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1 Introduction

The discovery of the Jones polynomial [18] has invigorated low-dimensional
topology by introducing a plethora of link and 3-manifold invariants. Efforts to study
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these quantum invariants have yielded powerful new link invariants, in the form of
homology theories, through categorification. In this article, we focus on the impact
of the most influential homology theory arising from quantum invariants: Khovanov
homology [22]. Our goal is to sample some recent applications of Khovanov-type
theories to smooth low-dimensional topology. By bringing together the various ideas
and constructions, we hope to facilitate new applications.

In Sect. 2, we curate a survey of recent developments in knot concordance, muta-
tion detection, unknotting, and the categorification of knot polynomials. Note that
our overview will focus on Lee’s spectral sequence, Rasmussen’s s-invariant, and
generalizations of these constructions. We will exclude results linking Khovanov
homology to knot Floer homology or Heegaard Floer homology, for which the
readers may consult the resources [3, 37, 45]. We also exclude applications toward
low-dimensional contact and symplectic geometry.

Following the survey, we give two new applications. In Sect. 3, we extend
Levine-Zemke’s [30] ribbon concordance obstruction from Khovanov homology
to sl(n) foam homology for n ≥ 4, as well as to universal sl(2) and sl(3) foam
homology theories. More generally, we show that a ribbon concordance between
links induces injective maps on link homologies defined via webs and foams
modulo relations. Kang provides a different approach in [19, Theorem 1], where
it is shown that a ribbon concordance induces injective maps on link homology
theories that are multiplicative link TQFTs and which are either associative or
Khovanov-like. Our proof relies mainly on the fact that all of the homology theories
considered in Sect. 3 satisfy certain cutting neck and sphere relations in the category
of dotted cobordisms, without the need to provide new definitions or develop special
techniques.

In Sect. 4, we use spectral sequences coming from Khovanov homology to bound
the alternation number, as well as the Turaev genus of a knot in S3.

We hope that this article provides a convenient reference to those entering this
area of research and sparks interest in the subject.

2 A Survey of Applications of Khovanov Homology

2.1 Rasmussen’s s-Invariant

Possibly the most well-known application of the original Khovanov homology [22]
lies in Rasmussen’s [47] concordance invariant s, which comes from a spectral
sequence arising from a filtration on the Lee complex. The Lee spectral sequence is
a key ingredient of the proof that the Khovanov homology of an alternating knot is
thin [29, Theorem 1.2]. Rasmussen shows that s induces a homomorphism from the
concordance group to the integers. Therefore, it provides a slice obstruction. In fact,
s gives lower bounds on the slice genus of a knot. As an example of an application,
he uses this to give a strikingly short proof of the Milnor conjecture [47, Corollary
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1], which was previously proven by Kronheimer and Mrowka using gauge theory
[28, Corollary 1.2].

Many others have since modeled the algebraic construction of Rasmussen’s
invariant to produce more concordance invariants, many of which are generaliza-
tions of the s-invariant to sl(n) Khovanov-Rozansky homology [31, 34, 35, 56] or
to the universal sl(2) homology [10].

In 2012, Lipshitz and Sarkar introduced a stable homotopy type for Khovanov
homology [32]. They define a refinement of s for each stable cohomology operation,
and show that the refinement corresponding to Sq2 is stronger than s in [33, Section
5], using Cotton Seed’s computations (see also [50]).

2.2 Mutants

Mutant knots are notoriously difficult to distinguish using knot invariants. It has
been shown that for a knot, mutation preserves the signature, the Alexander
polynomial, the volume (if the mutants in question are hyperbolic), and the Jones
polynomials [13, Corollary 6, 7, and 8], [44, Theorem 2], [48, Corollary 1.4].
It is an open question whether Khovanov homology is invariant under mutation
on knots. While there exist mutant links with distinct Khovanov homologies (see
[54, Theorem 3]), it has been shown that odd Khovanov homology and Khovanov
homology with F2 coefficients are invariant under mutation; for details, we refer the
reader to [8, Theorem 1] and [55, Theorem 1.1], respectively.

There has been some recent indication that Khovanov-type theories may be used
to distinguish mutants. For example, a prominent open problem was resolved when
Piccirillo showed that the Conway knot is not slice [46, Theorem 1.1], using the
s-invariant defined by Rasmussen from the Lee spectral sequence. Lobb-Watson’s
[36] filtered invariant is able to detect mutants in the presence of an involution. In
a different direction, one may also consider generalized mutations along genus 2
surfaces from which (Conway) mutation may be recovered [16, Section 2.6]. It has
been shown that Khovanov homology distinguishes a pair of generalized mutants,
while the signature, HOMFLY-PT polynomial, Jones polynomials, and Kauffman
polynomial are the same [16, Proposition 1.6].

2.3 Ribbon Concordance

Motivated by Gordon’s conjecture [17, Conjecture 1.1] that ribbon concordance
gives a partial ordering on knots in S3, there has been great interest in studying
the behavior of knot invariants under ribbon concordance. Notably, in 2019,
Zemke [57, Theorem 1.1] showed that knot Floer homology obstructs ribbon
concordance. This led to an exciting series of papers extending this result to various
homology-type invariants for knots. Within the realm of Khovanov-type invariants,
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Levine-Zemke [30, Theorem 1] extended the result to the original Khovanov
homology, Kang [19, Theorem 1] extended the result to a setup that includes
Khovanov-Rozansky homologies [26], knot Floer homologies and other theories,
and Sarkar [49] defined the notion of ribbon distance [49, Section 3] and derived
bounds on this from Khovanov-Lee homology [49, Theorem 1.1, Corollary 1.2].

2.4 Unknotting and Unlinking via Spectral Sequences

Besides the s-invariant and its relationship to the slice genus, one can also relate
spectral sequences from Khovanov homology to other link invariants. Alishahi and
Dowlin [2] proved that the page at which the Lee spectral sequence collapses can
be used to give a lower bound on the unknotting number of the knot [2, Theorem
1.2]. A consequence of this bound is that the Knight Move conjecture holds for all
knots with unknotting number at most two [2, Corollary 1.4]. Alishahi also proved
a similar lower bound for the unknotting number using the Bar-Natan spectral
sequence coming from the characteristic two Khovanov homology [1, Theorem 1.2].
In another direction, Batson and Seed [6] constructed a spectral sequence starting
with the Khovanov homology of a link and converging to the Khovanov homology
of the disjoint union of its components. The page at which this spectral sequence
collapses yields a lower bound on the link splitting number of the link.

2.5 sl(n) Homology and HOMFLY-PT Homology

For each n, the sl(n) link invariant is a certain one-variable specialization of the
HOMFLY-PT polynomial. In [26], Khovanov and Rozansky gave a categorifica-
tion of the sl(n) polynomial using matrix factorizations. Moreover, using matrix
factorizations with a different potential, Khovanov and Rozansky [27] constructed
a categorification of the HOMFLY-PT polynomial. For the sl(3) link invariant,
Khovanov [23] constructed another categorification using trivalent webs and foams
between such webs. This was later generalized to the universal sl(3) homology
by Mackaay and Vaz [40]. An approach to the universal sl(2) homology theory
was constructed by Caprau [9], using a combination of ideas from [4] and [23].
In [39], Mackaay, Stošić, and Vaz gave a topological categorification of the sl(n)
polynomial, for all n ≥ 4, via webs and a special type of foams. For specific details
on the versions of sl(n) homologies that are used in this paper, we refer the reader to
Sect. 3. A potential topological application of sl(n) and HOMFLY-PT homologies
is that they would be better able to distinguish mutant knots, due in part to the fact
that the corresponding decategorifications can detect mutants (see [42, Theorem 3],
[43, Section 1.3]).
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3 Link Homologies and Ribbon Concordance

Let K0 and K1 be knots in S3. A concordance C ⊂ S3 × [0, 1] from K0 to K1
is a smooth embedding of the annulus f : S1 × [0, 1] → S3 × [0, 1] such that
f (S1 × {0}) = L0 × {0} and f (S1 × {1}) = L1 × {1}. In this case, we say that the
knots K0 and K1 are concordant. For k-component links L0 and L1, a concordance
is a disjoint union of k knot concordances between the components of L0 and the
components of L1.

By a small isotopy of S3 × [0, 1], the concordance C may be adjusted so that
the restriction to C of the projection S3 × [0, 1] → [0, 1] is a Morse function. If
this Morse function has only critical points of index 0 (local minima) and 1 (saddle
points) (that is, if it has no critical points of index 2, i.e. local maxima), then C is
called a ribbon concordance. In this case, we say that L0 is ribbon concordant to
L1.

Denote by C the mirror image of C and regard it as a concordance from L1 to L0.
Then C ◦C is the concordance from L0 to itself obtained by concatenating C and C.
Zemke [57] proved that the concordance C◦C can be obtained by taking the identity
concordance L0 × [0, 1] and “tubing in” unknotted, unlinked 2-spheres S1, . . . , Sn
using “tubes” T1, . . . , Tn. The tubes are annuli embedded in S3×[0, 1], joiningL0×
[0, 1] with the spheres S1, . . . , Sn. Specifically, Zemke [57, Section 3] explained
that the concordance C ◦ C can be described, up to isotopy, by the following movie
presentation:

– n births of disjoint unknots U1, . . . , Un, each of which being disjoint from the
link L0;

– n saddles represented by bands B1, . . . , Bn, such that Bi connects Ui with L0;
– n saddles represented by bands B1, . . . , Bn, where each Bi is respectively the

mirror image (dual) of Bi ;
– n deaths, deleting U1, . . . , Un.

The embedded annuli Ti are obtained by concatenating the second and third movie
frames above, by joining the bands Bi together with their respective dual bands, Bi .
The births and deaths of the unknots U1, . . . , Un determine n unknotted, unlinked
2-spheres S1, . . . , Sn. The annuli Ti are the boundaries of some three-dimensional
1-handles hi , and each handle hi intersects the surface L0 ×[0, 1] and the sphere Si
in some disksDi andD′

i , respectively. Then, the concordance C ◦C can be thought
of as the following union:

C◦C =
(
(L0×[0, 1])!(D1∪· · ·∪Dn)

)
∪(T1∪· · ·∪Tn)∪

(
(S1!D′

1)∪· · ·∪(Sn!D′
n)
)
.

The goal of this section is to use the above result by Zemke [57] to show
that a ribbon concordance between two links induces an injective map on the
sl(n) link homology theories using foams, for all n ≥ 2. That is, we want to
show that the main result proved by Levine and Zemke in [30, Theorem 1] can
be generalized to universal Khovanov homology, as well as to higher rank link
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homologies. The proofs of the following statements are similar in nature to the
proofs of the analogous statements provided in [30].

Here we are considering sl(n) foam homologies, which we will denote by Hn.
For n = 2 and n = 3, we are working with the corresponding universal theories
(see Remark 1). The universal theory categorifying the sl(2) link polynomial
corresponds to a Frobenius system of rank two associated to the ring A2 =
Z[X, h, t]/(X2 − hX − t), where h and t are formal parameters. The homology
of the unknot is the ring A2, and the homology of the empty link is the ground ring
Z[X, h, t]. To obtain a homology theory that is purely functorial with respect to link
cobordisms, Caprau [9] worked with singular cobordisms and with the ground ring
Z[i][X, h, t], where i2 = −1. In this paper, we work with the universal sl(2) theory
developed in [9]. Similarly, the universal sl(3) foam theory, introduced by Mackaay
and Vaz in [40], corresponds to a Frobenius system of rank three associated to the
ring A3 = Z[X, a, b, c]/(X3 − aX2 − bX − c), where a, b, and c are formal
parameters. For n ≥ 4, we consider the homology theory introduced by Mackaay,
Stošić, and Vaz in [39], which corresponds to the ringAn = Q[X]/(Xn). The foams
in [39] are more complicated than those for the cases of n = 2 and 3, as these
foams have additional types of singularities and their evaluation makes use of the
Kapustin-Li formula [20].

Remark 1 These foam theories are termed ‘universal’ (see [24]) in contrast to the
‘ordinary’ sl(2) (resp. sl(3)) homology, for which h = t = 0 (resp. a = b =
c = 0). These specializations were constructed first by Mackaay and Vaz [40],
generalizing Khovanov’s construction of sl(3) foam homology in [23]. For more
recent developments in foam theories related to sl(2) homology, see [25]. Note
that prior to the construction of these foam theories, Khovanov and Rozansky
developed sl(n) homologies via matrix factorizations [26, 27]; as this method is
not immediately compatible with Zemke’s topological arguments, we focus solely
on the available foam theories.

These homology theories use foams modulo local relations, as pioneered by Bar-
Natan [4] in his approach to local Khovanov homology for tangles. In each case
of the sl(n) homology theory considered here for a fixed value of n ≥ 2, one
associates to a link diagram a formal chain complex in a certain abelian category
Kom(Foamn), whose objects are column vectors of closed 1-manifolds in the plane,
and whose morphisms are matrices of dotted foams in R2 × [0, 1], which are
considered up to boundary-preserving isotopies, and modulo local relations.

For our purposes, for each sl(n) foam homology theory for n ≥ 2, we will only
need the local relations involving smooth, oriented surfaces and (1+1)-cobordisms
in R2 × [0, 1] marked with dots. Specifically, we will employ the sphere relations
(Sn) and the cutting neck relation (CNn), for fixed n ≥ 2. Figure 1 shows these
relations for the foam homology theory for n ≥ 4, and the paragraph after the figure
describes the relations for n = 2, 3. In this figure, a letter i on a surface means
that the surface is marked with i dots. Recall that in terms of the 2-dimensional
TQFT associated with the corresponding Frobenius extension and the resulting sl(n)
homology theory for links, a dot on a surface corresponds to the endomorphism of
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i
=

{
1, i = n − 1
0, otherwise

(Sn)
=

n−1∑

i=0

n−1−i

i
(CNn)

Fig. 1 The local relations (Sn) and (CNn) for n ≥ 4. The label ‘i’ (resp. ‘n − 1 − i’) on a surface
indicates the presence of i (resp. n − 1 − i) dots on that surface

the ring An that is multiplication by X. The sphere relations (Sn) are the geometric
counterparts of the evaluations of the counit map ε : An → R on the generators
1, X, . . . , Xn−1, where R is the ground ring. Moreover, the cutting neck relation
(CNn), for each n ≥ 2, is the geometric representation of the formula for ∆(1),
where ∆ : An → An ⊗R An is the comultiplication map corresponding to the
Frobenius system defining the 2-dimensional TQFT. Specifically, for n ≥ 4, the dot
relations (Sn) correspond to ε(1) = ε(X) = · · · = ε(Xn−2) = 0 and ε(Xn−1) = 1,
while the cutting neck relation (CNn) corresponds to ∆(1) =

∑n−1
i=0 Xi ⊗ Xn−i−1.

For the universal sl(2) foam theory [9], the dot relations (S2) correspond to
ε(1) = 0, ε(X) = 1, and the cutting neck relation (CN2) is the geometric
representation for ∆(1) = 1 ⊗ X + X ⊗ 1 − h 1 ⊗ 1. Moreover, for the universal
sl(3) foam theory (as constructed in [40]), the dot relations (S3) are the geometric
representations of the evaluations ε(1) = ε(X) = 0, ε(X2) = −1, and the cutting
neck relation (CN3) corresponds to

−∆(1) = 1 ⊗ X2 +X ⊗ X +X2 ⊗ 1 − a(1 ⊗ X +X ⊗ 1) − b 1 ⊗ 1.

We denote by Tn, for n ≥ 2, the tautological functors in the above homology
theories (see Remark 2). Recall that these functors are multiplicative with respect to
disjoint unions of objects, as well as with respect to disjoint unions of morphisms,
in the geometric categories Foamn, for n ≥ 2. It was proved in [9, Theorem 2]
that the universal sl(2) homology theory satisfies the functoriality property with
respect to smooth, oriented link (and tangle) cobordisms without sign ambiguity.
These cobordisms are equivalent up to boundary-preserving isotopy. Clark [12,
Theorem 1.3] also proved that Khovanov’s sl(3) homology theory is properly
functorial. Moreover, it was explained in [40, Sections 2.1–2.3] that the universal
sl(3) homology theory is functorial at least up to a minus sign (that is, up to
multiplication by a unit in Z). Finally, recall that the sl(n) homology theory, for
n ≥ 4, is functorial (at least) up to multiplication by a non-zero rational number,
as shown in [39, Proposition 8.5]. Note that for the purpose of this paper, it suffices
that a certain sl(n) foam homology theory is functorial up to multiplication by a unit
in the ground ring.

Remark 2 For details on tautological functors and the universal construction, see
[7]. Friendly examples can be found in [4, Section 9] and [23].
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For the remainder of this section, embedded link cobordisms in R3 × [0, 1] may
possibly be decorated with dots.

Lemma 1 Let F ⊂ R3 × [0, 1] be an embedded cobordism from a link L0 to a link
L1. Let S be an unknotted 2-sphere in R3 × [0, 1] and unlinked from F , and denote
by S(k) the sphere S marked with k dots. Then,

(a) H2(F ∪ S) = 0 and H2(F ∪ S(1)) = H2(F ).
(b) H3(F ∪ S) = 0 = H3(F ∪ S(1)) and H3(F ∪ S(2)) = −H3(F ).
(c) Hn(F ∪ S) = Hn(F ∪ S(1)) = · · · = Hn(F ∪ S(n−2)) = 0, and

Hn(F ∪ S(n−1)) = Hn(F ), where n ≥ 4.

Proof If necessary, we may perform an ambient isotopy of R3 × [0, 1] so that the
unknotted 2-sphere S lies in a slice R3 × {t}, for some t ∈ [0, 1], and that the
intersection of F with R3 × {t} is a (1 + 1)-cobordism. Then, the result in part
(a) follows from the sphere relations (S2) and the properties of the functors T2 and
H2. Remember that by relations (S2), a sphere with no dot evaluates to zero, while a
sphere with one dot evaluates to 1. Similarly, the sphere relations (S3) and separately
(Sn), for n ≥ 4, together with the application of the functors T3 and Tn, for n ≥ 4,
(along with the fact that H3 and Hn are functors) yield the equalities in parts (b)
and (c). We note that the negative sign in part (b) arises due to the convention for
the relations (S3), in which a sphere with two dots evaluates to −1.

Lemma 2 Let F ⊂ R3 × [0, 1] be an embedded cobordism from a link L0 ⊂
R3 × {0} to a link L1 ⊂ R3 × {1}. Let γ : [0, 1] → R3 × [0, 1] be a smoothly
embedded arc with endpoints on F and otherwise disjoint from F , and let T be the
boundary of an embedded tubular neighborhood of γ (that is, T is an annulus). Let
F ′ be the result of removing the disk neighborhoods of ∂γ from F and attaching T .
Denote by F (i,j) the cobordism obtained from F ′ by surgery along a compressing
disk of T , so that there are i dots on the disk in F ′ bounded by the circle where T
was attached to F around γ (0), and there are j dots on the disk bounded by the
circle where T was attached to F around γ (1).

Then,

(a) H2(F
′) = H2(F

(1,0))+H2(F
(0,1)) − hH2(F ).

(b) −H3(F
′) = H3(F

(2,0))+H3(F
(1,1))+H3(F

(0,2))

−a[H3(F
(1,0))+H3(F

(0,1))] − bH3(F ).

(c) Hn(F
′) =

n−1∑

i=0

Hn(F
(i,n−1−i)), where n ≥ 4.

Proof The proof is similar to that of Lemma 1, only that now we make use of
the cutting neck relations. We also encourage the reader to compare the equalities
in parts (a), (b) and (c) with the evaluations for ∆(1) for the universal sl(2) foam
theory, the universal sl(3) foam theory, and respectively, the sl(n) (for n ≥ 4) foam
homology theory. We perform first an isotopy of R3 ×[0, 1] so that T lies in a small
ball contained in a slice R3 × {t}, for some t ∈ [0, 1], and the intersections of F ′

and F (i,j) with the ball can be identified with the pictures depicted in the cutting
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neck relations. The cutting neck relations imply that the morphisms in Foamn

corresponding to the cobordisms in the statement of the lemma (where n = 2 in
part (a), n = 3 in part (b), and n ≥ 4 in part (c)) satisfy the skein relations in the
statement. Then, the claimed identities on the homology groups follow at once from
these, and from the properties of the tautological functors Tn, and since Hn is a
functor, for each n ≥ 2.

Proposition 1 Let D ⊂ R3 × [0, 1] be an embedded cobordism from a link L0 ⊂
R3 ×{0} to a link L1 ⊂ R3 ×{1}. Suppose S is an unknotted 2-sphere in R3 ×[0, 1]
and unlinked from D. Let γ be a smoothly embedded arc with one endpoint on D

and the other on S, and otherwise disjoint from D ∪ S, and let T be the boundary
of an embedded tubular neighborhood of γ (that is, T is an annulus). Let D′ be the
result of removing the neighborhood of ∂γ from D ∪ S and attaching T .

Then Hn(D
′) = Hn(D), for all n ≥ 2.

Proof The proof follows from Lemmas 1 and 2. We apply first Lemma 2 to the
cobordism F := D ∪ S, with F ′ := D′. Then note that F (i,j) = D(i) ∪ S(j), where
D(i) is the cobordismD marked with i dots, and S(j) is the 2-sphere S marked with
j dots. So, we have

H2(D
′) = H2(D

(1) ∪ S)+H2(D ∪ S(1)) − hH2(D ∪ S)

= 0+H2(D) − h · 0
= H2(D),

where the second equality holds due to part (a) in Lemma 1. Similarly, using part
(b) from Lemma 2, we get,

−H3(D
′) = H3(D

(2) ∪ S)+H3(D
(1) ∪ S(1))+H3(D ∪ S(2))

−a[H3(D
(1) ∪ S)+H3(D ∪ S(1))] − bH3(D ∪ S).

Using part (b) from Lemma 1, we see that only the third term above, H3(D ∪ S(2)),
survives and equals to −H3(D). Hence, H3(D

′) = H3(D), as desired.
Moreover, the following equalities follow from parts (c) of the previous two

lemmas:

Hn(D
′) =

n−1∑

i=0

Hn(D
(i) ∪ S(n−1−i)) = Hn(D ∪ S(n−1))+ 0 = Hn(D).

Hence, the statement holds for every n ≥ 2.

We are now ready to prove the main result of this section.

Theorem 1 Let C be a ribbon concordance from a link L0 to a link L1. Then the
induced maps on sl(n) homologies
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Hn(C) : Hn(L0) → Hn(L1)

are injective, for all n ≥ 2.

Proof Let C be a ribbon concordance from L0 to L1, and let C be the mirror image
of C (that is, C is the reverse concordance from L1 to L0). LetD := C ◦C. ThenD
is a concordance from L0 to itself. Since for each n ≥ 2, the foam homology theory
Hn is a functor, we have that:

Hn(D) = Hn(C) ◦ Hn(C), for each n ≥ 2.

By the discussion at the beginning of this section, we know that the concordance
D can be obtained by taking the identity concordance L0 × [0, 1] and “tubing in”
unknotted, unlinked 2-spheres S1, . . . , Sn using embedded annuli T1, . . . , Tn. These
annuli are the boundaries of embedded 3-dimensional 1-handles h1, . . . , hi in R3 ×
[0, 1], where each hi connects L0 ×[0, 1] with Si and is disjoint from Sj , for j += i.
Then, by Proposition 1 and the functoriality properties of the corresponding foam
homology theories, we get:

H2(D) = H2(L0 × [0, 1]) = idH2(L0),

H3(D) = ±H3(L0 × [0, 1]) = ±idH3(L0), and

Hn(D) = qHn(L0 × [0, 1]) = q idHn(L0), for all n ≥ 4,

where q ∈ Q∗. Therefore,

H2(C) ◦ H2(C) = idH2(L0), H3(C) ◦ H3(C) = ±idH3(L0), and

Hn(C) ◦ Hn(C) = q idHn(L0), for some q ∈ Q∗.

In all of the above cases, the composition Hn(C) ◦ Hn(C) is a bijective function,
for each n ≥ 2. Hence for each n ≥ 2, Hn(C) is an injective map and Hn(C) is
surjective.

Remark 3 To our knowledge, it is not known whether the sl(n) foam homology
theory for n ≥ 4 is purely functorial with respect to link cobordisms. But it is known
that it is functorial up to multiplication by a non-zero rational number (see [39,
Proposition 8.5]). This is the reason for using a q ∈ Q∗ in the above proof, for the
case of n ≥ 4. Similarly, the universal sl(3) link homology is known to be functorial
at least up to a unit in Z (see [40, Proposition 2.8]), therefore the± sign in the above
proof for the case of n = 3.

As a consequence of Theorem 1, we obtain that the homology theories Hn, for
all n ≥ 2, give obstructions to ribbon concordance. For any concordance C between
links and any n ≥ 2, the map Hn(C) preserves both the quantum and homological
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grading. Then the proof of the theorem implies that for any bigrading (i, j) and
n ≥ 2, Hi,j

n (L0) embeds inHi,j
n (L1) as a direct summand.

4 Gordian Distance and Spectral Sequences in Khovanov
Homology

Lee [29, Section 4] defined an endomorphism of the Khovanov homology of a
knot with coefficients in Q, and Rasmussen [47, Theorem 2.1] showed that Lee’s
endomorphism gives rise to a spectral sequence, called the Lee spectral sequence,
whoseE1 page is isomorphic to the Khovanov homology of the knot. Shumakovitch
[51, Theorem 4.1.A] defined a version of Lee’s spectral sequence with coefficients
in the finite field Fp of order p, for an odd prime p. We refer to the above spectral
sequences as the Lee spectral sequence with R coefficients, where R is either Q or
Fp for an odd prime p. A spectral sequence collapses at the kth page if Ek−1 += Ek

and Ek = Em for all m ≥ k. When R = Q or Fp, define pgLee(K;R) to be the
page at which the Lee spectral sequence with R coefficients collapses. Similarly,
Bar-Natan [4, Subsection 9.3] defined a variant of Khovanov homology with F2
coefficients. Turner [53, Theorem 3.2] showed that Bar-Natan’s variant gives rise to
a spectral sequence similar in spirit to the Lee spectral sequence. Define pgBN(K)

to be the page at which the Bar-Natan spectral sequence collapses.
The Gordian distance d(K1,K2) between two knots K1 and K2 is the minimum

number of crossing changes necessary to transform K1 into K2. The most famous
Gordian distance is the unknotting number u(K) of a knot K , which is the Gordian
distance betweenK and the unknot. Kawauchi [21, Definition 1.2] similarly defined
the alternation number alt(K) of a knot K to be the minimum Gordian distance
betweenK and the set of alternating knots. The Khovanov homologyKh(K;R) of a
knot over R is homologically thin if there is an integer s such thatKhi,j (K;R) = 0,
for j−2i += s±1; that is,Kh(K;R) is homologically thin ifKh(K;R) is supported
entirely in two adjacent diagonals j − 2i = s ± 1. Define dthin(K;R) to be the
minimum Gordian distance betweenK and the set of knots that have thin Khovanov
homology over R. Because every alternating link has thin Khovanov homology over
R, for all rings R that we consider, it follows that dthin(K;R) ≤ alt(K).

This section is organized as follows: the results in Sect. 4.1 are followed by
examples in Sect. 4.2, which illuminate the proofs provided in Sect. 4.3.

4.1 Results

For any real number x, define .x/ to be the ceiling of x; that is, .x/ is the least
integer that is greater than or equal to x. The next two results relate dthin(K;R)
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and alt(K) with the pages pgLee(K;R), pgBN(K) at which the Lee and Bar-Natan
spectral sequences collapse.

Theorem 2 Let K be a knot, and let R be Q or Fp, where p is an odd prime. Then

pgLee(K;R) ≤
⌈
dthin(K;R)+ 3

2

⌉
≤

⌈
alt(K)+ 3

2

⌉
. (1)

Theorem 3 Let K be a knot. Then

pgBN(K) ≤ dthin(K;F2)+ 2 ≤ alt(K)+ 2. (2)

The Turaev genus of a knot is an invariant that measures how far a knot is from
being alternating in a different way than the alternation number, and it is defined
as follows. Each crossing in a knot diagram D has an A-resolution . and a
B-resolution . The all-A Kauffman state of D is the collection of simple closed
curves obtained by choosing an A-resolution for each crossing, and similarly the
all-B Kauffman state of D is the collection of simple closed curves obtained by
choosing a B-resolution for each crossing.

The knot diagram D has a Turaev surface of genus

gT (D) = 1
2
(2+ c(D) − sA(D) − sB(D)),

where c(D) is the number of crossings in D, and sA(D) and sB(D) are the number
of components in the all-A and, respectively, all-B Kauffman states of D. The
Turaev genus gT (K) of a knot K is defined as follows:

gT (K) = min{gT (D) | D is a diagram of K}.

It is known that a knot is alternating if and only if its Turaev genus is zero [52,
Lemma 2]. The next result is a version of Theorems 2 and 3.

Theorem 4 Let R = Q or Fp for an odd prime p. For any knot K ,

2 pgLee(K;R) ≤ gT (K)+ 4 and pgBN(K) ≤ gT (K)+ 2.

There are knots with arbitrarily large Turaev genus and alternation number one [38,
Proposition 4.2]. Also, there are knots with Turaev genus one that are conjectured
to have arbitrarily large alternation number, and the existence of such knots would
show that Theorem 4 does not immediately follow from Theorems 2 and 3.

We first give examples of how Theorems 2 and 3 can be used, and then we prove
each result.
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4.2 Examples

Either side of the inequalities in Theorems 2 and 3 can provide insight into the
other. Example 1 gives a family of knots all of whose alternation numbers are one,
but whose Khovanov homology becomes more and more complicated in terms of
width. Despite having complicated Khovanov homology, Theorem 2 implies that
the Lee spectral sequence for this family of knots collapses at or before the second
page, and Theorem 3 implies that the Bar-Natan spectral sequence collapses at or
before the third page.

We remark that Alishahi and Dowlin [2, Theorem 1.3] proved that if the
unknotting number of a (nontrivial) knot is one or two, then the Lee spectral
sequence collapses at the second page. However, many knots in Example 1 have
unknotting number greater than two, and thus the results from [2] cannot be used
for those knots.

Examples 2, 3, and 4 describe knots where the page at which the relevant spectral
sequence collapses gives a nontrivial lower bound on the alternation number of the
knot.

Before describing the examples in detail, we remind the reader of some of
the properties of the Lee and Bar-Natan spectral sequences. The map on the
Er page of the Lee spectral sequence increases the homological grading by one
and the polynomial grading by 4r . Similarly, the map on the Er page of the
Bar-Natan spectral sequence increases the homological grading by one and the
polynomial grading by 2r . Khovanov homology with F2 coefficients splits as a
direct sum of two copies of the reduced Khovanov homology with F2 coefficients;
that is,Khi,j (K;F2) ∼= K̃h

i,j−1
(K;F2)⊕K̃h

i,j+1
(K;F2). The Bar-Natan spectral

sequence has this same behavior of splitting into two copies; see [53, Subsection 3.3]
for details.

Example 1 For any pair of positive integers m and n, de los Angeles Hernandez
[15, Section 3] constructed the hyperbolic knot K(m, n) whose diagram is depicted
in Fig. 2 and whose alternation number is one. Therefore, Theorem 2 implies that
the Lee spectral sequence of K(m, n) collapses at or before the second page, and
Theorem 3 implies that the Bar-Natan spectral sequence of K(m, n) collapses at or
before the third page.

Moreover, the width of the Khovanov homology of K(m, n), that is the fewest
number of adjacent j −2i diagonals supportingKh(K(m, n)), is n+2 [15, Lemma
3.2].

Recall that if the unknotting number of a (nontrivial) knot is one or two, then the
Lee spectral sequence collapses at the second page [2, Theorem 1.3]. If n+ 2 < m,
then one can see that K(m, n) has unknotting number greater than two, as follows.
Dasbach and Lowrance [14, Proposition 5.3] proved that the signature of a knot K
with diagram D satisfies the inequality

sA(D) − c+(D) − 1 ≤ σ(K) ≤ −sB(D)+ c−(D)+ 1,
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2m+1

2n

Fig. 2 A diagram of the knot K(m, n)

Fig. 3 The knot on the left has a positive full twist in the rectangle labeled +1. A portion of its
Khovanov homology withQ coefficients is on the right. The highlighted yellow generator survives
to the third page of the spectral sequence but not to the E∞ page

where sA(D) and sB(D) are the number of components in the all-A and all-B
Kauffman states, respectively, and c+(D) and c−(D) are the number of positive and
negative crossings inD. Applying this inequality to the diagram ofK(m, n), we see
that −2m−2n ≤ σ(K) ≤ −2m+2n. Because |σ(K)| ≤ 2u(K), if n+2 < m, then
u(K(m, n)) > 2. Hence, Theorem 1.3 from [2] cannot be used for knots K(m, n)

with n+ 2 < m.

In Examples 2, 3, and 4, we show the Khovanov homology of certain knots.
The number in the (i, j) entry of the table in Fig. 3 is the rank of Khi,j (K;R).
All Khovanov homology computations for these examples are obtained using the
program JavaKh-v2 available on the Knot Atlas [5].

Example 2 Manolescu and Marengon [41, Theorem 2.1] gave an example of a
knot K whose Lee spectral sequence over Q does not collapse at the second page.
This knot K and a portion of its Khovanov homology Kh(K,Q) appear in Fig. 3.
Because Kh1,1(K;Q) is nontrivial, while Kh0,−3(K;Q) and Kh2,5(K;Q) are
trivial, it follows that pgLee(K;Q) > 2. Changing the two crossings of K circled
in Fig. 3 transforms the knot into the figure-eight knot, and thus alt(K) ≤ 2. Using
now Theorem 2, it follows that alt(K) = 2.
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Table 1 The Khovanov homology of T5,6 with F3 coefficients. The highlighted yellow generator
survives to the third page of the spectral sequence, but not to the E∞ page

Example 3 The Lee spectral sequence for the (5, 6)-torus knot T5,6 with Q
coefficients collapses at the second page; however, this is not the case when
the coefficients are F3. Table 1 shows the Khovanov homology of T5,6 with F3
coefficients. Because Kh13,43(T5,6;F3) is nontrivial while Kh12,39(T5,6;F3) and
Kh14,47(T5,6;F3) are trivial, it follows that pgLee(T5,6;F3) > 2. Theorem 2 implies
that 2 ≤ dthin(T5,6;F3) ≤ alt(T5,6).

Example 4 The Khovanov homology of T7,8 with F2 coefficients is shown in
Table 2. Since i = 26 is the maximum homological grading where Khi,j (T7,8;F2)

is nontrivial, the summandsKh26,79(T7,8;F2) andKh26,81(T7,8;F2)must be paired
with the summands Kh25,75(T7,8;F2) and Kh25,77(T7,8;F2) on the third page
of Bar-Natan spectral sequence. Consequently, the summands Kh25,79(T7,8;F2)

and Kh25,81(T7,8;F2) must be paired with the summands Kh24,71(T7,8;F2) and
Kh24,73(T7,8;F2) on the fourth page of the Bar-Natan spectral sequence. Therefore
pgBN(T7,8) ≥ 4, and thus Theorem 3 implies that 2 ≤ dthin(T7,8;F2) ≤ alt(T7,8).
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Table 2 The Khovanov homology Kh(T7,8;F2) of T7,8. The highlighted yellow generators
survive to the E3 page, and the highlighted red generators survive to the E4 page of the Bar-Natan
spectral sequence

4.3 Proofs

The Lee and Bar-Natan spectral sequences both arise as spectral sequences of
filtered complexes. The filtration comes from adding the Khovanov differential
to different boundary maps that increase the polynomial/quantum grading. The
Lee and Bar-Natan spectral sequences arise from maps dLee : CKhi,j (D;R) →
CKhi+1,j+4(D;R) and dBN : CKhi,j (D;F2) → CKhi+1,j+2(D;F2), respec-
tively. For any knot diagram D, the homology of (CKh(D;R), d + dLee) is
isomorphic to R ⊕ R situated in homological grading zero, and similarly, the
homology of (CKh(D;F2), d + dBN) is isomorphic to F2 ⊕ F2 situated in
homological grading zero.

Bar-Natan [4, Subsection 9.3] constructed a deformation of Khovanov homology
using coefficients in F2[h] for a formal variable h instead of F2 and using
the differential d + hdBN instead of the usual Khovanov differential d. Turner
later viewed the Bar-Natan construction through the lens of spectral sequences
as described above. Alishahi and Dowlin [2, Subsection 2.2] similarly encapsu-
lated the Lee endomorphism as part of a deformed complex with coefficients in
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Q[X, t]/(X2 = t), where the differential in this complex is d + tdLee. Just as with
Lee’s endomorphism, one can replace Q with Fp, for any odd p, and all of the
results of [2] hold without changing their proofs.

An element α in the homology of Bar-Natan’s complex is h-torsion of order n if
hnα = 0 but hn−1α += 0. Let uh(K) be the maximum order of any torsion element
in the homology of Bar-Natan’s complex. Then uh(K)+ 1 = pgBN(K) [1, Lemma
3.2].

Similarly, an element α in the deformed Lee homology over R = Q or Fp, for an
odd prime p, is X-torsion of order n (respectively t-torsion of order m) if Xnα = 0
butXn−1α += 0 (respectively tmα = 0 but tm−1α += 0). Alishahi and Dowlin proved
the following facts about uX(K;Q) and ut (K;Q). We observed that the proofs of
these facts when R = Q also apply when using Fp coefficients. As such, we state
the following for R = Q or Fp, where p is an odd prime.

1. If Kh(K;R) is homologically thin, then uX(K;R) = 1;
2. |uX(K+;R) − uX(K−;R)| ≤ 1, where K+ and K− are knots differing by a

single crossing change;
3. .uX(K;R)/2/ = ut (K;R), and
4. ut (K)+ 1 = pgLee(K;R).

We are now in a position to prove Theorems 2, 3, and 4.

Proof of Theorem 2 Let dthin(K;R) = d. Hence, there is a sequence of knotsK =
K0,K1, . . . , Kd such that Ki+1 is obtained from Ki via a crossing change for all
i = 0, . . . , d − 1, and Kh(Kd;R) is homologically thin. Item (1) above implies
that uX(Kd;R) = 1, and item (2) implies that uX(K;R) ≤ d + 1. Then item
(3) implies that ut (K;R) =

⌈
uX(K;R)

2

⌉
≤

⌈
d+1
2

⌉
. Finally, item (4) implies that

pgLee(K;R) = ut (K;R) + 1 ≤
⌈
d+3
2

⌉
, as desired. The second inequality in the

theorem follows at once from the fact that dthin(K;R) ≤ alt(K), as seen in the
beginning of this section.

Proof of Theorem 3 Let dthin(K;F2) = d. Hence there is a sequence of knots
K = K0,K1, . . . , Kd such that Ki+1 is obtained from Ki via a crossing change
for i = 0, . . . , d − 1, and Kh(Kd;F2) is homologically thin. By Alishahi [1,
Corollary 3.3], since Ki and Ki+1 differ by a crossing change, it follows that
|uh(Ki) − uh(Ki+1)| ≤ 1, and thus uh(K) ≤ d + uh(Kd). Since Kh(Kd;F2)

is homologically thin, pgBN(Kd) ≤ 2. But pgBN(Kd) = uh(Kd) + 1, and thus
uh(Kd) ≤ 1. It follows that uh(K) ≤ d + 1, and therefore pgBN(K) ≤ d + 2, as
desired.

Proof of Theorem 4 The width w(Kh(K;R)) of the Khovanov homology over a
ring R is defined as

w(Kh(K;R)) = 1+ 1
2

(
max{j − 2i | Khi,j (K;R) += 0} − min{j − 2i | Khi,j (K;R) += 0}

)
.
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Champanerkar, Kofman, and Stoltzfus [11, Corollary 3.1] proved that
w(Kh(K;R)) ≤ gT (K)+2. Since the Lee differential on the Er page increases the
homological grading i by one and the polynomial grading j by 4r , if pgLee(K;R) =
n, then w(Kh(K;R)) ≥ 2n − 2. Therefore 2 pgLee(K;R) ≤ gT (K) + 4, as
desired. Similarly, since the Bar-Natan differential on the Er page increases the
homological grading by one and the polynomial grading by 2r , if pgBN(K) = n,
then w(Kh(K;F2)) ≥ n. Therefore, pgBN(K) ≤ gT (K)+ 2.
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