
Contents lists available at ScienceDirect

Computers and Geosciences

journal homepage: www.elsevier.com/locate/cageo

Highlights

A tutorial and open source software for the efficient evaluation of
gravity and magnetic kernels

Computers and Geosciences xxx (xxxx) xxx

Jarom D. Hogue, Rosemary Anne Renaut<, Saeed Vatankhah

• Fast matrix–vector multiplications for gravity and magnetic kernels.
• Matrices with Block Toeplitz–Toeplitz Block structure.
• Padded domains and variable depths.
• Open source software in MATLAB.
• Memory efficient and computationally powerful.

Graphical abstract and Research highlights will be displayed in online search result lists, the online contents
list and the online article, but will not appear in the article PDF file or print unless it is mentioned in the
journal specific style requirement. They are displayed in the proof pdf for review purpose only.

http://www.elsevier.com/locate/cageo
http://www.elsevier.com/locate/cageo

Contents lists available at ScienceDirect

Computers and Geosciences

journal homepage: www.elsevier.com/locate/cageo

Research paper

A tutorial and open source software for the efficient evaluation of gravity and
magnetic kernels
Jarom D. Hogue a, Rosemary Anne Renaut a,<, Saeed Vatankhah b

a School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ, USA
b Institute of Geophysics, University of Tehran, Tehran, Iran

A R T I C L E I N F O

Keywords:
Forward modeling
Fast Fourier Transform
Gravity
Magnetic

A B S T R A C T

Fast computation of three-dimensional gravity and magnetic forward models is considered. When the
measurement data is assumed to be obtained on a uniform grid which is staggered with respect to the
discretization of the parameter volume, the resulting kernel sensitivity matrices exhibit block-Toeplitz–Toeplitz-
block (BTTB) structure. These matrices are symmetric for the gravity problem but unsymmetric for the
magnetic problem. In each case, the structure facilitates fast forward computation using two-dimensional fast
Fourier transforms. The construction of the kernel matrices and the application of the transform for fast forward
multiplication, for each problem, is carefully described. But, for purposes of comparison with the non-transform
approach, the generation of the unique entries that define a given kernel matrix is also explained. It is also
demonstrated how the matrices, and hence transforms, are adjusted when padding around the volume domain
is introduced. The transform algorithms for fast forward matrix multiplication with the sensitivity matrix and
its transpose, without the direct construction of the relevant matrices, are presented. Numerical experiments
demonstrate the significant reduction in computation time and memory requirements that are achieved using
the transform implementation. Thus, it becomes feasible, both in terms of reduced memory requirements and
computational time, to implement the transform algorithms for large three-dimensional volumes. All presented
algorithms, including with variable padding, are coded for optimal memory, storage and computation as an
open source Matlab code which can be adapted for any convolution kernel which generates a BTTB matrix,
whether or not it is symmetric. This work, therefore, provides a general tool for the efficient simulation of
gravity and magnetic field data, as well as any formulation which admits a sensitivity matrix with the
required structure.

1. Introduction1

Fast computation of geophysics kernel models has been considered2
by a number of authors, including calculation within the Fourier do-3
main as in Li et al. (2018), Pilkington (1997), Shin et al. (2006) and4
Zhao et al. (2018), and through discretization of the operator and cal-5
culation in the spatial domain as in Chen and Liu (2018) and Zhang and6
Wong (2015). Pilkington (1997) introduced the use of the Fast Fourier7
Transform (FFT) for combining the evaluation of the magnetic kernel8
in the Fourier domain with the conjugate gradient method for solv-9
ing the inverse problem to determine magnetic susceptibility from10
measured magnetic field data. Li et al. (2018) considered the use11
of the Gauss FFT for fast forward modeling of the magnetic kernel12
on an undulated surface, combined with spline interpolation of the13
surface data. Their work focused on the implementation of the model14
in the wave number domain and only applied the method for forward15

< Corresponding author.
E-mail addresses: jdhogue@asu.edu (J.D. Hogue), renaut@asu.edu (R.A. Renaut), svatan@ut.ac.ir (S. Vatankhah).

modeling. The Gauss FFT was also used by Zhao et al. (2018) for the 16
development of a high accuracy forward modeling approach for the 17
gravity kernel. Moreover, in earlier work, Shin et al. (2006) designed 18
a Fortran code for fast forward and inverse modeling of the gravity 19
model using the Fourier domain method using the FFT for achieving 20
fast computation. On the other hand, Gómez-Ortiz and Agarwal (2005) 21
provided a Matlab code for computing the geometry of a density 22
interface related to a known gravity anomaly by also employing the 23
FFT to achieve fast computation, but which is not related to forward 24
modeling for gravity models. 25

Bruun and Nielsen (2007), and subsequently, Zhang and Wong 26
(2015) introduced the use of the Block-Toeplitz–Toeplitz-Block (BTTB) 27
structure of the modeling sensitivity matrix for fast three-dimensional 28
inversion of three-dimensional gravity and magnetic data. For a 29
matrix with BTTB structure, it is possible to embed the information 30

https://doi.org/10.1016/j.cageo.2020.104575
Received 13 December 2019; Received in revised form 15 May 2020; Accepted 5 August 2020

http://www.elsevier.com/locate/cageo
http://www.elsevier.com/locate/cageo
mailto:jdhogue@asu.edu
mailto:renaut@asu.edu
mailto:svatan@ut.ac.ir
https://doi.org/10.1016/j.cageo.2020.104575

J.D. Hogue et al.

within a matrix of Block-Circulant Circulant-Block (BCCB) structure1
that facilitates fast forward multiplication using a two-dimensional2
FFT (2DFFT), see e.g. Chan and Jin (2007) and Vogel (2002). For3
three-dimensional modeling, Zhang and Wong (2015) exploited the4
two-dimensional multi-layer structure of the kernel, that provides BTTB5
structure for each layer of the domain, and performed the inverse6
operation iteratively over all layers of the domain. The technique is7
flexible to depth layers of variable heights, and permits the inclusion8
of smoothness stabilizers in the inversion, for each layer of the do-9
main. Zhang and Wong (2015) adopted the preconditioning of the10
BTTB matrix using optimal preconditioning operators as presented11
in Chan and Jin (2007) for implementing efficient and effective solvers12
for the inversion. On the other hand, Geng et al. (2019) used the13
BTTB structure for the development of a Bayesian inversion of gravity14
data, using an interesting inclusion of available a priori data, again15
referencing the Toeplitz literature, Chan and Jin (2007), but without16
providing extensive implementation details.17

A fast forward modeling of the gravity field was developed18
by Chen and Liu (2018), using the three-dimensional modeling of19
the gravity kernel as given in e.g. Boulanger and Chouteau (2001)20
and Haáz (1953). Their work extends the techniques of Zhang and21
Wong (2015) for taking advantage of the symmetric BTTB structure of22
the sensitivity matrix associated with a single layer of the gravity23
kernel, but offers greater improvements in the implementation of the24
forward kernel through the presentation of an optimized calculation25
of the kernel entries in this matrix. When the stations are on a grid26
that is uniformly staggered with respect to the coordinate grid on the27
top surface of the coordinate domain, redundant operations in the28
calculation of the sensitivity matrix can be eliminated.29

Here we consider the specific case in which uniform discretizations30
of first kind convolution Fredholm integral operators, combined with31
measurements obtained on uniform staggered grids in the x and y32
dimensions, yield sensitivity matrices with BTTB structure for each33
depth layer of the volume. These are symmetric for the gravity34
kernel, symmetric BTTB (symBTTB), Boulanger and Chouteau (2001),35
but symmetry is lost for the magnetic kernel, Bhaskara Rao and36
Ramesh Babu (1991). Hence further analysis for efficient computation37
of the general BTTB matrix is required. Here we demonstrate that it is38
feasible to optimize the calculation of the entries of the magnetic ker-39
nel matrix, but due to lack of symmetry the computation requirements40
are increased as compared to the gravity kernel. Still, remarkable41
savings in generating the matrix are achieved. Moreover, while it is42
not immediately possible to take advantage of BTTB structure when43
the stations are not on a uniform grid, the calculation of the underlying44
kernel matrices can still be optimized for arbitrary stations locations,45
by reuse of common vectors and arrays for each depth layer of the46
coordinate volume. Furthermore, it is also feasible to interpolate from47
stations that are not on a uniform grid to a uniform grid, without48
significant loss of accuracy, as discussed in Bruun and Nielsen (2007).49
Thus, the approach is useful also for a broader class of practical50
problems, and in particular due to reduced storage requirements, makes51
it possible to carry out forward modeling for a finer resolution of the52
volume domain.53

Overview of main scientific contributions. Our approach implements54
and extends the BTTB algorithm for forward modeling with the mag-55
netic kernel, and for the inclusion of padding around the domain. (i)56
We present a detailed derivation of the implementation of the algorithm57
presented in Chen and Liu (2018) for the forward modeling of the58
gravity problem; (ii) The algorithm is extended to include arbitrary59
domain padding in x and y directions; (iii) The use of the 2DFFT for60
matrix transpose multiplication is explained, (needed for solution of61
the associated inverse problem); (iv) The algorithm applies for general62
BTTB matrices; (v) The approaches are coded for optimal memory,63
storage and computation as an open source Matlab code, https://64
github.com/renautra/FastBTTB with example simulations at https://65
math.la.asu.edu/~rosie/research/bttb.html. This can be adapted for66

any Earth modeling using a convolution kernel that can be used to 67
generate a sensitivity matrix with BTTB structure for each depth layer 68
of the domain when the measurement data are obtained on, or can be 69
interpolated to, a uniform grid. 70

The paper is organized as follows. In Section 2 we present the 71
general kernel-based forward model, and specifically convolutional ker- 72
nels, Section 2.1. We demonstrate in Section 2.1.1 how the placement 73
of the measurement stations as uniformly staggered with respect to the 74
coordinate domain yields a distance vector for distances from coordi- 75
nates to stations that is efficiently stored as a one-dimensional instead 76
of two-dimensional vector, also for padded domains, Section 2.1.2. We 77
then show in Section 2.2 how operators that are spatially invariant 78
yield matrix operators with BTTB structure, and explicitly explain how 79
the relevant entries of the matrices are calculated. In Section 3 we 80
show how these entries are built into the formulation that facilitates 81
the use of the 2DFFT, following the discussions in Chan and Ng (1996) 82
and Vogel (2002). Specific examples are given in Section 4 for the 83
efficient derivation of the entries in the operators for gravity and 84
magnetic kernels, following Chen and Liu (2018) and Bhaskara Rao 85
and Ramesh Babu (1991), in Sections 4.1 and 4.2, respectively. The pre- 86
sented numerical results in Section 5 validate that the given algorithms 87
are efficient and facilitate forward modeling for problems that are 88
significantly larger as compared to the case when the BTTB structure is 89
not utilized for fast computation with the 2DFFT. Indeed, estimates of 90
the storage requirements demonstrate that it is not possible to store the 91
sensitivity matrices for large problems on standard desktop computers. 92
Software availability is discussed in Section 6 and conclusions with 93
topics for future work are discussed in Section 7. The adopted notation 94
and algorithms are presented in Appendices A and B, respectively. 95

2. Forward modeling 96

We consider a forward model described by the Fredholm integral 97
equation of the first kind 98

d(a, b, c) = Ã h(a, b, c, x, y, z)⇣ (x, y, z)dx dy dz, (1) 99

for which discretization leads to the forward model d = Gm. Here G is 100
the sensitivity matrix, and d and m are the discretizations of d and ⇣ , 101
respectively. We suppose that data measurements for d(a, b, c), on the 102
surface with c = 0, are made at m = s

x
s
y
arbitrary station locations 103

denoted by 104

s
ij
= (a

ij
, b

ij
), 1 f i f s

x
, 1 f j f s

y
. (2) 105

The volume domain, without padding, is discretized into n = s
x
s
y
n
z

106
uniform prisms, c

pqr
, with coordinates1 107

x
p*1 = (p * 1)�

x
x
p
= p�

x
, 1 f p f s

x
,

y
q*1 = (q * 1)�

y
y
q
= q�

y
, 1 f q f s

y
,

z
r*1 = (r * 1)�

z
z
r
= r�

z
, 1 f r f n

z
.

(3) 108

The geometry is illustrated in Fig. 1, in which the configuration of 109
station at location (i, j) relative to volume prism pqr is shown. 110

The entries in G depend on the integral of kernel h and correspond 111
to the unit contribution from a given prism to a particular station. 112
The ordering of the entries depends on the organization of the volume 113
domain into a vector of length, n = n

x
n
y
n
z
. We assume the depth-based 114

multilayer model that yields 115

G = [G(1)
,G

(2)
,… ,G

(nz)]. (4) 116

Each G
(r) has size s

x
s
y
ùn

x
n
y
= mùn

r
, where there are n

r
prisms in layer 117

r, and maps from the prisms in depth layer r, with depth coordinates 118
z
r*1 and z

r
, to the stations. Further, G(r) decomposes as a block matrix 119

1 Note that there are, for example in the x*dimension, s
x
blocks and hence

s
x
+ 1 coordinates describing these blocks.

https://github.com/renautra/FastBTTB
https://github.com/renautra/FastBTTB
https://github.com/renautra/FastBTTB
https://math.la.asu.edu/~rosie/research/bttb.html
https://math.la.asu.edu/~rosie/research/bttb.html
https://math.la.asu.edu/~rosie/research/bttb.html

J.D. Hogue et al.

Fig. 1. The configuration of prism pqr in the volume relative to a station at location
s
ij
= (a

ij
, b

ij
). The blocks in the z-direction define depth z g 0 pointing down. Here we

assume there is one station located above each prism, giving s
x
and s

y
blocks in the

x and y-directions, respectively.

with block entries G
(r)
jq
, 1 f j f s

y
, 1 f q f n

y
each of size s

x
ù n

x
.1

Equivalently, a given layer of the volume with s
y
n
y
blocks is mapped to2

a one dimensional vector using row-major ordering; we sweep through3
the prisms in the slice for increasing x and fixed y direction. Entry4
(G(r))

kl , 1 f k f s
x
s
y
, 1 f l f n

x
n
y
represents the contribution from5

prism l = (q * 1)n
x
+ p, for 1 f q f n

y
and 1 f p f n

x
, for depth slice6

r, to station k = (j * 1)s
x
+ i, 1 f j f s

y
, 1 f i f s

x
. Using Éh(s

ij
)
pqr

to7
denote the function that calculates the contribution to station s

ij
from8

prism c
pqr
,9

(G(r))
kl = Éh(s

ij
)
pqr

, k = (j * 1)s
x
+ i, l = (q * 1)n

x
+ p. (5)10

In the following we discuss the derivation of the matrix for a given layer11
r and remove the dependence of Éh on depth, using Éh(s

ij
)
pq
to indicate12

the contribution to station s
ij

= (a
ij
, b

ij
) due to block number p in x13

and q in y. Although the discussion is applied under the assumption14
of a uniform depth interval, �

z
, the approach applies equally well15

for problems in which the layers have different heights, (�
z
)
r
, see16

e.g. Zhang and Wong (2015).17

2.1. Spatially invariant kernels18

Our discussion focuses on kernels that are spatially invariant in all19
dimensions:20

h(a, b, c, x, y, z) = h(x * a, y * b, z * c).21

For fixed r, calculation of Éh(s
ij
)
pqr

depends on the differences (x*a) and22
(y * b) for all station and prism coordinates, (2) and (3), respectively.23
Using matrices24

(DX)
ij,p

= (x
p
* a

ij
) 0 f p f n

x

(DY)
ij,q

= (y
q
* b

ij
) 0 f q f n

y

=

1 f i f s
x
, 1 f j f s

y
,25

the distances for block pq, 1 f p f n
x
and 1 f q f n

y
, are obtained26

from distance matrices (DX)
p*1 and (DX)

p
in x, and likewise for y. For27

uniform prisms in the x* and y*dimensions,28

(DX)
p
= (DX)

p*1 + �
x
, 1 f p f n

x
, (DY)

q
= (DY)

q*1 + �
y
, 1 f q f n

y
,29

and (DX)
p
and (DY)

q
can be obtained directly from (DX)0 and (DY)0.30

They are also independent of the layer, regardless of the locations of the31
stations relative to the prisms. It is practical, therefore, to store (DX)032
and (DY)0 entirely, and update an entire slice of the domain without33

Fig. 2. The configuration of the volume domain with padding, explicitly assuming no
stations in the padded regions.

recalculating (DX)0 and (DY)0 across layers. For the uniform station 34
grid in which a

ij
is independent of j and b

ij
is independent of i, the 35

sizes of matrices (DX)0 and (DY)0 are reduced in the first dimension 36
to s

x
and s

y
, respectively, and greater optimization is achieved. 37

2.1.1. Placement of the stations at the center of the cells 38
Following Boulanger and Chouteau (2001) and 39

Chen and Liu (2018), suppose that the two coordinate systems for the 40
stations and the volume domain, are uniformly staggered in the x–y 41
plane stations, such that a

i
= (i * 1

2)�x
, 1 f i f s

x
and b

j
= (j * 1

2)�y
, 42

1 f j f s
y
. Then, 43

(DX)
i,p

= x
p
* a

i
= (p * 1)�

x
* (i * 1

2)�x
= (p * i * 1

2)�x
, 1 f p f n

x
+ 1

(DY)
j,q

= y
q
* b

j
= (q * 1)�

y
* (j * 1

2)�y
= (q * j * 1

2)�y
, 1 f q f n

y
+ 1,

44

and for all pairs of indices (i, p) and (j, q), the possible paired distances 45
are obtained from the vectors 46

Xl = (l * s
x
* 1

2)�x
, 1 f l f 2s

x

Y
k

= (k * s
y
* 1

2)�y
, 1 f k f 2s

y
.

(6) 47

2.1.2. Introducing padding around the domain 48
Suppose now that padding is introduced around the domain, with 49

an extra p
xL
and p

xR
blocks in the x-direction. Then the x*coordinates 50

are (*p
xL

: (s
x
+ p

xR
))�

x
for a total of s

x
coordinate blocks within the 51

domain, but a total number of blocks n
x
= (s

x
+p

xL
+p

xR
). Blocks 1 to p

xL
52

are in the padded region to the left of the domain, and blocks s
x
+p

xL
+1 53

to n
x
are within the padded region to the right. Thus, the coordinates 54

of block p are adjusted to (p* p
xL

* 1)�
x
to (p* p

xL
)�

x
, consistent with 55

(3) for p
xL

= 0. Likewise, the y coordinates extend from *p
yL

: (s
y
+p

yR
) 56

and n
y
= (s

y
+ p

yL
+ p

yR
), see Fig. 2. Hence, (6) is replaced by 57

Xl = (l * (s
x
+ p

xL
) * 1

2)�x
, 1 f l f 2s

x
+ p

xL
+ p

xR
= n

x
+ s

x

Y
k

= (k * (s
y
+ p

yL
) * 1

2)�y
, 1 f k f 2s

y
+ p

yL
+ p

yR
= n

y
+ s

y
.

(7) 58

To calculate all possible paired distances we only need to store vectors 59
X and Y , as given by (7). This is negligible as compared to the entire 60
storage of the mn entries in the matrix G. 61

2.2. Matrix structure for spatially invariant kernels 62

We now consider the structure of the matrices that arise for spatially 63
invariant kernels, for domains without padding in Section 2.2.1, and 64

J.D. Hogue et al.

then the modifications that are required when domain padding is1
introduced, Section 2.2.2. The summary of the discussion is detailed2
in the presented Algorithms in Appendix A, and can be ignored if the3
intent is to only use the provided codes.4

2.2.1. Symmetric kernel matrices with Toeplitz block structure without5
domain padding6

Suppose block matrix G(r) is symBTTB and is defined by its first row7
block G

(r)
1q = G

(r)
q , 1 f q f n

y
. Then, with n

x
= s

x
and n

y
= s

y
,8

G
(r) =

b

f

f

f

f

f

f

f

f

f

d

G
(r)
1 G

(r)
2 G

(r)
3 … G

(r)
ny

G
(r)
2 G

(r)
1 G

(r)
2 … G

(r)
ny*1

4 7 7 7 4

4 7 7 7 4

G
(r)
sy

G
(r)
sy*1

G
(r)
sy*2

… G
(r)
1

c

g

g

g

g

g

g

g

g

g

e

. (8)9

Each G
(r)
q is symmetric and defined by its first row,10

G
(r)
q

=

b

f

f

f

f

f

d

g1q g2q g3q … g
nxq

g2q g1q g2q … g(nx*1)q
4 7 7 7 4
4 7 7 7 4

g
sxq

g(sx*1)q g(sx*2)q … g1q

c

g

g

g

g

g

e

.11

Matlab notation can be used to write these matrices compactly in terms12
of the defining first row (column),13

G
(r)
q

= toeplitz(r
q
), r

q
= (g1q , g2q , g3q ,… , g

nxq
), (9)14

and, with abuse of the same notation as applied to matrices,15

G
(r) = toeplitz(R), R = (G(r)

1 ,G
(r)
2 ,G

(r)
3 ,… ,G

(r)
ny
). (10)16

From (9) and (10) it is immediate, as discussed in Boulanger and
Chouteau (2001) and Chen and Liu (2018), that the generation of G(r)

requires only the calculation of its first row. But the first row represents
the contributions of all prisms to the first station. Thus, G(r) requires
only the calculation of

(G(r))1l = Éh(s11)pq , l = (q * 1)n
x
+ p, 1 f p f n

x
, 1 f q f n

y
or

(11)

(G(r)
1)1:nxny = (r1 r2 … rny) where

r
q
= (Éh(s11)1q , Éh(s11)2q , Éh(s11)3q ,… , Éh(s11)nxq), 1 f q f n

y
. (12)

Equivalently, it is sufficient to calculate only the distances (DX)1,p =17
(p*3_2)�

x
and (DY)1,q = (q*3_2)�

y
, for 1 f p f n

x
+1 and 1 f q f n

y
+1,18

and (6) is replaced by19

Xl = (l * 3
2)�x

, 1 f l f (n
x
+ 1)

Y
k
= (k * 3

2)�y
, 1 f k f (n

y
+ 1).

(13)20

2.2.2. Symmetric kernel matrices with Toeplitz block structure and domain21
padding22

Suppose now that the domain is padded in the x and y directions,23
with no real stations within the padded region. To illustrate we take a24
one-dimensional example with s

x
= 4, p

xL
= 2 and p

xR
= 1. Suppose25

first that there are artificial stations in the first two blocks, blocks 1, 2,26
and in the final block, block 7. Then, the single square and symmetric27
Toeplitz that defines G(r) is28

G
(r)
1 =

b

f

f

f

f

f

f

f

f

d

g1 g2 g3 g4 g5 g6 g7
g2 g1 g2 g3 g4 g5 g6
g3 g2 g1 g2 g3 g4 g5
g4 g3 g2 g1 g2 g3 g4
g5 g4 g3 g2 g1 g2 g3
g6 g5 g4 g3 g2 g1 g2
g7 g6 g5 g4 g3 g2 g1

c

g

g

g

g

g

g

g

g

e

Station 1(Artificial)
Station 2(Artificial)
Station 3 = p

xL
+ 1

Station 4
Station 5
Station 6 = p

xL
+ s

x

Station 7(Artificial)

.29

This depends on 30

r = (g1, g2, g3, g4, g5, g6, g7) = (Éh(s1)1, Éh(s1)2, Éh(s1)3,… , Éh(s1)7). 31

But the contribution to the first real station due to all prisms is given 32
by the third row, row p

xL
+ 1 of G(r)

1 , which is 33

(G(r)
1)3 =

�

g3, g2, g1, g2, g3, g4, g5
�

, 34

and, using symmetry, the contributions for the real stations are deter-
mined by

(G(r)
1)(p

xL
+ 1 : p

xL
+ s

x
, :) =

b

f

f

f

f

d

g3 g2 g1 g2 g3 g4 g5
g4 g3 g2 g1 g2 g3 g4
g5 g4 g3 g2 g1 g2 g3
g6 g5 g4 g3 g2 g1 g2

c

g

g

g

g

e

= toeplitz(c, r) where
c = (g3, g4, g5, g6) and r = (g3, g2, g1, g2, g3, g4, g5).

More generally, in one dimension,

c = (g
pxL+1

, g
pxL+2

,… , g
pxL+sx

) = (Éh(s1)pxL+1,
Éh(s1)pxL+2,… , Éh(s1)pxL+sx)

and
r = (g

pxL+1
,… , g2, g1, g2,… , g

nx*pxL
)

= (Éh(s1)pxL+1,… , Éh(s1)2, Éh(s1)1, Éh(s1)2,… , Éh(s1)nx*pxL).

Extending to the two-dimensional case, and assuming that the first
artificial station is in the (1, 1) block of the padded domain, then G

(r)
q ,

for any q, is also Toeplitz and is given by

G
(r)
q

= toeplitz(c
q
, r

q
), 1 f q f n

y
, (14)

c
q
= (Éh(s11)(pxL+1)q ,

Éh(s11)(pxL+2)q ,… , Éh(s11)(pxL+sx)q) and (15)

r
q
= (Éh(s11)(pxL+1)q ,… , Éh(s11)2q , Éh(s11)1q , Éh(s11)2q ,… , Éh(s11)(nx*pxL)q).

(16)

This is consistent with (11)–(12) for the unpadded case. But notice, 35
also, that the maximum distance between station and coordinates in 36
the x*coordinate is max(n

x
* p

xL
, n

x
* p

xR
)�

x
= max(s

x
+ p

xR
, s

x
+ p

xL
)�

x
. 37

It remains to apply the same argument to the structure of the matrix
G

(r), as to the structure of its individual components, to determine
the structure of the symBTTB matrix when padding is applied. Then,
consistent with (14)–(16), (10) is replaced by

G
(r) = toeplitz(C ,R), (17)

C = (G(r)
pyL+1

,… ,G
(r)
pyL+sy

) and (18)

R = (G(r)
pyL+1

,… ,G
(r)
2 ,G

(r)
1 ,G

(r)
2 ,G

(r)
3 ,… ,G

(r)
ny*pyL

). (19)

Moreover, since this matrix depends on the first row of the symmetric 38
matrix, defined with respect to the artificial station at s11, it is sufficient 39
to still use (13) for the calculation of the relevant distances between 40
the first station and all coordinate blocks. But, from (15)–(16), and 41
(18)–(19), just as we do not calculate all entries g

j
in G

(r)
q , we also 42

do not calculate all the blocks G
(r)
q , rather the blocks needed are for 43

q = 1 : max(n
y
* p

yL
, n

y
* p

yR
). Thus, some savings in memory and 44

computation can be made, when padding is significant relative to s
x

45
and s

y
, by using 46

Xl = (l * 3
2)�x

, 1 f l f s
x
+ max(p

xR
, p

xL
) + 1

Y
k
= (k * 3

2)�y
, 1 f k f s

y
+ max(p

yR
, p

yL
) + 1.

(20) 47

J.D. Hogue et al.

2.2.3. Unsymmetric kernel matrices with block structure1
Consider the unsymmetric BTTB matrix2

G
(r) =

b

f

f

f

f

f

f

d

G
(r)
1 G

(r)
2 G

(r)
3 … … G

(r)
ny

ÑG
(r)
2 G

(r)
1 G

(r)
2 … … G

(r)
ny*1

4 7 7 7 7 4
4 7 7 7 7 4
ÑG
(r)
sy

ÑG
(r)
sy*1

ÑG
(r)
sy*2

… … G
(r)
1

c

g

g

g

g

g

g

e

, (21)3

where, without padding, n
y
= s

y
. G(r) depends on the first block row4

and column only, and, is given by5

G
(r) = toeplitz(C ,R), C = (G(r)

1 , ÑG
(r)
2 ,… , ÑG

(r)
sy
), R = (G(r)

1 ,G
(r)
2 ,… ,G

(r)
sy
).

(22)6

We use ÑG
(r)
j
to denote the contributions below the diagonal, and G

(r)
q for7

the contributions above the diagonal. None of the block matrices are8
symmetric and, therefore, to calculate G

(r) it is necessary to calculate9
columns and rows that define C and R. Calculating R uses just the first10
row entries G(r)

q , but since each of these is unsymmetric we need also11
the first columns c

q
of each block in G

(r)
q .12

Using (5), the G
(r)
q are given by (14) with

r
q
= (Éh(s11)1q , Éh(s11)2q ,… , Éh(s11)nxq), 1 f q f n

y
(23)

c
q
= (Éh(s11)1q , Éh(s21)1q ,… , Éh(s

sx1)1q), 1 f q f n
y
. (24)

Rather than calculating all (s
x
n
x
)n

y
entries in the first block row of G(r),13

for each matrix of the block we calculate just (s
x
+ n

x
)n

y
entries for its14

first row and column.15
This leaves the calculation of the ÑG

(r)
j
, 2 f j f s

y
, which by the

Toeplitz structure only use ÑG
(r)
j
, given by

ÑG
(r)
j

= toeplitz(Ñc
j
, Ñr

j
), 2 f j f s

y
, (25)

Ñc
j
= (Éh(s1j)11, Éh(s2j)11,… , Éh(s

sxj
)11), 2 f j f s

y
, and

Ñr
j
= (Éh(s1j)11, Éh(s1j)21,… , Éh(s1j)nx1), 2 f j f s

y
. (26)

This requires not only all distances between the first station and all16
prism coordinates, as in (13), but also for all stations and the first17
coordinate block (for the first column of G(r)) which uses Xl = (l +18
1
2)�x

, *s
x
f l f 0, and likewise for Y

k
. Thus, we require the full set of19

differences (6).20

2.2.4. Unsymmetric kernel matrices with block structure and domain21
padding22

As for the discussion on domain padding with the symmetric kernel23
in Section 2.2.2, we first present an example using one dimension. We24
again assume s

x
= 4, p

xL
= 2 and p

xR
= 1 and that there are artificial25

stations in the first two blocks, blocks 1, 2, and in the final block, block26
7. Then, the single square but unsymmetric Toeplitz matrix that defines27
G

(r) is28

G
(r)
1 =

b

f

f

f

f

f

f

f

f

d

g1 g2 g3 g4 g5 g6 g7
�2 g1 g2 g3 g4 g5 g6
�3 �2 g1 g2 g3 g4 g5
�4 �3 �2 g1 g2 g3 g4
�5 �4 �3 �2 g1 g2 g3
�6 �5 �4 �3 �2 g1 g2
�7 �6 �5 �4 �3 �2 g1

c

g

g

g

g

g

g

g

g

e

Station 1(Artificial)
Station 2(Artificial)
Station 3 = p

xL
+ 1

Station 4
Station 5
Station 6 = p

xL
+ s

x

Station 7(Artificial)

29

This depends on

r = (g1, g2, g3, g4, g5, g6, g7) = (Éh(s1)1, Éh(s1)2,… , Éh(s1)6, Éh(s1)7)
c = (g1, �2, �3, �4, �5, �6, �7) = (Éh(s1)1, Éh(s2)1,… , Éh(s6)1, Éh(s7)1).

But again the required rows of G(r)
1 correspond to the real stations

(G(r)
1)(p

xL
+ 1 : p

xL
+ s

x
, :) =

b

f

f

f

f

d

�3 �2 g1 g2 g3 g4 g5
�4 �3 �2 g1 g2 g3 g4
�5 �4 �3 �2 g1 g2 g3
�6 �5 �4 �3 �2 g1 g2

c

g

g

g

g

e

= toeplitz(c, r) where
c = (�3, �4, �5, �6) and r = (�3, �2, g1, g2, g3, g4, g5).

More generally,

c = (�
pxL+1

, �
pxL+2

,… , �
pxL+sx

) = (Éh(s
pxL+1

)1, Éh(spxL+2)1,… , Éh(s
pxL+sx

)1)

and
r = (�

pxL+1
, �

pxL
,… , �2, g1, g2,… , g

nx*pxL
)

= (Éh(s
pxL+1

)1, Éh(spxL)1,… , Éh(s2)1, Éh(s1)1, Éh(s1)2,… , Éh(s1)nx*pxL).

Extending to the two-dimensional case, with the same assumptions as
in Section 2.2.2, G(r)

q is obtained as

G
(r)
q

= toeplitz(c
q
, r

q
), 1 f q f n

y
, (27)

c
q
= (Éh(s(pxL+1)1)1q ,

Éh(s(pxL+2)1)1q ,… , Éh(s(pxL+sx)1)1q) and

r
q
= (Éh(s(pxL+1)1)1q ,

Éh(s
pxL 1

)1q ,… , Éh(s21)1q Éh(s11)1q ,… , Éh(s11)(nx*pxL)q).

This is consistent with (23)–(24) for the unpadded case. 30
Turning to the column block entries, first observe that ÑG

(r)
1 = G

(r)
1 , 31

and so we examine ÑG
(r)
j
which represents stations 1 to n

x
(both real and 32

artificial) in the x-direction for a fixed j coordinate in the y-direction. 33
Then, with the same example for choices of s

x
, p

xL
and p

xR
, 34

ÑG
(r)
j

=

b

f

f

f

f

f

f

f

f

d

Ñg1 Ñg2 Ñg3 Ñg4 Ñg5 Ñg6 Ñg7
Ñ�2 Ñg1 Ñg2 Ñg3 Ñg4 Ñg5 Ñg6
Ñ�3 Ñ�2 Ñg1 Ñg2 Ñg3 g4 Ñg5
Ñ�4 Ñ�3 Ñ�2 Ñg1 Ñg2 Ñg3 Ñg4
Ñ�5 Ñ�4 Ñ�3 Ñ�2 Ñg1 Ñg2 Ñg3
Ñ�6 Ñ�5 Ñ�4 Ñ�3 Ñ�2 Ñg1 Ñg2
Ñ�7 Ñ�6 Ñ�5 Ñ�4 Ñ�3 Ñ�2 Ñg1

c

g

g

g

g

g

g

g

g

e

Station 1(Artificial)
Station 2(Artificial)
Station 3 = p

xL
+ 1

Station 4
Station 5
Station 6 = p

xL
+ s

x

Station 7(Artificial)

35

This depends on

Ñr = (Ñg1, Ñg2, Ñg3, Ñg4, Ñg5, Ñg6, Ñg7) = (Éh(s1j)11, Éh(s1j)21,… , Éh(s1j)61, Éh(s1j)71)
Ñc = (Ñg1, Ñ�2, Ñ�3, Ñ�4, Ñ�5, Ñ�6, Ñ�7) = (Éh(s1j)11, Éh(s2j)11,… , Éh(s6j)11, Éh(s7j)11).

But again, since stations 1 to 2 and 7 are artificial, we only need

(ÑG(r)
j
)(p

xL
+ 1 : p

xL
+ s

x
, :) =

b

f

f

f

f

d

Ñ�3 Ñ�2 Ñg1 Ñg2 Ñg3 Ñg4 Ñg5
Ñ�4 Ñ�3 Ñ�2 Ñg1 Ñg2 Ñg3 Ñg4
Ñ�5 Ñ�4 Ñ�3 Ñ�2 Ñg1 Ñg2 Ñg3
Ñ�6 Ñ�5 Ñ�4 Ñ�3 Ñ�2 Ñg1 Ñg2

c

g

g

g

g

e

= toeplitz(c, r) where
c = (Ñ�3, Ñ�4, Ñ�5, Ñ�6) and r = (Ñ�3, Ñ�2, Ñg1, Ñg2, Ñg3, Ñg4, Ñg5).

Thus, in two dimensions, the first column block entries are ÑG
(r)
j
, 1 f j f

n
y
, with

ÑG
(r)
j

= toeplitz(Ñc
j
, Ñr

j
), 1 f j f s

y
+ p

yL
+ p

yR
,

Ñc
j
= (Éh(s(pxL+1)j)11,

Éh(s(pxL+2)j)11,… , Éh(s(pxL+sx)j)11) and (28)

Ñr
j
= (Éh(s(pxL+1)j)11,

Éh(s
pxL j

)11,… , Éh(s2j)11, Éh(s1j)11,… , Éh(s1j)(nx*pxL)1).

But now (22) is replaced by the block Toeplitz matrix

G
(r) = toeplitz(C ,R), (29)

C = (ÑG(r)
pyL+1

,… , ÑG
(r)
pyL+sy

) and

R = (ÑG(r)
pyL+1

, ÑG
(r)
pyL

,… , ÑG
(r)
2 ,G

(r)
1 ,… ,G

(r)
ny*pyL

).

Here each block matrix is the subset of rows corresponding to the real 36
stations, as noted in (27) and (28). Moreover, we conclude that (27) is 37

J.D. Hogue et al.

Fig. 3. Required entries from a matrix G
(r) in order to generate all entries G

(r) using
the BTTB structure. This shows considerable savings can be accrued in calculating the
entries of G(r) when using the structure.

applied only for 1 f q f n
y
* p

yL
= s

y
+ p

yR
and (28) for 1 f j f p

yL
+ s

y
,1

reducing the dimension of the required Y in the y*direction. Likewise,2
X is reduced because of the padding impacting the required entries for3
generating both G

(r)
q and ÑG

(r)
j
. Thus while the required vectors are given4

by (6), with n
x
replacing s

x
and n

y
replacing s

y
, their lengths can be5

reduced as for the symmetric case, (20), by using6

Xl = (l * (s
x
+ max(p

xR
, p

xL
)) * 1

2)�x
, 1 f l f 2(s

x
+ max(p

xR
, p

xL
))

Y
k
= (k * (s

y
+ max(p

yR
, p

yL
)) * 1

2)�y
, 1 f k f 2(s

y
+ max(p

yR
, p

yL
)).

(30)7

This effectively assumes the calculation of ÑG
(r)
1 as well as G(r)

1 , whereas8
only one is calculated in practice, since ÑG

(r)
1 = G

(r)
1 .9

The plot in Fig. 3 illustrates the unique entries from G
(r) that define10

its BTTB structure. We note that, while the discussion is focused on the11
situation in which observation points are on a uniform grid and exactly12
staggered with respect to the coordinate domain, it is sufficient for13
generating matrices with the BTTB structure that the observation points14
are uniform with respect to a coordinate domain which is uniform in15
the x* and y* dimensions.16

3. Circulant operators and the 2D FFT17

Definition 1 (Circulant). The Toeplitz matrix in which the defining18
vectors c and r, each of length 2s

x
* 1, have entries that are related19

by r
i
= c(2sx+1*i) for 2 f i f 2s

x
* 1, is circulant.20

A circulant matrix is defined solely by its first column or first row.21
Here we will use the first column. Any Toeplitz matrix can be embedded22
in its circulant extension, as illustrated for the simple example with23
s
x
= n

x
= 324

b

f

f

f

f

f

d

g1 g2 g3 �3 �2
�2 g1 g2 g3 �3
�3 �2 g1 g2 g3
g3 �3 �2 g1 g2
g2 g3 �3 �2 g1

c

g

g

g

g

g

e

.25

In the same way, a BTTB matrix can be embedded in a block circulant26
matrix. Thus, matrices (8) and (21) can be embedded in block circulant27
matrices, in which also each Toeplitz block G

(r)
q and ÑG

(r)
q is embedded28

in a (2s
x
* 1) ù (2s

x
* 1) circulant matrix. This yields a matrix that is29

Block Circulant with Circulant Blocks (BCCB). It is the structure of a30
BCCB matrix that facilitates the use of the 2DFFT to efficiently evaluate31
forward matrix multiplication with a BTTB matrix. Specifically, BTTB32
matrix–vector multiplication can be applied at reduced computational33

cost by using a BCCB extension combined with the FFT for implement- 34
ing a discrete convolution, Vogel (2002). The required components that 35
provide the FFT approach are now discussed. 36

Definition 2 (Exchange Matrix). The exchange matrix is the m ù m 37
matrix J

m
which is everywhere 0 except for 1’s on the principal counter 38

diagonal. 39

Given arbitrary vector x of length m, with entries x
i
, 1 f i f m, then 40

J
m
x = y where y

i
= x

m*i+1; it is the vector with the order of the entries 41
reversed. Equivalently, for matrix A with rows a

i
, 1 f i f m, then 42

J
m
A = B where B is the matrix with rows in reverse order, b

i
= a

m*i+1. 43
Further, multiplying on the right reorders the columns in reverse order. 44
Specifically, JT

m
= J

m
, and thus yT = (J

m
x)T = xT JT

m
= xT J

m
and the 45

column entries of y are in reverse order as compared to x. In the same 46
way, AJ

m
gives the matrix with the columns in reverse order. In Matlab 47

the exchange matrix is implemented using the functions flipud and 48
fliplr, for ‘‘up-down’’ and ‘‘left–right’’, for multiplication with J

m
on 49

the left and right, respectively. 50
The exchange matrix yields a compact notation for the entries that 51

define the circulant extension of a Toeplitz matrix. For matrix G
(r)
q 52

which depends on r
q
, as given in (9), then the defining first row for 53

the circulant extension for each symmetric G
(r)
q is given by 54

rext
q

=
0

r
q

J
sx*1rq(2 : s

x
)

1

. (31) 55

For the unsymmetric case for G(r)
q , as given in (23)–(24), the circulant 56

extension uses 57

cext
q

=
0

c
q

J
sx*1rq(2 : s

x
)

1

and rext
q

=
0

r
q

J
sx*1cq(2 : s

x
)

1

. (32) 58

An equivalent expression applies for the circulant extension for each 59
ÑG
(r)
j
as defined in (25)–(26) using the extension for Ñc

j
and Ñr

j
. While 60

(31) and (32) can be used as the defining vectors to explicitly generate 61
the extensions (G(r)

j
)circ and (ÑG(r)

j
)circ as Toeplitz matrices, again using 62

toeplitz(cext
j

, rext
j

), we note that the intent is to define the vectors that 63
define the extensions but not to generate the extensions. Moreover, 64
rext
j

is as noted defined explicitly from cext
q

and we focus entirely on 65
the columns cext

j
. We also note that this definition for generating the 66

extension differs from that used in Li et al. (2018), Vogel (2002) and 67
Zhang and Wong (2015); the extra 0 is omitted for convenience. We 68
also directly define the circulant extension instead of performing a 69
series of transformations. 70

We now turn to the defining set of vectors needed for the circulant 71
extension of (21), which depends on its first block row and column as 72
given in (22). Using the same analogy as with the block Toeplitz matrix 73
and using Definition 1, the extension for G

(r) requires the extensions 74
of C and R in (22), thus for entries G

(r)
j

and ÑG
(r)
j

for 1 f j f s
x
. 75

Moreover, the circulant extension, as in the one-dimensional case will 76
depend entirely either on the extension of C or R, denoted by C

ext and 77
R
ext , but again we do not form toeplitz(Cext

,R
ext). We assume the use 78

of the extension for C only, and note that Cext is completely defined by 79
T
circ, dropping the dependence on slice r. Then, using (32) 80

T
circ =

⇠

Ñcext1 5 Ñcext
sy

cext
sy

5 cext2

⇡

, (33) 81

and is of size (2s
x
* 1) ù (2s

y
* 1) 82

Using u = vec(U) to denote the vectorization of matrix U , the two- 83
dimensional convolution product G

(r)u, can be computed using T
circ 84

which defines the circular extension of G(r), Vogel (2002). Suppose that 85
(G(r))circ is defined by T

circ, and let w = vec(W). Then, the reshaped 86
convolution product array((G(r))circw), where array() is the inverse of 87
vec(), can be computed by 88

array((G(r))circw) = T
circ

?W = ifft2(fft2(T circ)� < fft2(W)). (34) 89

Here ? denotes convolution, fft2 denotes the two-dimensional FFT, 90
and ifft2 denotes the inverse two-dimensional FFT, and we introduce 91

J.D. Hogue et al.

ÇT
circ = fft2(T circ) and ÇW = fft2(W). To obtain G

(r)u from this1
product, notice that G(r) is in the upper left block of (G(r))circ. Thus,2
defining W of size (2s

x
* 1) ù (2s

y
* 1) by3

W =
L

U 0
sx(sy*1)

0(sx*1)sy 0(sx*1)(sy*1)

M

, (35)4

using 0
mn
to denote a matrix of zeros of size m ù n, and with U of size5

s
x
ù s

y
, array(G(r)u) is the upper left s

x
ùs

y
block of array((G(r))circw) in6

(34). Moreover, array((G(r))circ) does not need to be formed explicitly7
for this product. Instead elements of T circ are calculated using (33).8

It is immediate that a set of equivalent steps can be used to calculate9
(G(r))T v, where v = vec(V) for matrix V , since (G(r))T is also BTTB,10
and the defining first column for ((G(r))circ)T is the first row of (G(r))circ.11
Thus, as shown by Bruun and Nielsen (2007), multiplication using the12
transpose matrix is then represented by the circulant extension as13

array(((G(r))circ)T v) = ifft2(conj(fft2(T circ))� < fft2(ÉW)). (36)14

Although computing conj(fft2(T circ)) once and storing the result may15
provide small computational reduction in some situations, this is gen-16
erally unnecessary.17

3.1. Convolution with domain padding18

Suppose that padding is introduced around the domain and, consis-19
tent with (14) and (28), assume that the indices for r

p
and c

q
are from20

the first row and column of the padded domain. Then, for the case of21
the symBTTB matrix, (31) is replaced by22

rext
q

=
0

r
q

J
sx*1cq(2 : s

x
)

1

, cext
q

=
0

c
q

J
nx*1rq(2 : n

x
)

1

, (37)23

where r
q
and c

q
are defined using (15) and (16), respectively. But now24

since r
q
is defined by c

q
for the symmetric case we can use just cext

q
.25

Each vector is of length s
x
for c

q
and n

x
* 1 for J

nx*1(rq(2 : n
x
)). Then26

using (18), the BCCB extension is defined by the replacement of (33)27
by the matrix28

T
circ =

⇠

cext1+pyL
5 cext

sy+pyL
cext
sy+pyR

5 cext2 cext1 5 cext
pyL

⇡

,

(38)29

of size (s
x
+ n

x
* 1) ù (s

y
+ n

y
* 1). For the unsymmetric case (38) is30

replaced by31

T
circ =

⇠

Ñcext1+p
yL

5 Ñcext
s
y
+p

yL
cext
s
y
+p

yR
5 cext2 Ñcext1 5 Ñcext

p
yL

⇡

, (39)32

where Ñcext
j
is obtained as in (37) but using Ñc

j
and Ñr

j
from (28). In any33

case in which p
yL

= 0 the end block is removed. Moreover, due to34
G

(r)u of size s
x
s
y
, when u is of size n

x
n
y
, the definition of W in (35) is35

replaced by36

W =
L

U 0
nx(sy*1)

0(sx*1)ny 0(sx*1)(sy*1)

M

, U À Rnxùny . (40)37

The transpose operation can still be obtained directly from T
circ, but38

notice that for v of size s
x
s
y
, (G(r))T v is of size n

x
n
y
, and in this case39

(35) is replaced by40

ÉW =
L

V 0
sx(ny*1)

0(nx*1)sy 0(nx*1)(ny*1)

M

, V À Rsxùsy . (41)41

We illustrate in Fig. 4 the matrix T
circ that is generated using the row42

and column entries from the BTTB matrix G
(r) as shown in Fig. 3.43

4. Optimizing the calculations for specific kernels44

Chen and Liu (2018) demonstrated that considerable savings are45
realized in the generation of T circ through optimized calculations of46
the entries for forward modeling of the gravity problem. Here we47

Fig. 4. The configuration of T circ, where the arrow denotes the direction of the vector
in ascending order. The dotted line indicates that the first elements of each r

q
and Ñr

q

are omitted in the construction of T circ.

focus on both improving that optimization, and with the generation of 48
an optimized and stable calculation for the entries of the magnetic 49
kernel, Bhaskara Rao and Ramesh Babu (1991). 50

4.1. Gravity kernel calculation 51

The gravity kernel generates a symBTTB matrix for each slice in
depth (z-direction). According to Boulanger and Chouteau (2001), and
as used in Chen and Liu (2018), the contribution of the kernel from
the prism at point (p, q) on the volume grid, (where x points East and
y points North), to the station at location (a, b, 0), is given by

Éh(a, b, c)
pq

= �

2
…

i=1

2
…

j=1

2
…

k=1
(*1)i(*1)j (*1)k

H

Z
k
arctan

Q
i
U

j

Z
k
Rk

ij

*Q
i
ln
⇠

Rk

ij
+U

j

⇡

*U
j
ln
⇠

Rk

ij
+Q

i

⇡

I

.

Here � is the gravitational constant and 52

Q1 = x
p*1 * a, Q2 = x

p
* a

U1 = y
q*1 * b U2 = y

q
* b

Z1 = z
r*1 * c, Z2 = z

r
* c

R
2
ij
= Q2

i
+U2

j
Rk

ij
=
t

R
2
ij
+ Z2

k
.

(42) 53

Specifically, we need
…

i

…

j

(*1)i+j+1
00

Z1 arctan
(QU)

ij

Z1(R1)ij
* Z2 arctan

(QU)
ij

Z2(R2)ij

1

*

Q
i

�

ln((R1)ij +Uj
) * ln((R2)ij +Uj

)
�

*U
j

�

ln((R1)ij +Qi
) * ln((R2)ij +Qi

)
��

.

Here 54

R1 =
t

R.·2 + Z21, R2 =
t

R.·2 + Z22, 55

and operations involve elementwise powers and multiplications. Using
the notation in Chen and Liu (2018), we write the summand, ignoring
≥

j
(*1)i+j+1, as

��

Z1(CM5)
ij
* Z2(CM6)

ij

�

*Q
i

�

(CM3)
ij
* (CM4)

ij

�

* U
j

�

(CM1)
ij
* (CM2)

ij

��

.

Notice that (CM3)
ij
* (CM4)

ij
is a logarithmic difference (and also for 56

(CM1)
ij
* (CM2)

ij
). Thus, the differences can be replaced by 57

CMX = ln
Q + R1
Q + R2

, and CMY = ln
U + R1
U + R2

. (43) 58

Moreover, we can directly calculate 59

CM5Z = Z1 arctan
(QU)

ij

Z1(R1)ij
, and CM6Z = Z2 arctan

(QU)
ij

Z2(R2)ij
. 60

J.D. Hogue et al.

Fig. 5. Running times for generating G using Algorithms 1 and 3 and ÇT using Algorithms 2 and 4 with 0% padding in Fig. 5(a), and with 5% padding in Fig. 5(b).

Hence, the summand of the triple sum is replaced by1
��

(CM5Z)
ij
* (CM6Z)

ij

�

*Q
i
(CMY)

ij
*U

j
(CMX)

ij

�

= CM
ij
.2

Now, Q1, Q2 are entries from X, and U1, U2 are entries from Y .
Thus, given (7) and assuming that X and Y are stored in row vectors
we can form matrices XY = X(:). < Y and R

2 = X(:).·2 + Y .
·2 which

are of size (n
x
+ 1) ù (n

y
+ 1), and are independent of the z coordinates.

Thus, we save substantial computation by only calculating XY and R
2

once for all slices, and for each slice we only calculate one row of the
matrix. Since these are based on matrices we can calculate the double
sum for multiple coordinates by shifting each ij matrix to the right in
i and in j with the appropriate sign, and obtain the entire sum in one
line by correct indexing into the matrices. Suppose that CM has size
(n

x
+1)ù (n

y
+1) then we obtain a matrix that can be reshaped to a row

vector

g = CM(1 : n
x
, 1 : n

y
)*CM(1 : n

x
, 2 : n

y
+ 1) * CM(2 : n

x
+ 1, 1 : n

y
)

+CM(2 : n
x
+ 1, 2 : n

x
+ 1)

Éh(a1, b1, 0) = *�g(:).

Thus, we calculate the first row of depth block r by an evaluation of (5)3
for all coordinate contributions to station 1 in one step. Note that the4
simplification (43) is a further optimization of the calculation of entries5
for G as compared to that given in Chen and Liu (2018). The details6
of the use and application of the gravity problem in the context of7
forward algorithms for symBTTB matrices are provided in Algorithms8
1–2 with the gravity function in Algorithm 5.9

4.2. Magnetic kernel10

We now extend the idea of the optimization of the gravity11
kernel calculation to the calculation of the magnetic kernel, under12
the assumption that there is no remanence magnetization or self-13
demagnetization, so that the magnetization vector is parallel to the14
Earth’s magnetic field.2 Although the magnetic kernel is not sym-15
metric, its discretization does lead to a BTTB matrix, and hence the16
discussion of Section 2.2.3 is relevant. We apply the simplifications17
of Bhaskara Rao and Ramesh Babu (1991) for the evaluation of the18
magnetic kernel. Using their notation19
Bhaskara Rao and Ramesh Babu (1991, eq. (3))20

Éh(a, b, 0)
pq

= ÉH(G1 lnF1 + G2 lnF2 + G3 lnF3 + G4F4 + G5F5). (44)21

2 We assume that the total field is measured in nano Teslas; introducing a
scaling factor 109 in the definitions.

The constants g
i

= ÉHG
i
3 depend on the volume orientation and

magnetic constants, Bhaskara Rao and Ramesh Babu (1991), and
here we assume that x points North and y points East. Taking advantage
of the notation in (42), the variables F

i
are given by

F1 =
(R2

11 +Q1)(R1
21 +Q2)(R1

12 +Q1)(R2
22 +Q2)

(R1
11 +Q1)(R2

21 +Q2)(R2
12 +Q1)(R1

22 +Q2)

F2 =
(R2

11 +U1)(R1
21 +U1)(R1

12 +U2)(R2
22 +U2)

(R1
11 +U1)(R2

21 +U1)(R2
12 +U2)(R1

22 +U2)

F3 =
(R2

11 + Z2)(R
1
21 + Z1)(R

1
12 + Z1)(R

2
22 + Z2)

(R1
11 + Z2)(R

2
21 + Z1)(R

2
12 + Z1)(R

1
22 + Z2)

F4 = arctan
Q2Z2
R2
22U2

* arctan
Q1Z2
R2
12U2

* arctan
Q2Z2
R2
21U1

+ arctan
Q1Z2
R2
11U1

*

arctan
Q2Z1
R1
22U2

+ arctan
Q1Z1
R1
12U2

+ arctan
Q2Z1
R1
21U1

* arctan
Q1Z1
R1
11U1

F5 = arctan
U2Z2
R2
22Q2

* arctan
U2Z2
R2
12Q1

* arctan
U1Z2
R2
21Q2

+ arctan
U1Z2
R2
11Q1

*

arctan
U2Z1
R1
22Q2

+ arctan
U2Z1
R1
12Q1

+ arctan
U1Z1
R1
21Q2

* arctan
U1Z1
R1
11Q1

.

Hence calculating (44) we can use (42) to calculate X, Y and R
2 once 22

for all slices. We note that minor computational savings may be made 23
by calculating for example R1 + Q1 within the calculations for Éh but 24
these are not calculations that can be made independent of the given 25
slice. It may appear also that one could calculate ratios Q_U, with 26
modification of the calculations for F4 and F5, but the stable calculation 27
of the arctan requires the ratios as given. Otherwise sign changes in 28
the numerator or denominator passed to arctan can lead to changes 29
in the obtained angle. In Matlab we use atan2 rather than atan for 30
improved stability in the calculation of the angle. The details of the 31
use and application of the magnetic problem in the context of the 32
forward algorithms for BTTB matrices are provided in Algorithms 3–4 33
with the magnetic function in Algorithm 6. 34

3 Note that constants G
i
are unrelated to the sensitivity matrices.

J.D. Hogue et al.

Fig. 6. Mean running times over 100 trials for forward multiplication using Ggravity, Gmagnetic, Tgravity, and Tmagnetic (left y-axis) and mean errors over 100 trials Egravity and
Emagnetic for forward multiplication using Ggravity versus Tgravity, and Gmagnetic versus Tmagnetic respectively (right y-axis) are shown for 0% padding in Fig. 6(a), and 5% padding
in Fig. 6(b).

Fig. 7. Mean running times over 100 trials for transpose multiplication using Ggravity, Gmagnetic, Tgravity, and Tmagnetic (left y-axis) and mean errors over 100 trials Egravity and
Emagnetic for transpose multiplication using Ggravity versus Tgravity, and Gmagnetic versus Tmagnetic respectively (right y-axis) are shown for 0% padding in Fig. 7(a), and 5% padding
in Fig. 7(b).

Table 1
Dimensions of the volume used in the experiments labeled as problems 1 to 12
corresponding to scaling each dimension in (25, 15, 2) by the problem number (Prob.)
and increasing m by a factor 8 for each row. In the last two columns the memory
requirements, in Gigabytes (GB), calculated in Matlab, where the entries for rows 7 to
12 are the estimates given by Matlab using try zeros(m,n), which gives an exception
for matrices that are too large for storage in the given environment and reports the
estimated requirements in GB to just one decimal place.
Prob. (s

x
, s

y
, n

z
) m n n (p = 0.05%) GB G GB ÇT

circ

1 (25, 15, 2) 375 750 918 .000225 .000005
2 (50, 30, 4) 1500 6000 7616 .007200 .000037
3 (75, 45, 6) 3375 20250 24402 .054675 .000127
4 (100, 60, 8) 6000 48000 58080 .230400 .000303
5 (125, 75, 10) 9375 93750 113710 .703125 .000594
6 (150, 90, 12) 13500 162000 199200 17.4960 .001028
7 (175, 105, 14) 18375 257250 310730 35.2 .001634
8 (200, 120, 16) 24000 384000 464640 68.7 .002441
9 (225, 135, 18) 30375 546750 662450 123.7 .003478
10 (250, 150, 20) 37500 750000 916320 209.5 .004774
11 (275, 165, 22) 45375 998250 1206500 337.5 .006358
12 (300, 180, 24) 54000 1296000 1568200 521.4 .008258

5. Numerical validation1

We now validate the fast and efficient methods for generating both2
the symmetric and unsymmetric kernels relating to gravity and3
magnetic problems. We compare the computational cost of direct4

calculation of the entries of the matrix G that are required for matrix 5
multiplications, with the entries that are required for the transform 6
implementation of the multiplications. We also compare the storage 7
requirements for these matrices. Thus, we compare Algorithms 1 and 2 8
with all entries calculated using Algorithm 5, and Algorithms 3 and 9
4 with all entries calculated using Algorithm 6, for the symmetric 10
gravity, and unsymmetric magnetic kernels, respectively. The 12 11
problem sizes considered are detailed in Table 1. They are generated 12
by taking (s

x
, s

y
, n

z
) = (25, 15, 2), and then scaling each dimension by 13

1 to 12 for the test cases. We compare the cases with p = 0% and 14
p = 5% padding across x and y dimensions, rounded to the nearest 15
integer. Thus, m = s

x
s
y
, and n = ‚(1+p)s

x
„‚(1+p)s

y
„n

z
. All computations 16

use Matlab release 2019b implemented on a desktop computer with an 17
Intel(R) Xeon (R) Gold 6138 processor (2.00 GHz) and 256 GB RAM. 18

First, note that the last two columns of Table 1 report the esti- 19
mated memory requirement to store the arrays G and ÇT

circ, which is 20
independent of whether this is for the gravity or the magnetic 21
problem. These are the results without padding, but the difference 22
between the padded and unpadded case is insignificant in comparison 23
to the memory requirements for each of these arrays. For the problem 24
of size m ù n, matrix G has mn entries, corresponding to 8mn bytes and 25
complex array ÇT

circ uses approximately 8m entries for each depth layer, 26
for a total of 8mn

z
= 8n entries or 64n bytes, here using that one floating 27

point number uses 8 bytes and noting that 1 byte is 10*9 GB. 28

J.D. Hogue et al.

Table A.2
Parameters and variables in the codes. The parameters are defined in Table A.3.
prob_params s

x
, s

y
, n

z
, p

xL
, p

xR
, p

yL
, p

yR
, n

x
, n

y
,m, n, n

r
, p

x
, p

y

gsx, gsy, gsz Grid sizes �
x
, �

y
and �

z

That That.forward = ÇT
circ, That.transpose = ÇÉT

circ

z_blocks Depth coordinates, increasing, z
r

D Declination of geomagnetic field and magnetization vector
I Inclination of geomagnetic field and magnetization vector
F Intensity of the geomagnetic field in nT (10*9 F in T)
H = 10*9F

4⇡ Magnetic field intensity (A_m) in SI units
ÉH = 109H = F

4⇡ Assumes the field is measured in nT

Algorithm 1: G = sym_BTTB(gsx, gsy, z_blocks, prob_params)
Entries of padded symBTTB matrix. Function gravity.

Input: See Table A.2 for details;
gsx, gsy, z_blocks : grid spacing in x and y and z coordinates;
prob_params required parameters
Output: symBTTB real matrix G of size m ù n.

1 Extract parameters from prob_params ;
2 Initialize zero arrays: G, Gr, Grq;
3 Sizes: nX = s

x
+ max(p

xL
, p

xR
), nY = s

y
+ max(p

yL
, p

yR
);

4 Form distance arrays X and Y according to (20);
5 Form X2 = X

2, Y 2 = Y
2, XY = X(:). < Y and R = X2(:) + Y 2;

6 for r = 1 : n
z
do

7 Set z1 = z_blocks(r), z2 = z_blocks(r + 1);
8 Calculate slice response at first station:

g = gravity(z1, z2,X, Y ,XY ,R);
9 for q = 1 : nY do
10 Extract c

q
, r

q
from g : use (15), (16);

11 Generate: Grq = toeplitz(c
q
, r

q
): use (14) ;

12 end
13 for j = [p

yL
+ 1 : *1 : 2, 1 : s

y
+ p

yR
] do

14 Build first row of Gr using (19);
15 end
16 for j = 2 : s

y
do

17 Build j
th row of Gr using (17) and (18);

18 end
19 Assign: Gr to r

th block of G;
20 end

In the results, we reference the kernels generated by Algorithms 1,1
3, 2, and 4 as Ggravity, Gmagnetic, Tgravity, and Tmagnetic respectively.2
These values are plotted on a ‘‘log–log’’ scale in Fig. 5, without and3
with padding in Figs. 5(a) and 5(b), respectively. The problem sizes4
are given as relevant triples on the x-axis. The problem cases from 8 to5

Algorithm 2: That = sym_BTTBFFT(gsx, gsy, z_blocks, prob_params)
Transform of padded symBTTB matrix. Function gravity.

Input: See Table A.2 for details;
gsx, gsy, z_blocks : grid spacing in x and y and z coordinates;
prob_params required parameters
Output: Array That

1 Extract parameters from prob_params ;
2 Initialize zero arrays: T and That for T circ and ÇT

circ;
3 Sizes: nX = s

x
+ max(p

xL
, p

xR
), nY = s

y
+ max(p

yL
, p

yR
);

4 Form distance arrays X and Y according to (20);
5 Form X2 = X

2, Y 2 = Y
2, XY = X(:). < Y and R = X2(:) + Y 2;

6 for r = 1 : n
z
do

7 Set z1 = z_blocks(r), z2 = z_blocks(r + 1);
8 Calculate slice response at first station:

g = gravity(z1, z2,X, Y ,XY ,R);
9 for j = [1 + p

yL
: s

y
+ p

yL
.s
y
+ p

yR
: *1 : 21 : p

yL
] do

10 Extract r
j
from g : use (16);

11 Augment column of T , use (38) ;
12 end
13 Take FFT of T : That(:, :, r) = fft2(T) ;
14 end

12 for the direct calculation of G are too large to fit in memory on the 6
given computer. It can be seen that the generation of G is effectively 7
independent of the gravity or magnetic kernels; Ggravity, Gmagnetic 8
are comparable. But the requirement to calculate extra entries for the 9
unsymmetric magnetic kernel is also seen; Tgravity < Tmagnetic. On 10
the other hand, the significant savings in generating just the transform 11
matrices, as indicated by timings Tgravity, and Tmagnetic, as compared 12
to Ggravity, and Gmagnetic is evident. There is a considerable computa- 13
tional advantage to the use of the transform for calculating the required 14
components that are needed for evaluating matrix–vector products for 15
these structured kernel matrices. 16

Of greater significance is the comparison of the computational cost 17
of direct matrix multiplications, b = Gu and d = G

T v, as compared with 18
the transform implementations for these products, using Algorithm 7. 19
We consistently partition u À Rnxnynz into n

z
blocks, u

r
À Rnxny , 20

1 f r f n
z
. Then, 21

Gu =
nz
…

r=1
G

(r)u
r
, and G

T v =

b

f

f

f

f

d

�

G
(1)�T v

�

G
(2)�T v
4

�

G
(nz)

�T v

c

g

g

g

g

e

, 22

Table A.3
Notation adopted in the discussion.
s
x

true stations in x s
ij
= (a

ij
, b

ij
) Station location

s
y

true stations in y m = s
x
s
y

measurements
n
x
, n

y
, n

z
coordinate blocks in x, y, z �

x
,�

y
,�

z
Grid sizes in x, y, z

p
xL
, p

xR
, p

x
Left, right, total padding: x n

x
n
x
= s

x
+ p

x

p
yL
, p

yR
, p

y
Left, right,total, padding: y n

y
n
y
= s

y
+ p

y

x
p

x
p
= (p * 1 * p

xL
)�

x
, 1 f p f n

x
+ 1 n = n

x
n
y
n
z

Volume Dimension
y
q

y
q
= (q * 1 * p

yL
)�

y
, 1 f q f n

y
+ 1 n

r
= n

x
n
y

Layer Dimension
z
r

z
r
= (r * 1)�

z
, 1 f r f n

z
+ 1 c

pqr
Prism pqr in xyz

d, h, ⇣ Forward Model see (1) Éh(s
ij
)
pqr

Projection c
pqr

to s
ij

G À Rmùn (G(r))
kl = Éh(s

ij
)
pqr

See (5) G
(r) À Rmùn

r Depth r Contribution
G

(r)
q

À Rs
x
ùn

x G
(r)
q

= G
(r)
1q , 1 f q f n

y
ÑG
(r)
j

À Rs
x
ùn

x ÑG
(r)
j

= ÑG
(r)
j1 , 1 f j f s

y

c
q
, r

q
G

(r)
q

= toeplitz(c
q
, r

q
) Ñc

j
, Ñr

j
ÑG
(r)
j

= toeplitz(Ñc
j
, Ñr

j
)

BTTB Block Toeplitz–Toeplitz blocks symBTTB Symmetric BTTB
BCCB Block Circulant–Circulant blocks J

m
Definition 2 Exchange matrix

cext
q
, rext

q
Defining (G(r))circ Ñcext

j
, Ñrext

j
Defining (ÑG(r))circ

T
circ Components of BCCB ÇT

circ fft2(T circ) : 2DFFT

J.D. Hogue et al.

Algorithm 3: G = BTTB(gsx, gsy, z_blocks, prob_params,D, I ,H)
Entries of padded BTTB matrix, Fig. 3. Function magnetic.

Input: See Table A.2 for details;
gsx, gsy, z_blocks : grid spacing in x and y and z coordinates;
prob_params required parameters
Output: BTTB real matrix G of size m ù n.

1 Extract parameters from prob_params ;
2 Calculate constants g

i
= ÉHG

i
for (44), Bhaskara Rao and

Ramesh Babu (1991, (3));
3 Initialize zero arrays: G, Gr and row and column cell arrays,
Fig. 3;

4 Sizes: nX = s
x
+ max(p

xL
, p

xR
), nY = s

y
+ max(p

yL
, p

yR
);

5 Form distance arrays X and Y according to (30);
6 Form X2 = X

2, Y 2 = Y
2, and R = X2(:) + Y 2;

7 for r = 1 : n
z
do

8 Set z1 = z_blocks(r), z2 = z_blocks(r + 1);
9 Calculate grow{1} = Éh(11)

pq
, 1 f p f nX, 1 f q f nY ;

10 for j = 2 : s
y
+ p

yL
do

11 Calculate grow{j} = Éh(1j)
p1, 1 f p f nX;

12 end
13 Calculate : gcol{1} = Éh(ij)11, 1 f i f nX, 1 f j f nY ;
14 for q = 2 : s

y
+ p

yR
do

15 Calculate : gcol{q} = Éh(i1)1q , 1 f i f nX;
16 end
17 for j = p

yL
+ 1 : *1 : 2 do

18 Generate Gjr: using gcol{1} and grow{j}, (28) for R in
(29);

19 end
20 for q = 1 : s

y
+ p

yR
do

21 Generate Gqr: using gcol{q} and grow{1}, (27) for R in
(29);

22 end
23 for j = p

yL
+ 2 : *1 : 2, 1 : s

y
+ p

yL
do

24 Generate Grj: using gcol{1} and grow{j}, (28) for C in
(29);

25 end
26 Build Gr in (29) using C and R;
27 Assign: Gr to r

th block of G;
28 end

where v À Rsxsy . 100 copies of vectors u À Rn and v À Rm are1
randomly generated and the mean times for calculating the products2
over all 100 trials, for each problem size, are recorded. We also record3
the differences over all trials in the generation of b and d obtained4
directly for Ggravity and Gmagnetic and by Algorithm 7 for Tgravity and5
Tmagnetic. Then, Egravity and Emagnetic are the mean values of the rela-6
tive 2-norm of the difference between the results produced by Ggravity7
versus Tgravity, and for Gmagnetic versus Tmagnetic, respectively, for both8
forward and transpose operations. The results are illustrated in Figs. 69
and 7 for the generation of Gu and G

T v, respectively. In each case the10
timing is reported on the left y-axis and the error on the right y-axis.11
Again all plots are on the ‘‘log–log’’ scale, and Figs. 6(a) and 7(a), and12
6(b) and 7(b), are without and with padding, respectively. Figs. 6 and13
7 show significant reductions in mean running time when implemented14
without the direct calculation of the matrices. Moreover, the results are15
comparable, Egravity ø 10✏ for both forward and transpose operations,16
and Emagnetic ø 102✏, where ✏ is the machine accuracy. Thus, in17
all cases, Tgravity and Tmagnetic show a significant reduction in mean18
running time for large problems, and allow much larger systems to be19
represented. Indeed, the largest test case for Tgravity and Tmagnetic is by20
no means a limiting factor, and it is possible to represent much larger21
kernels.22

Algorithm 4: That = BTTBFFT(gsx, gsy, z_blocks, prob_params,D, I ,H)
Transform of padded BTTB matrix, Fig. 3. Function magnetic.

Input: See Table A.2 for details;
gsx, gsy, z_blocks : grid spacing in x and y and z coordinates;
prob_params required parameters;
D, I , H declination, inclination and intensity of magnetization
Output: Array That

1 Extract parameters from prob_params ;
2 Calculate constants g

i
= ÉHG

i
for (44), Bhaskara Rao and

Ramesh Babu (1991, (3));
3 Initialize zero arrays: T and That for T circ and ÇT

circ;
4 Initialize zero arrays for and row and column cell arrays, see
Fig. 3;

5 Sizes: nX = s
x
+ max(p

xL
, p

xR
), nY = s

y
+ max(p

yL
, p

yR
);

6 Form distance arrays X and Y according to (30);
7 Form X2 = X

2, Y 2 = Y
2, and R = X2(:) + Y 2;

8 for r = 1 : n
z
do

9 Set z1 = z_blocks(r), z2 = z_blocks(r + 1);
10 Calculate grow{1} = Éh(11)

pq
, 1 f p f nX, 1 f q f nY ;

11 for j = 2 : s
y
+ p

yL
do

12 Calculate grow{j} = Éh(1j)
p1, 1 f p f nX;

13 end
14 Calculate : gcol{1} = Éh(ij)11, 1 f i f nX, 1 f j f nY ;
15 for q = 2 : s

y
+ p

yR
do

16 Calculate : gcol{q} = Éh(i1)1q , 1 f i f nX;
17 end
18 for j = p

yL
+ 1 : p

yL
+ s

y
do

19 Augment column of T , gcol{1} and grow{j}, (28) with
(39) ;

20 end
21 for q = s

y
+ p

yR
: *1 : 2 do

22 Augment column of T , gcol{q} and grow{1}, (27) with
(39) ;

23 end
24 for j = 1 : p

yL
do

25 Augment column of T , gcol{1} and grow{j}, (28) with
(39) ;

26 end
27 Take FFT of T : That(:, :, r) = fft2(T);
28 end

Remark 1 (Matlab fft2). The Matlab fft2 function determines an 23
optimal algorithm for a given problem size. On the first call for a 24
given problem size, fft2 uses the function fftw to determine optimal 25
parameters for the Fourier transform. Thus, the first time fft2 is 26
called generally takes longer than subsequent instances. We mitigate 27
this effect by first removing the variable dwisdom within fftw, and 28
then setting the planner within fftw to exhaustive. The obtained 29
dwisdom is saved. This process is repeated for generating ÇT , forward 30
multiplication, and transpose multiplication. Then for each trial, the 31
appropriate stored values for dwisdom are loaded before each use of 32
fft2. Hence the results are not contaminated by artificially high costs 33
of the first run of fftw for each problem case. 34

6. Data availability and software package 35

The software consists of the main functions to calculate the BTTB 36
and symBTTB matrices, with padding, and the circulant matrices T circ 37
that are needed for the 2DFFT. Also provided is a simple script to 38
test the algorithms using the gravity and magnetic kernels. All 39
the algorithms are described in Appendix B and the software is open 40
source and available at https://github.com/renautra/FastBTTB, and 41

https://github.com/renautra/FastBTTB

J.D. Hogue et al.

Algorithm 5: g = gravity(z1, z2,X, Y ,XY ,R)
Entries of sensitivity matrix G for the gravity problem.

Input: Depth coordinates z1 and z2 for the slice;
X: Distances of x*coordinates from station 1 size nx;
Y : Distances of y*coordinates from station 1 size ny;
XY : the product X(:). < Y which is a matrix of size
(nx + 1) ù (ny + 1);
R: the matrix of size (nx+1)ù (ny+1) of entries X(:).·2 and Y .

·2;
Output: Response vector g of length (nx + 1)(ny + 1);

1 [nx, ny] = size(R);
2 R1 = sqrt(R + z

2
1);

3 R2 = sqrt(R + z
2
2);

4 CMX = (log((X(:) + R1)._(X(:) + R2))). < Y ;
5 CMY = (log((Y + R1)._(Y + R2))). < X(:);
6 CM5Z = atan2(XY ,R1z1)z1;
7 CM6Z = atan2(XY ,R2z2)z2;
8 CM56 = CM5Z * CM6Z;
9 CM = (CM56 * CMY * CMX)�;
10 g = *(CM(1 : nx* 1, 1 : ny* 1)*CM(1 : nx* 1, 2 : ny)*CM(2 :

nx, 1 : ny * 1) + CM(2 : nx, 2 : ny));

described at https://math.la.asu.edu/~rosie/research/bttb.html. Pro-1
vided are the scripts that are used to generate the results presented in2
the paper. The variables used in the codes are described in Tables A.23
and A.3. The TestingScript.m is easily modified to generate new4
examples and can be tested within different hardware configurations5
and versions of Matlab. A safety test for memory usage in generating6
large scale examples is provided at the initialization of each problem7
size, so that problems too large to fit in memory will not be used8
in generating the matrix G directly. The presented implementation9
assumes uniform grid sizes in the x and y dimensions, i.e. fixed �

x
and10

�
y
throughout the domain, but using depth layers of different heights,11

different �
z
, is easily implemented by appropriately picking the input12

coordinate vector z_blocks.13

7. Conclusions and future work14

We have provided a description of the generation of efficient codes15
for implementing forward and transpose operations with BTTB ma-16
trices. These are used in geophysical forward modeling when the17
kernels are of convolution type and generate matrices with the required18
structure, which occurs when the observation points are on a uniform19
grid. Efficient generation of matrix operations with minimal storage20
makes it feasible to perform large three-dimensional modeling with21
these kernels. A novelty of this work, beyond existing descriptions in22
the literature, is the development of the approach for the magnetic23
kernel and the inclusion of padding in the coordinate volume. The24
approach for finding operations GTm explicitly given knowledge of the25
BTTB structure of G and its BCCB embedding is provided. It should26
be noted that while the algorithm requires that the observation points27
are on a uniform grid, this is not necessarily a limiting factor of the28
approach, since interpolation from non-uniform to uniform points is29
possible. Moreover, while it is assumed that the volume is discretized30
so that the observation points occur at one point on the surface for each31
prism of the coordinate domain, there is no requirement that the prisms32
are all uniform in the depth dimension, and it is feasible therefore33
to implement with different resolutions in the depth dimension of the34
subsurface volume. Thus, the developed software can be integrated into35
an inverse modeling problem, in which given data d, model parameters36
m are desired. This is planned for future work.37

Algorithm 6: g = magnetic(z1, z2,X, Y ,R, gc))
Entries of sensitivity matrix G for the magnetic problem.

Input: Depth coordinates z1 and z2 for the slice;
X: Distances of x*coordinates from station ;
Y : Distances of y*coordinates from station ;
R: Matrix of entries X(:)2 and Y

2;
gc vector of constants, Bhaskara Rao and Ramesh Babu (1991, 3);
Output: Response vector g of length (l + 1)(k + 1);

1 l = length(X) * 1;k = length(Y) * 1;
2 R1 = sqrt(R + z

2
1);

3 R2 = sqrt(R + z
2
2);

4 F1 = ((R2(1 : l, 1 : k) +X(1 : l))._(R1(1 : l, 1 : k) +X(1 : l))). <
((R1(2 : l + 1, 1 : k) +X(2 : l + 1))._(R2(2 : l + 1, 1 : k) +X(2 :
l + 1))). < ((R1(1 : l + 1, 2 : k + 1) +X(1 : l))._(R2(1 : l + 1, 2 :
k + 1) +X(1 : l))). < ((R2(2 : l + 1, 2 : k + 1) +X(2 :
l + 1))._(R1(2 : l + 1, 2 : k + 1) +X(2 : l + 1)));

5 F2 = ((R2(1 : l, 1 : k) + Y (1 : k))._(R1(1 : l, 1 : k) + Y (1 : k))). <
((R1(2 : l + 1, 1 : k) + Y (1 : k))._(R2(2 : l + 1, 1 : k) + Y (1 : k))). <
((R1(1 : l + 1, 2 : k + 1) + Y (2 : k + 1))._(R2(1 : l + 1, 2 :
k + 1) + Y (2 : k + 1))). < ((R2(2 : l + 1, 2 : k + 1) + Y (2 :
k + 1))._(R1(2 : l + 1, 2 : k + 1) + Y (2 : k + 1)));

6 F3 = ((R2(1 : l, 1 : k) + z2)._(R1(1 : l, 1 : k) + z1)). < ((R1(2 :
l + 1, 1 : k) + z1)._(R2(2 : l + 1, 1 : k) + z2)). < ((R1(1 : l + 1, 2 :
k + 1) + z1)._(R2(1 : l + 1, 2 : k + 1) + z2)). < ((R2(2 : l + 1, 2 :
k + 1) + z2)._(R1(2 : l + 1, 2 : k + 1) + z1));

7 F4 = atan2(X(2 : l + 1)z2,R2(2 : l + 1, 2 : k + 1). < Y (2 :
k + 1)) * atan2(X(1 : l)z2,R2(1 : l + 1, 2 : k + 1). < Y (2 : k + 1)) *
atan2(X(2 : l + 1)z2,R2(2 : l + 1, 1 : k). < Y (1 : k)) + atan2(X(1 :
l)z2,R2(1 : l, 1 : k). < Y (1 : k)) * atan2(X(2 : l + 1)z1,R1(2 :
l + 1, 2 : k + 1). < Y (2 : k + 1)) + atan2(X(1 : l)z1,R1(1 : l + 1, 2 :
k + 1). < Y (2 : k + 1)) + atan2(X(2 : l + 1)z1,R1(2 : l + 1, 1 : k). <
Y (1 : k)) * atan2(X(1 : l)z1,R1(1 : l, 1 : k). < Y (1 : k));

8 F5 = atan2(Y (2 : k + 1)z2,R2(2 : l + 1, 2 : k + 1). < X(2 :
l + 1)) * atan2(Y (2 : k + 1)z2,R2(1 : l + 1, 2 : k + 1). < X(1 : l)) *
atan2(Y (1 : k)z2,R2(2 : l + 1, 1 : k). < X(2 : l + 1)) + atan2(Y (1 :
k)z2,R2(1 : l, 1 : k). < X(1 : l)) * atan2(Y (2 : k + 1)z1,R1(2 :
l + 1, 2 : k + 1). < X(2 : l + 1)) + atan2(Y (2 : k + 1)z1,R1(1 :
l + 1, 2 : k + 1). < X(1 : l)) + atan2(Y (1 : k)z1,R1(2 : l + 1, 1 :
k). < X(2 : l + 1)) * atan2(Y (1 : k)z1,R1(1 : l, 1 : k). < X(1 : l));

9 g = (gc(1) < log(F1) + gc(2) < log(F2) + gc(3) < log(F3) + gc(4) <
F4 + gc(5) < F5);

10 g = g(:);

CRediT authorship contribution statement 38

Jarom D. Hogue: Wrote the codes for implementing the BTTB 39
operations using transforms, Wrote the section describing the use of 40
transforms. Rosemary Anne Renaut: Developed the gravity and mag- 41
netic codes, Efficient derivation of the entries of the matrices. Drafted 42
the paper. Saeed Vatankhah: Provided geophysics expertise for all 43
components of the manuscript, Provided all the initial functions for 44
magnetic and gravity kernels. 45

Declaration of competing interest 46

The authors declare that they have no known competing finan- 47
cial interests or personal relationships that could have appeared to 48
influence the work reported in this paper. 49

Acknowledgment 50

Rosemary Renaut acknowledges the support of NSF grant DMS 51
1913136: ‘‘Approximate Singular Value Expansions and Solutions of 52
Ill-Posed Problems’’. 53

https://math.la.asu.edu/~rosie/research/bttb.html

J.D. Hogue et al.

Algorithm 7: b = mult_BTTB(That, x, t, prob_params)
This algorithm calculates the forward and transpose multiplica-
tion, Gx, or GT x as described in Section 3 using the embedding of
the BTTB matrix in a BCCB matrix and the 2DFFT. The transform
of (38) or (39) for symBTTB and BTTB, respectively, is precom-
puted and provided in That. See Table A.2 for definitions of input
parameters.

Input: That for ÇT : see Table A.2;
x : vector for forward or transpose multiplication;
t : 1 or 2 for forward or transpose multiplication, respectively;
prob_params : required parameters see Table A.2
Output: vector: b of size m or n, for t = 1, 2, respectively.

1 Extract parameters from prob_params ;
2 Initialize zero array for b and W ;
3 if t == 2 then
4 Initialize W according to (41) ;
5 Take transform of W : ÇW = fft2(W);
6 end
7 for j = 1 : n

z
% For all layers of domain do

8 switch t do
9 case 1
10 Initialize W according to (40);
11 Take transform of W : ÇW = fft2(W);
12 Form convolution (34):

W = real(ifft2(That(:, :, j)� < ÇW));
13 Extract and accumulate top left block:

b = b + reshape(W (1 : s
x
, 1 : s

y
),m, 1);

14 end
15 case 2
16 Form convolution (34):

Z = real(ifft2(conj(That(:, :, j)� < ÇW)));
17 Extract top left block and assign to output:

b((j * 1)n
r
+ 1 : jn

r
) = reshape(Z(1 : n

x
, 1 : n

y
), n

r
, 1);

18 end
19 endsw
20 end

Appendix A. Notation and parameter definitions1

2 The notation and parameters is detailed in two tables. The first is3
for the variables used for the codes, and the second for the notation in4
the paper.5

Appendix B. Algorithms6

7 An overview of the required algorithms as described in Sections 2–38
are provided in Algorithms 1–2 using the gravity function in Algo-

rithm 5 and in Algorithms 3–4 with the magnetic function in Algorithm 9
6. The convolution multiplication is provided in Algorithm 7. 10

11

References 12

Bhaskara Rao, D., Ramesh Babu, N., 1991. A rapid method for three-dimensional 13
modeling of magnetic anomalies. Geophysics 56 (11), 1729–1737. 14

Boulanger, Olivier, Chouteau, Michel, 2001. Constraints in 3D gravity inversion. 15
Geophys. Prospect. (ISSN: 1365-2478) 49 (2), 265–280. http://dx.doi.org/10.1046/ 16
j.1365-2478.2001.00254.x. 17

Bruun, Christian Eske, Nielsen, Trine Brandt, 2007. Algorithms and Software for 18
Large-Scale Geophysical Reconstructions (Master’s thesis). Technical University of 19
Denmark, DTU, DK-2800 Kgs., Lyngby, Denmark. 20

Chan, Raymond Hon-Fu, Jin, Xiao-Qing, 2007. An Introduction to Iterative 21
Toeplitz Solvers. Society for Industrial and Applied Mathematics, http://dx. 22
doi.org/10.1137/1.9780898718850, URL https://epubs.siam.org/doi/abs/10.1137/ 23
1.9780898718850. 24

Chan, Raymond H., Ng, Michael K., 1996. Conjugate gradient methods for Toeplitz 25
systems. SIAM Rev. (ISSN: 00361445) 38 (3), 427–482, URL http://www.jstor.org/ 26
stable/2132496. 27

Chen, Longwei, Liu, Lanbo, 2018. Fast and accurate forward modelling of gravity field 28
using prismatic grids. Geophys. J. Int. (ISSN: 0956-540X) 216 (2), 1062–1071. 29
http://dx.doi.org/10.1093/gji/ggy480. 30

Geng, Meixia, Kim Welford, J., Farquharson, Colin G., Hu, Xiangyun, 2019. Gravity 31
modeling for crustal-scale models of rifted continental margins using a constrained 32
3D inversion method. Geophysics 84 (4), G25–G39. http://dx.doi.org/10.1190/ 33
geo2018-0134.1. 34

Gómez-Ortiz, David, Agarwal, Bhrigu N.P., 2005. 3DINVER.M: a MATLAB pro- 35
gram to invert the gravity anomaly over a 3D horizontal density inter- 36
face by Parker–Oldenburg’s algorithm. Comput. Geosci. (ISSN: 0098-3004) 31 37
(4), 513–520. http://dx.doi.org/10.1016/j.cageo.2004.11.004, URL http://www. 38
sciencedirect.com/science/article/pii/S0098300404002262. 39

Haáz, István Béla, 1953. Relations between the potential of the attraction of the mass 40
contained in a finite rectangular prism and its first and second derivatives. Geophys. 41
Trans. II 7, 57–66. 42

Li, Kun, Chen, Long-Wei, Chen, Qing-Rui, Dai, Shi-Kun, Zhang, Qian-Jiang, Zhao, Dong- 43
Dong, Ling, Jia-Xuan, 2018. Fast 3D forward modeling of the magnetic field and 44
gradient tensor on an undulated surface. Appl. Geophys. (ISSN: 1993-0658) 15 45
(3), 500–512. http://dx.doi.org/10.1007/s11770-018-0690-9. 46

Pilkington, Mark, 1997. 3-D magnetic imaging using conjugate gradients. Geophysics 47
(ISSN: 0016-8033) 62 (4), 1132–1142. http://dx.doi.org/10.1190/1.1444214. 48

Shin, Young Hong, Choi, Kwang Sun, Xu, Houze, 2006. Three-dimensional forward 49
and inverse models for gravity fields based on the Fast Fourier Transform. 50
Comput. Geosci. (ISSN: 0098-3004) 32 (6), 727–738. http://dx.doi.org/10. 51
1016/j.cageo.2005.10.002, URL http://www.sciencedirect.com/science/article/pii/ 52
S0098300405002268. 53

Vogel, Curt, 2002. Computational Methods for Inverse Problems. Society for In- 54
dustrial and Applied Mathematics, Philadelphia, http://dx.doi.org/10.1137/1. 55
9780898717570, URL http://epubs.siam.org/doi/abs/10.1137/1.9780898717570. 56

Zhang, Yile, Wong, Yau Shu, 2015. BTTB-based numerical schemes for three- 57
dimensional gravity field inversion. Geophys. J. Int. (ISSN: 0956-540X) 203 (1), 58
243–256. http://dx.doi.org/10.1093/gji/ggv301. 59

Zhao, Guangdong, Chen, Bo, Chen, Longwei, Liu, Jianxin, Ren, Zhengyong, 2018. 60
High-accuracy 3D Fourier forward modeling of gravity field based on the Gauss- 61
FFT technique. J. Appl. Geophys. (ISSN: 0926-9851) 150, 294–303. http://dx.doi. 62
org/10.1016/j.jappgeo.2018.01.002, URL http://www.sciencedirect.com/science/ 63
article/pii/S0926985117301751. 64

http://dx.doi.org/10.1046/j.1365-2478.2001.00254.x
http://dx.doi.org/10.1046/j.1365-2478.2001.00254.x
http://dx.doi.org/10.1046/j.1365-2478.2001.00254.x
http://dx.doi.org/10.1137/1.9780898718850
http://dx.doi.org/10.1137/1.9780898718850
http://dx.doi.org/10.1137/1.9780898718850
https://epubs.siam.org/doi/abs/10.1137/1.9780898718850
https://epubs.siam.org/doi/abs/10.1137/1.9780898718850
https://epubs.siam.org/doi/abs/10.1137/1.9780898718850
http://www.jstor.org/stable/2132496
http://www.jstor.org/stable/2132496
http://www.jstor.org/stable/2132496
http://dx.doi.org/10.1093/gji/ggy480
http://dx.doi.org/10.1190/geo2018-0134.1
http://dx.doi.org/10.1190/geo2018-0134.1
http://dx.doi.org/10.1190/geo2018-0134.1
http://dx.doi.org/10.1016/j.cageo.2004.11.004
http://www.sciencedirect.com/science/article/pii/S0098300404002262
http://www.sciencedirect.com/science/article/pii/S0098300404002262
http://www.sciencedirect.com/science/article/pii/S0098300404002262
http://dx.doi.org/10.1007/s11770-018-0690-9
http://dx.doi.org/10.1190/1.1444214
http://dx.doi.org/10.1016/j.cageo.2005.10.002
http://dx.doi.org/10.1016/j.cageo.2005.10.002
http://dx.doi.org/10.1016/j.cageo.2005.10.002
http://www.sciencedirect.com/science/article/pii/S0098300405002268
http://www.sciencedirect.com/science/article/pii/S0098300405002268
http://www.sciencedirect.com/science/article/pii/S0098300405002268
http://dx.doi.org/10.1137/1.9780898717570
http://dx.doi.org/10.1137/1.9780898717570
http://dx.doi.org/10.1137/1.9780898717570
http://epubs.siam.org/doi/abs/10.1137/1.9780898717570
http://dx.doi.org/10.1093/gji/ggv301
http://dx.doi.org/10.1016/j.jappgeo.2018.01.002
http://dx.doi.org/10.1016/j.jappgeo.2018.01.002
http://dx.doi.org/10.1016/j.jappgeo.2018.01.002
http://www.sciencedirect.com/science/article/pii/S0926985117301751
http://www.sciencedirect.com/science/article/pii/S0926985117301751
http://www.sciencedirect.com/science/article/pii/S0926985117301751

	A tutorial and open source software for the efficient evaluation of gravity and magnetic kernels
	Introduction
	Forward modeling
	Spatially invariant kernels
	Placement of the stations at the center of the cells
	Introducing padding around the domain

	Matrix structure for spatially invariant kernels
	Symmetric kernel matrices with Toeplitz block structure without domain padding
	Symmetric kernel matrices with Toeplitz block structure and domain padding
	Unsymmetric kernel matrices with block structure
	Unsymmetric kernel matrices with block structure and domainpadding

	Circulant operators and the 2D FFT
	Convolution with domain padding

	Optimizing the calculations for specific kernels
	Gravity kernel calculation
	Magnetic kernel

	Numerical validation
	Data availability and software package
	Conclusions and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgment
	Appendix A. Notation and Parameter Definitions
	Appendix B. Algorithms
	References

