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ARTICLE INFO ABSTRACT

Keywords: We present an open source MATLAB package, IGUG, for 3D inversion of gravity data. The algorithm im-
Gravity plemented in this package is based on methodology that was introduced by Bijani et al. (2015). A homogeneous
3D inversion subsurface body is modeled by an ensemble of simple point masses. The model parameters are the Cartesian

Graph theory
Equidistance function
Mobrun

coordinates of the point masses and their total mass. The set of point masses, assumed to each have the same
mass, is associated to the vertices of a weighted complete graph in which the weights are computed by the
Euclidean pairwise distances separating vertices. Kruskal's algorithm is used to solve the minimum spanning tree
(MST) problem for the graph, yielding the reconstruction of the skeleton of the body described by the model
parameters. The algorithm is stabilized using an equidistance function that restricts the spatial distribution of
point masses and favors a homogeneous distribution for the subsurface structure. The non-linear global objective
function for the model parameters comprises the data misfit term and the equidistance stabilization function. A
regularization parameter A is introduced to balance the two terms of the objective function, and reasonable
physically-relevant bound constraints are imposed on the model parameters. A genetic algorithm is used to
minimize the bound constrained objective function for a fixed A, subject to the bound constraints. A new di-
agnostic approach is presented for determining a suitable choice for A, requiring a limited number of solutions
for a small set of A.. This contrasts the use of the L-curve which was suggested for estimating a suitable A in Bijani
et al. (2015). Simulations for synthetic examples demonstrate the efficiency and effectiveness of the im-
plementation of the algorithm. It is verified that the constraints on the model parameters are not restrictive, even
with less realistic bounds acceptable approximations of the body are still obtained. Included in the package is the
script GMD.m which is used for generating synthetic data and for putting measurement data in the format
required for the inversion implemented within IGUG.m. The script Diagnostic_Results.m is included within
IGUG.m for analyzing and visualizing the results, but can also be used as a standalone script given import of
prior results. The software can be used to verify the simulations and the analysis of real data that is presented
here. The real data set uses gravity data from the Mobrun ore body, north east of Noranda, Quebec, Canada.

1. Introduction estimating an approximate model of a subsurface body. Acquired
gravity data on, or near, the surface are used in an automatic algorithm
The inversion of gravity data is an efficient methodology for to estimate the defining model parameters, such as the density contrast
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and geometry of the subsurface body. Using well-defined prior in-
formation in the inversion algorithm, an acceptable reconstruction for
the subsurface is desired. Inversion methodologies include both linear
and non-linear approaches, dependent on how the model is formulated.
A standard linear inversion assumes that the subsurface under the
survey area is discretized as a large number of prisms of known and
fixed geometry. Then, the unknown density contrasts of each prism are
estimated and displayed to illustrate the complete geometry and density
of the subsurface sources (Last and Kubik, 1983; Li and Oldenburg,
1998; Portniaguine and Zhdanov, 1999; Boulanger and Chouteau,
2001; Vatankhah et al., 2017). This methodology provides sufficiently
useful estimates of the subsurface for high confidence mineral ex-
ploration studies (Liu et al., 2015). On the other hand, non-linear
gravity inversion is usually used to find interfaces. For example, in
hydrocarbon exploration it is important to accurately identify the depth
to the basement. Then, the geometry of the sedimentary basin is re-
placed with a series of juxtaposed prisms, of fixed width and known
density contrast, but with unknown thickness. The shape of the sedi-
mentary basin is obtained by estimating the thickness of each prism
(Bott, 1960; Blakely, 1995; Chakravarthi and Sundararajan, 2007).
Aside from these two standard approaches, other specialized techniques
have been designed to handle particular situations. For example, Bijani
et al. (2015) developed a graph theory approach for the 3D inversion of
gravity data in which the subsurface body is modeled as an ensemble of
simple point masses, of equal mass. The model parameters are the
Cartesian coordinates and total mass of the point masses, and the al-
gorithm yields the reconstruction of the skeleton of the body with the
obtained coordinates and total mass. Here, as described in the following
sections, we present a MATLAB package to implement gravity inversion
based on extensions of the graph theory approach of Bijani et al. (2015).

It is well-known using the theory of Green's equivalent layer, that
the solution of the gravity inverse problem is non-unique (LaFehr and
Nabighian, 2012). Moreover, the gravity data measurements are always
contaminated by noise due to both instrumental errors and modeling
simplifications. Thus, in obtaining a geologically plausible solution
given the measured data, prior information has to be incorporated into
the solution process. A stabilizing regularization term is imposed to
assure that the solution is not overly contaminated by noise in the data.
This biases the search space for the model parameters to a space defined
by the interpreter. For example, as used in linear inversion, L, and L,
norm stabilizers lead to the reconstruction of sparse solutions (Last and
Kubik, 1983; Portniaguine and Zhdanov, 1999; Boulanger and
Chouteau, 2001; Vatankhah et al., 2015, 2017), a depth weighting
function reduces the impact of the natural decay of the sensitivity
matrix with depth (Li and Oldenburg, 1998), and imposed L, norm
stabilization with a derivative operator provides smooth solutions (Li
and Oldenburg, 1998). Non-linear inversions have been stabilized by
constraining the density variation with depth (Chakravarthi and
Sundararajan, 2007) and applying a total variation regularization
(Martins et al., 2011). In the graph theory approach of Bijani et al.
(2015) the equidistance function stabilization was introduced. The set
of point masses are associated to the vertices of a weighted complete
graph in which the weights between pairwise vertices are computed
from the Euclidean distances between the vertex pairs. Kruskal's algo-
rithm is used to solve the minimum spanning tree (MST) problem for
the graph, and the equidistance function is computed using the MST.
This function restricts the spatial distribution of the point masses and
thus provides a solution that prefers a homogeneous spatial distribution
for a single subsurface structure. Consequently, a skeleton of the body is
reconstructed. We note that it is also possible to impose physically
realistic bound constraints on the model parameters, determined by
knowledge of the local geology.
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General gravity inversion incorporating stabilization requires the
minimization of an objective function comprising the data misfit term
and the stabilizing function with balancing provided by a regularization
parameter, A. Deterministic algorithms for the optimization, such as
Levenberg-Marquardt or Gauss-Newton, require the use of derivative
information of the objective function, and find the minimum of the non-
linear objective function. They will not, however, necessarily distin-
guish between global and local minima, (Zeyen and Pous, 1993).
Convergence to a local minimum is likely and is particularly dependent
on the initial model. As an alternative, optimization based on a con-
trolled random search can be used (Montana, 1994). Algorithms in this
class, such as simulated annealing and natural genetic selection, si-
mulate naturally-occurring phenomena and do not require any deri-
vative information for the objective function. Here, we use the genetic
algorithm (GA) which employs a random search algorithm based on the
mechanisms of natural selection and natural genetics.

Overview of main scientific contributions.Bijani et al. (2015) in-
troduced the use of graph theory for the three-dimensional inversion of
gravity data. Our approach implements and extends the algorithm. (i)
Weighting of the data misfit term is introduced using knowledge of the
noise in the measured data. (ii) An effective technique for determining
A based on a regression (data fitting) analysis of the convergence curves
for the equidistance stabilizing function with a statistical measurement
of the reliability of the data fitting is presented. (iii) The inversion al-
gorithm is available as open source MATLAB code and provides mul-
tiple options for picking the parameters of the GA. (iv) An accom-
panying script for generating a synthetic model is provided. This work,
therefore, realizes the original proposal of Bijani et al. (2015) as a tool
for the general inversion of three-dimensional gravity data arising due
to a single dominant homogeneous subsurface target. The algorithm is
open source and available at https://math.la.asu.edu/ ~ rosie/research/
gravity.html, along with a full description of the algorithm im-
plementation and example simulations.

The paper is organized as follows. In Section 2.1 we present the
forward model for the gravity data, leading immediately to the inver-
sion formulation to be solved using the GA, as described in Section 2.2.
The specific GA is presented algorithmically in Algorithm 1 and ne-
cessary components of the graph theory are also provided. Section 3
describes how the presented Matlab software can be used to both
generate data and perform the inversion. The use of the software is
illustrated in Section 4.1, with a discussion of regression analysis to find
A in Section 4.2. Finally, in Section 4.3, results are presented for the
application of the method on gravity data from the Mobrun ore body,
north east of Noranda, Quebec, Canada.

2. Inversion methodology

In this section we briefly review the gravity inversion based on
graph theory. For more details the readers should refer to Bijani et al.
(2015).

2.1. The forward model

Suppose a point mass in the subsurface is located at point Q and has
coordinates r; = (x;, ¥, z;), Fig. 1. The resulting vertical component of
the gravity field at point P on the surface with coordinates
r; = (x;, ¥, Z;) is given by, (Blakely, 1995),

m;(zi — z;)

g (x, 1) =—y .
N [, — rj”;

@

Here v is the universal gravity constant, my; is the value of the mass


https://math.la.asu.edu/%7Erosie/research/gravity.html
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Fig. 1. A single point mass located in the subsurface at point Q which has co-
ordinates r; = (x;, y;, z;). Point P is the gravity station located at the surface with

coordinates t; = (x;, ), zi)-

assigned to point Q, and ||. ||, indicates the Euclidean norm of a vector.
The total vertical gravity component at point P due to M point masses in
the subsurface is obtained by superposition over all point masses and is
given by

M
Z 8 (T, 1‘j)~

j=1

(gz)i =
(2)
Here (g,); denotes the i component of the vector g, € #V which
comprises the responses at all stations i = 1: N on the surface, and
describes the forward gravity model. Inversion of the model requires
the estimation of the total mass of points and their positions given the
measurements of the gravity anomaly at the N gravity stations. The
estimated set of point masses indicates a skeleton of the geometry and
provides the total mass of the causative subsurface source relative to the
background mass of the surrounding area, (Bijani et al., 2015).

2.2. The inverse model

Suppose that the observed gravity data for a homogeneous source
are given by the components of the vector g, € #" and that the point
masses, randomly spread throughout the domain, have the same mass,
m; = my, for all j. Then, the total mass is assumed to be m; = Mmy,,.
Suppose that the Cartesian coordinates of the sources are assigned to
vector p € #*M ordered as

3)

and that the resulting vector of model parameters of dimension 3M + 1
is given by

P = (G Yis 2% Yo 2)7s

4

It is desired to find vector q which generates forward vector g,(q)
that predicts the observed gravity vector g , . at the given noise level.
The data fitting constraint is imposed using the data-misfit term in the
weighted Euclidean norm

q’(‘l) = ”"Vd(gobs - gz(‘l))”i 5)

with a diagonal data weighting matrix Wy, with entries (Wy); = o
where o7 is the assumed variance of the error in the i measurement
(84 (Li and Oldenburg, 1998). Equivalently it is assumed that the
noise in the data is Gaussian and uncorrelated, and Wy is the inverse

q= (m[’ PT)T~
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square root of the diagonal covariance matrix for the noise.

The non-uniqueness of the gravity inversion problem, and the as-
sociated sensitivity of the solution to noise in the data, requires that the
set of potential solutions q that minimize ®(q) is reduced by the in-
troduction of a stabilization term in the minimization. Bijani et al.
(2015) introduced the use of concepts from graph theory for stabilizing
the solution of (5). First, suppose that the point masses are considered
as vertices of a complete® graph with the edges between the vertices
connecting all the point masses, Fig. 2a. For edge between vertices i and
j a weight d;; is assigned. In this case, d; is the Euclidean distance be-
tween point masses i and j. Thus closer points have a smaller weight.
Imposing M point masses, the minimum spanning tree (MST) problem
finds the graph that connects all point masses while minimizing the
total distance in the graph, namely it forms the least distance spanning
tree (LDST) for the graph, Fig. 2b. The number of edges of the LDST for
M point masses is M — 1. Kruskal's algorithm, (Kruskal, 1956), is a
greedy algorithm for finding the subset of edges that form the LDST. We
use d¥5T(p) € #M~! to denote the vector containing the lengths of all
edges of the LDST, and d™*" (p) to be the mean of the lengths of the
edges of the MST. Then, as a further stabilization of the search space,
the MST is constrained to have edges of approximately equal length
yielding the stabilizing equidistance function

2

M-1
o) = D, [d" () - d" ()],

i=1

©

where d57 (p) is the length of edge i for vector d*ST(p), (Bijani et al.,
2015). Here ©(p) effectively minimizes the variance in the edge lengths
against their average and thus biases the solution toward a homo-
geneous 3D spatial distribution of point sources from a single structure
in the subsurface. Consequently, the inversion algorithm is able to re-
construct the skeleton of the subsurface body.

Given the data misfit function ® and the stabilization term O, a
balancing parameter, or regularization parameter, A, is introduced. This
trades off the relative importance of the data misfit and stabilization
terms in the objective function

I'(q) = ©(q) + 10(p). @)

An algorithm is required to obtain q,, that minimizes I' for a fixed
A. Further, an approach is required that efficiently selects a A which
generates an acceptable solution given the measured data.

Bijani et al. (2015) suggested a genetic algorithm for the mini-
mization of I'(q), (Goldberg and Holland, 1988; Montana, 1994, e.g.).
The method starts from an initial random population, consisting of a
number of individuals q, and iteratively improves the estimated solu-
tion. At each iteration each individual of the population is given a fit-
ness (i.e., a value of the objective function I'(q)). The fittest individuals
are selected for reproduction in order to produce offspring that replace
the least fit individuals of the current iteration. The population size is
thus fixed. A small percentage of this new population is arbitrarily
mutated, dependent on a given mutation rate, so different areas of the
search space can be explored. This assists with avoiding local minima in
the optimization process. The new population is also evaluated, al-
lowing only the fittest individuals to survive, and the process is re-
peated. Constraints on the model parameters (Cartesian coordinates
and total mass) are used in all stages of the GA, allowing the inclusion
of prior information on the model.

The standard termination criterium for potential field data inversion
is that the algorithm iterates until the weighted data misfit, ®, satisfies
the x? test. This is an estimate of how well the current estimate predicts
the data and thus indicates that the obtained solution predicts the data
up to the noise level in the data (Boulanger and Chouteau, 2001). We
thus terminate the GA when either the solution satisfies the noise level,

S For a complete graph all vertices are connected.
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Fig. 2. (a) An example of a complete graph with 6 vertices (point masses numbered from 1 to 6). d;; is the Euclidean distance between point masses i and j; (b) The
LDST obtained by Kruskal's algorithm. The elected edges are specified by bold black lines. Then, the vector dST contains [dy, ds;, dy3, dss, des]-

®(q) = 1Wa(gys — £,(@)15 < N + 2N, 8)

or a certain number of generations, Kpay, is reached. The best individual
of all generations is selected as the final estimate, q,,. The inversion
methodology for a fixed A is summarized in Algorithm 1.

Algorithm 1. IGUG: Minimization of I'(q) for gravity inversion using a
genetic algorithm, given measured data g.»s and estimated noise
distribution on the data via Wy.

also be used to create the appropriate real data set for inversion, using
the measured data, noise distribution and survey area.

IGUG.m: loads the data file produced for either synthetic or real
data and performs the inversion to find q,,. It can be run for a single A,
or a range of values for A.

Diagnostic_Results.m: is used to analyze the results and provides an
approach for determining A. It is included at the end of IGUG.m and is
also a standalone script for analyzing output from IGUG.m.

Require: Genetic algorithm parameters as detailed in Table 7.
1: for ¢ =1 to noq do

2 Generate random population g, Impose coordinate and mass constraints:
Lmin S Ij S Tmax; Ymin S Z/J S Ymax, Zmin S Zj S Zmax; mtm;n < my S Mt -

3: end for

4: k=0. ®(qop) = 10°.

while (k < Kpax) & (®(qopt) > N 4+ v2N) do
for / =1 to noq do

ot

Y

T

Generate a complete graph for 9. Use Kruskal’s algorithm to find the least

distance spanning tree for q. Calculate d">"(q¥)) and d . (q'9). Compute

I(q"”) = ®(q"“) + 26(p").
8: end for
9:  Qops = argmin, ['(q¥).

10:  Use GA to generate a new population via genetic selection, mutation and crossover.
Impose bound constraints at all stages.
11: end while

Ensure: qp and iteration count k.

We reiterate that Algorithm 1 is non deterministic due to the use of
the genetic algorithm. Running for a fixed data set, and fixed choice of
parameters, as detailed in Table 7, does not provide an exactly re-
producible result. Furthermore, we note that for iterative regularization
algorithms a possibility that may be considered is to minimize with A
also decreasing iteratively. This, however, introduces additional para-
meters for the algorithm and thus here we follow the approach in-
troduced in Bijani et al. (2015), which obtains a solution for a fixed A.
Moreover, we present an approach to obtain a suitable solution from
solutions obtained for a range of A.

3. Code availability and software package

The software consists of three main scripts.
GMD.m: is used to generate a synthetic model and its gravity data
subject to a user-specified survey area and subsurface geometry. It can

22

Extensive discussion on each script is available in the documenta-
tion, including specifics on the input and output parameters. This in-
formation also discusses the directory structure and provides examples
of the usage of the package. We review the important components of
these main scripts below.

3.1. GMD.m

MD.m is an easy to use MATLAB code for producing the vertical
component of the gravity field, the data vector g, for a user defined
synthetic model at a specified noise level. The model is generated using
an ensemble of one or more prisms. For example, a vertical dike may
need just one prism, but a more complex but connected geometry is
represented by a set of prisms. The parameters of the simulation, in-
cluding the survey volume, subsurface geometry, noise variance for Wy
and all parameters required for the inversion are saved for import to the
inversion module IGUG.m. GMD.m can be edited by the user for more
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Fig. 3. Model of a dipping dike with density contrast of 1 g/cm?. (a) A perspective view of the model; (b) The cross-sectional view of the model.

general usage when generating synthetic data sets, and in particular to
modify the model for the noise.

GMD.m can also be used to read a real data file with the measured
data set that includes the data vector g, an estimate for Wy and the
coordinates for the locations of the stations. In this case the user is
asked to provide the additional parameters that are required for the
inversion, including the survey volume and the parameters required for
the inversion, but does not assume any knowledge of the subsurface
geometry.

For both synthetic and real data sets GMD.m provides a plot of the
survey volume and the gravity anomaly, and in the case of synthetic
data the subsurface geometry is inset within the survey volume. This
allows the user to check that the information has been correctly pro-
vided. The outline for GMD.m when used for synthetic data sets is
provided in Algorithm 2. A simple modification is coded for the case
with real data.

Algorithm 2. GMD: Generating a synthetic model: In all cases default
values may bechosen.

Require: Initial exact gravity data is empty. Zexact = ]
1: Generate the survey domain: Provide coordinates of the origin, extension
in East, North and depth dimensions.

3.3. Diagnostic_Results.m

Diagnostic_Results.m can be used to assist in interpretation of the
results of the genetic algorithm and to select the parameter A. The user
has the option to plot obtained results for visual inspection without any
further analysis, if all dialogue boxes are answered with “No”. In this
case plots are given of (k, I'(k)), (k, ®(k)) and (k, log(®(k)) for each
choice of A and the resulting point mass distribution will be provided
within the survey volume. A table of results that summarizes the final
values of k, T, ®/(N + +2N) and © for the given A is displayed in the
command window.

As we will see from the data, when A is too small, instability in the
convergence of © with increasing k is indicative of a solution that is
under-regularized, or that the solution is not progressing and © is at the
noise level for the computation. This can be assessed applying a stan-
dard regression analysis. Thus, for the diagnostics we also present the
option to do a regression analysis for I', ® and log(®) as a function of k,
yielding a R? value which is indicative of the goodness of fit. The user
may also select the range for k to use for the regression analysis, which

of the volume

2: Data for generating the anomaly: Give distances between stations in East and North
directions and number of prisms, noc, used for the subsurface structure. Pick a noise
level index: j.

3: for £ =1 to noc do

4:  Define the substructure Give the three-dimensional coordinates and the density of

prism k.

5 Generate the gravity anomaly for prism k: giﬁlm

6:  Accumulate exact gravity: Sexact = Sexact T Sexact

7: end for

8: Generate noisy gravity anomaly and provide noise distribution: gops and Wy.

9: Check data input: Plot true and noisy data and the subsurface geometry.

Ensure: Save parameters gops, Wy, discretization choices, and survey area descriptions to

DataNj.mat.

3.2. IGUG.m

IGUG.m implements the inversion methodology based on Algorithm
1. It requires a synthetic data set such as produced using GMD.m or can
be used for real data with the same format, potentially also generated
using GMD.m as noted in Section 3.1. Parameters for the GA must also
be given, as indicated in Table 7. The constraint conditions on the
horizontal coordinates can be defined by analyzing the amplitude of the
observed data. The constraints for the total mass and the depth co-
ordinates can be determined from prior information. Our experience
indicates that it is not necessary to determine tight constraints. Thus,
when no prior information is available wide constraints still provide
acceptable results. It is possible to use all parameters of the GA set to
default values, but the user is interrogated as to whether values should
be altered.

23

is otherwise set as [min(75, floor(Kmax/2)), Kmax)- In comparing results
for the same data and same choice for M, but different choices for A,
regression analysis gives a quantitative measure that indicates in which
case the decay of log(®) is most stable; not wildly oscillating. Then, the
linear regression lines are also illustrated in the plots and the R? values
given in the table of results. We will show how these results can be used
to efficiently estimate an appropriate choice for A at limited cost.
Finally there is the option to save all figures in.jpg format, and to export
the table of results to a spread sheet.

Table 1

The dimensions of the prisms used to form the model in Fig. 3.
Prism East (m) North (m) Depth
Upper 700 to 1300 800 to 1200 100 to 250
Middle 700 to 1300 600 to 1000 250 to 400
Lower 700 to 1300 400 to 800 400 to 550




S. Vatankhah, et al.

Computers and Geosciences 128 (2019) 19-29

(a) True Data mGal (b) Observed Data mGal
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Fig. 4. The gravity anomaly produced by the model shown in Fig. 3, without noise in Fig. 4a and contaminated by noise with o; = (0.02(g,,): + 0.001llg,,, ,Il>) in
Fig. 4b.
Table 2 accompanying web page https://math.la.asu.edu/~rosie/research/

Parameters used as input of Algorithm 1 to perform inversion for data of Fig. 4.
Coordinates are given in meters, m, and mass in kilograms, kg.

noq Xmin Xmax Ymin Ymax Zmin Zmax Mpin Mpynax
100 400 1600 100 1400 20 1000 70e9 150e9
Table 3

The results of the inversion for the given selections of A, M and K. In all cases
@(q,,) > N + +2N » 1321 at the final iteration.

Figure A M (qep)  mulkg) Kmax Time (seconds)  R2

5 100 20 63209 89.7e9 200 117.6 .9883

6 1 20 2254 119.7¢9 200 121.1 .8942

7 .00001 20 1483 115.6e9 200 117.2 .3377

8 1 20 1609 115.4e9 1000 589.9 .5949

9 1 40 3372 130.2¢9 200 176.4 .8874
4. Results

We present results using the software package for the inversion of
both simulated and real data sets, Sections 4.1, 4.2 and 4.3, respec-
tively. All reports on timing are presented for an implementation using
MATLAB Version 9.4.0.813654 (R2018a) running under the Mac OS X
Version: 10.13.6 Operating System. These results can be replicated
using the simulated and real data sets DataN4.mat and AllRealData.mat
that are provided with the codes, but it should be noted that all results
depend on randomization in the GA and thus obtained results will be
equivalent but not exact replications. We reiterate that the problem is
ill-posed and there is no unique solution even for a fixed choice of A. In
our experiments we mainly present results with the assumption of 20
point masses in the domain, consistent with the recommendation in
Bijani et al. (2015). For comparison, however, we show some results for
M = 40 to verify the properties of the algorithm. Additional results
showing simulations with M =10, 20 and 40 are available at the

(b)

Depth(m)

Depth(m)

2000 80| * >

log(6(p))

gravity/htmlruns/SimulatedData.

4.1. Synthetic example

We consider the example of a dipping dike model, Fig. 3. GMD.m
was used to generate the model for a dike with three prisms, noc = 3.
The dimensions of the prisms are given in Table 1. The density contrast
of the dike is 1 g/cm® and its total mass is 108 x 10° kg. Gravity data of
the model, g,,., were generated on the surface for a grid of
41 x 31 = 1271 points with grid spacing 50 m. As standard for the
generation of synthetic data for evaluating inversion algorithms,
Gaussian noise with standard deviation (0.02(g,,,) + 0.001lig.,, l>) is
added to each datum yielding the noisy data set, g, illustrated in
Fig. 4, (Li and Oldenburg, 1998). The selected parameters for per-
forming the inversion are given in Table 2 and a summary of the results
is provided in Table 3.

We contrast the results for choices of A that lead to under- and over-
regularization, and show the impact of increasing the number of
iterations and number of point masses. In each case we illustrate in
figures (a)-(d) resp., a perspective view of the point masses; the cross-
sectional view of the point masses; the equidistance function for the
best solution at each iteration; and the data predicted by the re-
constructed model. When A is relatively large, A = 100 in Fig. 5a-d, the
product AO© initially dominates in I'. Thus the algorithm forces © to
become small and iterates toward a solution for which but the data
misfit @ is not significantly reduced; a local minimum of © yields a
dispersed set of point masses that does not give a skeleton of the body.
Comparing the results using moderate 2 = .1 and very small 1 = .00001,
Fig. 6a-d and Fig. 7a-d, respectively, we can see that the solution for
smaller A is more dispersed in depth after 200 iterations, and that there
is significant oscillation in © with k. This occurs because the small value
of A places less emphasis on minimizing © with increasing k and instead
forces ® to decrease more quickly. Notice that log(©) ~ 0(6), O(11),
after 200 iterations, respectively. Thus at 200 iterations © is much
larger for small A = .00001, ®~ 50000 as compared to 500 for 4 = .1.

(d)

(C) mGal

1500

—O— Results
*  DataFit

18
16
14
1.2

1000

Northing (m)

0.8
0.6
0.4
0.2

o
=)
3

500 1000
Northing(m)

1500
Easting(m)

Northing(m)

500 1000

Easting (m)

1500 2000

200 0

100
Generation

150
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Increasing the number of iterations but still using moderate 1 = .1,
Fig. 8a-d, we can see that the algorithm continues to decrease ® while
the rate of decrease in © slows, between 200 and 1000 iterations ©
decreases only from approximately 500 to 50, but stably, and the dis-
tribution of point masses is not modified significantly. Thus taking
additional steps is relatively costly, increasing the computational cost
by a factor 5 going from 200 to 1000 steps with little gain. Finally, it
remains to assess whether the solution is significantly impacted by in-
creasing the number of point masses, Fig. 9a-d. Because © depends on
the number of point masses, the decrease in © with k, and hence of ®
with k, is slower when M is larger, reaching only ®©~ 8000 after 200
steps. Thus after just 200 iterations the solution has not converged to an
acceptable solution, the points are dispersed but overall © is decaying
in a stable manner. Increasing the number of allowable iterations to
1000 for M = 40 in this case will give a stable and satisfactory solution.

Contrasting the predicted anomalies, Figs. 5d, 6d and 7d with
Fig. 4a, it is clear that the over-regularized result (large A) does not
yield a good approximation. Moreover, considering the quantitative
results in Table 3, for large A the total mass is under-estimated. Thus,

Fig. 7. Inversion results with 2 = 1 X 1075, K. = 200 and M = 20.

log(O(p))
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Table 4
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2000

The results of the inversion of the model for the given selections of A, M = 20
and K,y = 200. The total time for the inversions reported in the table is
1452.2's, or approximately 24 min.

Ai k mass o (k) @ (k) ®(k)/(N +J2N) R?
100 200 112.6e + 9 17.486 54315 41.1 0.88
10 200 83.8¢ +9 9.86 75172 56.9 0.93
1 200 141.4e + 9 70.517 11427 8.65 0.91
0.5 200 120.0e + 9 109.03 4746.8 3.59 0.96
0.25 200 127.5¢ + 9 202.24 3646.8 2.76 0.95
0.1 200 119.7¢e + 9 381.8 2129.8 1.61 0.95
0.05 200 118.0e + 9 373.48 1898.4 1.44 0.86
0.025 200 122.5¢ + 9 1262 2492.2 1.89 0.94
0.01 200 116.9¢ + 9 3858.4 1608.6 1.22 0.88
0.001 200 114.2e + 9 14654 1484.0 1.12 0.86
0.0001 200 118.0e + 9 51524 1512.3 1.14 0.01
0.00001 200 117.9¢ + 9 300060 1543.2 1.17 0.38
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Fig. 10. The point masses distributions, the predicted anomalies and © with the indicated regression line (data fit) for the solutions chosen according to the data in

Table 4.

although in most cases the mass is over-estimated, we cannot conclude
that the mass estimate will always be an over-estimate. From these
results, we conclude that while the final value of ® is closer to the
desired estimate N + +2N ~ 1321 for 1 = .00001, the lack of stability in
the estimate of ® with k, as indicated by the low R? value suggests that
the convergence is not stable, and that this result would be less reliable
than the choice with 4 = .1. It should be noted that the computational
cost is effectively independent of A, all timings are on the order of 120,
for the determination of the solution, with fixed M =20 and
Kimax = 200.

In summary, the characteristics of the solutions shown are con-
sistent with minimizing I' that is dependent on parameters M and A.
Increasing M slows the iteration due to the graph based algorithm, and
changing A impacts the balance of the terms in I', leading to potential
over-and under-regularization. This is no different than we would ex-
pect from other methods of regularization with increasing resolution,
M, and varying stabilization parameter A. From the presented results,
we conclude that when (i) there is a small data misfit ® and when (ii)
O(p) exhibits stable convergence, the solution is neither over-nor
under-regularized, and the reconstructed point mass distribution for the
given A provides a good approximation of the skeleton of homogeneous
source. Thus, in general, the optimum parameter can be estimated
without running the code for a large number of values of A, as is re-
quired for example with the L-curve approach suggested by Bijani et al.
(2015).

4.2. Applying diagnostics to determine A

We now discuss an assessment tool implemented in
Diagnostic_Results.m that can be used to automatically analyze the
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results based on a regression analysis. This provides a computationally
efficient method to identify a A that provides a solution that is neither
under- nor over-regularized, without performing the extensive com-
putation required to generate an L— curve. First the computations de-
monstrate that while ® decays linearly with k both T and © decay
proportionally to Aexp(—k), and thus to assist with assessing quality of
the solution regression analysis is applied for log(®) as function of k.”
For purposes of space, we only show the plots for the decay of log(®)
with k, plots for regression analysis for ® and I are available for these
examples on the software web page, and it is easy to generate a data fit
for the exponential of these functions also.

Table 4 gives the results for model simulations obtained for all the
parameters as given in Tables 1 and 2 for the simulation data illustrated
in Fig. 4b, an inversion with 20 mass points, maximum iteration
Kinax = 200 and the noted range of A;. From the results in Table 4 it is
evident that the convergence behavior of © is stable for large A; R? is
close to 1 but @ is large relative to the noise level and the mass esti-
mation is not stable, the mass may be underestimated. Further, for large
A the solution terminates with small ©. The R? value eventually de-
creases, on average, as A decreases before increasing again at the choice
of @ which is closest to the noise estimate. These results suggest that an
acceptable solution will be obtained for A ranging from about 0.1 to
0.025. We illustrate the resulting point masses distributions for 1 = 10,
0.5, and 0.025 in Fig. 10, demonstrating that the analysis is relevant.
There are also links to simulated data sets giving several analyses of

7 Note that we use the MATLAB notation log(x) to denote the natural loga-
rithm of x, and consistent with the exponential decay rate.
log,,(x) = log(x)/10g(10) ~ .4log(x).
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Fig. 11. Residual anomaly of Mobrun ore body, Noranda, Quebec, Canada.

Table 5

Parameters used in Algorithm 1 to perform inversion on data of Fig. 11. Co-
ordinates are given in meters, m, and mass in kilograms, kg.

M Kmax 1NO9  Xmin  Xmax  Ymin  Ymax Zmin  Zmax Mg, Plipa

20 200 100 150 650 50 500 10 300 2.2¢9 3.2¢9

data for multiple choices of A, M and noise levels in the accompanying
webpage. We also note that we do not present this analysis to suggest
that the user would wish to evaluate the solution for a large set of A,
here 12 values, rather the intent is to demonstrate that the impact of A
on the solution is significant and that the R? value is a useful estimator
even if the solution is obtained for a small set of A choices.

4.3. Real data

To illustrate the relevance of the approach for a practical case we
applied the software to reconstruct the well-known Mobrun ore body,
northeast of Noranda, Quebec, Canada, Fig. 11. The anomaly pattern is
associated with a massive body of base metal sulphide (mainly pyrite)
which has displaced volcanic rocks of middle Precambrian age (Grant
and West, 1965). We carefully digitized the data from Fig. 10.1 in Grant
and West (1965), and re-gridded onto a regular grid of 37 x 31 = 1147
data in east and north directions respectively, with grid spacing 20 m.
We approximate the error distribution with
0; = (0.03(g,)i + 0.004|gll,). Grant and West (1965) interpreted the
body to be about 305 m in length, slightly more than 30 m in maximum
width and having a maximum depth of 183 m. Furthermore, they es-
timated the total mass of the body to be 2.56¢9 kg. The parameters of
Algorithm 1 for the inversion are detailed in Table 5.

We performed the inversion with several fixed values of A and here
show the diagnostic results obtained using the selection
A =[10, .25, .001] in Table 6. The resulting point masses distributions
and anomalies support the selection of 1 = .25 for the acceptable result,
Fig. 12.
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Table 6
The results of the inversion for real data. The total time for the inversion for all
values of A is 509s.

Ai k mass k) (k) o(k)/(N+2N)  R?

10 200  25le+9 24959  9563.2  8.00 0.70
0.25 200 318¢+9 44376 19106  1.60 0.93
0.001 200  313¢+9 21657 1485.4  1.24 0.42

5. Conclusions

We have presented MATLAB software for 3D inversion of gravity
data using an equidistance stabilization term based on a graph theory
argument that was developed by Bijani et al. (2015). The subsurface
homogeneous body is approximated by a set of point masses that pro-
vide a skeleton of a subsurface structure. The point masses are asso-
ciated with a complete graph and Kruskal's algorithm is used to find the
minimum spanning tree of the graph. The equidistance stabilization
term restricts the spatial distribution of the point masses and suggests a
homogeneous spatial distribution of connected point masses in the
subsurface. The global objective function is minimized using a genetic
algorithm using crossover, mutation and random population in-
itialization, with a priori constraints on the parameters imposed at all
stages of the population evolution. A module for generating a synthetic
geometry and gravity data set is also provided. The software is user-
friendly and can be modified to use for practically acquired data sets
and simulations of synthetic data. It is open source software and
available at Vatankhah et al. (2018).

The software was illustrated for a physically realistic test problem
with Gaussian noise added to the gravity measurements. The objective
function includes a regularization parameter which balances the re-
lative importance of the data misfit and the equidistance stabilization
during the optimization. It was demonstrated that a suitable choice of
regularization parameter is one for which (i) the predicted data are
close to the observed data relative to the noise level and (ii) the equi-
distance function decays almost monotonically with increasing num-
bers of iterations. Thus it is sufficient to carry out the optimization for
relatively few choices of A, particularly when similar data sets have
been previously analyzed and an acceptable range for the regularization
parameter has been found. A new statistical approach based on re-
gression analysis has been illustrated and assists with identification of A
when no prior data sets have been analyzed.

The methodology was illustrated for gravity data from the Mobrun
ore body. The maximum extensions of the body in the east and north
directions were found to be approximately 350 m and 200 m, respec-
tively, and are in good agreement with results from previous in-
vestigations and from drill hole information.

Acknowledgements

R.A. Renaut acknowledges the support of NSF grant DMS 1418377
“Novel Regularization for Joint Inversion of Nonlinear Problems”. We
sincerely appreciate the very insightful comments of an unknown re-
feree. The paper was improved by the comments.



S. Vatankhah, et al. Computers and Geosciences 128 (2019) 19-29

= mGal =0. mGal =0. mGal
600 )2 =G 06600 bl 20 16600 R I L 16
05500 T4gn 14
1.2 12
400 400
04 ; 4
0.3300 0.8300 0.8
06 = 06
02200 200
04 04
100 100
0.1 0.2 02
0 200 400 600 0 200 400 600
@ xr=10 () A=0.25 () X = 0.001

0 0
E 100 E £ 100
= < S
& 200 3 £ 200
a a a)
300 300 600
600 600
400 400
Northing(m) g Easting(m) Northing(m) 0 Easting(m) Northing(m) 0 Easting(m)
o (9) A =10 i (h) X =0.25 - (i) A =0.001
—O— Restlts
*  DataFit
& 5 3 055 | %
= = P |
= |
Ry ) 2 1 & | ?
6 I
2 2 o Lo |, ﬂ»ﬁ
o 5 o0 ¥ am
= = = w\ 5 |
4
2+ 9 ‘ ‘\ “I &6
0 2 8.5 4 b
0 0 50 100 150 200 0 50 100 150 200
Generation Generation Generation
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Appendix A. Supplementary data
Supplementary data to this article can be found online at https://doi.org/10.1016/j.cageo.2019.03.008.

Appendix A. Genetic Algorithm Parameters

Table 7
Input Parameters used for the Genetic Algorithm.
Population Size noq
Max Generations Kmax
Cross Over Percentage CP
Extra Range Factor for Crossover Errf
Mutant Percentage MP
Mutation Rate I
Selection Pressure B
Number of Point Masses M
Minimum total mass M i
Minimum in East Direction Xmax
Minimum in North Direction Ymax
Minimum in Depth Direction s
Maximum total mass Miax
Maximum in East Direction Xmax
Maximum in North Direction Ymax
Maximum in Depth Direction Zmax
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