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ABSTRACT

The focusing inversion of gravity and magnetic potential-
field data using the randomized singular value decomposition
(RSVD) method is considered. This approach facilitates tackling
the computational challenge that arises in the solution of the
inversion problem that uses the standard and accurate approxi-
mation of the integral equation kernel. We have developed a
comprehensive comparison of the developed methodology for
the inversion of magnetic and gravity data. The results verify
that there is an important difference between the application
of the methodology for gravity and magnetic inversion prob-
lems. Specifically, RSVD is dependent on the generation of a
rank ¢ approximation to the underlying model matrix, and
the results demonstrate that ¢ needs to be larger, for equivalent

problem sizes, for the magnetic problem compared to the gravity
problem. Without a relatively large g, the dominant singular val-
ues of the magnetic model matrix are not well approximated. We
determine that this is due to the spectral properties of the matrix.
The comparison also shows us how the use of the power iter-
ation embedded within the randomized algorithm improves
the quality of the resulting dominant subspace approximation,
especially in magnetic inversion, yielding acceptable approxi-
mations for smaller choices of ¢. Further, we evaluate how
the differences in spectral properties of the magnetic and gravity
input matrices also affect the values that are automatically
estimated for the regularization parameter. The algorithm is
applied and verified for the inversion of magnetic data obtained
over a portion of the Wuskwatim Lake region in Manitoba,
Canada.

INTRODUCTION

Potential-field surveys, gravity and magnetic, have been used for
many years for a wide range of studies including oil and gas explo-
ration, mining applications, and mapping basement topography
(Blakely, 1996; Nabighian et al., 2005). The inversion of acquired
data is one of the important steps in the interpretation process (Pil-
kington, 1997; Li and Oldenburg, 1998; Portniaguine and Zhdanov,
1999; Boulanger and Chouteau, 2001; Silva and Barbosa, 2006;
Farquharson, 2008; Liu et al., 2013, 2018). The problem is, how-
ever, ill posed, and the solution process requires the minimization of

a global objective function that consists of two terms, the data misfit
term and a stabilizing or regularizing term. These two terms are bal-
anced by a scalar regularization parameter that weights the contri-
bution of the stabilizing term to the solution. Extensive background
on the modeling and solution techniques is provided in the literature
(Li and Oldenburg, 1998; Portniaguine and Zhdanov, 1999; Vatank-
hah et al., 2015). Still, the development of effective and efficient ap-
proaches for large-scale problems continues to be computationally
challenging, and many directions for reducing this burden have been
considered. Among these, for example, one focus has been on reduc-
ing the computational demands, whether memory or floating-point
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operations, using compression techniques as in Portniaguine and
Zhdanov (2002), Li and Oldenburg (2003), and Cox et al. (2010),
or on techniques that implement a restricted systematic search algo-
rithm as described in Uieda and Barbosa (2012). Our research also is
directed toward the reduction of the computational burden.

A widely used strategy is to restrict an original large-scale prob-
lem to a much smaller subspace (Skilling and Bryan, 1984; Oldenburg
et al., 1993). The resulting subspace solution then can be projected
back to the original full space under reasonable assumptions that the
subspace problem sufficiently captures the characteristics of
the full-space problem. For example, using the Golub-Kahan bidia-
gonalization (GKB) of the model matrix, the large-scale problem is
projected onto a Krylov subspace of restricted dimension. The sub-
space solution then is obtained relatively efficiently using a standard
factorization such as singular value decomposition (SVD) (Paige
and Saunders, 1982a, 1982b; Kilmer and O’Leary, 2001; Chung
et al., 2008; Renaut et al., 2017; Vatankhah et al., 2017). We note
that this approach is equivalent to the use of the conjugate gradient
(CG) algorithm for the solution of the least-squares problem in ex-
act arithmetic, but it is more stable numerically (Paige and Saun-
ders, 1982a). Still, there is a need to solve ever larger problems so
as to provide greater resolution of the subsurface structures, while
also automatically estimating a suitable regularization parameter.
Even with the continually increasing computational power and
memory that is available, it is sometimes impossible or computa-
tionally prohibitive to obtain effective solutions with these tradi-
tional computational algorithms.

Recently, the powerful concept of randomization for finding low-
rank approximations has been introduced as an alternative strategy
for dealing with large-scale inverse problems (Halko et al., 2011;
Xiang and Zou, 2013; Voronin et al., 2015; Xiang and Zou, 2015;
Wei et al., 2016; Vatankhah et al., 2018a, 2018b). Fundamentally,
for a given matrix, the approach consists of three steps: (1) a sto-
chastic step that generates a random but orthonormal matrix that
samples rows and columns of a matrix, (2) a completely determin-
istic step that yields the eigendecomposition of the subsampled
matrix, and (3) the use of the eigendecomposition to provide a low-
rank approximate SVD of the matrix. The resulting randomized
SVD (RSVD) then is used within an inversion methodology for
finding a solution of the underlying large-scale problem.

For the 3D inversion of gravity data, Vatankhah et al. (2018b)
combine an Li-norm regularization strategy with the RSVD for
the generation of a focused image of the subsurface with n model
parameters using just m data measurements, m < n. For the RSVD
algorithm, it is important to estimate an appropriate lower bound on
g in order that acceptable solutions are provided using an algorithm
that is computationally efficient with respect to time and memory.
Their results indicate that satisfactory results, nearly equivalent to
those using the full SVD (FSVD) for the SVD calculations in the
algorithm, are achievable using a rank g approximation g > (m/6).
(The solutions are the same when g = m.) Note that throughout we
will use RSVD and FSVD to denote the algorithms that use the
RSVD and FSVD, respectively, to approximate the SVD of the sen-
sitivity matrices at all steps in the L-norm regularization strategy.

The main contribution of this paper is the extension of the RSVD
algorithm, as presented in Vatankhah et al. (2018b), for the inver-
sion of magnetic potential data. First, our results demonstrate that
direct application of their RSVD algorithm does not lead to accept-
able solutions. Rather, for a problem of equivalent size as given by

the pair (m, n), we find that ¢ must be larger than predicted for the
gravity problem; here, the choice g < m /2 does not yield acceptable
solutions. But, increasing ¢ significantly is contrary to the aim of
finding an algorithm that is effective and memory limited; as ¢ in-
creases, there is no benefit in memory reduction by using RSVD in
place of FSVD. Here, we show that the difference between the grav-
ity and magnetic problems is due to the spectral properties of the
underlying sensitivity matrices. For the magnetic problem, the spec-
tral values decrease more slowly; hence, a larger ¢ is required to
accurately capture the essential properties of the original problem
to the same degree of accuracy as for the gravity problem. However,
by introducing power iterations into the determination of the rank-g
approximation, an improved approximation of the spectrum is
achieved and the rank ¢ approximation error decreases. Then, with
just one power iteration for each sensitivity matrix, acceptable re-
sults are achieved for g > m/4. Moreover, introducing the same
power iteration for the gravity problem reduces the acceptable rank
to g 2 m/8. Our analysis of the spectrum also shows that the regu-
larization parameter(s) required in the solves for the magnetic prob-
lem are commensurately larger due to the larger dominant spectral
values of its model matrix compared to the gravity problem. In both
cases, however, we demonstrate that given the suitable RSVD al-
gorithm, it still is possible to automatically estimate the suitable,
and problem-dependent, regularization parameter using standard
techniques. Hence, this work extends and validates the use of
the L; norm stabilization algorithm combined with the RSVD
for inversion of gravity and magnetic data sets.

INVERSION METHODOLOGY

We discuss the general case for the linear inversion of potential-
field data in which the subsurface is discretized into a large number
of cells of fixed size but with unknown physical properties (Li and
Oldenburg, 1998; Boulanger and Chouteau, 2001). The unknown
parameters of the cells are stacked in a real vector of length n,
m € R", potential-field data measured at m stations m < n are
stacked in a vector d ., € R", and the measurements are connected
to the model parameters via the model matrix G € R™*", yielding
the underdetermined linear system

dg,, = Gm. (1)

Matrix G is the forward model operator that maps from model to
data spaces, with entry G;; representing the effect of the unit model
parameter at cell j on the data at location i. In the case of the in-
version of magnetic data, vector m represents the values of the
unknown susceptibilities of the cells and d.,, is the total mag-
netic field. Rao and Babu (1991) provide a fast approach for com-
puting the total magnetic field anomaly of a cube that is used to
form the elements of G for the magnetic problem. For the gravity
problem, the vectors m and d, are the cell density contrasts and
vertical components of the gravity field, respectively. Here, the el-
ements of G are computed using the formula developed by Hadz
(1953); see, for example, Boulanger and Chouteau (2001) for more
details. Clearly, model matrix G depends on the kernels that connect
the data and measurements. Thus, we may anticipate that the pro-
perties of G are problem-dependent. In particular, the spectral pro-
perties of G affect the condition of the underdetermined system
and, hence, the performance of any algorithm that is used for data
inversion.
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Stabilization, or regularization, is required to find an acceptable
solution of the ill-posed system given by equation 1; its solution is
neither unique nor stable. Here, we consider the L;-norm-stabilized
solution of equation 1, as presented by Vatankhah et al. (2017),
to reconstruct high-resolution sharp images of the subsurface.
Although such L;-norm algorithms have been developed in many
contexts (see the references in Vatankhah et al. [2017]), their appli-
cation for the focusing inversion of geophysical structures as pre-
sented in Vatankhah et al. (2017) appears to be novel. In particular,
their approach included (1) weighting of the data based on the
knowledge, or estimate, of the standard deviation of the indepen-
dent noise in the data, encoded in diagonal matrix Wy, (2) weighting
for the depths of the cells encoded in Wy, which is a depth-
weighting matrix with diagonal entries 7~ at depth z, (3) hard con-
straints on acceptable values for m encoded in diagonal matrix
Whaas (4) approximation of the L;-norm stabilizer via an L,-norm
term encoded in Wy, (e.g., Vatankhah et al., 2020, equation 4 with
p = 1), and (5) the inclusion of prior knowledge on the solution
encoded in m,,.. An estimate for m,, may come from geology,
logging, or previous geophysical surveys or is assumed to be zero
when no prior information is available (Li and Oldenburg, 1998).
The known values of the model parameters are given in m,,., and
the corresponding elements in Wy, 4 are set to a large value. Where
there is no information available, the corresponding entries of Wy,4
and my, are set to 1 and 0, respectively. Further details of the ap-
plication of the hard constraint matrix are provided in Vatankhah
et al. (2018b). Overall, solution m is estimated as the minimum
of the nonlinear global objective function P*(m),

m = arg min{P*(m)}
= arg n}rlln{”Wd(Gm - dobs) ”% + (ZZHW(III - mapr) H%}
(2)

Here, a is a scalar regularization parameter that balances the two
terms in the objective function and W = Wep, Wharg Wy, is a prod-
uct of diagonal invertible matrices (Vatankhah et al., 2020). It is
Wy,,, which enables the algorithm to produce a nonsmooth and fo-
cused image of the subsurface.

Noting that the inverse of a diagonal matrix is obtained at effec-
tively zero computational cost, the objective function expressed
in equation 2 easily is transformed to the standard Tikhonov form
(Vatankhah et al. [2015]),

P(h) = ||Gh = F[3 + o*||h]

5 A3)

where G = WaGW=!, = Wy(dy, — Gm,,), and h=
W(m — m,,,). The solution of equation 3, dependent on the choice
of a, then is

h(a) = (G G +aL,)"'G T, @)
and the model update is given by
m(a) = m,, + W 'h(a). (5)

The nonlinear objective function is minimized using an iteratively
reweighted approach, yielding m(a), dependent not only on a,

changing with each iteration, but also on matrix W, which changes
at each step through the update of matrix Wy, . Further, it is well
known that it is important to apply suitable bound constraints within
a focusing inversion of magnetic or gravity data, e.g., Portniaguine
and Zhdanov (1999). At each stage of the algorithm, upper and
lower bounds on the physical parameters are imposed in order that
the recovered model is reliable and within known acceptable ranges.
If at any iteration a physical parameter value falls outside these pre-
defined lower and upper bounds, the value is projected back to the
nearest upper or lower bound (Boulanger and Chouteau, 2001). The
iteration is terminated when either the data predicted by the recon-
structed model satisfies the observed data at the noise level or a
maximum number of iterations K, is reached. The complete al-
gorithm is described in Vatankhah et al. (2017).

When m and n are small, it is feasible to express the solution

h(a) using the full SVD of G. For G = UZV7, where matrices
Ue R™™ and V€ R™" are orthogonal with columns w; and
v; and ¥ € R"™" is the matrix of singular values o;, ordered from
large to small, then

O; i
o -ST e

see, e.g., Paoletti et al. (2014), Vatankhah et al. (2015), and Vatank-
hah et al. (2017). Here, m*, the number of nonzero singular values,
is the numerical rank of the matrix, namely, m* < m. It also is rel-
evant that it is the availability of the FSVD that makes it possible to
estimate regularization parameter a cheaply using standard param-
eter-choice techniques without calculating the solution of the prob-
lem multiple times (Xiang and Zou, 2013; Chung and Palmer,
2015). Unfortunately, calculation of SVD for large, or even mod-
erate, underdetermined systems is not practical; the cost is approx-
imately 6nm? 4 20m> (Golub and Van Loan, 2013). A traditional
alternative is the use of the iterative GKB algorithm that can be used
to project G onto a Krylov subspace of smaller dimension, theoreti-
cally equivalent to the use of CG on the least-squares system, and
for which an SVD of the projected problem then is efficiently used
to yield the subspace solution; see Vatankhah et al. (2017) for de-
tails of the application of this strategy to find the minimizer of
P%(h). Although the SVD obtained via the GKB algorithm facili-
tates the use of SVD-based parameter-choice algorithms to find an
optimal a at minimal additional computational cost, and the solu-
tion is projected back to the original full space at minimal cost, the
GKB algorithm relies on building a relatively large Krylov space for
the solution when m and n are large; see e.g., Renaut et al. (2017)
and Vatankhah et al. (2017). Generating the Krylov space is com-
putationally relatively expensive and thus restricts the set of prob-
lems that can be considered. The use of the Krylov space to find
solution m(a) as given by equation 5 for a fixed a, specifically
when a is assumed known and not adjusted to fit the problem,
is commonly known as the CG least-squares method. It is thus sim-
ilarly limited computationally, as discussed in Renaut et al. (2017).
Here we focus, therefore, on the efficient estimate of an approxi-
mate SVD using randomization. We note that an extensive compari-
son of the application of the GKB and RSVD algorithms for
minimizing P*(h) for the gravity inverse problem is considered
in Vatankhah et al. (2018b). We refer to this reference for the
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comparison of the operation costs and the details of the numerical
implementation.

Regularization parameter-choice method

Given an estimate for the SVD of G, we can make use of param-
eter-choice rules to find an optimal choice for @, which we denote as
@opi, but note that it is optimal only in the sense of the chosen
method. Here, we use the method of unbiased predictive risk esti-
mation (UPRE) to find . This a posteriori rule for choosing the
Tikhonov regularization parameter is well-described in Vogel
(2002) and has been extensively applied for the inversion of data
when an estimate of the noise covariance is available, including
for the inversion of geophysical data (Vatankhah et al., 2015,
2017) and for more general inversion problems (Chung and Palmer,
2015; Renaut et al., 2017). Using the FSVD of matrix G, the UPRE
function to be minimized is given by

m 1 2 UL
_ T=\2 i *
a)_z<o',2a_2+l) (uir) +2<ZG?+a2>_m'

i=1

Parameter a,, is found by evaluating this equation on a range of a,
between minimum and maximum o;. In keeping with standard ap-
proaches, this approach is used to find (x((,];)[ for iterations k£ > 1, but
for k=1

w_ (PP o
* <m> mean(o;) ®

is used. This follows Vatankhah et al. (2017) and is based on the
suggestion of Farquharson and Oldenburg (2004), in which it is rec-
ommended that a large o should always be applied at the first
iteration.

Randomized SVD

Recent approaches based on randomization have presented an
interesting alternative for tackling problems requiring high resolu-
tion of the subsurface (Xiang and Zou, 2013; Voronin et al., 2015;
Vatankhah et al., 2018a, 2018b). Random sampling is used to con-
struct a low-dimensional subspace that approximates the column
space of the model matrix and maintains the most dominant
spectrum of the original matrix (Halko et al., 2011). Standard
deterministic matrix decomposition methods such as the SVD, or
eigendecomposition, then can be used to compute a low-rank
approximation of the original matrix. Specifically, in the context
of potential-field inversion, it is des1rable to find a g-rank matrix

G which is as close as possible to G in the least-squares sense,
whereas at the same time, the target rank ¢ is as small as possible in
order that the inversion process is fast. We note that, of course, the
best rank g approximation in the least-squares sense is given by the

exact truncated SVD of G with q terms (Golub and Van Loan,
2013). It is generally, however, not practical to calculate the trun-
cated SVD for large-scale problems. Thus, here we focus on the
RSVD and carefully describe the approach that was presented in
Vatankhah et al (2018b) for the solution of the gravity inversion
problem.

The fundamental aspects of an RSVD algorithm consist of three

stages. Here, we present this for the underdetermined matrix G.
(1) A low-dimensional subspace is constructed that approximates

=T .. . .
the column space of G . The aim is to find a matrix Q € R™4 with

= = T
orthonormal columns such that G = GQQ . (2) Given the near-op-
timal basis spanned by the columns of Q, a smaller matrix

B= GQ € R™4 jis formed. This means that G is restricted to
the smaller subspace spanned by the basis from the columns of
Q and its Euclidean norm is preserved (Erichson et al., 2016).

(3) B can be used to compute an approximate SVD for G using
a traditional algorithm to compute the approximations to the first
q left singular vectors as well as the corresponding singular values

for matrix G. The approximate right singular vectors also could be
recovered; see e.g., Xiang and Zou (2013). Alternatively, as dis-
cussed, with proof, in Vatankhah et al. (2018b), the much smaller
matrix B'B € R“* can be used to find the required SVD compo-
nents for B using the eigendecomposition of B'B. Here, Z = ¢ + p,
where p is a small oversampling parameter. It also was demon-
strated that the computational cost of this algorithm is O(Zmn).
Thus, it is feasible to compute the large singular values of a given
matrix efficiently. Note that although step (1) is completely random
and depends on the selection of a specific approach to find Q, steps
(2) and (3) are deterministic.

The fundamental approach, as presented by Vatankhah et al.
(2018b), is summarized in Algorithm 1. A power iteration can
be included at step 3 of this algorithm to improve the quality of
the approximate SVD. This is needed when the spectrum does
not decay quickly. The power iteration algorithm is explained in
the following section.

Randomized SVD with power iterations
The quality of the RSVD that is obtained using Algorithm 1 with-
out step 3 depends on the quahty of the basis matrix Q as providing

a basis for the column space of G Halko et al. (2011) suggest an

Algorithm 1. RSVD algorithm with s power iterations. Given

matrix G € R™® (m < n), a target matrix rank ¢ and a
small constant oversampling parameter p satisfying
q +p = £ < m, compute an approximate SVD of

G: G ~ UL, V! with U, € R™9, I, € R?4, V, € R"™.

1: Generate Q € R?*" where all entries are drawn from a standard
normal distribution: Q = randn(Z, m).

2: Form the sketch matrix Y = QG € R,
: When s > 1: apply power iterations; see Algorithm 2.

~ W

: Compute orthonormal matrix Q € R™“ via QR factorization
=QR. .

: Form the matrix B = GQ € R™<.

: Compute the matrix B'B € R”*.

: Compute the eigendecomposition of B7B; [V,, D,] = eig(B”B).

: Compute V QV,/; 1? 2, =vD,(l:q,1:q);
and U, = BV, (:

9: Note G =U ZqVq isa q -rank approximation of matrix G.

0 3 N W
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improvement of their proto algorithm for forming the basis matrix
Q and the associated RSVD that should lead to an improved
approximation of the dominant spectrum. In the proto algorithm
for power iterations (Halko et al., 2011, p. 227), the sketch matrix

Y is obtained after first preprocessing matrix G to give

¢Y = GG 6y, ©)

where integer s specifies the number of power iterations. Although
this is specifically implemented in Halko et al. (2011), the approach
is sensitive to floating-point rounding errors, which reduces the
quality of the Q basis. Thus, Halko et al. (2011) implement ortho-

normalization of the columns of Y between each application of G

and GT. Here, we extend the power iterations for the underdeter-
mined case, using Algorithm 2, for step 3 within Algorithm 1,
and with complete orthonormalization for the columns of Y. For
this step, we use the QR factorization of Y7 using an economic
QR factorization. This means that we generate only the first £ col-
umns of the matrix Q, rather than all n columns that would be ob-
tained using a full QR factorization. Moreover, the matrix R is not
needed and, thus, we use the MATLAB function QR with R not
required as an output. This is achieved using [Q, ~] = ¢r(Y7,0),
where ~ indicates that R is not required (https://www.mathworks
.com/help/matlab/ref/qr.html). Furthermore, matrix Q is overwritten
when proceeding from steps 2 to 3.

To analyze the effect of power iterations on improving the accu-
racy of the computed matrix, a simplified upper bound on the ex-
pected error between the original and the g-rank-computed matrices
is given by Martinsson (2016) and Erichson et al. (2016)

EIG-Gqll < [1 + | ——
p—1
+ %.\/min(m, n)— q]ﬁaqﬂ, (10)

where e is Euler’s number, o, is the g + 1 largest singular value

of matrix G, E denotes the expectation operator, and it is assumed
that p > 2. The upper bound (9) indicates how parameters p, ¢, and
s can be used to control the approximation error. Note immediately

that for ¢ = min(m, n) then 6, = 0 and E|G- f}qH = 0. With
increased oversampling p, the second and third terms in the bracket
tend toward zero, which means that the bound approaches the

Algorithm 2. Power iterations. For the given matrix Ge
R"™"(m < n) and initial sketch matrix Y € R***, improve
matrix Y by applying s power iterations.

I: For j=1,---,s.

2:[Q,~] = gr(Y",0) (economic QR decomposition).
3:[Q.~] =,4(6Q. 0).

4: YT =G Q.

5: End.

theoretically optimum value 6, (Erichson et al., 2016). As the
number of power iterations s increases, 1/(2s + 1) goes to zero,
and the error bound is reduced.

SYNTHETIC EXAMPLES

In the following, we first evaluate the performance of the RSVD
algorithm without power iterations, comparing its performance for
the solution of relatively small-scale gravity and magnetic problems
under the same configuration but the appropriate choice of model

matrix G. The results are compared to those obtained using the
FSVD in each case. To understand the performance of the algo-
rithm, we examine the spectrum of the approximate operator, as

compared to that of G, for each problem, and then we examine the
improvement obtained using the power iterations for s = 1. A more
complicated configuration for a structure with multiple bodies is
then examined, which confirms the conclusions obtained for the
first example. First, we provide a discussion of the practical con-
siderations that apply to all of the presented results.

Practical procedures

In the simulations of the total field anomaly, the intensity of the
geomagnetic field, the inclination, and the declination are selected
as 47 000 nT, 50°, and 2°, respectively. The density contrast and the
susceptibilities of the model structures embedded in a homogeneous
nonsusceptible background are p = 1gecm™ and x = 0.1 (SI unit),
respectively. We apply bound constraints at each iteration of the
inversion; specifically, 0 = pyin < P < Pmax = | in units g cm™ and
0 = Kpin < kK < Kpax = 0.1 in SI units for the gravity and magnetic
inversions, respectively. Further, for all simulations, as is standard
in the geophysics literature, e.g., Li and Oldenburg (1996) and
Leliévre and Oldenburg (2006), we add Gaussian noise with zero
mean and standard deviation (7} |degac|; + 72 Max |dey,|) to datum
i, for chosen pairs (7}, 7,), where d.y, is the exact data set, yielding
d,,, with a known distribution of noise for the error. This standard
deviation is used to generate the matrix W in the data fit term. The
values of (zy,7,) are selected such that the signal-to-noise ratios
(S/Ns), as given by

Hdexact”Z , (11)
Hdobs - dexact”Z

are close for the gravity and magnetic noise-contaminated data.
The values for (z;,7,) and the resulting S/Ns are specified in the
captions of figures associated with the results for each data set.
Then, to test convergence of the update m*) at iteration k, we cal-
culate the y? estimate,

S/N == 2010g]0

(r2)® = [[We(dops — )|

5 (12)

where d}(,’;e) = GmW®, and that assesses the predictive capability of
the current solution. When (y2)®) < m + v/2m, the iteration ter-
minates. Otherwise, the iteration is allowed to proceed in all cases
to a maximum number of iterations K, = 50. In all simulations,
as suggested in Vatankhah et al. (2018a), we use a fixed oversam-
pling parameter p = 10, which determines £ = ¢ + 10. We also as-
sume My, = 0, and for W, take f = 0.8 and 1.4, for gravity and
magnetic inversions, respectively, which are values close to those
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suggested by Li and Oldenburg (1998). In the results, we examine
the dependence of the solution on the choice of ¢ and record (1) the
number of iterations K required, (2) the relative error progression
with increasing k as given by

—m®
RE(k) — ||mexact m ||2 , (13)

||mexact ||2

A0
RG(k) _ ”G_Gq ”2

z (14)

Gl
@) a® with increasing k, and (5) all values at the final iteration K as
well as the time for the iterations. Moreover, in all cases, we do not
include the calculation of the original model matrix G.

In the subsequent discussion of the simulations, we present re-
sults for gravity and magnetic data inversions. To carefully contrast
how the two models differ, we present in each case first results using
the gravity data, and then the equivalent problem but inverted for
magnetic data. Our aim is not to show that the algorithm can suc-

(3) the relative error in the rank ¢ approximation to G,

=Y
~

Depth (m)

500 1000 0 500 1000
Easting (m) Easting (m)

Figure 1. Cross section of the synthetic model consisting of two dipping dikes. (a) Den-
sity distribution and (b) susceptibility distribution.

b) nT
g 1000
(o]
<
=

500
2

0
0 500 1000 0 500 1000
Easting (m) Easting (m)

Figure 2. Anomaly produced by the model shown in Figure 1 and contaminated
by Gaussian noise. (a) Vertical components of the gravity field. The noise is generated
using parameter pairs (7; = 0.02,7, =0.02) and (b) total magnetic field. Here,
(r; =0.02,7, = 0.015). The S/Ns for the gravity and magnetic data, respectively,
are 21.9188 and 21.7765.

ceed for gravity data inversion because that has
already been demonstrated in the literature, but to
emphasize the impact of changing the model to
the magnetic data case, for which the sensitivity
matrix presents with different spectral properties.
Computations are performed on a desktop com-
puter with an Intel Xeon W-2133 CPU 3.6 GHz
processor and 32 GB RAM.

Small-scale model consisting of two
dipping dikes

The small-scale but complicated structure of
two dipping dikes, illustrated in Figure 1, makes
it computationally feasible to compare the solu-
tions for the gravity and magnetic inverse prob-
lems using Algorithm 1 without power iteration,
with the solutions obtained using FSVD. The
data for the problem are generated on the surface
on a 30 x 30 = 900 grid with grid spacing 50 m.
The noisy gravity and magnetic data are illus-
trated in Figure 2a and 2b.

The subsurface volume is discretized into
900 X 10 = 9000 cubes of size 50 m in each
dimension, for a model extending to depth
500 m. The resulting matrix G is small, of size
900 X 9000, and it is computationally feasible to
calculate the FSVD of G. This facilitates the
comparison of solutions obtained with the inver-
sion algorithm using the FSVD and an approxi-
mate SVD obtained using the RSVD. Results
obtained using the FSVD and RSVD, with the

Table 1. Results of the inversion algorithms applied on the gravity data of Figure 2a.

Method q al a®) REX) RGK) K 7’ Time (s)

FSVD — 61,712 32.2 0.7232 — 12 811.8 31.5

RSVD 100 24,074 44.5 0.7550 0.0521 14 935.8 37.2
150 29,524 37.4 0.7441 0.0497 12 928.7 32.7
200 33,726 34.5 0.7221 0.0448 12 905.6 323
300 40,360 334 0.7153 0.0257 12 901.4 33.0
500 49,504 29.5 0.7077 0.0143 12 801.9 35.0
700 56,105 31.1 0.7061 0.0082 12 908.1 35.9
900 61,712 322 0.7232 2.8510¢ 14 12 811.8 37.9
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choices ¢ = 100, 150, 200, 300, 500, 700, and 900, are detailed in
Tables 1 and 2, respectively, and are illustrated in Figures 3—6. Spe-
cifically, Figures 3 and 5 illustrate the results using the FSVD for
the gravity and magnetic data inversions, respectively. For compari-
son, Figures 4 and 6 illustrate the results using the RSVD with g =

200 for the gravity and magnetic data inversions,
respectively.

The results presented for the inversion of the
gravity data using the FSVD show that the iter-
ation terminates after just 12 iterations, and, as
indicated in Figure 3a, the reconstructed model
is in good agreement with the original model.
A sharp and focused image of the subsurface
is obtained, and, although the depths to the
top of the structures are consistent with those
of the original model, the extensions of the dikes
are overestimated for the left dike and underesti-
mated for the right dike. Figure 3b and 3c illus-
trates the progression of the relative error and
regularization parameter at each iteration, respec-
tively. Figure 3d shows the UPRE function at the
final iteration. These figures are presented for
comparison with the results obtained using the
RSVD algorithm and demonstrate that a®*) is
much larger for the magnetic problem as com-
pared to the gravity problem of the same size,
confirming that it is important to automatically
adjust a(®) for the given model and iteration.

For the same gravity problem, the results using
the RSVD algorithm for very small values of ¢,
g < 100 are not acceptable. With the increasing
g, the solution improves until, at g = m, the sol-
ution matches the FSVD solution. For the re-
ported choices of g, all the solutions terminate
prior to K .., with K = 12 for ¢ > 150 and dem-
onstrating that the y? estimate is satisfied. We can
see that for a suitable value of ¢, the RSVD leads
to a solution that is close to that achieved using
the FSVD. These conclusions confirm the results
in Vatankhah et al. (2018b); the RSVD algorithm
can be used with g > (m/6) for the inversion of
gravity data. We illustrate the results of the inver-
sion using g = 200 in Figure 4.

G99

The results presented for the inversion of the magnetic data using
the FSVD show that the iteration terminates after eight iterations,
and, as indicated in Figure 5a, the reconstructed model is in reason-
able agreement with the original model. Again, a focused image of
the subsurface is obtained, but the overestimation of the depth of the
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Figure 3. FSVD results for the inversion of gravity data given in Figure 2a. (a) Cross
section of reconstructed model, (b) the progression of relative error RE®) with iteration
k, (c) the progression of regularization parameter a(*) with iteration &, and (d) the UPRE
function at the final iteration.
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Figure 4. RSVD results using target rank ¢ = 200 for the inversion of gravity data given
in Figure 2a. (a) Cross section of reconstructed model, (b) the progression of relative
error REW with iteration &, (c) the progression of regularization parameter a*) with
iteration k, and (d) the UPRE function at the final iteration.

Table 2. Results of the inversion algorithms applied on the magnetic data of Figure 2b.

Method q al) al®) RE®X) RGK) K Ve Time (s)

FSVD — 21,086 4106.4 0.8454 — 8 898.6 20.7

RSVD 100 9866 4372.3 1.0651 0.3735 50 2880.6 125.0
150 11,247 3089.6 0.9904 0.4143 50 2592.5 127.9
200 12,415 3018.0 0.9050 0.3701 50 1673.7 134.9
300 14,371 3030.9 0.8606 0.2948 50 1120.5 135.0
500 17,011 3861.2 0.8426 0.0453 9 917.6 26.9
700 19,071 3854.1 0.8470 0.0268 8 918.2 24.8
900 21,086 4106.4 0.8454 2.8165¢~14 8 898.6 26.1
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left dike is greater compared with the results in Figure 3. Corre-
spondingly, the relative error is larger than that achieved in the in-
version of the gravity data. For the same magnetic problem, the
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Figure 5. FSVD results for the inversion of magnetic data given in Figure 2b. (a) Cross
section of the reconstructed model, (b) the progression of relative error RE®) with iter-
ation k, (c) the progression of regularization parameter a'¥) with iteration k, and (d) the
UPRE function at the final iteration.
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Figure 6. RSVD results using target rank ¢ = 200 for the inversion of magnetic data
given in Figure 2b. (a) Cross section of the reconstructed model, (b) the progression of
relative error RE(X) with iteration , (c) the progression of regularization parameter a(*)
with iteration k, and (d) the UPRE function at the final iteration.
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Figure 7. RSVD results using target rank ¢ = 500 for the inversion of magnetic data
given in Figure 2b. (a) Cross section of the reconstructed model, (b) the progression of
relative error RE(®) with iteration , (c) the progression of regularization parameter a(f

with iteration k, and (d) the UPRE function at the final iteration.
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results using the RSVD algorithm are not acceptable with reason-
able choices for g; indeed, the algorithm does not terminate prior to
K = K ,x for ¢ <500, and the cost therefore increases signifi-

cantly. As compared to the inversion of gravity
data, larger values of ¢ are required to yield
acceptable results. Observe, for example, that
g = 200 is not a suitable choice because the rel-
ative error of the reconstructed model is unac-
ceptable, and the predicted data do not satisty
the observed data at the given noise level; equa-
tion 12 is not satisfied for k <50. Using
g = 500, the relative error of the reconstructed
model is reduced, and the inversion terminates
at nine iterations with an acceptable y? value.
We deduce that for the inversion of the magnetic
data, it is necessary to take g larger than we
would use for the inversion of the gravity data,
as is indicated by the much larger value of the
rank-g error, RGX) in Tables 1 and 2, res-
pectively. To demonstrate the impact of the
choice of ¢, we show the results of the inver-
sion for ¢ =200 and g = 500, in Figures 6
and 7, respectively.

Spectral properties

(k)

We now compare the singular values o;"’ and

(k)

(o}
for the gravity and magnetic problems in Fig-
ures 8 and 9, respectively. In both figures, we
show the values for ¢ = 200 and ¢ = 500 at iter-
ation £ = 8. It is immediately evident from these
plots that the RSVD algorithm does not capture
the dominant spectrum of the original matrix for
the magnetic problem as closely as is the case for
the gravity problem. This clarifies why the mag-
netic inversion requires larger values of g in or-
der for the inversion to converge. It also is
evident that the singular values of the gravity
and magnetic problems decay rather slowly, after
an initial fast decay.

. = (k) = (k) .
) o for matrices G~ and G, ', respectively,

Power iterations

Now as discussed, the error estimate given
in equation 10 will decrease with increasing s.
Having seen that the lack of power iterations
leads to lack of convergence for the inversion
of the magnetic data unless g is taken relatively
large ¢ = m/2, as compared to just ¢ 2 m/6 for
the gravity problem, we investigate the power
iteration step given by Algorithm 2 to improve

the column-space approximation of GT. We
therefore repeat the simulations for the data of
the two-dike problem illustrated in Figure 2a
and 2b but using a power iteration with s = 1.
The results are presented in Tables 3 and 4 for
gravity and magnetic data, respectively, and they
indicate improvements as compared to the results
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Figure 8. The singular values o;"’ and (o§k>) ; for the matrices G( :

(the blue circles) and (~}q (the red crosses), respectively, for the
gravity problem. (a) For ¢ = 200 at iteration k = 8 and (b) for g =
500 at iteration k = 8.
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(the blue circles) and Gq (the red crosses), respectively, for the
magnetic problem. (a) For ¢ = 200 at iteration k = 8 and (b) for
g = 500 at iteration k = 8.

Table 3. Results of the RSVD algorithm via power iterations applied on the gravity data of Figure 2a.

q al) a®) REX) RGK) K 7 Time (s)
100 20,629 54.3 0.7018 0.0177 11 913.4 304
150 25,862 45.5 0.7288 0.0152 11 909.6 29.5
200 30,218 40.8 0.7185 0.0129 11 904.7 30.9
300 37,279 34.8 0.7188 0.0101 11 898.1 31.8
500 47,447 29.6 0.7099 0.0063 12 851.0 38.0
700 54,892 29.0 0.7093 0.0047 12 893.6 39.6
900 61,712 322 0.7232 1.5534¢71 12 811.8 413
Table 4. Results of the RSVD algorithm via power iterations applied on the magnetic data of Figure 2b.

q a ak) REX) RGKX) K 7> Time (s)
100 8375 3127.0 0.9187 0.2880 50 1310.6 128.3
150 9920 3206.5 0.8464 0.2294 50 955.5 128.7
200 11,198 5098.5 0.8235 0.0542 12 915.4 332
300 13,235 4447.1 0.8310 0.0323 10 848.9 28.7
500 16,152 3719.6 0.8421 0.0269 9 814.5 29.0
700 18,528 4036.8 0.8405 0.0165 8 887.5 26.7
900 21,086 4106.4 0.8454 2.0710¢~1 8 898.6 28.7
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presented without power iterations. For both problems, the number
of iterations K is generally reduced, once ¢ is large enough, and the
error generally is decreased for a result that used the same number
of iterations K with and without power iterations. Moreover, the
results are achieved without a large increase in computational cost,
where the algorithm converged with and without power iterations.
But the major impact is that it is possible to take a much smaller g to
obtain convergence of the inversion of the magnetic problem with

reasonable computational cost. In both cases, it is sufficient to now
take g = 200 to obtain converged solutions for a relatively small K,
11 and 12, respectively.

The results for magnetic data inversion with ¢ =200 and s =1
are illustrated in Figure 10 for comparison with Figure 6 obtained
without the power iterations. A noticeable improvement in the re-
constructed model is obtained. To further show the impact of the
power iterations, we also show the singular values for the power

iterations with s = 1 and g = 200 for the gravity
and magnetic problems in Figure 11a and 11b,
compared with Figures 8a and 9a, respectively.

o
Hgfe R g

These plots demonstrate that the power iterations
have indeed improved the accuracy of the esti-
mated singular values.

These results naturally raise the question as to

Iteration number

1o 1z whether it is better to apply the RSVD algorithm

without power iterations and a large choice for g
or to use power iterations and take a smaller g.
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But the main purpose of using Algorithm 1 is to
make it feasible, in terms of memory and com-
putational cost, to find accurate solutions of

Iteration number

Figure 10. RSVD results using power iterations with s = 1 and target rank ¢ = 200 for
the inversion of magnetic data given in Figure 2b. (a) Cross section of the reconstructed

2000 4000 6000 8000 10000 12000

large-scale problems. Indeed, the aim is to solve
problems that are either too expensive to solve
using the FSVD or cannot be solved at all using
the FSVD; thus, increasing ¢ is not preferred.

model, (b) the progression of relative error RE®) with iteration &, (c) the progression of

regularization parameter a*)
iteration.
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Figure 11. The singular values ¢;"’ and (o;"), for the matrices G

= (k
(the blue circles) and G; (the red crosses), respectively, for
g =200 and s =1. (a) Gravity kernel at iteration k =8 and
(b) magnetic kernel at iteration k = 8.

with iteration k, and (d) the UPRE function at the final

Larger problem for a model of multiple
bodies

We now study the application of the RSVD
algorithm for the solution of a larger and more complex model con-
sisting of six different bodies with different shapes, dimensions, and
depths, as shown in the perspective view in Figure 12. The data for
the problem are generated on the surface on a 100 X 80 grid with
100 m spacing. The noisy gravity and magnetic data in each case are
illustrated in Figure 13a and 13b.

To perform the inversion, the subsurface volume is discretized
into 100 X 80 x_10 cubes of size 100 m in each dimension. The re-
sulting matrix G is of size 8000 X 80000 and is too large for effi-
cient use of FSVD. The results obtained using the RSVD algorithm
with the choices ¢ = 1000, 1500, 2500, and 4200 are detailed in
Tables 5 and 6, respectively, with and without power iterations.

oep;;oo(m)

Figure 12. Model consisting of six bodies with different shapes,
depths, and dimensions.
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As with the inversion of the two-dike problem, it is immediate
that the inversions for the gravity problem are acceptable, without
power iterations, for far smaller g than for the magnetic case. Ap-
plying the power iterations reduces the size of ¢ that is required to
obtain convergence, and excellent results are obtained with just
g = 1000 with a time that is little more than is required for
g = 1500 and no power iterations. This suggests that we may
use g 2 m/8 with s = 1 for the power iterations. As for the two-
dike problem, the magnetic inversion iteration does not converge
to the required y? level within 50 iterations, except when we take

g = 4200 > m/2, yielding an error of 1.0975 in approximately
24 min. Including the power iterations yields convergence at
K = 14, when ¢ = 2500 with a similar error of 1.0947 after approx-
imately 21 min. These results suggest that it may be acceptable to
take ¢ 2 m /4 in the inversion of magnetic data with the RSVD al-
gorithm combined with s = 1 power iterations. This choice yields
run times for the magnetic inversion that are comparable to those for
the gravity inversion.

The perspective views of the reconstructed models using the
power iterations and ¢ = 2500 for the gravity and magnetic data

are given in Figures 14 and 15, respectively. The
horizontal borders of the reconstructed models,
in both inversions, are in good agreement with
those of the original model, but additional struc-
tures appear at depth. Here, the reconstructed
magnetic susceptibility model exhibits more ar-
tifacts at depth and has a higher relative error
than that achieved for the gravity reconstruction.
However, the magnetic structure better illustrates
the dip of both dikes, which is significant for ac-
curate geophysical interpretation of the struc-
tures. Moreover, these results indicate that joint
interpretation of the individual magnetic and
gravity inversions may improve the quality of
the final subsurface model.
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Figure 13. Anomaly produced by the model shown in Figure 12 and contaminated by
Gaussian noise. (a) Vertical components of the gravity field. The noise parameters are
(r; =0.02,7, = 0.02), (b) total magnetic field. Here, (z; = 0.02,7, = 0.018). The
S/Ns for the gravity and magnetic data, respectively, are 22.0348 and 21.8817.

Table 5. Results of the inversion algorithms applied on the gravity data of Figure 13a.

Method q a ak) REX) K 7 Time (s)
RSVD 1000 40,276 384 0.7389 21 8108.5 376.8
1500 48,847 44.6 0.7168 20 7706.2 524.3
2500 61,439 39.1 0.7111 19 7893.3 946.6
4200 76,008 37.9 0.7013 20 6943.7 2114.0
RSVD with power iterations 1000 34,324 38.1 0.6927 21 7915.9 617.0
1500 43,000 36.7 0.6976 20 7985.6 886.3
2500 56,392 40.0 0.6942 20 7561.5 1775.4
4200 72,451 38.2 0.6986 20 7989.2 4178.8
Table 6. Results of the inversion algorithms applied on the magnetic data of Figure 13b.
Method q aV a'®) RE(*) K 7 Time (s)
RSVD 1000 12,600 10774.9 1.2110 50 26292.4 887.9
1500 14,564 8947.8 1.1720 50 20789.4 13124
2500 17,376 9253.8 1.1063 50 11891.4 2520.0
4200 20,695 8778.1 1.0975 13 7750.3 1435.9
RSVD with power iterations 1000 10,705 11128.1 1.1315 50 13480.7 1459.1
1500 12,744 8992.1 1.0910 50 9570.6 2263.9
2500 15,837 8425.2 1.0947 14 7863.0 1260.4
4200 19,518 8665.2 1.1080 12 7299.8 2685.4
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REAL DATA

The RSVD algorithm with and without power iterations now is
applied for the inversion of total magnetic field data that have been
obtained over a portion of the Wuskwatim Lake region in Manitoba,
Canada, as shown in Figure 16a. (Results showing the application
of the methodology for real gravity data already were presented in
Vatankhah et al. [2018b].) The given area lies within a poorly ex-
posed metasedimentary gneiss belt consisting of paragneiss,
amphibolite, and migmatite derived from Proterozoic volcanic
and sedimentary rocks (Pilkington, 2009). The total field anomaly
shows magnetic targets elongated in the northeast—southwest direc-
oo tion. A data-space inversion algorithm with a Cauchy norm sparsity
constraint on model parameters was applied by Pilkington (2009)
for the inversion of this data set. Furthermore, the results of the in-
version algorithm of Li and Oldenburg (1998) also are presented in
Pilkington (2009). Therefore, the results presented here can be com-
pared with the results presented in Pilkington (2009), and, for con-
sistency, we thus use a grid of 64 x 64 data points with 100 m
spacing and a uniform subsurface discretization of 64 X 64 X 20 =
81920 blocks. The intensity of the geomagnetic fields, the inclina-
tion, and the declination are 60,000 nT, 78.5°, and 5.3°, respectively.
As for the simulations, we set Ky, = 50, my, = 0, and impose
bound constraints on the model parameters. In this case, these are 0 =
Kmin < K < Kpax = 0.2 SI unit (Pilkington, 2009). The values of
parameter g are selected based on the recommended choices for
the synthetic data examples presented in the previous section. We
select ¢ = 1100 > m/4 and g = 2100 > m/2 with and without
power iterations, respectively.

The results of the inversions, as given in Table 7, demonstrate that
the methodology generates converged solutions using a limited
Figure 15. A 3D view of the reconstructed susceptibility model, number of iterations and at computational cost on the order of a
illustrating cells with x > 0.05 (SI unit). few minutes only. Overall, these results demonstrate the feasibility
of using the RSVD algorithm for the inversion of large-scale geo-

physical data sets. Three plane sections of the re-

nT constructed model obtained using s = 1 for the
700

Figure 14. A 3D view of the reconstructed density model, illustrat-
ing cells with p > 0.5 gecm™3.

7 6000 power iterations are illustrated in Figure 17.
@ 600 The anomaly produced by this model is shown

5000 500 . . . .
in Figure 16b. The progression of the regulariza-
ﬂ E 4000 400 tion parameter at each iteration and the UPRE
2 so00 300 function at the final iteration also are presented
E 200 in Figure 18. Furthermore, Figure 19 illustrates
Z 2000 100 a 3D view of the model for cells with
0 k > 0.05. Our results indicate that, generally,

1000 .
-100 there are three main subsurface targets. The tar-
0 get in the southeast of the area starts from 300 m
0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000 o

Easting (m) Easting (m) and extends to 400 m; it is not as deep as the

other two targets. The target in the central part
Figure 16. (a) Total magnetic field over a portion of the Wuskwatim Lake region of the area is elongated in the southwest—north-
in Manitoba, Canada, and (b) the anomaly produced by the reconstructed model in east direction, starts from approximately 300 m,

Figure 17. and extends to approximately 800 m in depth.

Table 7. Results of the inversion algorithms applied on the magnetic data of Figure 16a.

Method q aV) al® K 7’ Time (s)
RSVD 2100 262,575 3630.2 15 4007.1 559.7
RSVD with power iterations 1100 215,644 2906.7 16 4089.7 464.0
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Figure 17. Reconstructed susceptibility model using RSVD via power iterations with s = 1 and target rank ¢ = 1100 for the inversion of
magnetic data given in Figure 16a. The plane sections illustrate the depths: (a) 300400 m, (b) 500-600 m, and (c) 700-800 m.

a) T ' ' ' ' ' ' This target in its northeastern part is divided into two subparallel tar-
' gets. The third main target, located in the central north part of the
area, is the deepest target, which starts at approximately 400 m
and extends to approximately 900 m. The results in the shallow

< : . . . . o
10°r 0 @ 1 and intermediate layers are in agreement with the results of Pilking-
o ton (2009), but at depth, the results presented here are more focused.
g-o-g-g--g-g- B & R i AR = FR cx PO |
2 4 6 8 10 12 14 16 CONCLUSION
Iteration number . . .
We present an algorithm for fast implementation of the large-
b) 2500 T T ' ' ' ' ' ' scale focusing inversion of magnetic and gravity data, using the
2000 memory-demanding sensitivity matrix. The algorithm is based on
1500 combining the L,-norm regularization strategy for focusing inver-
z sion, with RSVD for providing a feasible algorithm for the large-
= 1000 ;

> scale problem. This demonstrates that the powerful concept of the
500 RSVD provides an attractive and fast alternative to methods such as
0 the GKB algorithm. A comprehensive comparison of the RSVD
500 . . . . . . . . methodology with power iterations for the inversion of gravity
0.5 1 15 2 25 3 3.5 4 and magnetic data has been presented, and we demonstrated that
a x10* there is an important difference between gravity and magnetic in-

verse problems when approximating a g-rank matrix from the origi-
nal matrix. For the inversion of magnetic data, it is necessary to take
larger values of ¢, compared with the inversion of gravity data, in
order that a suitable approximation of the sensitivity matrix is ob-
tained. Furthermore, including power iterations within the algo-
rithm improves the approximation quality. Indeed, the RSVD
obtained using the power iterations step yields a good approxima-
tion of the dominant singular space for small choices of ¢, yielding
an efficient strategy when the singular values of the input matrix
decay slowly. Thus, with just one power iteration for each input
matrix, acceptable results are achieved via ¢ > m/4 and ¢ > m/8
for magnetic and gravity inversion, respectively. The presented
methodology can be used for other geophysical data sets, and
the choice of the rank ¢ approximation will depend on the spectral
properties of the relevant kernel matrices. If the RSVD without
power iteration does not approximate the dominant singular values
for low-rank approximations, then power iterations should be in-
cluded to improve the quality of the estimated singular values.
The simulations, and results for real data, demonstrate that the al-
gorithm is effective for sensitivity matrices requiring storage of at
least 640 million entries, and solutions are obtained on a desktop

Figure 19. A 3D view of the reconstructed susceptibility model computer within approximately 30 min. Furthermore, our results
shown in Figure 17, illustrating cells with x > 0.05 (SI unit). show that the regularization parameters used, and automatically

Figure 18. (a) The progression of regularization parameter a*) with
iteration k and (b) the UPRE function at the final iteration.
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estimated in the inversion algorithm, are much larger for the inver-
sion of the magnetic data. This also is a reflection of the different
spectral properties of the magnetic and gravity input matrices. In
conclusion, we have demonstrated that it is feasible to use an effi-
cient, in computational time and memory, RSVD methodology for
problems that are too large to be handled using the full SVD.

We note, furthermore, that when it is not possible to transfer the
global objective function into the standard form, the presented
RSVD algorithm is not practical. For example, for inversion using
a total variation regularization, it still is possible to use an iteratively
reweighted algorithm but now applied with the calculation of the
generalized SVD at each iteration. This also is computationally de-
manding; hence, techniques using the generalized randomized SVD
can be used. Further development of that approach is needed to
make an algorithm that is feasible for use with sensitivity matrices
of the sizes considered here.
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