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Abstract
The truncated singular value decomposition may be used to find the solution of linear
discrete ill-posed problems in conjunction with Tikhonov regularization and requires
the estimation of a regularization parameter that balances between the sizes of the fit
to data function and the regularization term. The unbiased predictive risk estimator
is one suggested method for finding the regularization parameter when the noise in
the measurements is normally distributed with known variance. In this paper we pro-
vide an algorithm using the unbiased predictive risk estimator that automatically finds
both the regularization parameter and the number of terms to use from the singular
value decomposition. Underlying the algorithm is a new result that proves that the
regularization parameter converges with the number of terms from the singular value
decomposition. For the analysis it is sufficient to assume that the discrete Picard con-
dition is satisfied for exact data and that noise completely contaminates the measured
data coefficients for a sufficiently large number of terms, dependent on both the noise
level and the degree of ill-posedness of the system. A lower bound for the regulariza-
tion parameter is provided leading to a computationally efficient algorithm. Supporting
results are compared with those obtained using themethod of generalized cross valida-
tion. Simulations for two-dimensional examples verify the theoretical analysis and the
effectiveness of the algorithm for increasing noise levels, and demonstrate that the rel-
ative reconstruction errors obtained using the truncated singular value decomposition
are less than those obtained using the singular value decomposition.
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1 Introduction

We consider the solution of Ax ≈ b, or Ax ≈ btrue + η = b for noise (measurement
error) η, where A ∈ Rm×n is ill-conditioned, and the system of equations arises from
the discretization of an ill-posed inverse problem thatmay be over or under determined.
The general Tikhonov regularized linear least squares problem

x∗ = argmin
x

{
‖Ax − b‖2Wb

+ ‖D(x − x0)‖2Wx

}
, (1.1)

is awell-accepted approach for finding a smooth solutionx. Herex0 is given prior infor-
mation, possibly the mean of x,Wb andWx are weighting matrices on the data fidelity
and regularization terms, resp., and D is an optional regularization operator. Often D
is imposed as a spatial differential operator, controlling the size of the derivative(s) of
x, but then (1.1) can be brought into standard form in which D is replaced by I [5,21].
Further, (1.1) can be rewritten in terms of a newvariable y = x−x0. Theweighted norm
is defined by ‖x‖2W := xT Wx and we use the notation m ∼ N (m0,Cm) for random
vectorm normally distributed with expected value E(m) = m0 and covariance matrix
Cm; E(·) is used to denote expected value. When η ∼ N (0,Cb), then Wb = C−1

b
whitens the noise, i.e. W 1/2

b η ∼ N (0, I ). Matrix Wx = C−1
x can serve similarly as

a prior on the inverse covariance of the noise in Dy. Using Wx = α2 I , as will be
assumed here, corresponds to assuming the posterior distribution Dy ∼ N (0,α−2),
see e.g. [27]. Here we discuss the solution of (1.1) with x0 = 0, D = I , Wx = α2 I ,
Wb = I and explicitly assume common variance, σ 2, in the noise, η ∼ N (0, σ 2 I ).

While solutions of (1.1) have been extensively studied, e.g. [17,21,22,41] there is
stillmuch discussion concerning the selection ofWx even for the single parameter case,
Wx = α2 I . Suggested techniques include, among others, using the Morozov discrep-
ancy principle (MDP) which assumes that the solution should be found within some
prescribed χ2 noise estimate [29], balance of the terms in (1.1) using the L-curve [21],
the quasi-optimality condition [3,15,16] and minimization of the generalized cross
validation (GCV) function [11] or of the statistically motivated Unbiased Predictive
Risk Estimator (UPRE) [33,41]. Of these the MDP, GCV and UPRE approaches are
all a posteriori estimators, the MDP on the χ2 distribution of the predicted residual,
the GCV through its derivation as a leave one out procedure to minimize the pre-
dictive error and the UPRE as an estimator of the minimum predictive risk of the
solution. There is an extensive discussion of these methods in the standard literature
e.g. [21,22,41] andmanymore are compared in [4].We do not replicate that discussion
here, rather we focus on the UPRE parameter choice method. The UPRE method has
a firm theoretical foundation, is robust, and has been extensively applied in practical
applications [1,18,25,27,35,37–40]. Our analysis extends the approach in [9] which
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provided bounds on the regularization parameter for finding α using the GCV; the
analysis in [30] that examined convergence of the parameter with increasing resolu-
tion of the problem via the connection of the continuous and discrete singular value
expansions for specific square integrable operators defining A; and the discussion in
[31] that demonstrated the relationship of the regularization parameter obtained when
using the LSQRKrylov method for large scale problems. Moreover, our interest in the
UPRE, instead of the MDP, arises because the UPRE depends only on the underlying
knowledge of the noise distribution, whereas the MDP also introduces a secondary
tolerance factor on the satisfaction of the χ2 distribution, which is often needed to
limit over smoothing of the solutions [2].

Throughout we use the Singular Value Decomposition (SVD) A = UΣV T [12],
with columns ui and vi of orthonormal U and V respectively, and where the singular
values σi of A are ordered on the principal diagonal of Σ , from largest to smallest.
We assume that the matrix A has effective numerical rank r ; σr > 0, and σi , i > r
is effectively zero as determined by the machine precision. In terms of the SVD
components, the solution of (1.1) is given by

x∗ =
r∑

i=1

σ 2
i

σ 2
i + α2

uTi b
σi

vi =
r∑

i=1

γi (α)
uTi b
σi

vi , γi (α) =
σ 2
i

(σ 2
i + α2)

. (1.2)

The filter functions are γi (α) and the given expansion applies, replacing r by k, when
A is approximated by the TSVD, Ak = UkΣkV T

k . Throughout we use the subscript
k to indicate variables associated with this rank k approximation, for example reg-
ularization parameter αk indicates the regularization parameter used for the k-term
TSVD. Further, the use of the SVD for A provides useful insights on how the UPRE,
and other methods, can be implemented when solving (1.1). Here we will show that
the minimization of the underlying UPRE function is efficient and robust with respect
to the k−term truncated singular value decomposition (TSVD). Moreover, there is a
resurgence of interest in using a TSVD solution for the solution of ill-posed problems
due to the increased feasibility of finding a good approximation of a dominant singu-
lar subspace even for large scale problems by using techniques from randomization,
e.g. [7,8,13,26,28,32]. Thus the presented results will be more broadly relevant for
efficient estimates of an approximate TSVD using these modern techniques applied
for large scale problems, for which it is not feasible to find the full SVD expansion;
necessarily k << r .

Overview of main contributions. An open source algorithm, Algorithm 1, for effi-
ciently estimating optimal regularization parameters kopt and αkopt , defined to be the
optimal number of terms to use from the TSVD, and the associated regularization
parameter, resp., is presented. By optimal we mean that these parameters are opti-
mal in the sense of minimizing the UPRE function. A MATLAB implementation of
Algorithm 1 and a 2D test case using IR Tools [10] is available at https://github.com/
renautra/TSVD_UPRE_Parameter_Estimation. A Python 3.* implementation using
NumPy and SciPy is also available and relies on provision of the singular values and
coefficients uTi b. In both cases an estimate for the noise variance in the data is required,
as is standard for the UPRE method. The motivation for Algorithm 1 is based on the
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theoretical results presented in Sect. 3. These results employ standard assumptions
on the degree of ill-posedness of the underlying model and on the noise level in the
data [23]. We briefly review how both the degree of ill-posedness and the noise level
impact the choice of regularization parameter k, and demonstrate that the noise level
is far more restrictive so that in general k ( r . The convergence of αk , when found
using both UPRE and GCV methods, is illustrated for examples from the Regulariza-
tion toolbox [20]. The theory presented in Sect. 3 then leads to Theorems 3.1 and 3.2
which prove a lower bound for αk and that αk converges to αkopt , under the assumption
of a unique minimum of the UPRE function. Presented results for image deblurring
verify the practicality of Algorithm 1 and demonstrate that the solutions obtained
with kopt < r yield smaller overall relative error than the solutions obtained without
truncation of the SVD and αr found using the UPRE method.

The paper is organized as follows: In Sect. 2 we present background motivating
results based on assumptions on the degree of ill-posedness of the problem in Sect. 2.1,
a discussion of numerical rank in Sect. 2.2, how noise enters into the problem in
Sect. 2.3 and the estimation of the regularization parameter in Sect. 2.4. The theoretical
results providing our main contributions are presented in Sect. 3. A practical algorithm
for estimating αkopt , and hence also kopt, is presented in Sect. 4 with simulations
verifying the analysis and the algorithm for two dimensional cases. Conclusions and
future extensions are provided in Sect. 5.

2 Motivating results

2.1 Degree of ill-posedness

As in [23, Definition 2.42], and subsequently adopted in [21], for the analysis we
assume specific decay rates for the singular values dependent on whether the problem
is mildly, moderately or severely ill-posed. Suppose that ζ is an arbitrary constant,
then the decay rates are given by

σi =






ζ i−τ 1
2 ≤ τ ≤ 1 mild ill conditioning

ζ i−τ τ > 1 moderate ill conditioning,
ζ τ−i τ > 1 severe ill conditioning.

(2.1)

Here τ is a problem dependent parameter and it is assumed that the decay rates hold
on average for sufficiently large i . Moreover, while defining σi in terms of index i , as
is consistent with the literature, it will also be convenient to consider the definition in
terms of the continuous variable i , so that σi+δ is defined also for non-integer i + δ.
For ease, and without loss of generality, we pick the constant ζ in (2.1) so that σ1 = 1
in all cases. Equivalently we use

σi =






i−τ 1
2 ≤ τ ≤ 1 mild ill conditioning,

i−τ τ > 1 moderate ill conditioning,
τ 1−i τ > 1 severe ill conditioning,

(2.2)
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Table 1 Number of significant singular values r for precision ε = 10−15 as a function of τ . i.e. r is the
numerical rank of the problem

τ 1.25 1.50 1.75 2.00 2.50 3.00 4.00 5.00 6.00

Moderate r 1e+12 1e+10 4e+8 3e+7 1e+6 1e+5 5623 1000 316

Severe r 155 86 62 50 38 32 25 22 20

and note the recurrences

σ*+1 = σ*

{
( *
*+1 )

τ mild or moderate ill conditioning,
τ−1 severe ill conditioning.

2.2 Numerical rank

The precision of the calculations, as determined by the machine epsilon ε, is relevant
in terms of the number of singular values that are significant in the calculation. This is
dependent on the decay rate parameters of the singular values. We define the effective
rank by r = argmax{i : σi > εσ1}.
Proposition 2.1 Assuming the normalization of the singular values as given by (2.2),
the effective numerical rank r is bounded by

r <

{
ε−1/τ mild/moderate decay,
1 − log ε

log τ severe decay,
(2.3)

where ε is the machine epsilon.

Proof Using (2.2) and normalization σ1 = 1, it is immediate that we obtain (2.3) from

mild/moderate: r−τ > ε implies r < ε−1/τ

severe : τ 1−r > ε implies r < 1 − log ε
log τ .

*+
Estimates for numerical rank dependent on the decay rates, are given in Table 1 for
moderate and severe decay. It is immediate that r is very small for cases of severe
decay. Hence, for any problem exhibiting this severe decay and assuming that the
discretization is sufficiently fine such that n ≥ r , Table 1 suggests the maximum
number of terms that one would use for the TSVD. Note that apart from the condition
n ≥ r the results in Table 1 are effectively independent of the discretization, thus the
number of terms that can be used practically is largely independent of the discretization
of the problem once n ≥ r . Equivalently, with estimates of τ and ε one may use (2.3)
to determine first a minimum n and second the maximum number of terms for the
TSVD, the maximum effective numerical rank of the problem.

These results are further illustrated in Fig. 1a in which we plot the singular values of
test problems from the Regularization toolbox [20], with the normalization σ1 = 1 in
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Unbiased predictive risk estimation of the Tikhonov… 1037

each case. The plots show that these standard one dimensional test cases are primarily
severely ill-posed, and thus, according to Table 1, guaranteed to have numerically
very few accurate terms in the TSVD used for the solution (1.2). To show the relative
independence of n we show in Fig. 1b the singular value distributions for the same
cases and on the same scales as in Fig. 1a but using n = 256. This verifies that there
is little to be gained by the use of problems with severe decay, as presented in [30],
to validate convergence of techniques with increasing problem size. The dominant
features are always represented by very few terms of the TSVD for cases with severe
decay rates of the singular values.

As a comparison we also show in Fig. 1c the singular values generated using (2.3)
with a selection of decay rates, as indicated in the legend. These show the dependence
on τ for mild, moderate and severe decays. Taken together the examples in Fig. 1 show
that the results are not just an artificial artifact of the seemingly strong assumption in
(2.2) that ζ is fixed.

2.3 The discrete Picard condition and noise contamination

We now turn to the consideration of the noise in the coefficients si = uTi b and the
impact of this noise on the potential resolution in the solution, as also discussed in
[21, §4.8.1]. First, we assume that the singular values satisfy a decay rate condition
(2.2). We also assume that that the absolute values of the exact coefficients decay at
least faster than the singular values

(s2i )true ≤ σ
2(1+ν)
i for 0 < ν < 1. (2.4)

Then the discrete Picard condition is satisfied [19,21, Theorem 4.5.1].
When the noise in the data has common variance σ 2 we assume that there exists

* such that E(s2i ) = σ 2, for all i > *. Equivalently, we say that the coefficients are
noise dominated for i > *. If this does not occur, then either the noise is insignificant,
σ 2 < σ 2

i for all i , or totally dominates the solution σ 2 > 1, and these two cases are not
of interest. Thus we can explicitly assume that there exists * such that σ*+1 < σ < σ*,
and more precisely that

σ 2
*+1 < σ 1+ν

*+1 < σ < σ 1+ν
* < σ*,

where we use definition (2.2) as a continuous function of i for a non integer index
* + δ.

Proposition 2.2 Let σ = σ 1+ν
*+δ for 0 ≤ δ < 1 and 0 < ν < 1, then E(s2i ) = σ 2 for

i > * where

* ≈
{

σ−1/(τ (1+ν)) − δ mild/moderate decay,
(1 − δ) − log σ

(ν+1) log τ . severe decay.
(2.5)

Proof As in the proof of Proposition 2.1 we solve for * dependent on the decay rate
with respect to the upper bound in (2.5). This gives
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Table 2 For different noise levels σ the size of * for given τ and with δ = ν = 0.5. Entries calculated with
rounding using (2.5)

τ 1.25 1.50 1.75 2.00 2.50 3.00 4.00 5.00 6.00

σ Moderate decay

1e−1 3 2 2 2 1 1 1 1 1

1e−2 11 7 5 4 3 2 2 1 1

1e−4 135 59 33 21 11 7 4 3 2

1e−8 18478 3593 1115 464 135 59 21 11 7

σ Severe decay

1e−1 7 4 3 3 2 2 2 1 1

1e−2 14 8 6 5 4 3 3 2 2

1e−4 28 16 11 9 7 6 5 4 4

1e−8 56 31 22 18 14 12 9 8 7

mild/moderate: (* + δ)−τ (1+ν) = σ implies * = σ−1/(τ (1+ν)) − δ,

severe: τ (1−(*+δ))(1+ν) = σ implies * = (1 − δ) − log σ
(ν+1) log τ .

*+

Estimates using δ = ν = 0.5 are indicated in Table 2 showing that the number of
terms is relatively small even for moderate decay of the singular values for acceptable
noise estimates σ . Contrasting with Table 1 we see that the number of coefficients that
can be distinguished from the noise is generally less than the numerical rank of the
problem for relevant noise levels and machine precision. This limits the number of the
terms of the TSVD to use. In particular, suppose that α has to be found to filter the
dominant noise terms with index i ≥ *, then coefficients with i - * will be further
damped because the filter factors given in (1.2) decrease as a function of i . These terms
then become insignificant in terms of the expansion for the solution.

2.4 Regularization parameter estimation

We deduce from Tables 1 and 2 that the number of terms of the TSVD used for the
solution of the regularized problem may strongly influence the choice for α. Specifi-
cally the number of terms k of the TSVD to use should be less than the numerical rank,
k < r , and is dependent on the noise level in the data.We are interested in investigating
the choice of α when obtained using the UPRE, but for comparison we also give the
GCV function needed for the simulations, and note again that bounds on α dependent
on k have already been provided in [9]. TheGCV andUPREmethods are derivedwith-
out the use of the SVD [11,41], resp., but it is convenient for the analysis to express
both methods in terms of the SVD. Ignoring constant terms in the UPRE that do not
impact the location of the minimum, introducing φi (α) = 1−γi (α) = α2/(σ 2

i +α2),
and noting γi (α) = 0, for i > k, these are given by
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Uk(α) =
k∑

i=1

(1 − γi (α))
2(uTi b)

2 + 2σ 2
k∑

i=1

γi (α) =
k∑

i=1

φ2
i (α)s

2
i

+ 2σ 2
k∑

i=1

γi (α), (2.6)

Gk(α) =
∑m

i=1(1 − γi (α))
2(uTi b)

2

(∑m
i=1(1 − γi (α))

)2 =
∑k

i=1 φ2
i (α)s

2
i + ∑m

i=k+1 s
2
i(

(m − k)+ ∑k
i=1 φi (α)

)2 . (2.7)

Here the subscript k ≤ r indicates that these are the expressions obtained using the
TSVD, see e.g. [31, Appendix B] for derivations of the UPRE and GCV functions for
arbitrary pairs (m, n). Replacing k by r gives the standard functions for the full SVD.
Further, we do not need all terms of the SVD to calculate the numerator in (2.7). Using
‖b‖22 = ‖UTb‖22 we can use

m∑

i=k+1

(uTi b)
2 = ‖b‖22 −

k∑

i=1

(uTi b)
2 = ‖b‖22 −

k∑

i=1

s2i .

To illustrate how αk varies when found using these functions we illustrate an exam-
ple of a problem that is only moderately ill-posed (τ ≈ 1.5), showing the results of
calculating the UPRE and GCV functions for data with noise variance σ 2 ≈ 1e−4
and σ 2 ≈ 1e−2 for the problem deriv2. The data and solution xtrue are initially
normalized so that ‖btrue‖2 = 1. Consistent with the decay rate assumptions the sin-
gular values are normalized by σ1. This requires additional normalization of btrue by
σ1, so that eventually ‖btrue‖2 = σ−1

1 . Then noise contaminated data are generated as
b = btrue + η for η ∼ N (0, σ 2 I ), for noise level σ . In these examples, the optimal
valueαk is obtained by first evaluating f (α), f (α) = Uk(α) or f (α) = Gk(α) as spec-
ified in (2.6) or (2.7), resp., at σi , 1 ≤ i ≤ k. This provides αest = argmin1≤i≤k f (σi ).
This estimate of the minimum is used as the initial value for minimizing f (α) using
Matlab fminbnd within the interval [.01αest, 100αest]. While this choice of lower
and upper bounds on αk is somewhat arbitrary, it is similar to the approach used in [20]
for minimizing the UPRE and GCV functions, and is chosen to assure that values for
αk outside the interval [σk, σ1] are possible when either αest = σk or σ1. We pick this
specific example in Fig. 2 to highlight the discussion as applied to a problem which
is not severely ill-posed. We also give the same information in Fig. 3 for the severely
ill-posed problem gravity (τ ≈ 1.5), see Fig. 1a. To gain further insight the Picard
plot, plots of σi , |uTi b| and the ratio |uTi b|/σi , is given in each case in Fig. 2b, d for
deriv2 and in Fig. 3b, d for gravity. The solutions are contaminated by noise
very quickly for small k, corresponding to fast convergence of {αk} with k.

Obtaining one-dimensional results, as shown in Figs. 2, 3, is trivial but motivates
the theoretical study of convergence in Sect. 3, and then the application of that theory
to standard two-dimensional problems in Sect. 4.
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3 Theoretical results

Weaim to find effective practical bounds on the regularization parameterα when found
using the UPRE function. Observe first that we would not expect the regularization
parameter to be larger than σ1, otherwise all filter factors are less than 1/2. Indeed
imposing α = σ1 would lead to over smoothed solutions, and all of the dominant
singular value components (the components without noise contamination) would be
represented in the solution with filtering e.g [22, Sections 4.4, 4.7]. In particular,
the norm of the covariance matrix for the truncated filtered Tikhonov solution, the a
posteriori covariance of the solution, is approximately bounded by σ 2/(4α2) which
suggests smooth solutions for large α. In contrast, the approximate bound for the a
posteriori covariance when using the TSVD with k terms without filtering is given by
σ 2/σ 2

k [22, Sections 4.4.2, 4.4]. Thus the filtered TSVD solution will be smoother than
the TSVD solution when α > σk : increasing α reduces the covariance but provides
more smoothing. Practically it is reasonable to impose the upper boundαmax ≤ σ1 = 1
for α. To limit the noise that can enter the solution it is also desirable to find the lower
bound αmin. Solutions obtained for α ∈ [αmin,αmax], dependent on the spectrum of
A, should be sufficiently filtered but retain relatively unfiltered dominant components
of the solution. We proceed to determine αmin and to give a convergence analysis for
αk as the number of terms in the TSVD is increased.

3.1 Convergence of {˛k} calculated using UPRE

Denote the UPRE function (2.6) for the rank r problem by U (α) = Ur (α) and the
optimal α for the filtered TSVD solution with k components on the given interval as

αk = argminα∈[αmin,αmax]Uk(α). (3.1)

Ideally it would be helpful to find an interval [αmin,αmax] in which Uk(α) is strongly
convex, but we have not been able to show this in general. Instead, in the following
we show that a useful estimate of αmin can be found.

For ease of notation within proofs we use φi and γi to indicate φi (α) and γi (α),
respectively, and denote differentiation of a function f (α) with respect to α as f ′.

Proposition 3.1 The following equalities are required for the future discussion.

∂Uk

∂α
= 4

α

(
k∑

i=1

s2i φ
2
i (α)γi (α) − σ 2

k∑

i=1

φi (α)γi (α)

)

, (3.2)

∂2Uk

∂α2 = − 1
α

∂Uk

∂α
+ 8

α2

(
k∑

i=1

s2i φ
2
i (α)γi (α)(2γi (α) − φi (α))

− σ 2
k∑

i=1

φi (α)γi (α)(γi (α) − φi (α))

)

. (3.3)
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Proof We use

γ ′
i = − 2ασ 2

i

(σ 2
i + α2)2

= − 2
α

φiγi = −φ′
i < 0.

Directly differentiating Uk(α) gives (3.2)

U ′
k =

k∑

i=1

s2i 2φiφ
′
i + 2σ 2

k∑

i=1

γ ′
i =

4
α

(
k∑

i=1

s2i φ
2
i γi − σ 2

k∑

i=1

γiφi

)

.

Likewise for the second derivative

U ′′
k = − 1

α
U ′
k +

4
α

(
k∑

i=1

s2i (2φiφ
′
iγi + φ2

i γ
′
i ) − σ 2

k∑

i=1

(φ′
iγi + φiγ

′
i )

)

, (3.4)

giving (3.3) after substitution for the derivatives. *+
Proposition 3.2 Suppose that 0 < ᾱ < σk/

√
2 is a stationary point for Uk(α), for any

1 ≤ k ≤ r . Then ᾱ is a unique minimum for Uk(α) on the interval 0 < ᾱ < σk/
√
2.

Proof Removing the first term from (3.4), identically zero at α = ᾱ by assumption
that ᾱ is a stationary point, gives

∂2Uk

∂α2 (ᾱ) = 8
ᾱ2

(
k∑

i=1

s2i φ
2
i (ᾱ)γi (ᾱ)(2γi (ᾱ) − φi (ᾱ)) − σ 2

k∑

i=1

φi (ᾱ)γi (ᾱ)(γi (ᾱ) − φi (ᾱ))

)

= 8
ᾱ2

(
k∑

i=1

s2i φ
2
i (ᾱ)γi (ᾱ)(2 − 3φi (ᾱ)) − σ 2

k∑

i=1

φi (ᾱ)γi (ᾱ)(1 − 2φi (ᾱ))

)

.

Now we substitute for
∑k

i=1 s
2
i φ

2
i (ᾱ)γi (ᾱ) = σ 2 ∑k

i=1 γi (ᾱ)φi (ᾱ) using (3.2) at ᾱ

and note all terms are positive for 1− 3φi (ᾱ) > 0, i = 1 : k. But φi is increasing with
i due to the ordering of the σi . Thus 1−3φi (ᾱ) ≥ 1−3φk(ᾱ) > 0 for ᾱ < σk/

√
2 and

U ′′
k (ᾱ) > 0. This result is true for any stationary point ᾱ on the interval. HenceUk(ᾱ)

is a minimum for Uk(α) and it is only possible to have a maximum at α = 0, the end
point of the given interval, but the end point is explicitly excluded from consideration.
There are therefore no other stationary points within the interval and the minimum is
unique.

Remark 3.1 Although a minimum must exist in [0, σk/
√
2] because Uk(α) is a con-

tinuous function on a compact set, this result does not show that a minimum exists in
(0, σk/

√
2) .

The next steps in the analysis rely on the following Assumptions 1–2 about the
model and the data.

Assumption 1 (Decay Rate [21,23]) The measured coefficients decay according to
s2i = σ

2(1+ν)
i > σ 2 for 0 < ν < 1, 1 ≤ i ≤ *, i.e. the dominant measured coefficients

follow the decay rate of the exact coefficients.
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1044 R. A. Renaut et al.

Assumption 2 (Noise in Coefficients) There exists * such that E(s2i ) = σ 2 for all
i > *, i.e. that the coefficients si are noise dominated for i > *. Moreover, when i ≤ *

we assume that E(s2i ) ≈ s2i , so that the larger coefficients are effectively deterministic.

These assumptions have also been used in [21] for understanding how decay rates
impact the convergence of iterative methods. We also recall that we use the non-
restrictive normalization σ1 = 1 and use the notation E(a) for the expectation of
scalar deterministic a.

For the remaining results we distinguish between the terms in the UPRE function
that are, and are not, contaminated by noise.

Proposition 3.3 Suppose Assumption 2 holds, then for r > k + 1 > * there is a an
upper bound on E(U ′

k) independent of α:

E
(

∂Ur

∂α

)
< · · · < E

(
∂Uk+1

∂α

)
< E

(
∂Uk

∂α

)
<

∂U*

∂α
∀ α. (3.5)

The lower bound for E(U ′′
k ) holds for a fixed lower bound on α

E
(

∂2Ur

∂α2

)
> · · · > E

(
∂2Uk+1

∂α2

)
> E

(
∂2Uk

∂α2

)
>

∂2U*

∂α2 if α >
σ*+1√

5
, (3.6)

whereas the upper bound depends also on an upper bound on α that decreases with
increasing k

E
(

∂2Uk+1

∂α2

)
< E

(
∂2Uk

∂α2

)
if α <

σk+1√
5
. (3.7)

Proof We note that the expectation operator is linear and when a is not a random
variable E(a) = a. Applying these properties first to (3.2) yields

E(U ′
k) = E

(

U ′
* +

4
α

k∑

i=*+1

φiγi (s2i φi − σ 2)

)

≈ U ′
* +

4σ 2

α

k∑

i=*+1

φiγi (φi − 1) < U ′
*,

where from line one to two we use linearity, and, by Assumption 2, E(U ′
*) = U ′

* and
E(s2i ) = σ 2 for i > *. In particular, in expectation each term for i > * is negative and
recursively both inequalities in (3.5) apply. Applying the expectation operator now to
(3.3) gives
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E(U ′′
k ) ≈ ∂2U ′′

*

∂α2 + 4σ 2

α2

(
k∑

i=*+1

φiγi (1 − φi )+2
(
φ2
i γi (2γi − φi )−φiγi (γi − φi )

))

= U ′′
* + 4σ 2

α2

(
k∑

i=*+1

φiγi (1 − φi + 2 (φi (2γi − φi ) − (γi − φi )))

)

= U ′′
* + 4σ 2

α2

(
k∑

i=*+1

φiγi (1 − φi + 2 (φi (2 − 3φi ) − (1 − 2φi )))

)

= U ′′
* + 4σ 2

α2

(
k∑

i=*+1

φiγi

(
−6φ2

i + 7φi − 1
))

.

The sign of the second term depends on the sign of−6φ2
i +7φi −1 which is increasing

from −1 as a function of φ ≤ 1. Hence

− 6φ2
i + 7φi − 1






≥ − 6φ2
*+1 + 7φ*+1 − 1 = σ 2

*+1(5α
2−σ 2

*+1)

(α2+σ 2
*+1)

2 > 0 if α >
σ*+1√

5

≤ − 6φ2
k + 7φk − 1 = σ 2

k (5α
2−σ 2

k )

(α2+σ 2
k )

2 < 0 if α < σk√
5
.

Again, in expectation, terms for i > * are all positive when α ≥ σ*+1/
√
5 and the

nested inequalities in (3.6) apply. The requirement that the i th term is necessarily
positive becomes more severe as i increases, yielding the additional inequality with
conditions on α given in (3.7).

Corollary 3.1 Suppose Assumption 2 holds, and that for α* > σ*+1/
√
5, U*(α*) is a

minimum for U*(α). Then for * < k ≤ r , Uk(α) is convex and decreasing at α*,

E
(

∂Uk(α*)

∂α

)
< 0 and E

(
∂2Uk(α*)

∂α2

)
> 0.

Proof IfU*(α*) is a minimum, thenU ′
*(α*) = 0 andU ′′

* (α*) > 0 and the inequalities
follow immediately from (3.5) and (3.6).

Corollary 3.2 Suppose Assumption 2 holds. If a stationary point αr < σr/
√
5 exists

there are no stationary points of Uk(α) for α ∈ (σr/
√
5, σk/

√
2).

Proof Suppose that αr ∈ [0, σr/
√
5). The existence of αr in this interval does not

contradict Proposition 3.2 since σr/
√
5 < σr/

√
2. By assumption, U ′

r (αr ) = 0 and
U ′′
r (αr ) > 0. Thus by (3.5) and (3.7) U ′

k(αr ) > 0 and U ′′
k (αr ) > 0, and Uk(α),

* ≤ k ≤ r − 1 is convex and increasing at αr . Therefore, by continuity, Uk(α) cannot
reach a minimum for αr < αk < σk/

√
2 without first passing through a stationary

point which is a maximum. But by Proposition 3.2 there is no maximum of Uk(α)

to the left of σk/
√
2 and thus there is also no minimum for αr < α < σk/

√
2. In

particular Uk(α) has no stationary point for σr/
√
5 ≤ α ≤ σk/

√
2.
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1046 R. A. Renaut et al.

Remark 3.2 We have shown through Corollary 3.2 that if Ur (αr ) is a minimum for
Ur (α) and αr < σr/

√
5 then Uk(αk) can only be a minimum for Uk(α) if either

αk ≤ αr ≤ σr/
√
5 or αk > σk/

√
2, i.e. we may require αk > σk/

√
2 under the

assumption that we seek αr > σr . This applies for all k with 1 ≤ * ≤ k ≤ r − 1.

Although this result does provide a refined lower bound for αk , it is dependent on k and
decreasing with k, which is not helpful when k gets large, as needed for finding αr , i.e.
this bound would suggest that αr needs to be found using the pessimistic lower bound
σr/

√
2. We investigate now whether these lower bounds on α are indeed realistic by

looking for bounds on the UPRE functions Uk(α).

Proposition 3.4 Suppose Assumptions 1 and 2 hold, then lower and upper bounds
on Uk(α) and its derivatives are given by Lk(α) and Uk(α) and their derivatives,
respectively, where

0 < Lk(α) = G(α)+ Fk(α) < E(Uk(α)) < H(α)+ Fk(α) = Uk(α) (3.8)
L ′

k (α) = G ′(α)+ F ′
k(α) < E(U ′

k(α)) < H ′(α)+ F ′
k(α) = U ′

k (α), (3.9)
L ′′

k (α) = G ′′(α)+ F ′′
k (α) < E(U ′′

k (α)) < H ′′(α)+ F ′′
k (α) = U ′′

k (α), for α ≤ σ* but

U ′′
k (α) = H ′′(α)+ F ′′

k (α) < E(U ′′
k (α)) < G ′′(α)+ F ′′

k (α) = L ′′
k (α), for α > 1.

(3.10)

Here G(α) and H(α) are independent of k, while Fk(α) very clearly depends on the
k terms in the sums as given by

G(α) = α4
*∑

i=1

γ 2
i , H(α) = α2

*∑

i=1

φiγi , and (3.11)

Fk(α) = σ 2

(

(k − *)+ 2
*∑

i=1

γi +
k∑

i=*+1

γ 2
i

)

. (3.12)

Proof By (2.4) due to Assumption 1 for i ≤ *

σ 4
i < σ

2(1+ν)
i = s2i < σ 2

i . (3.13)

Thus

α4γ 2
i = σ 4

i φ2
i < φ2

i (α)s
2
i < σ 2

i φ2
i = α2φiγi . (3.14)

Now from (2.6)

E(Uk(α)) =
*∑

i=1

φ2
i s

2
i + σ 2

(

2
k∑

i=1

γi (α)+
k∑

i=*+1

φ2
i

)

=
*∑

i=1

φ2
i s

2
i + Fk(α),

may be bounded using (3.13). This yields immediately (3.8) with the noted definitions
for G, H and Fk , as given in (3.11)–(3.12).
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To show (3.9) introduce Di (α) > 0, i = 1, 2, given by

D1(α) = E(Uk(α)) − (G(α)+ Fk(α)) =
*∑

i=1

(φ2
i s

2
i − α4γ 2

i )

D2(α) = (H(α)+ Fk(α)) − E(Uk(α)) =
*∑

i=1

(α2φiγi − φ2
i s

2
i ).

Then Di are independent of k and

D′
1(α) =

*∑

i=1

(
2
α
(2φ2

i γi s
2
i + 2α4γ 2

i φi ) − 4α3γ 2
i

)
= 4

α

*∑

i=1

(φ2
i γi s

2
i − α4γ 3

i ) and

D′
2(α) =

*∑

i=1

(2αφiγi +
2
α
(α2φiγi (1 − 2φi ) − 2φ2

i γi s
2
i )) =

4
α

*∑

i=1

(α2φiγ
2
i − s2i φ

2
i γi ).

But now again applying Assumption 1 we have

α4γ 3
i = σ 4

i φ2
i γi < s2i φ

2
i γi < σ 2

i φ2
i γi = α2φiγ

2
i . (3.15)

Therefore D′
i (α) > 0, i = 1, 2 and we immediately obtain (3.9).

The second derivative result follows similarly using

D′′
1 (α) =

12
α2

*∑

i=1

γi (1 − 2φi )(s2i φ
2
i − α4γ 2

i ) > 0

D′′
2 (α) =

12
α2

*∑

i=1

φiγi (1 − 2φi )(γiα
2 − s2i φi ) > 0,

where in each case we apply (3.15) and note 1 − 2φi ≥ 0, for 1 ≤ i ≤ * and α ≤ σ*.
This then immediately gives the reverse inequalities for α > 1. *+

From (3.11)–(3.12) we see that we may write G, H and Fk in terms of sums
Sp(i1, i2) =

∑i2
i=i1

γ
p
i for p = 1 and p = 2 by writing φiγi = γi − γ 2

i . Hence

G(α) = α4S2(1, *), H(α) = α2(S1(1, *) − S2(1, *)) and

Fk(α) = σ 2(k − * + 2S1(1, *)+ S2(* + 1, k)).

Thus for U*(α) we have the bounding functions by Proposition 3.3

L*(α) = G(α)+ F*(α) = α4S2 + 2σ 2S1
U*(α) = H(α)+ F*(α) = α2(S1 − S2)+ 2σ 2S1,
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1048 R. A. Renaut et al.

where the sums all range from 1 to *. Moreover, also by Proposition 3.3, L ′
*(α) <

U*(α) < U ′
* (α) where

L ′
*(α) = 4α3S2 + α4S′

2 + 2σ 2S′
1 = 4α3(S2 + S3 − S2)+

4σ 2

α
(S2 − S1)

= 4
α
(α4S3 + σ 2(S2 − S1))

U ′
* (α) = 2α(S1 − S2)+ α2(S′

1 − S′
2)+ 2σ 2S′

1

= 2α(S1 − S2)+ 2α(S2 − S1 − 2(S3 − S2))+
4
α

σ 2(S2 − S1)

= 4
α
(α2(S2 − S3)+ σ 2(S2 − S1)),

and we used γ ′
i = − (2/α)γiφi = (2/α)(γ 2

i − γi ) and (γ 2
i )

′ = −(4/α)γ 2
i φi =

(4/α)(γ 3
i − γ 2

i ).

Proposition 3.5 Suppose Assumption 1 holds, then necessarily U ′
*(α) < 0 for α2 <

σ 2
*+1/(1 − σ 2

*+1). Hence α2
* > σ 2

*+1/(1 − σ 2
*+1).

Proof If the upper bound has a negative slope,U ′
* (α) < 0 for some α, thenU ′

*(α) < 0
also. ImmediatelyU ′

* (α) < 0 for α2(S2 − S3)+σ 2(S2 − S1) < 0, and forU ′
*(α) < 0

it is sufficient that for 1 ≤ i ≤ *

0 > α2(γ 2
i − γ 3

i )+ σ 2(γ 2
i − γi ) = γi (α

2γi (1 − γi )+ σ 2(γi − 1)) = γiφi (α
2γi − σ 2),

and we need (α2γi − σ 2) < 0, or α2σ 2
i − σ 2(α2 + σ 2

i ) < 0. Now, for i ≤ *,
σ 2
i ≥ σ 2

* > σ 2 and we obtain α2 < min(σ 2σ 2
i /(σ

2
i − σ 2)) for all 1 ≤ i ≤ *. But

x2/(x2 − a2) is decreasing with x for x2 > a2, hence we need α2 < σ 2/(1 − σ 2).
For σ 2

*+1 < σ 2 < σ 2
* and using x2/(1 − x2), which is increasing with x ∈ (0, 1), we

obtain α2 < σ 2
*+1/(1 − σ 2

*+1). Hence we must have α2
* > σ 2

*+1/(1 − σ 2
*+1).

We now extend the analysis to obtain a lower bound on αk for all k > *.

Theorem 3.1 Suppose Assumptions 1 and 2 hold, and that Uk(αk) is a minimum for

Uk(α), then, for k ≥ *, αk > α* > σ*+1/
√
1 − σ 2

*+1 = αmin.

Proof First suppose the contrary and that αk ≤ σ*+1/
√
1 − σ 2

*+1. Then U ′
k(αk) = 0

and by (3.5)U ′
*(αk) > 0. But by Proposition 3.5U ′

*(α) < 0 for α ≤ σ*+1/
√
1 − σ 2

*+1

andwe have a contradiction yieldingαk > σ*+1/
√
1 − σ 2

*+1 = αmin, k ≥ *. It remains

to determinewhether it is possible to haveσ*+1/
√
1 − σ 2

*+1 < αk < α* whereα* is the
first minimum point ofU*(α) to the right of αmin. Again we proceed by contradiction
and suppose that αk ∈ [αmin,α*] exists. Then we have the following:
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Unbiased predictive risk estimation of the Tikhonov… 1049

1. By (3.5) E(U ′
k)(α*) < U ′

*(α*) = 0, and by (3.6), noting α > σ*+1/
√
5,

E(U ′′
k )(α*) > U ′′

* (α*) > 0. Hence Uk(α) is convex and decreasing at α*.
2. At the minimum critical point αk < α*, U ′

k(αk) = 0. Thus there must also be a
second critical point which is a maximum for some ᾱ in the interval αk < ᾱ < α*,
for which U ′

k(ᾱ) = 0 and U ′′
k (ᾱ) < 0.

3. At ᾱ we then have by (3.5) that U ′
*(ᾱ) > 0. Hence U*(α) is increasing at ᾱ < α*

but is decreasing at αmin < ᾱ, i. e. U ′
*(α) changes sign for some α in the interval

[αmin, ᾱ]. But by continuity thenU*(α) has at least one minimum on this interval.
By assumption, however, α* is the first minimum point of U*(α) to the right of
αmin and we have arrived at a contradiction.

*+

We have now obtained a tight lower bound on αk

αmin =
σ*+1√
1 − σ 2

*+1

< αk, * ≤ k ≤ r . (3.16)

It remains to discuss the convergence of {αk} to αkopt with increasing k. We note that
one approach would be to show that the Uk(α) are convex for α > σ*, but the sign
result in (3.10) only immediately applies for α > 1, hence investigating the sign
requires a more refined bound for each interval α ∈ [σi , σi−1] for i ≤ *. Instead we
obtain the following result, which relies on the uniqueness of αk .

Theorem 3.2 Suppose Assumptions 1 and 2 hold and that αkopt and each αk , k > *

are unique within the given interval σ*+1/
√
1 − σ 2

*+1 < α < 1. Then, the sequence
{αk}k>* is on the average increasing with limk→r E(αk) = E(αkopt ) and {Uk(αk)} is
increasing.

Proof It is immediate from (2.6) that Uk(α) ≥ U*(α) for any k > * and any α, and
thatUk+1(α) ≥ Uk(α). Thus the {Uk(α)} is an increasing set of functions with k > *.
By (3.5) of Proposition 3.3 we also have E( ∂Uk+1(α)

∂α ) < E( ∂Uk (α)
∂α ) < ∂U*(α)

∂α , and

{E( ∂Uk (α)
∂α )} is a decreasing set of functions for k > *. In particular E( ∂Uk+1(α*)

∂α ) <

E( ∂Uk (α*)
∂α ) < 0. Moreover, by Corollary 3.1 and (3.6) of Proposition 3.3, when α* >

σ*+1/
√
5 the expected second derivatives at α* are positive and increasing with k so

that the first derivative increases to 0 more quickly for larger k. Thus, not only do we
have E(αk) > α* > αmin for all k, we also have that {E(αk)} converges from below
to E(αkopt ).

Corollary 3.3 (Faster Decay Rate of the Coefficients) Suppose that the coefficients si
decay at the rate s2i = σ

2(ρ+ν)
i for integer ρ > 1. Then the results of Theorems 3.1–3.2

still hold.

Proof This holds by modifying the inequality (2.4) for the faster decay rate yielding

Kiσ
4
i < σ

2(ρ+ν)
i = s2i < σ 2

i Ki , Ki = σ
2(ρ−1)
i .
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Thus the coefficients are bounded as in (3.14) but with scale factor Ki

α4γ 2
i Ki = σ 4

i φ2
i Ki < φ2

i (α)s
2
i < Kiσ

2
i φ2

i = Kiα
2φiγi .

Using this relation all the results presented in Proposition 3.4 still hold with H(α) and
G(α) replaced by

Gρ(α) = α4
*∑

i=1

Kiγ
2
i , and Hρ(α) = α2

*∑

i=1

Kiφiγi .

Then again redefining the summations Sp to now depend on the coefficients with Ki ,
for Hρ and Gρ , following Proposition 3.5 yields the condition

γiφi (α
2Kiγi − σ 2) < 0

for U ′
*(α) < 0. Continuing the argument as in the proof of Proposition 3.5 still

yields the lower bound α2
* > σ 2

*+1/(1 − σ 2
*+1). But this is all that is required for

Theorems 3.1–3.2 and hence the results follow without modification. *+

Remark 3.3 This result shows that given a TSVD which sufficiently incorporates the
dominant terms of the SVD expansion, including sufficient terms that are noise-
contaminated, αk will be an increasingly good approximation for αkopt . Moreover,
including additional terms in the expansion will have limited impact on the solution,
because αkopt > α* and filter factor γi (αkopt ) is decreasing with i . In particu-
lar, we are using γi (αkopt ) < γi (α*) < γ*+1(α*) < γ*+1(σ*+1) = 1/2, for
i > * + 1 and α* > σ*+1. These nested inequalities follow immediately because
γ (x, y) = y2(y2+ x2)−1 is decreasing as a function of x and increasing as a function
of y.

Remark 3.4 Although the main result of this paper effectively relies on an assump-
tion that the UPRE functions have unique minima within the obtained bounds,
αmin < αk < 1, proving that the minima are indeed unique seems to require using the
discrete summations occurring in Uk(α) as approximations to continuous integrals.
This approach is very technical, not very general, being dependent on the decay rate
parameter τ , and serves only to tighten the lower bound for α. We therefore chose
not to present results along this direction, relying on the computational results that are
supportive of the unique identification of a minimum within these realistic bounds.

Remark 3.5 The results given depend on the assumption that summations with s2i for
terms with i > * may be approximated in terms of the noise variance. For r − * small
relative to r , this assumption breaks down. As r −* increases the assumptions become
more reliable and less impacted by outlier data for s2i . Still the main convergence
theorem holds only with respect to this analysis and we cannot expect that {αk} will
always converge monotonically to αkopt in practice. With sufficient safeguarding, as
noted in the algorithm presented in Sect. 4, it is reasonable to expect that αkopt is
quickly and accurately identified.
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Remark 3.6 (Posterior Covariance) We have shown {αk} increases with k. Con-
sequently, the approximate a posteriori covariance of the filtered TSVD solution
σ 2/(4α2) decreases with k, to σ 2/(4α2

kopt ). In trading-off the minimization of the
risk by using the UPRE to find the optimal α, the method naturally finds a solution
which has increasing smoothness with increasing k. This limits the impact of the pos-
sibly non-smooth components of the solution corresponding to small singular values,
most likely noise-contaminated, that would contaminate the unfiltered TSVD solution.

4 Practical application

The convergence theory for {αk} → αkopt as k → kopt presented in Sect. 3 motivates
the construction of an algorithm to automatically determine the optimal index kopt,
defined as in Sect. 1 to be the optimal number of terms to use from the TSVD, and
associated regularization parameter αkopt . The algorithm is presented and discussed
in Sect. 4.1 and tested for 2D test problems using IR Tools [10] in Sect. 4.2. These
results also corroborate the convergence theory presented in Sect. 3.

4.1 Algorithm

We propose an algorithm that works by iteratively minimizing (2.6) on the TSVD
subspace of size k ≤ r until a set of convergence criteria are met. These convergence
criteria rest on the observation that in general for sufficiently large k, the relative
change, ck = |(αk − αk+1)|/αk > 0, between successive parameter estimates, αk and
αk+1, decreases as k increases towards r . If during the iterative procedure there exists a
k such that it is reasonably believed thatαk ≈ αi for all i > k, the algorithm terminates,
producing kopt and αkopt . A pseudo-code implementation is given as Algorithm 1.

Algorithm 1: Truncated UPRE Parameter Estimation
Input: SVD or TSVD; data b and noise variance estimate σ 2; initial index k0; maximum k, kmax;

step size ∆k ; relative tolerance δ; window length w; optional estimate for *
Output: Converged parameter αkopt ; convergence index kopt; relative mean change ĉiw ;

1 k ←− k0; ĉiw ←− inf
2 Initialize αmin according to (3.16) using * if provided, otherwise using k
3 α(0) ←− argminα Uk (α) over interval [αmin, 1]
4 while (ĉiw > δ and k < kmax) or (α(i) = αmin) do
5 i ←− i + 1; k ←− k + ∆k
6 If * not provided, update αmin according to (3.16) using k
7 α(i) ←− argminα Uk (α) over interval [αmin, 1]
8 c(i) = (|α(i) − α(i − 1)|)/α(i)
9 if i ≥ w then

10 ĉiw ←− mean(c(i), c(i − 1), . . . , c(i − w + 1))
11 end
12 end
13 return k = kopt , α(i) = αkopt , ĉiw
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Algorithm 1 takes as input a full or truncated SVD as well as a number of required
and optional parameters which we now discuss. For large scale problems it is not
necessary, and is even discouraged, to compute αk for all k ≤ kopt. For moderately or
mildly ill-posed problems, and for problems with high signal to noise ratios in which
the expected kopt is likely to be large relative to the problem size, it is recommended
to start the algorithm at some k0 3= 1 and to increment k by some ∆k 3= 1, yielding
the sequence {k(i) : k0, k0 + ∆k, k0 + 2∆k, . . . k0 + i∆k}. The algorithm computes
the sequence {αk0 ,αk0+∆k ,αk0+2∆k ,αk0+3∆k , . . . }, each solving (3.1) for the given
index, until either k0 + i∆k ≥ kmax or until αk has converged, where k0, ∆k , and
kmax are provided by the user. For each k0 + i∆k the relative change in α is computed
as ci = |αk0+i∆k − αk0+(i−1)∆k |/αk0+i∆k . Noting again that ci is only in general
decreasing for sufficiently large i , it is unwise to determine stopping criteria by directly
thresholding on ci < δ, for some user provided tolerance δ. It is observed that higher
confidence in convergence can be achieved by requiring ĉiw < δ where ĉiw is themean
of multiple ci ’s calculated over the window of size w, i.e. over {ci , ci+1, . . . , ci+w}.
This protects against the possibility of stopping the parameter search too early and
prior to the stabilization of αk . This occurs when ci < δ, while at the same time c j ≥ δ

for some j > i . Due to the impact of noise on calculating the parameter αk , if k is not
yet sufficiently large so that αk has not stabilized then the relative changes between
successive estimates of αk may be either extremely small or large. Comparingmultiple
values of ci in the form of ĉiw to δ enables a broader view of the convergence of αk ,
and the moving window average smooths out variation in ci .

Remark 4.1 (Parameter ∆k) The choice of ∆k is influenced by the size of the problem
and if known, an estimate for the expected number of terms to be used in the TSVD
solution. While choosing ∆k large has computational advantages due to a larger step
size in the search for kopt, with ∆k too large one risks the possibility of Algorithm 1
producing a value of kopt larger than necessary. Solutions with kopt larger than neces-
sary more closely resemble the full UPRE regularized solution. For the problem sizes
considered here ∆k ∈ {5, 10, 25} all seemed to work well.

Remark 4.2 (Parameter w) The choice of w has a similar effect as ∆k . Choosing w

large will delay the termination criteria . Parameters ∆k and w interact in the sense
that they together determine the set {ci , ci+1, . . . , ci+w}whose mean is compared to δ

in determining convergence. The choice of w determines how many values are being
averaged, while w and ∆k determine the minimum and maximum k of the moving
windowoverwhichαk is tested for convergence. Choosingw ∈ {5, 10, 25, 50}worked
well for the problems considered here.

Remark 4.3 (Parameter δ) Algorithm 1 is sensitive to δ and we recommend choosing
δ ∈ [1e−5, 1e−3]. In our experiments δ > 1e−3 terminated the algorithm prior to
convergence resulting in over smoothed solutions due to an underestimate of kopt,
while δ < 1e−5 produced kopt far greater than necessary.

To summarize, the required input to the proposed algorithm is a full or truncated
SVD, a starting index k0, a step size between successive estimates∆k , an upper-bound
kmax dependent on the severity of the problem and the noise level, a tolerance δ, and
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a width w over which the moving average of relative changes in successive estimates
of α is computed.

The results of Theorem 3.1 are incorporated into Algorithm 1 with the inclusion of
an optional parameter * specifying an estimate for the index at which noise dominates
the coefficients. If a Picard plot is available * can be estimated visually, otherwise an
approach relying on Picard parameter estimates similar to that used by [24,34] can be
used. If an estimate for * is available, αmin is calculated according to (3.16), and αk

is found using αmin = σ*+1/
√
1 − σ 2

*+1 and αmax = 1 in (3.1). Otherwise, the bound

σk+1/
√
1 − σ 2

k+1 is used in (3.1). In either case if the lower bound is achieved then
the theory indicates that noise has not yet dominated and the algorithm is allowed to
continue. Thus, in the case where k < kmax, necessary conditions for the termination
of Algorithm 1 are ĉiw < δ and αk should be greater than the specified αmin.

4.2 Verification of the algorithm and theory

We now present the evaluation of Algorithm 1 on a 2D test problem using the IR
Tools package described in [10]. We report the results applying a Gaussian blur to
test problem Satellite of size 256 × 256 using PRblur, with medium blur. We
considered noise levels of 5%, 10%, and 25%, with 100 noise instances generated
for each noise level. The IR Tools function PRnoise was used to generate noise,
where the noise level is defined as as ‖‖2/‖b‖. A moving window of size w = 5
in computing ĉiw with relative tolerance of δ = 1e−3 was found to work well for
each noise level, but may need to be adapted to the severity of the ill-posedness of
the problem. Recorded in each run are the converged αkopt , the size of the TSVD
subspace kopt to be used, and the relative reconstruction error (RRE). RRE is defined
as ‖xtrue − xkopt‖2/‖xtrue‖2 where xkopt is the filtered, kopt-truncated TSVD solution
obtained by using αkopt as the regularization parameter.

Figure 4 is a box plot1 showing the spread of kopt values for the 100 noise instances
run for each noise level, where in each case kopt ( r = 65,536. Figure 5 is a box
plot comparing the αkopt returned by the algorithm, and αr obtained by minimizing the
UPRE on the full space. These figures together reaffirm that the optimal regularization
parameter found by UPRE is largely determined by a relatively small number of terms
in the TSVD, and less impacted by the tail of the coefficients dominated by noise. The
estimation of {αk} with increasing number of terms in the TSVD is depicted in Fig. 6
for the first 10 runs of each noise level, where the point of convergence (kopt,αkopt )

is represented as a cyan triangle. It should be noted that the estimated lower bound
αmin was not used, and α was minimized over the interval (0, 1) using fminbnd
(fminbound is used for the Python implementation). A tolerance of δ = 1e−3 was
found to produce a value for αkopt just prior to the point where {αk} began to stabilize.
A smaller δ will necessarily increase kopt, but with negligible changes in αkopt . In these
simulations averaged over all 100 runs, αkopt was within 1.22%, 1.47%, and 1.17% of

1 A box plot is a visual representation of summary statistics for a given sample. Horizontal lines of each
plotted box represent the 75%, 50% (median), and 25% quantiles, with outliers plotted as individual crosses
or points.
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Fig. 4 Box plots showing the
index kopt produced by
Algorithm 1 for problem
Satellite computed from
100 runs for noise levels 5%,
10%, and 25%. The number of
terms k in the TSVD that provide
useful information decreases as
the noise level increases

5% 10% 25%
Noise

1500

2000

2500

3000

3500

k o
pt

= 5% = 10%(a) Noise level (b) Noise level (c) Noise level = 25%

Fig. 5 Box plots comparing parameter estimates αkopt with αr for problem Satellite computed from
100 runs for noise levels 5%, 10%, and 25%.For each noise level, the estimateαkopt produced byAlgorithm1
is generally less than αr , demonstrating that by including more terms in the TSVD, k > kopt , greater
regularization is required. Note that the limits on the y-axes vary across subplots to better visualize the
parameter distributions across noise levels

αr for noise levels 5%, 10%, and 25% respectively using fewer than 5% of the SVD
components.

In terms of RRE, the solution obtained using the truncated UPRE and a subspace
of size kopt with parameter αkopt generated by Algorithm 1 generally provided a better
solution than obtained using the full UPRE for each noise level. Figures 7 and 8 show
box plots and histograms respectively of the RRE comparing the regularized TSVD
and the full UPRE solution. Over all noise levels, the median and mean reconstruction
error of 100 noise instances is lower in the regularized TSVD solution. Similar to the
Picard parameter approaches of [34], Algorithm 1 identifies an index kopt for which
coefficients sk are dominated by noise for k > kopt. Our approach, however, does
not rely on performing statistical tests on the coefficients, but instead examines the
stabilization of αk as k increases. Once αk has stabilized, adding additional noise
dominated terms in the solution delivers no benefit. Furthermore, if a TSVDwith kmax
terms has been calculated, then either αk converges for k < kmax or we know that
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Fig. 6 Line plots showing the calculated estimates for {αk }with increasing number of terms k in the TSVD.
The results are given for problem Satellite for noise levels 5%, 10%, and 25%, for 10 random noise
instances at the specified noise level. The resulting point (kopt,αkopt ) produced by Algorithm 1 is displayed
as a cyan triangle. Note that the limits on the y-axes vary across subplots to better visualize the convergence
across noise levels

= 5% = 10%(a) Noise level (b) Noise level (c) Noise level = 25%

Fig. 7 Box plots of RRE comparing solutions using truncated UPRE with parameter αkopt and solutions
using full UPRE with parameter αr for problem Satellite computed from 100 runs for noise levels 5%,
10%, and 25%. Regularization parameter αkopt obtained by UPRE on a TSVD generally has lower error,
as evident from Truncated UPRE plots being vertically shifted downwards relative to full UPRE boxplots.
Note that the limits on the y-axes vary across subplots to better visualize the spread of the distributions
across noise levels

the optimal choice kopt is greater than kmax, and that ĉiw provides some estimate for
whether kopt >> kmax or whether the given TSVD can be assumed to be sufficient in
providing a good estimate for the solution x.

In these simulations * is not known precisely but was estimated by visual inspection
of the Picard coefficients, as well as by comparing the distributions of the noise con-
taminated and noise free coefficients. This approach for estimating * is not possible
in general as the noise free coefficients are unknown in practice, but this method of
estimating *was employed for the purpose of validating the results of Theorem 3.1. An
estimate for the lower bound αmin obtained from (3.16) is depicted as the red dashed
curve in Fig. 9, with {αk} the solid black line. It can be seen that αmin serves as a tight

lower bound for the converged parameter αkopt , and the lower bound σk+1/
√
1 − σ 2

k+1
can be used effectively in cases where an estimate of * is not available.

In addition to test image Satellite with a medium Gaussian blur applied, we
also applied Algorithm 1 with the same parameters to test image HST with both mild

123



1056 R. A. Renaut et al.

=
5%

=
10

%
(a
)N

oi
se

le
ve
l

N
oi
se

le
ve
l

N
oi
se

le
ve
l =

25
%

(b
)

(c
)

Fi
g.
8

H
is
to
gr
am

s
of

R
R
E
co
m
pa
ri
ng

so
lu
tio

ns
us
in
g

α
k o

pt
an
d
so
lu
tio

ns
us
in
g

α
r
fo
rp

ro
bl
em

S
a
t
e
l
l
i
t
e
co
m
pu

te
d
fr
om

10
0
ru
ns

fo
re
ac
h
no

is
e
le
ve
l5
%
,1
0%

,a
nd

25
%
.

R
eg
ul
ar
iz
at
io
n
pa
ra
m
et
er

α
k o

pt
ob
ta
in
ed

by
U
PR

E
on

a
T
SV

D
ge
ne
ra
lly

ha
s
lo
w
er

er
ro
r,
as

ev
id
en
tf
ro
m

th
e
tr
un
ca
te
d
hi
st
og
ra
m
s
ha
vi
ng

pe
ak
s
sh
if
te
d
to

th
e
le
ft
re
la
tiv

e
to

th
e
fu
ll
U
PR

E

123



Unbiased predictive risk estimation of the Tikhonov… 1057

0 2000 4000 6000 8000 10000
k

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

σk+1/
√
1 − σ2

k+1

αk

αmin

= 5%

0 2000 4000 6000 8000 10000
k

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

σk+1/
√
1 − σ2

k+1

αk

αmin

= 10%

0 2000 4000 6000 8000 10000
k

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

σk+1/
√
1 − σ2

k+1

αk

αmin

(a) Noise (b) Noise (c) Noise = 25%

Fig. 9 Line plots showing the convergence of {αk } for problem Satellite for noise levels 5%, 10%, and
25%. In each subplot, αr is plotted as a solid black line for 10 random noise instances at the specified noise
level. The dotted blue curve represents the lower bound in (3.16) as a function of k, with the red dashed line
representing the lower bound according to Theorem 3.1 and dependent on * for a single run (colour figure
online)
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Fig. 10 Box plots showing the index kopt produced by Algorithm 1 for problem HST computed from 100
runs for noise levels 5%, 10%, and 25%. The number of terms k in the TSVD that provide useful information
decreases as the noise level increases

and severeGaussian blurring. The results, summarized in Figs. 10, 11, 12 are consistent
with the results for test case Satellite.

In summary, given a TSVD or SVD, an optional estimate of *, and suitable parame-
ters determined by the ill-posedness of the problem, Algorithm 1 is able to effectively
determine a regularization parameter αkopt obtained by UPRE minimization over the
TSVD subspace of size kopt, such that the regularized truncated solution x has consis-
tently lower RRE than the full UPRE solution.

5 Conclusions

We have demonstrated that the regularization parameter obtained using the UPRE
estimator converges with increasing number of terms used from the TSVD for the
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= 5% = 10%(a) Noise level (b) Noise level (c) Noise level = 25%

Fig. 11 Box plots of RRE comparing solutions using truncated UPRE with parameter αkopt and solutions
using full UPRE with parameter αr for problem HST with mild blur computed from 100 runs for noise
levels 5%, 10%, and 25%. Regularization parameter αkopt obtained by UPRE on a TSVD has consistent
lower error, as evident from Truncated UPRE plots being vertically shifted downwards relative to full
UPRE boxplots. Note that the limits on the y-axes vary across subplots to better visualize the spread of the
distributions across noise levels

= 5% = 10%(a) Noise level (b) Noise level (c) Noise level = 25%

Fig. 12 Box plots of RRE comparing solutions using truncated UPRE with parameter αkopt and solutions
using full UPRE with parameter αr for problem HST with severe blur computed from 100 runs for noise
levels 5%, 10%, and 25%. Regularization parameter αkopt obtained by UPRE on a TSVD generally has
lower error for noise levels 10% and 25%, with comparable error for noise level 5%. Note that the limits
on the y-axes vary across subplots to better visualize the spread of the distributions across noise levels

solution. For a severely ill-posed problem the convergence occurs very quickly and is
independent of the size of the problemdue to the fast contamination of data coefficients
by practical levels of noise. Practically-relevant problems are often, however, only
moderately or mildly ill-posed, e. g. [6,14,36,38], and it is therefore important to
accurately and efficiently find both kopt and αkopt .

Theoretical results have been presented that demonstrate the convergence of the
regularization parameter αk with k, increasing from below to αkopt ≤ αr , the opti-
mal value for the full SVD. The posterior covariance thus decreases with k, leveling
at approximately σ 2/(4α2

kopt ). Thus the method naturally finds a solution which has
increasing smoothness with increasing k and solutions obtained without truncation
will exhibit larger error due to increased smoothing. An effective and practical algo-
rithm that implements the theory has also been provided, and validated for 2D image
deblurring. These results expand on recent research on the characterization of the
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regularization parameter as closely dependent on the size of the singular subspace
represented in the solution [9,30,31]. As there is a resurgence of interest in using a
TSVD solution for the solution of ill-posed problems due to increased feasibility of
finding a good approximation of a dominant singular subspace using techniques from
randomization, e.g. [7,8,13,26,28,32], the results are more broadly relevant for more
efficient estimates of the TSVD. Implementation of the algorithm in these contexts is
a topic for future work.
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