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Abstract

The truncated singular value decomposition may be used to find the solution of linear
discrete ill-posed problems in conjunction with Tikhonov regularization and requires
the estimation of a regularization parameter that balances between the sizes of the fit
to data function and the regularization term. The unbiased predictive risk estimator
is one suggested method for finding the regularization parameter when the noise in
the measurements is normally distributed with known variance. In this paper we pro-
vide an algorithm using the unbiased predictive risk estimator that automatically finds
both the regularization parameter and the number of terms to use from the singular
value decomposition. Underlying the algorithm is a new result that proves that the
regularization parameter converges with the number of terms from the singular value
decomposition. For the analysis it is sufficient to assume that the discrete Picard con-
dition is satisfied for exact data and that noise completely contaminates the measured
data coefficients for a sufficiently large number of terms, dependent on both the noise
level and the degree of ill-posedness of the system. A lower bound for the regulariza-
tion parameter is provided leading to a computationally efficient algorithm. Supporting
results are compared with those obtained using the method of generalized cross valida-
tion. Simulations for two-dimensional examples verify the theoretical analysis and the
effectiveness of the algorithm for increasing noise levels, and demonstrate that the rel-
ative reconstruction errors obtained using the truncated singular value decomposition
are less than those obtained using the singular value decomposition.
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1 Introduction

We consider the solution of Ax & b, or AX & byye + 7 = b for noise (measurement
error) 5, where A € Z™*" is ill-conditioned, and the system of equations arises from
the discretization of an ill-posed inverse problem that may be over or under determined.
The general Tikhonov regularized linear least squares problem

X =argmxin[||Ax—b||%vb+||D(X—x0)||%,vx}, (1.1)

is a well-accepted approach for finding a smooth solution x. Here X is given prior infor-
mation, possibly the mean of x, Wy, and Wy are weighting matrices on the data fidelity
and regularization terms, resp., and D is an optional regularization operator. Often D
is imposed as a spatial differential operator, controlling the size of the derivative(s) of
x, but then (1.1) can be brought into standard form in which D is replaced by I [5,21].
Further, (1.1) can be rewritten in terms of a new variable y = x—x¢. The weighted norm
is defined by ||x||%v := x” Wx and we use the notation m ~ .4 (mq, Cyy) for random
vector m normally distributed with expected value E (m) = mg and covariance matrix
Cm; E(-) is used to denote expected value. When n ~ 47(0, Cp), then Wy, = Cp !

whitens the noise, i.e. Wg/ 217 ~ A0, I). Matrix Wy = C¢ I can serve similarly as
a prior on the inverse covariance of the noise in Dy. Using Wy = «?I, as will be
assumed here, corresponds to assuming the posterior distribution Dy ~ .4(0, oz’z),
see e.g. [27]. Here we discuss the solution of (1.1) withxg =0, D =1, Wx = o2,
Wy = I and explicitly assume common variance, o2, in the noise, n~ A, o).
While solutions of (1.1) have been extensively studied, e.g. [17,21,22,41] there is
still much discussion concerning the selection of Wy even for the single parameter case,
Wy = a?1. Suggested techniques include, among others, using the Morozov discrep-
ancy principle (MDP) which assumes that the solution should be found within some
prescribed x 2 noise estimate [29], balance of the terms in (1.1) using the L-curve [21],
the quasi-optimality condition [3,15,16] and minimization of the generalized cross
validation (GCV) function [11] or of the statistically motivated Unbiased Predictive
Risk Estimator (UPRE) [33,41]. Of these the MDP, GCV and UPRE approaches are
all a posteriori estimators, the MDP on the x2 distribution of the predicted residual,
the GCV through its derivation as a leave one out procedure to minimize the pre-
dictive error and the UPRE as an estimator of the minimum predictive risk of the
solution. There is an extensive discussion of these methods in the standard literature
e.g.[21,22,41] and many more are compared in [4]. We do not replicate that discussion
here, rather we focus on the UPRE parameter choice method. The UPRE method has
a firm theoretical foundation, is robust, and has been extensively applied in practical
applications [1,18,25,27,35,37-40]. Our analysis extends the approach in [9] which
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provided bounds on the regularization parameter for finding o using the GCV; the
analysis in [30] that examined convergence of the parameter with increasing resolu-
tion of the problem via the connection of the continuous and discrete singular value
expansions for specific square integrable operators defining A; and the discussion in
[31] that demonstrated the relationship of the regularization parameter obtained when
using the LSQR Krylov method for large scale problems. Moreover, our interest in the
UPRE, instead of the MDP, arises because the UPRE depends only on the underlying
knowledge of the noise distribution, whereas the MDP also introduces a secondary
tolerance factor on the satisfaction of the x? distribution, which is often needed to
limit over smoothing of the solutions [2].

Throughout we use the Singular Value Decomposition (SVD) A = UX VT [12],
with columns u; and v; of orthonormal U and V respectively, and where the singular
values o; of A are ordered on the principal diagonal of X', from largest to smallest.
We assume that the matrix A has effective numerical rank r; o, > 0, and 0,1 > r
is effectively zero as determined by the machine precision. In terms of the SVD
components, the solution of (1.1) is given by

r 2

2 T r T
lof u'b u'b o
X* — ] l_v. — (o l_v-’ (o) = —l. 1.2
; Giz 1ol o i ;ZI vi(a) o i vi(o) (Uiz Y o) (1.2)

The filter functions are y; (o) and the given expansion applies, replacing r by k, when
A is approximated by the TSVD, Ay = Uy Xy VkT. Throughout we use the subscript
k to indicate variables associated with this rank k approximation, for example reg-
ularization parameter oy indicates the regularization parameter used for the k-term
TSVD. Further, the use of the SVD for A provides useful insights on how the UPRE,
and other methods, can be implemented when solving (1.1). Here we will show that
the minimization of the underlying UPRE function is efficient and robust with respect
to the k—term truncated singular value decomposition (TSVD). Moreover, there is a
resurgence of interest in using a TSVD solution for the solution of ill-posed problems
due to the increased feasibility of finding a good approximation of a dominant singu-
lar subspace even for large scale problems by using techniques from randomization,
e.g. [7,8,13,26,28,32]. Thus the presented results will be more broadly relevant for
efficient estimates of an approximate TSVD using these modern techniques applied
for large scale problems, for which it is not feasible to find the full SVD expansion;
necessarily k << r.

Overview of main contributions. An open source algorithm, Algorithm 1, for effi-
ciently estimating optimal regularization parameters kopt and o, defined to be the
optimal number of terms to use from the TSVD, and the associated regularization
parameter, resp., is presented. By optimal we mean that these parameters are opti-
mal in the sense of minimizing the UPRE function. A MATLAB implementation of
Algorithm 1 and a 2D test case using IR Tools [10] is available at https://github.com/
renautra/TSVD_UPRE_Parameter_Estimation. A Python 3.* implementation using
NumPy and SciPy is also available and relies on provision of the singular values and
coefficients ul.Tb. In both cases an estimate for the noise variance in the data is required,
as is standard for the UPRE method. The motivation for Algorithm 1 is based on the
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theoretical results presented in Sect. 3. These results employ standard assumptions
on the degree of ill-posedness of the underlying model and on the noise level in the
data [23]. We briefly review how both the degree of ill-posedness and the noise level
impact the choice of regularization parameter k, and demonstrate that the noise level
is far more restrictive so that in general k < r. The convergence of oy, when found
using both UPRE and GCV methods, is illustrated for examples from the Regulariza-
tion toolbox [20]. The theory presented in Sect. 3 then leads to Theorems 3.1 and 3.2
which prove a lower bound for o and that oy converges to ko> under the assumption
of a unique minimum of the UPRE function. Presented results for image deblurring
verify the practicality of Algorithm 1 and demonstrate that the solutions obtained
with kopt < r yield smaller overall relative error than the solutions obtained without
truncation of the SVD and «, found using the UPRE method.

The paper is organized as follows: In Sect. 2 we present background motivating
results based on assumptions on the degree of ill-posedness of the problem in Sect. 2.1,
a discussion of numerical rank in Sect. 2.2, how noise enters into the problem in
Sect. 2.3 and the estimation of the regularization parameter in Sect. 2.4. The theoretical
results providing our main contributions are presented in Sect. 3. A practical algorithm
for estimating Ckopr> and hence also kopy, is presented in Sect. 4 with simulations
verifying the analysis and the algorithm for two dimensional cases. Conclusions and
future extensions are provided in Sect. 5.

2 Motivating results

2.1 Degree of ill-posedness

As in [23, Definition 2.42], and subsequently adopted in [21], for the analysis we
assume specific decay rates for the singular values dependent on whether the problem

is mildly, moderately or severely ill-posed. Suppose that ¢ is an arbitrary constant,
then the decay rates are given by

¢i~" 1 <7 <1 mildill conditioning
oi=3¢i Tt>1 moderate ill conditioning, 2.1
it > 1 severe ill conditioning.

Here 7 is a problem dependent parameter and it is assumed that the decay rates hold
on average for sufficiently large i. Moreover, while defining o; in terms of index i, as
is consistent with the literature, it will also be convenient to consider the definition in
terms of the continuous variable i, so that o;s is defined also for non-integer i 4 4.
For ease, and without loss of generality, we pick the constant ¢ in (2.1) so that oy = 1
in all cases. Equivalently we use

i~® 1<t <1 mildill conditioning,
o=13i"" t>1 moderate ill conditioning, 2.2)
=i > 1 severe ill conditioning,
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Table 1 Number of significant singular values r for precision ¢ = 10~13 as a function of . i.e. r is the
numerical rank of the problem

T 1.25 1.50 1.75 2.00 2.50 3.00 4.00 5.00 6.00

Moderate  r le+12 le+10  4e+8 3e+7 le+6 le+5 5623 1000 316
Severe r 155 86 62 50 38 32 25 22 20

and note the recurrences

(/Hl_;1 )" mild or moderate ill conditioning,

Op+1 =0¢) = . L
* {T ! severe ill conditioning.

2.2 Numerical rank

The precision of the calculations, as determined by the machine epsilon ¢, is relevant
in terms of the number of singular values that are significant in the calculation. This is
dependent on the decay rate parameters of the singular values. We define the effective
rank by r = argmax{i : 0; > €o1}.

Proposition 2.1 Assuming the normalization of the singular values as given by (2.2),
the effective numerical rank r is bounded by

gl mild/moderate decay,
r < _loge
logt

(2.3)

severe decay,

where ¢ is the machine epsilon.
Proof Using (2.2) and normalization o1 = 1, it is immediate that we obtain (2.3) from

T 1/t

mild/moderate: r~° > ¢ impliesr < ¢~
loge

logt*

1—r

severe : T > ¢ impliesr < 1 —

m}

Estimates for numerical rank dependent on the decay rates, are given in Table 1 for
moderate and severe decay. It is immediate that r is very small for cases of severe
decay. Hence, for any problem exhibiting this severe decay and assuming that the
discretization is sufficiently fine such that n > r, Table 1 suggests the maximum
number of terms that one would use for the TSVD. Note that apart from the condition
n > r the results in Table 1 are effectively independent of the discretization, thus the
number of terms that can be used practically is largely independent of the discretization
of the problem once n > r. Equivalently, with estimates of t and ¢ one may use (2.3)
to determine first a minimum n and second the maximum number of terms for the
TSVD, the maximum effective numerical rank of the problem.

These results are further illustrated in Fig. 1a in which we plot the singular values of
test problems from the Regularization toolbox [20], with the normalization o1 = 1 in
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each case. The plots show that these standard one dimensional test cases are primarily
severely ill-posed, and thus, according to Table 1, guaranteed to have numerically
very few accurate terms in the TSVD used for the solution (1.2). To show the relative
independence of n we show in Fig. 1b the singular value distributions for the same
cases and on the same scales as in Fig. 1a but using n = 256. This verifies that there
is little to be gained by the use of problems with severe decay, as presented in [30],
to validate convergence of techniques with increasing problem size. The dominant
features are always represented by very few terms of the TSVD for cases with severe
decay rates of the singular values.

As a comparison we also show in Fig. 1c the singular values generated using (2.3)
with a selection of decay rates, as indicated in the legend. These show the dependence
on t for mild, moderate and severe decays. Taken together the examples in Fig. 1 show
that the results are not just an artificial artifact of the seemingly strong assumption in
(2.2) that ¢ is fixed.

2.3 The discrete Picard condition and noise contamination

We now turn to the consideration of the noise in the coefficients s; = ul.Tb and the
impact of this noise on the potential resolution in the solution, as also discussed in
[21, §4.8.1]. First, we assume that the singular values satisfy a decay rate condition
(2.2). We also assume that that the absolute values of the exact coefficients decay at
least faster than the singular values

(e <07 for 0 <v < 1. (2.4)
Then the discrete Picard condition is satisfied [19,21, Theorem 4.5.1].

When the noise in the data has common variance o2 we assume that there exists
£ such that £ (siz) = o2, forall i > £. Equivalently, we say that the coefficients are
noise dominated for i > £. If this does not occur, then either the noise is insignificant,
ol < aiz for all i, or totally dominates the solution o2 > 1, and these two cases are not
of interest. Thus we can explicitly assume that there exists £ such thatoy | < o < oy,
and more precisely that

2 14+v 14+v
Opy)] <0p <0 <0, <oy,

where we use definition (2.2) as a continuous function of i for a non integer index
£446.

Proposition 2.2 Let 0 = Jﬁf; for0 <§ <1land0 < v < 1, then E(sl-z) = o2 for
i > € where
o~ Vad+v) _ g mild/moderate decay,

Tla-5-— wﬁ%. severe decay.

14 (2.5)

Proof As in the proof of Proposition 2.1 we solve for £ dependent on the decay rate
with respect to the upper bound in (2.5). This gives
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Table 2 For different noise levels o the size of ¢ for given T and with § = v = 0.5. Entries calculated with
rounding using (2.5)

T 1.25 1.50 1.75 2.00 2.50 3.00 4.00 5.00 6.00
o Moderate decay

le—1 3 2 2 2 1 1 1 1 1
le—2 11 7 5 4 3 2 2 1 1
le—4 135 59 33 21 11 7 4 3 2
le—8 18478 3593 1115 464 135 59 21 11 7
o Severe decay

le—1 7 4 3 3 2 1 1
le—2 14 8 6 5 3 2 2
le—4 28 16 11 9 7 5 4 4
le—8 56 31 22 18 14 12 9 8 7

mild/moderate: (€ + 8)~ (14" = gimplies £ = o~1/T1+) _ 5,
severe: t(I=EFNA) = 5 implies £ = (1 — §) — _(vl?%l(:)gf'
O

Estimates using 6 = v = 0.5 are indicated in Table 2 showing that the number of
terms is relatively small even for moderate decay of the singular values for acceptable
noise estimates o . Contrasting with Table 1 we see that the number of coefficients that
can be distinguished from the noise is generally less than the numerical rank of the
problem for relevant noise levels and machine precision. This limits the number of the
terms of the TSVD to use. In particular, suppose that o has to be found to filter the
dominant noise terms with index i > ¢, then coefficients with i > £ will be further
damped because the filter factors given in (1.2) decrease as a function of i. These terms
then become insignificant in terms of the expansion for the solution.

2.4 Regularization parameter estimation

We deduce from Tables 1 and 2 that the number of terms of the TSVD used for the
solution of the regularized problem may strongly influence the choice for «. Specifi-
cally the number of terms k of the TSVD to use should be less than the numerical rank,
k < r,and is dependent on the noise level in the data. We are interested in investigating
the choice of o« when obtained using the UPRE, but for comparison we also give the
GCYV function needed for the simulations, and note again that bounds on « dependent
on k have already been provided in [9]. The GCV and UPRE methods are derived with-
out the use of the SVD [11,41], resp., but it is convenient for the analysis to express
both methods in terms of the SVD. Ignoring constant terms in the UPRE that do not
impact the location of the minimum, introducing ¢; («) = 1 — y; () = o? / (Ul.2 + az),
and noting y; («) = 0, for i > k, these are given by
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k k k
Ur() = Y (1= yi(@)*@b)> +20° Y "yi(e) = Y _ ¢7 (a)s]
i=1

i=l1 i=1
k
+20% ) yi@), 2.6)
i=1
I = i@ @b? 3 8P @)s? + Nl ST

Gir(a) =
ELa=ne@) (b + Y @)

2.7)

Here the subscript £ < r indicates that these are the expressions obtained using the
TSVD, see e.g. [31, Appendix B] for derivations of the UPRE and GCV functions for
arbitrary pairs (m, n). Replacing k by r gives the standard functions for the full SVD.
Further, we do not need all terms of the SVD to calculate the numerator in (2.7). Using
Ibll3 = IUTb|3 we can use

m k k
Y @) = b3 = > @/ b)? = b5 — > 57
i=1 i=1

i=k+1

To illustrate how o varies when found using these functions we illustrate an exam-
ple of a problem that is only moderately ill-posed (z ~ 1.5), showing the results of
calculating the UPRE and GCV functions for data with noise variance 0> ~ le—4
and 62 ~ le—2 for the problem deriv2. The data and solution X are initially
normalized so that ||byye|l2 = 1. Consistent with the decay rate assumptions the sin-
gular values are normalized by ;. This requires additional normalization of byye by
o1, so that eventually [|byyell2 = o) ! Then noise contaminated data are generated as
b = byye + 1 for n ~ A(0, o2l ), for noise level o. In these examples, the optimal
value oy is obtained by firstevaluating f(«), f (o) = Uk(«) or f(«) = Gy («) as spec-
ifiedin (2.6) or (2.7), resp., at o;, 1 <i < k. This provides aest = arg minj<;<¢ f(07).
This estimate of the minimum is used as the initial value for minimizing f (o) using
Matlab fminbnd within the interval [.01aeg, 1000es]. While this choice of lower
and upper bounds on ¢ is somewhat arbitrary, it is similar to the approach used in [20]
for minimizing the UPRE and GCV functions, and is chosen to assure that values for
oy outside the interval [og, o1] are possible when either aest = 0% or o1. We pick this
specific example in Fig. 2 to highlight the discussion as applied to a problem which
is not severely ill-posed. We also give the same information in Fig. 3 for the severely
ill-posed problem gravity (r = 1.5), see Fig. 1a. To gain further insight the Picard
plot, plots of oj, |ul.Tb| and the ratio |uin|/a,~, is given in each case in Fig. 2b, d for
deriv2 and in Fig. 3b, d for gravity. The solutions are contaminated by noise
very quickly for small k, corresponding to fast convergence of {o} with k.

Obtaining one-dimensional results, as shown in Figs. 2, 3, is trivial but motivates
the theoretical study of convergence in Sect. 3, and then the application of that theory
to standard two-dimensional problems in Sect. 4.
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3 Theoretical results

We aim to find effective practical bounds on the regularization parameter « when found
using the UPRE function. Observe first that we would not expect the regularization
parameter to be larger than o, otherwise all filter factors are less than 1/2. Indeed
imposing ¢ = o1 would lead to over smoothed solutions, and all of the dominant
singular value components (the components without noise contamination) would be
represented in the solution with filtering e.g [22, Sections 4.4, 4.7]. In particular,
the norm of the covariance matrix for the truncated filtered Tikhonov solution, the a
posteriori covariance of the solution, is approximately bounded by ¢2/(4a?) which
suggests smooth solutions for large «. In contrast, the approximate bound for the a
posteriori covariance when using the TSVD with k terms without filtering is given by
o2 /o} [22, Sections 4.4.2, 4.4]. Thus the filtered TSVD solution will be smoother than
the TSVD solution when @ > oy: increasing « reduces the covariance but provides
more smoothing. Practically it is reasonable to impose the upper bound amax < 01 = 1
for . To limit the noise that can enter the solution it is also desirable to find the lower
bound o/pyip. Solutions obtained for o € [omin, ¥max], dependent on the spectrum of
A, should be sufficiently filtered but retain relatively unfiltered dominant components
of the solution. We proceed to determine opin and to give a convergence analysis for
oy as the number of terms in the TSVD is increased.

3.1 Convergence of {a;} calculated using UPRE

Denote the UPRE function (2.6) for the rank r problem by U(«) = U, («) and the
optimal « for the filtered TSVD solution with £ components on the given interval as

o = argminae[amin’amax] Ur(a). 3.1

Ideally it would be helpful to find an interval [@¢min, ®max] in Which Uy («) is strongly
convex, but we have not been able to show this in general. Instead, in the following
we show that a useful estimate of o, can be found.

For ease of notation within proofs we use ¢; and y; to indicate ¢; («) and y; (@),
respectively, and denote differentiation of a function f(a) with respect to « as f”.

Proposition 3.1 The following equalities are required for the future discussion.

W 4 <& k
2,2 2
- == (; 767 (@yi(@) — o Zmam(a)) , (32)

i=1

92U, 10U, 8 (&
k10U _,_F(Zsi2¢,2(a)yi(a)(2yi(a)—¢i(05))

da? o do 4
i=1

k
~ Y pi@ri@ i) — i (a))) . (3.3)

i=1
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Proof We use

2a0?

/__—’__%(p. .__¢/<0
Vi = (Gi2+0[2)2 =T iVi = i .

Directly differentiating Uy («) gives (3.2)

k k k k
4
Up = si2¢i¢ +207 ) Vi/=a<§:si2¢i2yi_02§ )/i¢i>-
i=1 i=1 i=1

i=1
Likewise for the second derivative

k k
1 4
U =——Ui+— (Z stQpidlyi + 67y — 02 Y By + ¢i y,f)) ., (34)

i=1 i=1
giving (3.3) after substitution for the derivatives. O

Proposition 3.2 Suppose that0 < & < oy //2 is a stationary point for Uy (ct), for any
1 <k <r. Then & is a unique minimum for Uy () on the interval 0 < & < oy /~/2.

Proof Removing the first term from (3.4), identically zero at « = & by assumption
that « is a stationary point, gives

92U, 8 (<& :
L@ == (Zs?as?(&)yi @Qyi (@ — i (@) — 0> > i@y (@ (i@ — ¢i (&>)>

a? \“ ‘
i=1 i=1

8 k k
== (Zs?as?(&)yi @2 =3¢i@) — 0> i@y @ — 2 (&))) :
i=1

i=1

Now we substitute for Y"5_, s?¢>(@)y;(@) = 0> Y _, yi(@)¢; (@) using (3.2) at @
and note all terms are positive for 1 —3¢; (@) > 0,7 = 1 : k. But ¢; is increasing with
i due to the ordering of the o;. Thus 1 —3¢; (&) > 1 —3¢x (@) > Ofora < ak/ﬁ and
U}/ (&) > 0. This result is true for any stationary point & on the interval. Hence Uy (@)
is a minimum for Uy («) and it is only possible to have a maximum at ¢ = 0, the end
point of the given interval, but the end point is explicitly excluded from consideration.
There are therefore no other stationary points within the interval and the minimum is
unique.

Remark 3.1 Although a minimum must exist in [0, o / ﬁ] because Uy () is a con-
tinuous function on a compact set, this result does not show that a minimum exists in

0,0 /V2) .

The next steps in the analysis rely on the following Assumptions 1-2 about the
model and the data.

Assumption 1 (Decay Rate [21,23]) The measured coefficients decay according to
s,.2 = ai2(1+v) >o2for0 <v < 1,1 <i <4,i.e.the dominant measured coefficients
follow the decay rate of the exact coefficients.
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Assumption 2 (Noise in Coefficients) There exists £ such that E(s?) = o2 for all
i > £,1.e. that the coefficients s; are noise dominated fori > £. Moreover, wheni < ¢
we assume that £ (sl.z) ~ siz, so that the larger coefficients are effectively deterministic.

These assumptions have also been used in [21] for understanding how decay rates
impact the convergence of iterative methods. We also recall that we use the non-
restrictive normalization o1 = 1 and use the notation E(a) for the expectation of
scalar deterministic a.

For the remaining results we distinguish between the terms in the UPRE function
that are, and are not, contaminated by noise.

Proposition 3.3 Suppose Assumption 2 holds, then forr > k + 1 > £ there is a an
upper bound on E(U,é) independent of a.:

E 90U, <---< FE Ukt <
Ja do
The lower bound for E(U]!) holds for a fixed lower bound on «
9*U; 0 Ug+1 PU\ 9%V . o
E<8a2>>~-~>E< 8a2)>E<8(x2)>8a21fa>\/§’ 3.6)

whereas the upper bound depends also on an upper bound on « that decreases with
increasing k

AU, AU
E(ZE) <« Z v (3.5)
Ja o

92U, 92U,
E ( aak2+1) < E (WZ’C) if o< G"T*Sl 3.7

Proof We note that the expectation operator is linear and when a is not a random
variable E(a) = a. Applying these properties first to (3.2) yields

k
4
EUp) =E (Ué = Y biviGsie - 02)>

i=l+1

452 k
~ Uy + o _;rl@%'(d)i -1 <U,
i=

where from line one to two we use linearity, and, by Assumption 2, E(U;) = U, and
E (sl.z) = o2 fori > £.In particular, in expectation each term for i > £ is negative and
recursively both inequalities in (3.5) apply. Applying the expectation operator now to
(3.3) gives
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32 | 4o’ 2
EW)) ~ (Z ¢y (1 = @0)+2 (8711 2yi — 80— 4% —4»)))

={+1

D ivi(l—¢i +2(iQyi — ) — (vi — ¢z)>)>

(1 ={+1

/) 402

=U, +?( divi (1_¢l+2(¢l(2_3¢t)_(1_2¢t)))>
( b vi —6¢ +7¢i — )) .

i=0+1

The sign of the second term depends on the sign of —6¢i2 +7¢; — 1 which is increasing
from —1 as a function of ¢ < 1. Hence

2 2_ .2
op B =0y, )

v
I
o
=
S
\

—67,, + Tper1 — 1

2 2 2
—6¢7 + T — 1 ) o,giaslajf‘é?)) | f
§—6¢k+7¢k—1 :W <Olf0l<7§.

Again, in expectation, terms for i > ¢ are all positive when o > o4/ V/3 and the
nested inequalities in (3.6) apply. The requirement that the i’ term is necessarily
positive becomes more severe as i increases, yielding the additional inequality with
conditions on « given in (3.7).

Corollary 3.1 Suppose Assumption 2 holds, and that for oy > ag+1/\/§, Ue(ay) is a
minimum for Uy (o). Then for £ < k < r, Ug(a) is convex and decreasing at oy,

2
E M <0 and E M > 0.
da da?

a
Proof If Uy(cy) is a minimum, then Uy (cty) = 0 and U}/ (a¢) > 0 and the inequalities
follow immediately from (3.5) and (3.6).

Corollary 3.2 Suppose Assumption 2 holds. If a stationary point o, < o,/ V5 exists
there are no stationary points of Uy () for o € (o, /5, 0% /~/2).

Proof Suppose that o, € [0, 0,/ ﬁ). The existence of «, in this interval does not
contradict Proposition 3.2 since 0, /+/5 < 0, /+/2. By assumption, U/(ey) = 0 and
U/(ay) > 0. Thus by (3.5) and (3.7) U/(a;) > 0 and U} (e;) > 0, and Ui (),
£ <k <r —11is convex and increasing at «,. Therefore, by continuity, Uy () cannot
reach a minimum for o, < g < oy /+/2 without first passing through a stationary
point which is a maximum. But by Proposition 3.2 there is no maximum of Uy («)
to the left of oy /+/2 and thus there is also no minimum for o, < « < ox/+/2. In
particular Ui («) has no stationary point for o/ V5<a<o /2.
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Remark 3.2 We have shown through Corollary 3.2 that if U, () is a minimum for
Ur(x) and o < or/«/g then Ui (o) can only be a minimum for Uy («) if either
o < ar < 0,/v/50r ax > o0p/+/2, i.e. we may require oy > ox/~/2 under the
assumption that we seek «, > o,. This applies forall k with 1 < ¢ <k <r — 1.

Although this result does provide a refined lower bound for o, it is dependent on k and
decreasing with k, which is not helpful when & gets large, as needed for finding «,, i.e.
this bound would suggest that o, needs to be found using the pessimistic lower bound
0, /~+/2. We investigate now whether these lower bounds on « are indeed realistic by
looking for bounds on the UPRE functions Uy ().

Proposition 3.4 Suppose Assumptions 1 and 2 hold, then lower and upper bounds
on U(a) and its derivatives are given by £ (o) and % («) and their derivatives,
respectively, where

0 < Z(a) = G(a) + Fr(a) < E(Uk(a)) < H(a) + Fr(a) = U(@) (3.8)
L@ = G'(@) + F(@) < EU/@) < H (@) + F{(@) = % (), (3.9)
Q%,é/(a) =G"(a) + F{(Ol) < E(U,é/(oe)) < H'(a) + F,é/(oc) = %k//(a), for o < oy but
%k”(ot) =H' (o) + Fk”(a) < E(U,i/(a)) < G"(a) + F,:’(a) = .iﬂk"(a), fora > 1(.3 10)

Here G(a) and H («) are independent of k, while Fy (o) very clearly depends on the
k terms in the sums as given by

4 4
G =o' y? H@ =o*) ¢y, and (3.11)
i=1 i=1
4 k
Fi(e) = o ((k—z) +2) it ) yf). (3.12)
i=1 i=0+1
Proof By (2.4) due to Assumption 1 fori < ¢
cri4 < Ui2(l+v) = siz < aiz. (3.13)
Thus
aty? = oi'¢l < 9 (@] < ol¢} = i (3.14)

Now from (2.6)
2 k k J2
EU(@) =Y _¢7st +0° (22 vl + Y ¢,-2> =Y #'st + Frle),
i=1 i=1 i=l+1 i=1

may be bounded using (3.13). This yields immediately (3.8) with the noted definitions
for G, H and Fy, as given in (3.11)—(3.12).
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To show (3.9) introduce D;(«) > 0,i = 1, 2, given by
l
Di(@) = E(Ur(@) — (G(@) + Fr(@) = Y _(¢7s7 — a*y})
i=1
4
Dy(a) = (H(a) + Fr(@) — E(U()) = Y (> ¢iyi — ¢7sD).
i=1
Then D; are independent of k and
4 2 4 l
/ 2 2 4. 2 3.2 2 2 4_3
D (a) = ; (;(2@ Vist + 20ty ) — 4oy ) =— ;wi vist —a'y?) and

¢ ¢
, 2 4
Di(@) = 3 Qugivi + ~@¢ivi(1 =200 =207 %is) = — 3 @iy} = 5[9770).
i=1 i=1
But now again applying Assumption 1 we have

aty? = oloty < sty < ofdlv = PeivE. (3.15)

Therefore D) (a) > 0, i = 1, 2 and we immediately obtain (3.9).
The second derivative result follows similarly using

4
12
Die) = =53 yi(l=200)(79] —a'y}) > 0
i=1
4
ey — 12 . Nl — 24
Di@) = =5 Y ¢ivi(1 = 2¢)(vie® = 57i) > 0,
i=1

where in each case we apply (3.15) and note 1 — 2¢; > 0,for 1 <i <{fand @ < oy.
This then immediately gives the reverse inequalities for o > 1. O

From (3.11)—(3.12) we see that we may write G, H and Fj in terms of sums
Sp(i1, i2) = Z;l’:il )/i‘n for p =1 and p = 2 by writing ¢;y; = y; — yiz. Hence

G(@) = a*S:(1,0), H(e) = &?(S1(1,0) — S»(1,€)) and
Fr(a) = o2k — € +281(1,0) + S (€ + 1, k)).

Thus for Uy () we have the bounding functions by Proposition 3.3

Zi(@) = G(a) + Fe(a) = a*$) + 2075
U(a) = H(@) + Fo(a) = a*(S) — $2) + 20728y,
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where the sums all range from 1 to £. Moreover, also by Proposition 3.3, .Z)(a) <
Ue() < %/ (cr) where

4 2
L) = 40>S) +aSh + 2028 =4a>(Sy + S5 — Sh) + %(52 - S

4 4 2
=;(0€ §3+07(82 — 81))

U (@) = 2a(S| — $2) + a* (S| — Sb) +2072S]

4
= 20(S1 — $2) + 20 (Sy — S| — 2(S3 — $)) + 502(52 )

= &(a (S2 — 83) +0°(82 — S1)),

and we used ¥/ = — Q2/a)yipi = 2/a)(y? — y) and (y2) = —@/a)y’ e =
@/ —vH).

Proposition 3.5 Suppose Assumption 1 holds, then necessarily U lf (@) < 0 fora? <

2 2 2 2 2
o /(I =0y ). Henceay > oy /(1 — o).

Proof 1f the upper bound has a negative slope, %, () < 0 for some o, then U;(a) < 0
also. Immediately %,/ (a) < 0O for a2(S) — 83) +02(S, — 1) < 0, and for Uy@) <0
it is sufficient that for 1 <i < ¢

0> —v) + 22 —v) = vi@yi(l — y) + 0 (i — D) = yihi(@Py; — o),

and we need (a2yi — 02) < 0, or azal.z — 02(a2 + al.z) < 0. Now, fori < ¢,
2 2 > 52 and we obtain o < rnin(azaiz/(ai2 —o?) foralll <i < ¢ But

of > 0;
xz/(x2 — a2) is decreasing with x for x2 > a2, hence we need a2 < 02/(1 — 0’2).

For (TZ2+1 <ol < aez and using x2/(1 — x?), which is increasing with x € (0, 1), we

obtain o? < O'KZ_H/(I — JZZ_H). Hence we must have ozg > OZZ_H/(I — 0[2+1).
We now extend the analysis to obtain a lower bound on oy, for all k£ > £.

Theorem 3.1 Suppose Assumptions 1 and 2 hold, and that Uy (ay) is a minimum for

Uir(a), then, fork > £, o > ag > op+1/4/1 — O’KZH = Omin-

Proof First suppose the contrary and that o < oy41/,/1 — aezﬂ. Then U,: (ap) =0
and by (3.5) U;(ax) > 0. But by Proposition 3.5 U (a) < Ofora < o¢41/,/1 — O’Z2+1
and we have a contradiction yielding oy > o¢4+1/,/1 — U£2+1 = Omin, k > £.Itremains

to determine whether it is possible to have opy1/,/1 — GZZJF | < o < agwhere oy isthe

first minimum point of U, («) to the right of omin. Again we proceed by contradiction
and suppose that oo € [otmin, @¢] exists. Then we have the following:
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1. By (3.5) E(Up)(a¢) < Uy(ag) = 0, and by (3.6), noting a > oo1/5,
EU)(etg) > U}/ (arg) > 0. Hence Uy () is convex and decreasing at ag.

2. At the minimum critical point o < o, U ,2 (ax) = 0. Thus there must also be a
second critical point which is a maximum for some « in the interval oy < @ < o,
for which U/ (@) = 0 and U}/ (@) < 0.

3. At a we then have by (3.5) that Ulf (o) > 0. Hence Uy () is increasing at & < oy
but is decreasing at opip < @, i.e. U é () changes sign for some « in the interval
[0tmin, @]. But by continuity then U, («) has at least one minimum on this interval.
By assumption, however, «y is the first minimum point of Uy («) to the right of
omin and we have arrived at a contradiction.

O
We have now obtained a tight lower bound on o
[oF
aminzL <oap, L<k<r. (3.16)
1 —o?
£+1

It remains to discuss the convergence of {ay} to ag,, with increasing k. We note that
one approach would be to show that the Ui («) are convex for ¢ > oy, but the sign
result in (3.10) only immediately applies for « > 1, hence investigating the sign
requires a more refined bound for each interval @ € [o0;, ;1] for i < £. Instead we
obtain the following result, which relies on the uniqueness of o.

Theorem 3.2 Suppose Assumptions 1 and 2 hold and that oy, and each ok, k > ¢

are unique within the given interval opy1/,/1 — UZZ_H < o < 1. Then, the sequence
{otk }iese is on the average increasing with limy_,, E (o) = E(akopt) and {Uy (ag)} is
increasing.

Proof 1t is immediate from (2.6) that U (o) > Ug(a) for any k > ¢ and any «, and
that Ug41 (o) > Ui (). Thus the {Uy ()} is an increasing set of functions with k > £.
By (3.5) of Proposition 3.3 we also have E(M) E("U"(“)) "U‘(O’) , and
{E (aU" (@) )} is a decreasing set of functions for k > £. In particular E (M) <
E( dUgé‘)“)) < 0. Moreover, by Corollary 3.1 and (3.6) of Proposition 3.3, when ay >
o041/+/5 the expected second derivatives at oy are positive and increasing with k so
that the first derivative increases to O more quickly for larger k. Thus, not only do we
have E (o) > o¢ > omin for all k, we also have that { E («x)} converges from below
to E((xkop()'

Corollary 3.3 (Faster Decay Rate of the Coefficients) Suppose that the coefficients s;

decay at the rate si2 = 0[2('0 +) forinteger p > 1. Then the results of Theorems 3.1-3.2
still hold.

Proof This holds by modifying the inequality (2.4) for the faster decay rate yielding

K; (7 < 02(p+v) = sl-z < oizK,-, K; = ai2(p_l).
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Thus the coefficients are bounded as in (3.14) but with scale factor K;
o'y Ki = o} $7Ki < $7(@)s] < Kioj ¢} = Kia*ivi.

Using this relation all the results presented in Proposition 3.4 still hold with H («) and
G () replaced by

[ ¢
Gy(a) =a4ZK,-yi2, and H,(x) =aZZK,-¢>iyi.

i=1 i=1

Then again redefining the summations S, to now depend on the coefficients with K;,
for H, and G, following Proposition 3.5 yields the condition

vigi(@*Kiyi —0?) <0

for U;(a) < 0. Continuing the argument as in the proof of Proposition 3.5 still
yields the lower bound Ol% > UlzJrl /(1 — oezﬂ). But this is all that is required for
Theorems 3.1-3.2 and hence the results follow without modification. O

Remark 3.3 This result shows that given a TSVD which sufficiently incorporates the
dominant terms of the SVD expansion, including sufficient terms that are noise-
contaminated, o will be an increasingly good approximation for ay,, . Moreover,
including additional terms in the expansion will have limited impact on the solution,
because Ok > O and filter factor y; (akop‘) is decreasing with i. In particu-
lar, we are using yi(ak,,) < vilae) < yeri(ae) < yeti(oer1) = 1/2, for
i > ¢+ 1and ay > oy4+1. These nested inequalities follow immediately because

y(x,y) = y2(»? +x%) ! is decreasing as a function of x and increasing as a function
of y.

Remark 3.4 Although the main result of this paper effectively relies on an assump-
tion that the UPRE functions have unique minima within the obtained bounds,
Omin < o < 1, proving that the minima are indeed unique seems to require using the
discrete summations occurring in Uy () as approximations to continuous integrals.
This approach is very technical, not very general, being dependent on the decay rate
parameter 7, and serves only to tighten the lower bound for «. We therefore chose
not to present results along this direction, relying on the computational results that are
supportive of the unique identification of a minimum within these realistic bounds.

Remark 3.5 The results given depend on the assumption that summations with sl.2 for
terms with i > ¢ may be approximated in terms of the noise variance. For r — ¢ small
relative to r, this assumption breaks down. As r — ¢ increases the assumptions become
more reliable and less impacted by outlier data for siz. Still the main convergence
theorem holds only with respect to this analysis and we cannot expect that {c} will
always converge monotonically to a,, in practice. With sufficient safeguarding, as
noted in the algorithm presented in Sect. 4, it is reasonable to expect that oy, is
quickly and accurately identified.
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Remark 3.6 (Posterior Covariance) We have shown {oy} increases with k. Con-
sequently, the approximate a posteriori covariance of the filtered TSVD solution
o2 / (40%) decreases with k, to o2 / (4a,30pt). In trading-off the minimization of the
risk by using the UPRE to find the optimal «, the method naturally finds a solution
which has increasing smoothness with increasing k. This limits the impact of the pos-
sibly non-smooth components of the solution corresponding to small singular values,
most likely noise-contaminated, that would contaminate the unfiltered TSVD solution.

4 Practical application

The convergence theory for {ax} — o, o a8 k — kop presented in Sect. 3 motivates
the construction of an algorithm to automatically determine the optimal index kopt,
defined as in Sect. 1 to be the optimal number of terms to use from the TSVD, and
associated regularization parameter o, . The algorithm is presented and discussed
in Sect. 4.1 and tested for 2D test problems using IR Tools [10] in Sect. 4.2. These
results also corroborate the convergence theory presented in Sect. 3.

4.1 Algorithm

We propose an algorithm that works by iteratively minimizing (2.6) on the TSVD
subspace of size k < r until a set of convergence criteria are met. These convergence
criteria rest on the observation that in general for sufficiently large k, the relative
change, ¢x = |[(ax — ak+1)|/ax > 0, between successive parameter estimates, oy and
ak+1,decreases as k increases towards 7. If during the iterative procedure there exists a
k such thatitis reasonably believed that oy & «; foralli > k, the algorithm terminates,
producing kop and o, . A pseudo-code implementation is given as Algorithm 1.

Algorithm 1: Truncated UPRE Parameter Estimation
2

Input: SVD or TSVD; data b and noise variance estimate o ~; initial index ko; maximum k, kmax;
step size Ay; relative tolerance §; window length w; optional estimate for ¢
Output: Converged parameter o, opt COnvergence index kopt; relative mean change C;yy;

1 k <—ko; iy <— inf

2 Initialize oy according to (3.16) using £ if provided, otherwise using k
3 a(0) «<— argming U () over interval [opip, 1]

4 while (¢;,, > 8 and k < kmax) or (@ (i) = apip) do

5 i<«—i+1;, k<—k+ A

6 If £ not provided, update o, according to (3.16) using k
7 (i) «<— argming Uy («) over interval [omip, 1]

8 | c()=(la(@) —al —DD/a(@)

9 if i > w then

10 ‘ Ciw <— mean(c(i),ci —1),..., ci—w+1)

1 end

12 end

@

return k = kopt, (i) = gy Ciw
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Algorithm 1 takes as input a full or truncated SVD as well as a number of required
and optional parameters which we now discuss. For large scale problems it is not
necessary, and is even discouraged, to compute oy for all kK < kop. For moderately or
mildly ill-posed problems, and for problems with high signal to noise ratios in which
the expected kqpy is likely to be large relative to the problem size, it is recommended
to start the algorithm at some ko # 1 and to increment k by some Ay # 1, yielding
the sequence {k(i) : ko, ko + Ak, ko + 2Ak, ... ko + i Ar}. The algorithm computes
the sequence {or,, Otkg+Ay» ko424, » Yhko+34;5 - - - }» €ach solving (3.1) for the given
index, until either kg + i Ay > kmax Or until o has converged, where ko, Ay, and
kmax are provided by the user. For each ko + i Aj the relative change in « is computed
as ¢; = |Qry+ia, — Okg+(i—1)A; |/®kg+ia, - Noting again that ¢; is only in general
decreasing for sufficiently large i, it is unwise to determine stopping criteria by directly
thresholding on ¢; < §, for some user provided tolerance §. It is observed that higher
confidence in convergence can be achieved by requiring ¢;,, < 8 where ¢;,, is the mean
of multiple ¢;’s calculated over the window of size w, i.e. over {c¢;, ¢i41, ..., Cit+w}-
This protects against the possibility of stopping the parameter search too early and
prior to the stabilization of ax.. This occurs when ¢; < §, while at the same time ¢; > §
for some j > i. Due to the impact of noise on calculating the parameter oy, if k is not
yet sufficiently large so that o has not stabilized then the relative changes between
successive estimates of oy may be either extremely small or large. Comparing multiple
values of ¢; in the form of ¢;y, to § enables a broader view of the convergence of o,
and the moving window average smooths out variation in c;.

Remark 4.1 (Parameter Ay) The choice of Ay, is influenced by the size of the problem
and if known, an estimate for the expected number of terms to be used in the TSVD
solution. While choosing A large has computational advantages due to a larger step
size in the search for kqpt, with Ay too large one risks the possibility of Algorithm 1
producing a value of kop larger than necessary. Solutions with kop larger than neces-
sary more closely resemble the full UPRE regularized solution. For the problem sizes
considered here Ay € {5, 10, 25} all seemed to work well.

Remark 4.2 (Parameter w) The choice of w has a similar effect as Ag. Choosing w
large will delay the termination criteria . Parameters A; and w interact in the sense
that they together determine the set {c;, ¢j+1, . . ., Ci+w} Whose mean is compared to §
in determining convergence. The choice of w determines how many values are being
averaged, while w and A; determine the minimum and maximum k of the moving
window over which «y is tested for convergence. Choosing w € {5, 10, 25, 50} worked
well for the problems considered here.

Remark 4.3 (Parameter §) Algorithm 1 is sensitive to § and we recommend choosing
8 € [le—5, le—3]. In our experiments § > le—3 terminated the algorithm prior to
convergence resulting in over smoothed solutions due to an underestimate of Kqpt,
while § < le—5 produced kop far greater than necessary.

To summarize, the required input to the proposed algorithm is a full or truncated
SVD, a starting index ko, a step size between successive estimates A, an upper-bound
kmax dependent on the severity of the problem and the noise level, a tolerance §, and
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a width w over which the moving average of relative changes in successive estimates
of « is computed.

The results of Theorem 3.1 are incorporated into Algorithm 1 with the inclusion of
an optional parameter ¢ specifying an estimate for the index at which noise dominates
the coefficients. If a Picard plot is available ¢ can be estimated visually, otherwise an
approach relying on Picard parameter estimates similar to that used by [24,34] can be
used. If an estimate for £ is available, oy, is calculated according to (3.16), and o

is found using amin = o¢4+1/,/1 — (2“ and amax = 11in (3.1). Otherwise, the bound

ok+1/4/1 — O’kz 1 is used in (3.1). In either case if the lower bound is achieved then

the theory indicates that noise has not yet dominated and the algorithm is allowed to
continue. Thus, in the case where k < kpyax, necessary conditions for the termination
of Algorithm 1 are ¢;,, < & and & should be greater than the specified aty;p.

4.2 Verification of the algorithm and theory

We now present the evaluation of Algorithm 1 on a 2D test problem using the IR
Tools package described in [10]. We report the results applying a Gaussian blur to
test problem Satellite of size 256 x 256 using PRblur, with medium blur. We
considered noise levels of 5%, 10%, and 25%, with 100 noise instances generated
for each noise level. The IR Tools function PRnoise was used to generate noise,
where the noise level is defined as as ||||2/|/b||. A moving window of size w = 5
in computing ¢;,, with relative tolerance of § = le—3 was found to work well for
each noise level, but may need to be adapted to the severity of the ill-posedness of
the problem. Recorded in each run are the converged ay,,, the size of the TSVD
subspace kopt to be used, and the relative reconstruction error (RRE). RRE is defined
as |[Xyue — Xkeopt 2/ | Xtrue ll2 Where Xheopt is the filtered, kopt-truncated TSVD solution
obtained by using o, as the regularization parameter.

Figure 4 is a box plot! showing the spread of kopt values for the 100 noise instances
run for each noise level, where in each case kopr < 7 = 65,536. Figure 5 is a box
plot comparing the g, returned by the algorithm, and ¢, obtained by minimizing the
UPRE on the full space. These figures together reaffirm that the optimal regularization
parameter found by UPRE is largely determined by a relatively small number of terms
in the TSVD, and less impacted by the tail of the coefficients dominated by noise. The
estimation of {oy} with increasing number of terms in the TSVD is depicted in Fig. 6
for the first 10 runs of each noise level, where the point of convergence (kopt, akopt)
is represented as a cyan triangle. It should be noted that the estimated lower bound
Omin Was not used, and o was minimized over the interval (0, 1) using fminbnd
(fminbound is used for the Python implementation). A tolerance of § = le—3 was
found to produce a value for oy, just prior to the point where {4} began to stabilize.
A smaller § will necessarily increase kopt, but with negligible changes in o, - In these
simulations averaged over all 100 runs, ko WS within 1.22%, 1.47%, and 1.17% of

1 A box plot is a visual representation of summary statistics for a given sample. Horizontal lines of each
plotted box represent the 75%, 50% (median), and 25% quantiles, with outliers plotted as individual crosses
or points.
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Fig.5 Box plots comparing parameter estimates «y ., with & for problem Satellite computed from
100 runs for noise levels 5%, 10%, and 25%. For each noise level, the estimate Qe produced by Algorithm 1
is generally less than -, demonstrating that by including more terms in the TSVD, k > kopt, greater
regularization is required. Note that the limits on the y-axes vary across subplots to better visualize the
parameter distributions across noise levels

a, for noise levels 5%, 10%, and 25% respectively using fewer than 5% of the SVD
components.

In terms of RRE, the solution obtained using the truncated UPRE and a subspace
of size kopt With parameter o, generated by Algorithm 1 generally provided a better
solution than obtained using the full UPRE for each noise level. Figures 7 and 8 show
box plots and histograms respectively of the RRE comparing the regularized TSVD
and the full UPRE solution. Over all noise levels, the median and mean reconstruction
error of 100 noise instances is lower in the regularized TSVD solution. Similar to the
Picard parameter approaches of [34], Algorithm 1 identifies an index kope for which
coefficients s are dominated by noise for k > kope. Our approach, however, does
not rely on performing statistical tests on the coefficients, but instead examines the
stabilization of o as k increases. Once o has stabilized, adding additional noise
dominated terms in the solution delivers no benefit. Furthermore, if a TSVD with kpax
terms has been calculated, then either o converges for k < kmax or we know that

@ Springer



Unbiased predictive risk estimation of the Tikhonov... 1055
0.032 0.055 0.105
—_ —_ aj
0.1004 F
0.0304 < Qe L ~ 4 Q,y 4 Qg
0.0504 [ 0.095
00284 0.0904
3 3 0.045 L s
0.0264 0.0854
0.040 t 0807
0.0244
0.0754
0.022 0.035 0.070
0

T T T T T
1000 2000 3000 4000 5000 6000

(a) Noise level = 5%

T T T T T
0 1000 2000 3000 4000 5000 6000

(b) Noise level = 10%

T T T T T
0 1000 2000 3000 4000 5000 6000

(€) Noise level = 25%

Fig.6 Line plots showing the calculated estimates for {oy } with increasing number of terms k in the TSVD.
The results are given for problem Satellite for noise levels 5%, 10%, and 25%, for 10 random noise
instances at the specified noise level. The resulting point (kopt, ¢, ) produced by Algorithm 1 is displayed
as a cyan triangle. Note that the limits on the y-axes vary across sugplots to better visualize the convergence
across noise levels
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Fig. 7 Box plots of RRE comparing solutions using truncated UPRE with parameter o and solutions
using full UPRE with parameter c; for problem Satellite computed from 100 runs for noise levels 5%,
10%, and 25%. Regularization parameter o, obtained by UPRE on a TSVD generally has lower error,
as evident from Truncated UPRE plots being vertically shifted downwards relative to full UPRE boxplots.
Note that the limits on the y-axes vary across subplots to better visualize the spread of the distributions
across noise levels

the optimal choice kopt is greater than kpyax, and that Ciw provides some estimate for
whether kopt >> kmax or whether the given TSVD can be assumed to be sufficient in
providing a good estimate for the solution x.

In these simulations ¢ is not known precisely but was estimated by visual inspection
of the Picard coefficients, as well as by comparing the distributions of the noise con-
taminated and noise free coefficients. This approach for estimating £ is not possible
in general as the noise free coefficients are unknown in practice, but this method of
estimating ¢ was employed for the purpose of validating the results of Theorem 3.1. An
estimate for the lower bound o, obtained from (3.16) is depicted as the red dashed
curve in Fig. 9, with {oy} the solid black line. It can be seen that oy serves as a tight

lower bound for the converged parameter oy, , and the lower bound oy 1/,/1 — akz 1

can be used effectively in cases where an estimate of ¢ is not available.
In addition to test image Satellite with a medium Gaussian blur applied, we
also applied Algorithm 1 with the same parameters to test image HST with both mild

@ Springer



R. A.Renaut et al.

1056

HIdN [0y 2y
01 QATIE[a1 J] 21 01 poYyIys syeod SUIABY SWEISOISIY PAIEOUNI) SY) WO} JUDPIAS SE “IOLIO I0MO] SEY A[[EIUS (JASL E U0 F¥dN Aq poureiqo %Yo sojowrered uoneziemsoy
“95GZ PUE “9()| “9%S [9AQ] ASIOU YOS 10J SUNI (| woxy paynduwod 53T T To3es wofqoid 10y 4o Sursn suonnjos pue "o Sursn suonnjos Surredwoo gy Jo sweiSoisty g bl

%ST = [9A9] 3s1oN (9) %01 = [oA9] 8SION (q) %S = [0A9] 3sION (®)
349 34y 34
95€0 PSE0 ZSEO 0SE0 8YED 9YEQ PYED ZYED OYEO 9I€0 VL0  ZLE0  O0LE0  80E0  90E0  YOSO 9620 620 2620 0620 882°0
E o R o R o
8 s i € 1 s
R oL
E ou R Fob
Q) ] ) Q)
4 tor 2 g b o 8
3 3 3
2 | Loz & =
E oz R oz
| sz
E sz R sz
(14 I | 1 Ind - . - oe 10 I |
psjeount] N pejeount] N pejeount]
og e [\

pringer

As



Unbiased predictive risk estimation of the Tikhonov... 1057

.
i

-1
10714

10724,

-3
10744

1044

ook 1 — bg'ﬁ}

O/
10774

ay ay, —_—
o o o
R T R T T
1077 T T T T 1077 T T T T 1077 T T T T
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
(a) Noise = 5% (b) Noise = 10% (¢) Noise =25%

Fig.9 Line plots showing the convergence of {oy } for problem Satellite for noise levels 5%, 10%, and
25%. In each subplot, o, is plotted as a solid black line for 10 random noise instances at the specified noise
level. The dotted blue curve represents the lower bound in (3.16) as a function of k, with the red dashed line
representing the lower bound according to Theorem 3.1 and dependent on ¢ for a single run (colour figure
online)
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Fig. 10 Box plots showing the index kopt produced by Algorithm 1 for problem HST computed from 100
runs for noise levels 5%, 10%, and 25%. The number of terms k in the TSVD that provide useful information
decreases as the noise level increases

and severe Gaussian blurring. The results, summarized in Figs. 10, 11, 12 are consistent
with the results for test case Satellite.

In summary, given a TSVD or SVD, an optional estimate of ¢, and suitable parame-
ters determined by the ill-posedness of the problem, Algorithm 1 is able to effectively
determine a regularization parameter oy, obtained by UPRE minimization over the
TSVD subspace of size kopt, such that the regularized truncated solution x has consis-
tently lower RRE than the full UPRE solution.

5 Conclusions

We have demonstrated that the regularization parameter obtained using the UPRE
estimator converges with increasing number of terms used from the TSVD for the
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Fig. 11 Box plots of RRE comparing solutions using truncated UPRE with parameter oy, and solutions
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levels 5%, 10%, and 25%. Regularization parameter kopt obtained by UPRE on a TSVD has consistent
lower error, as evident from Truncated UPRE plots being vertically shifted downwards relative to full
UPRE boxplots. Note that the limits on the y-axes vary across subplots to better visualize the spread of the
distributions across noise levels

0.275+
0.300 4

0.260 L . — 1
— —= 0.270 - i L 0.2951 ! !
o : i w 1 w 1
! |e3 B3| ¢ | ¢ ==
o ‘ x ; @ 9290 E ‘
0255+ i e r 0.265 ! ; t B
—_ B —— :
0.285 —
02601 L
02501 T T I T T 0.2801 T T
Truncated Full Truncated Full Truncated Full
(a) Noise level = 5% (b) Noise level = 10% (¢) Noise level =25%

Fig. 12 Box plots of RRE comparing solutions using truncated UPRE with parameter ot and solutions
using full UPRE with parameter o, for problem HST with severe blur computed from 100 runs for noise
levels 5%, 10%, and 25%. Regularization parameter o obtained by UPRE on a TSVD generally has
lower error for noise levels 10% and 25%, with comparagle error for noise level 5%. Note that the limits
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solution. For a severely ill-posed problem the convergence occurs very quickly and is
independent of the size of the problem due to the fast contamination of data coefficients
by practical levels of noise. Practically-relevant problems are often, however, only
moderately or mildly ill-posed, e. g. [6,14,36,38], and it is therefore important to
accurately and efficiently find both ko and Okopt -

Theoretical results have been presented that demonstrate the convergence of the
regularization parameter oz with k, increasing from below to ag,, < o, the opti-
mal value for the full SVD. The posterior covariance thus decreases with k, leveling
at approximately o2/ (40(,%0‘”). Thus the method naturally finds a solution which has
increasing smoothness with increasing k and solutions obtained without truncation
will exhibit larger error due to increased smoothing. An effective and practical algo-
rithm that implements the theory has also been provided, and validated for 2D image
deblurring. These results expand on recent research on the characterization of the
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regularization parameter as closely dependent on the size of the singular subspace
represented in the solution [9,30,31]. As there is a resurgence of interest in using a
TSVD solution for the solution of ill-posed problems due to increased feasibility of
finding a good approximation of a dominant singular subspace using techniques from
randomization, e.g. [7,8,13,26,28,32], the results are more broadly relevant for more
efficient estimates of the TSVD. Implementation of the algorithm in these contexts is
a topic for future work.
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