all entries calculated using Algorithm 6, for the symmetric
gravity, and unsymmetric magnetic kernels, respectively. The 12
problem sizes considered are detailed in Table 1. They are generated
by taking (s, s,,n;) = (25,15,2), and then scaling each dimension by
1 to 12 for the test cases. We compare the cases with p = 0% and
p = 5% padding across x and y dimensions, rounded to the nearest
integer. Thus, m = 5,5, and n = [(1+p)s, ] [(1+p)s,]n,. All computations
use MartiaB release 2019b implemented on a desktop computer with an
Intel(R) Xeon (R) Gold 6138 processor (2.00 GHz) and 256 GB RAM.

First, note that the last two columns of Table 1 report the esti-
mated memory requirement to store the arrays G and 7, which is
independent of whether this is for the gravity or the magnetic
problem. These are the results without padding, but the difference
between the padded and unpadded case is insignificant in comparison
to the memory requirements for each of these arrays. For the problem
of size m X n, matrix G has mn entries, corresponding to 8mn bytes and
complex array 7' uses approximately 8m entries for each depth layer,
for a total of 8mn, = 8n entries or 64n bytes, here using that one floating
point number uses 8 bytes and noting that 1 byte is 10~° GB.
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Table A.2
Parameters and variables in the codes. The parameters are defined in Table A.3.

prob_params Sxs Sys Mz Dy s Pxgs Py s Py s M Hys M 5 Ry Do, Dy,

g5X, gSy, 85z Grid sizes 4,, A, and 4, .

That That.forward = 7", That.transpose = 7"

z_blocks Depth coordinates, increasing, z,

D Declination of geomagnetic field and magnetization vector
1 Inclination of geomagnetic field and magnetization vector
F Intensity of the geomagnetic field in nT (10~ F in T)

H = ]0;"_ Magnetic field intensity (A/m) in SI units

H=10°H = ﬂ Assumes the field is measured in nT

Algorithm 1: G = sym BTTB(gsx, gsy, z_blocks, prob_params)
Entries of padded symBTTB matrix. Function gravity.

Input: See Table A.2 for details;

gsx, gsy, z_blocks : grid spacing in x and y and z coordinates;
prob_params required parameters

Output: symBTTB real matrix G of size m x n.

Extract parameters from prob_params ;

Initialize zero arrays: G, Gr, Grg;

Sizes: nX = s, + max(py, , py,), 1Y = s, + max(p,, ,py,);

Form distance arrays X and Y according to (20);

Form X2= X2, Y2=Y% XY = X(:).* Y and R= X2(:) +Y2;
forr=1:n, do

Set z; = z_blocks(r), z, = z_blocks(r + 1);

Calculate slice response at first station:

g = gravity(z;,z,,X,Y, XY, R);

9 for g=1:nY do

© N & U DA W N =

10 Extract ¢ , r, from g : use (15), (16);

11 Generate: Grqg = toeplitz(cq, r,): use (14);
12 end

13 fOrj=[pyL+11—112,125y+pyR]d0

14 ‘ Build first row of Gr using (19);

15 end

16 for j=2:5,do

17 | Build j*" row of Gr using (17) and (18);
18 end

19 Assign: Gr to r'! block of G;

20 end

In the results, we reference the kernels generated by Algorithms 1,
3’ 2! and 4 as Ggravity’ Gmagnetic! Tgravity’ and Tmagnetic respeCtiveIY'
These values are plotted on a “log-log” scale in Fig. 5, without and
with padding in Figs. 5(a) and 5(b), respectively. The problem sizes

are given as relevant triples on the x-axis. The problem cases from 8 to

Table A.3
Notation adopted in the discussion.

Algorithm 2: That = sym BTTBFFT(gsx, gsy, z_blocks, prob_params)
Transform of padded symBTTB matrix. Function gravity.

Input: See Table A.2 for details;

gsx, gsy, z_blocks : grid spacing in x and y and z coordinates;
prob_params required parameters

Output: Array That

Extract parameters from prob_params ;

Initialize zero arrays: T' and That for T¢" and 7<ire;

Sizes: nX =5, + max(p, , Py ) 1Y = s, + max(py, , py.);

Form distance arrays X and Y according to (20);

Form X2 =X2,Y2=Y2, XY =X(:).*Y and R= X2(:) + Y2;
forr=1:n, do

Set z; = z_blocks(r), z, = z_blocks(r + 1);

Calculate slice response at first station:

g = gravity(z, z;, X, Y, XY, R);

9 forj=[1+pyL DSyt Py Syt oy, 1210 py, ] do

® N O U A WN

10 Extract r; from g : use (16);

11 Augment column of T, use (38) ;
12 end

13 Take FFT of T: That(:, :,r) = ££t2(T) ;
14 end

12 for the direct calculation of G are too large to fit in memory on the
given computer. It can be seen that the generation of G is effectively
independent of the gravity or magnetic kernels; Ggrayitys Gpagnetic
are comparable. But the requirement to calculate extra entries for the
unsymmetric magnetic kernel is also seen; Tyrayssy < Thagretic- ON
the other hand, the significant savings in generating just the transform
matrices, as indicated by timings Ty yi¢y, and Tpagnesic, as compared
t0 Ggrayitys aNd Gpagnersc is evident. There is a considerable computa-
tional advantage to the use of the transform for calculating the required
components that are needed for evaluating matrix—vector products for

these structured kernel matrices.

Of greater significance is the comparison of the computational cost
of direct matrix multiplications, b = Gu and d = GT'v, as compared with
the transform implementations for these products, using Algorithm 7.
We consistently partition u € R"™"": into n, blocks, u, € R"",
1 <r < n,. Then,

(6" v
Ny 2) T
Gu= Y G"u,, and GTy = (G ) v ,
(G<nz>)T v

Sy # true stations in x

sy # true stations in y

[/ # coordinate blocks in x, y, z
Pxy > Pxgs Py Left, right, total padding: x

Py, Py Py Left, right,total, padding: y

X, x,=(p—1-p A, 1<p<n.+1
Y, Vo=(@—-1-p, )4, 1<qg<n,+1
z, z,=(r—-DA, 1 <r<n,+1

d, h, ¢ Forward Model see (1)

G e R™" (G™)ys = h(s;)),q See (5)

G € R GV =G, 1<q<n,

[ G;” = toeplitz(c,,r,)

BTTB Block Toeplitz-Toeplitz blocks
BCCB Block Circulant-Circulant blocks
c:“, e Defining (G")°ire

Tere Components of BCCB

si; = (. b;) Station location

m=s.s, # measurements

A, 4,4, Grid sizes in x, y, z
ny ne =8y + Py

n, n,=s,+p,
n=nmnn, Volume Dimension
n, =nn, Layer Dimension

Cogr Prism pgr in xyz
h(S7) pgr Projection c,,, to s;;
G e R Depth r Contribution

G(r) € R5Xn.
J

Cj,

GV =69 1<j<s,

- ) _ Lo
F; G/.’ = toeplitz(¢, F;)

symBTTB Symmetric BTTB
J,, Definition 2 Exchange matrix
[SAr i Defining (G®)ir¢
Feire £££2(T°") : 2DFFT
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Algorithm 3: G = BTTB(gsx, gsy, z_blocks, prob_params, D, I, H)
Entries of padded BTTB matrix, Fig. 3. Function magnetic.

Algorithm 4: That = BTTBFFT(gsx, gsy, z_blocks, prob_params, D, I, H)
Transform of padded BTTB matrix, Fig. 3. Function magnetic.

Input: See Table A.2 for details;

gsx, gsy, z_blocks : grid spacing in x and y and z coordinates;
prob_params required parameters

Output: BTTB real matrix G of size m X n.

Extract parameters from prob_params ;

Calculate constants g; = H G, for (44), Bhaskara Rao and
Ramesh Babu (1991, (3));

Initialize zero arrays: G, Gr and row and column cell arrays,
Fig. 3;

Sizes: nX = s, + max(pr,pxR), nY =s,+ max(pyL,pyR);

N o=

w

Form distance arrays X and Y according to (30);

Form X2 =X2,Y2=Y2 and R= X2(:)+Y2;
forr=1:n, do

Set z, = z_blocks(r), z, = z_blocks(r + 1);

Calculate grow{1} = h(11),,, 1 <p<nX, 1<g <nY;
10 forj=2:sy+pyLd0

11 ‘ Calculate grow{j} = h(1j)
12 end

13 Calculate : gcol{1} = h(ij);, 1 <i<nX, 1<j<nY;
14 forg=2:s,+p, do

© ® N o u »

pq’>

pis 1 < p<nX;

15 ‘ Calculate : gcol{q} = A(il),,, 1 <i < nX;

16 end

17 forj=pyL+1:—1:2do

18 Generate G,r: using gcol{1} and grow{j}, (28) for R in
(29);

19 end

20 forq:l:sy+pde0

21 Generate Ggqr: using gcol{q} and grow{1}, (27) for R in
(29);

22 end

23 forj:pyL+2:—1:2,1Zsy+pyLd0

24 Generate Grj: using gcol{1} and grow{j}, (28) for C in
(29);

25 end

26 Build Gr in (29) using C and R;
27 Assign: Gr to r'! block of G;
28 end

where v € R**r. 100 copies of vectors u € R" and v € R™ are
randomly generated and the mean times for calculating the products
over all 100 trials, for each problem size, are recorded. We also record
the differences over all trials in the generation of b and d obtained
directly for G and Gpagnetsc and by Algorithm 7 for T4, and
Thagnetic- Then, Egp. iy and Ep 0.5 are the mean values of the rela-
tive 2-norm of the difference between the results produced by Ggryvity
versus Tyrqysty, and fOr Gragneric VErSUS Toapnetsc, respectively, for both
forward and transpose operations. The results are illustrated in Figs. 6
and 7 for the generation of Gu and G"'v, respectively. In each case the
timing is reported on the left y-axis and the error on the right y-axis.
Again all plots are on the “log-log” scale, and Figs. 6(a) and 7(a), and
6(b) and 7(b), are without and with padding, respectively. Figs. 6 and
7 show significant reductions in mean running time when implemented
without the direct calculation of the matrices. Moreover, the results are
comparable, E,,.;., S 10e for both forward and transpose operations,
and Ejgreric S 10%¢, where ¢ is the machine accuracy. Thus, in
all cases, Tyroyiy and Tipnee:c Show a significant reduction in mean
running time for large problems, and allow much larger systems to be
represented. Indeed, the largest test case for Ty oyi¢y and Tpagnetsc IS DY
no means a limiting factor, and it is possible to represent much larger
kernels.

gravity

Input: See Table A.2 for details;

gsx, gsy, z_blocks : grid spacing in x and y and z coordinates;
prob_params required parameters;

D, I, H declination, inclination and intensity of magnetization
Output: Array That

Extract parameters from prob_params ;

Calculate constants g; = HG, for (44), Bhaskara Rao and
Ramesh Babu (1991, (3));

Initialize zero arrays: T and That for T7°" and 7°;

Initialize zero arrays for and row and column cell arrays, see
Fig. 3;

N =

S W

5 Sizes: nX =s,+ max(pXL,pxR), nY =s,+ max(pyL,pyR);

6 Form distance arrays X and Y according to (30);

7 Form X2=X2,Y2=Y? and R= X2(:)+Y2;

8 forr=1:n,do

9 Set z; = z_blocks(r), z, = z_blocks(r + 1);

10 Calculate grow{1} = h(11),,, 1 <p <nX, 1< q<nY;

11 forj=2:sy+pyLdo

12 | Calculate grow{;} = h(1j),;, 1 < p < nX;

13 end

14 Calculate : gcol{1} = h(ij);, 1 <i<nX, 1<j<nY;

15 forq=2:sy+pde0

16 ‘ Calculate : gcol{q} = h(il);,, 1 <i < nX;

17 end

18 forj:pyL+l:pyL+syd0

19 Augment column of T, gcol{1} and grow{;}, (28) with
(39);

20 end

21 forq:sy+pyRZ—1:2d0

22 Augment column of T, gcol{q} and grow{1}, (27) with
(39);

23 end

24 forj:l:pyL do

25 Augment column of T, gcol{1} and grow{;j}, (28) with
(39);

26 end

27 Take FFT of T: That(:, :,r) = ££t2(T);

28 end

Remark 1 (Maras ££ft2). The Marias £fft2 function determines an
optimal algorithm for a given problem size. On the first call for a
given problem size, ££t2 uses the function fftw to determine optimal
parameters for the Fourier transform. Thus, the first time fft2 is
called generally takes longer than subsequent instances. We mitigate
this effect by first removing the variable dwisdom within fftw, and
then setting the planner within fftw to exhaustive. The obtained
dwisdom is saved. This process is repeated for generating 7', forward
multiplication, and transpose multiplication. Then for each trial, the
appropriate stored values for dwisdom are loaded before each use of
fft2. Hence the results are not contaminated by artificially high costs
of the first run of fftw for each problem case.

6. Data availability and software package

The software consists of the main functions to calculate the BTTB
and symBTTB matrices, with padding, and the circulant matrices T
that are needed for the 2DFFT. Also provided is a simple script to
test the algorithms using the gravity and magnetic kernels. All
the algorithms are described in Appendix B and the software is open
source and available at https://github.com/renautra/FastBTTB, and
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Algorithm 5: g = gravity(z;,z,, X,Y,XY,R)
Entries of sensitivity matrix G for the gravity problem.

Algorithm 6: g = magnetic(z,, z,, X, Y, R, gc))
Entries of sensitivity matrix G for the magnetic problem.

Input: Depth coordinates z, and z, for the slice;

X: Distances of x—coordinates from station 1 size nx;

Y: Distances of y—coordinates from station 1 size ny;

XY: the product X(:). * Y which is a matrix of size

(nx + 1) X (ny + 1);

R: the matrix of size (nx+ 1) X (ny+ 1) of entries X(:)."2 and Y ."2;
Output: Response vector g of length (nx + 1)(ny + 1);

[nx, ny] = size(R);

Ry = sqrt(R + z3);

R, = sqrt(R + z3);

CMX = (log((X(:) + R)./(X() + RY))). x Y;

CMY = (log((Y + R)./(Y + Ry))). * X(2);

CM5Z = atan2(XY, R z;)z;;

CM6Z = atan2(XY, R,z,)z,;
CM56=CM5Z -CM6Z,

CM = (CM56 - CMY — CMX)y;
g=—(CM( :nx—1,1:ny—1)—CM(l
nx,1 :ny—1)+CMQ : nx,2 : ny));

© ® N & U h W DN

[
(=]

tnx—1,2:ny)—-CMQ :

described at https://math.la.asu.edu/~rosie/research/bttb.html. Pro-
vided are the scripts that are used to generate the results presented in
the paper. The variables used in the codes are described in Tables A.2
and A.3. The TestingScript.m is easily modified to generate new
examples and can be tested within different hardware configurations
and versions of MartiaB. A safety test for memory usage in generating
large scale examples is provided at the initialization of each problem
size, so that problems too large to fit in memory will not be used
in generating the matrix G directly. The presented implementation
assumes uniform grid sizes in the x and y dimensions, i.e. fixed 4, and
4, throughout the domain, but using depth layers of different heights,
different A, is easily implemented by appropriately picking the input
coordinate vector z_blocks.

7. Conclusions and future work

We have provided a description of the generation of efficient codes
for implementing forward and transpose operations with BTTB ma-
trices. These are used in geophysical forward modeling when the
kernels are of convolution type and generate matrices with the required
structure, which occurs when the observation points are on a uniform
grid. Efficient generation of matrix operations with minimal storage
makes it feasible to perform large three-dimensional modeling with
these kernels. A novelty of this work, beyond existing descriptions in
the literature, is the development of the approach for the magnetic
kernel and the inclusion of padding in the coordinate volume. The
approach for finding operations G”m explicitly given knowledge of the
BTTB structure of G and its BCCB embedding is provided. It should
be noted that while the algorithm requires that the observation points
are on a uniform grid, this is not necessarily a limiting factor of the
approach, since interpolation from non-uniform to uniform points is
possible. Moreover, while it is assumed that the volume is discretized
so that the observation points occur at one point on the surface for each
prism of the coordinate domain, there is no requirement that the prisms
are all uniform in the depth dimension, and it is feasible therefore
to implement with different resolutions in the depth dimension of the
subsurface volume. Thus, the developed software can be integrated into
an inverse modeling problem, in which given data d, model parameters
m are desired. This is planned for future work.

Input: Depth coordinates z, and z, for the slice;

X: Distances of x—coordinates from station ;

Y: Distances of y—coordinates from station ;

R: Matrix of entries X(:)? and Y?;

gc vector of constants, Bhaskara Rao and Ramesh Babu (1991, 3);
Output: Response vector g of length (¢ + 1)(k + 1);

¢ =length(X) — 1;k = length(Y) — 1;

R, = sqrt(R+zf);

R, = sqrt(R + z2);
Fi=((Ry(1:2,1:k)+X(:2)./(Ri(1:¢,1:k)+X(1:7))).=*
(RIQ:Z+1,1 1 +XQ: 0+ D)J(RyQ2:+1,1: k) +XQ2:
A (R :E4+1,2:k+D)+X(1:20)./(Ry(1 1 £+1,2:
k+D+XA:7))*(R2:7+12: k+1D)+X(2:
CHD)JRQ:CHL2k+ D)+ X2 £+ 1))
F,=((Ry(1:2,1:k)+Y( :k)./(Ri(1:7,1:k)+Y(1:k))). =
(RiQ:+1,1:l)+Y(1 1 k).J(Ry2 : £+ 1,1 : )+ Y( : k). =
(RiA:Z+ 1,2 k+1)+YQ2: k+1)./(Ry(1 : £+1,2:
k+D+Y2:k+1).*(RQ2:7+1,2 : k+1)+Y(2:
k+1)./(RIQ2:+1,2: k+D)+YQ2: k+ 1))

Fy=(Ro(1: £,1: k) +22)./(Ry(1 : £,1 1 k) +z1)). * (R, (2 :

CH+ 11k +z1)./(Ry2: ¢+ 1,1 k)+22). %« (Ry(1:7+1,2:
k+D)+zD)./(Ry(1 : £+ 1.2 k+1)+22). % (Ry2: £+1,2:
k+1D)+22)./(RiQ2:+1,2: k+1)+zD);

7 Fy=atan2(X2 : £+ Dzy, R 2 : £+ 1,2 k+1). % Y2 :

k+ 1)) —atan2(X(1 : £)z, Ry(1 : €4+ 1,2 : k+1). Y2 : k+1))—
atan2(X2 : £+ 1)z, R,2 : £+ 1,1 : k). * Y(1 : k)) + atan2(X(1 :
)2y Ry(1 1 2,1 1 k). % Y(1 : k) —atan2(X (2 : £+ 1)z, R(2 :
CH1L2:k+1). Y2 k+ D) +atan2(X(1 : £)z;, Ry (1 : £+ 1,2
k+1). Y2 : k+ 1)) +atan2(XQ2 : £+ Dz, Ry Q2 : £+ 1,1 : k). =
Y(1: k))—atan2(X(1 : )z, Ry(1 : £,1 : k).« Y(1 : k));
Fs=atan2(Y(2 : k+ D)zy, RyQ : £+ 1,2 1 k+1). % X2 :

£+ 1) —atan2(Y(2 : k+ 1)z, Ry(1 : £+ 1,2 1 k+1). * X(1 : £)) —
atan2(Y(1 : k)zp, R,2 : £+ 1,1 : k). * X(2 : £+ 1)) +atan2(Y (1 :
K)zy, Ry(1: £,1 1 k). % X(1 : £)) —atan2(Y (2 : k + 1)z, R;(2 :
C+1,2:k+1).xX2:C+1)+atan2(Y(2 : k+ 1)z, Ry(1 :
412 k+1). % X(1:2) +atan2(Y(1 : k)z;, R, Q2 : £+1,1:
k).* X2 :¢+1)—atan2(Y(1 : k)z, Ri(1 : 2,1 : k). = X(1:2));
g = (ge(1) = log(Fy) + gc(2) * log(F,) + gc(3) * log(F3) + ge(4)

Fy + gc(5) = Fs);

10 g =g(1);

v AW N =

[}
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Algorithm 7: b = mult_BTTB(That, X, f, prob_params)

This algorithm calculates the forward and transpose multiplica-
tion, Gx, or G'x as described in Section 3 using the embedding of
the BTTB matrix in a BCCB matrix and the 2DFFT. The transform
of (38) or (39) for symBTTB and BTTB, respectively, is precom-
puted and provided in That. See Table A.2 for definitions of input
parameters.

Input: That for T see Table A.2;

x : vector for forward or transpose multiplication;

t: 1 or 2 for forward or transpose multiplication, respectively;
prob_params : required parameters see Table A.2

Output: vector: b of size m or n, for t = 1, 2, respectively.

1 Extract parameters from prob_params ;

2 Initialize zero array for b and W;

3 if +==2 then

4 Initialize W according to (41) ;

5 Take transform of W: W = f£t2(W);

6 end

7 for j=1:n, % For dll layers of domain do

8 switch 7 do

9 case I

10 Initialize W according to (40);

11 Take transform of W: W = ££t2(W);

12 Form convolution (34):
W = real(ifft2(That(:, :,j)- * W));

13 Extract and accumulate top left block:
b =b +reshape(W(l : s,,1:5,),m,1);

14 end

15 case 2

16 Form convolution (34):
Z = real(ifft2(conj(That(:, :, j)- * W)));

17 Extract top left block and assign to output:
b((j = Dn, +1: jn,) =reshape(Z(l : ny,1 : ny),n,, 1)

18 end

19 endsw

20 end

Appendix A. Notation and parameter definitions

The notation and parameters is detailed in two tables. The first is
for the variables used for the codes, and the second for the notation in
the paper.
Appendix B. Algorithms

An overview of the required algorithms as described in Sections 2-3
are provided in Algorithms 1-2 using the gravity function in Algo-

rithm 5 and in Algorithms 3-4 with the magnetic function in Algorithm
6. The convolution multiplication is provided in Algorithm 7.
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