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ABSTRACT

We present the first near all-sky yield of oscillating red giants from the prime mission data of NASA’s

Transiting Exoplanet Survey Satellite (TESS). We apply machine learning towards long-cadence TESS
photometry from the first data release by the MIT Quick-Look Pipeline to automatically detect the
presence of red giant oscillations in frequency power spectra. The detected targets are conservatively
vetted to produce a total of 158,505 oscillating red giants, which is an order of magnitude increase

over the yield from Kepler and K2 and a lower limit to the possible yield of oscillating giants across
TESS’s nominal mission. For each detected target, we report effective temperatures and radii derived
from colors and Gaia parallaxes, as well as estimates of their frequency at maximum oscillation power.

Using our measurements, we present the first near all-sky Gaia-asteroseismology mass map, which
shows global structures consistent with the expected stellar populations of our Galaxy. To demonstrate
the strong potential of TESS asteroseismology for Galactic archeology even with only one month of
observations, we identify 354 new candidates for oscillating giants in the Galactic halo, display the

vertical mass gradient of the Milky Way disk, and visualize correlations of stellar masses with kinematic
phase space substructures, velocity dispersions, and α-abundances.

Keywords: asteroseismology — stars: oscillations — methods: data analysis

1. INTRODUCTION

With high-precision, uninterrupted photometry from
previous space-borne missions CoRoT (Baglin et al.
2006), Kepler (Borucki et al. 2010) and K2 (Howell
et al. 2014), red giant asteroseismology has emerged as a
powerful tool for probing stellar populations around the
Milky Way. The precise measurements of masses, radii,
and ages across thousands of field red giants offered by
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asteroseismology has brought forth new avenues for de-
tailed studies of Galactic archeology whereby such mea-
surements are combined with kinematic and spectro-
scopic information to build a map describing the chem-
ical and dynamical evolution of the Milky Way (e.g.,
Miglio et al. 2013; Casagrande et al. 2016; Silva Aguirre
et al. 2018; Sharma et al. 2019; Miglio et al. 2021).

However, efforts to apply asteroseismology across the
Galaxy have been mainly hampered by the size of the
observing windows provided by previous space missions.
CoRoT observed a number of 4 square degree fields
focused towards two opposite directions and observed
∼106 red giants (Baglin et al. 2016), for which ∼3,000

thus far have had seismic measurements (de Assis Per-
alta et al. 2018). Meanwhile, Kepler observed one re-
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gion in the northern hemisphere spanning 100 square de-
grees, which resulted in ∼20,000 detections (Hon et al.
2019). The K2 mission observed 18 ‘Kepler field’-sized
regions along the ecliptic, motivating the establishment
of the K2 Galactic archeology Program (Stello et al.
2017; Zinn et al. 2020), which will further increase the
number of detections by ∼30,000 (Zinn et al., in review).
Now, we seek to extend the scope of red giant asteroseis-
mology towards the entire sky with NASA’s Transiting
Exoplanet Survey Satellite (Ricker et al. 2014, TESS).
Throughout the first two years of its nominal mission,
TESS surveyed nearly the entire sky by observing 13 dis-
tinct sectors in both northern and southern hemispheres.
Each sector covers a 96◦x 24◦ field of view and yields Full
Frame Images (FFIs) that provide high-precision flux
measurements of millions of stars for up to 27 days at
a 30-minute cadence. Meanwhile, stars in overlapping
sectors are observed for at least 27 days, with longer
observational duration typically for stars closer to the

ecliptic poles where there is maximal overlap between
sectors. This unprecedented level of sky coverage is ex-
pected to increase the number of red giants with de-
tected oscillations by about an order of magnitude over

its predecessors.
A big challenge faced by asteroseismology with TESS

is the survey’s observational duration. The majority of

targets from the first two years of TESS observations
will only be observed for 27 days, resulting in lower fre-
quency resolution compared to Kepler and K2. How-

ever, the asteroseismic inference of stellar populations
using TESS data is still viable. Depending on the avail-
ability of precise seismic measurements, Silva Aguirre
et al. (2020) showed that it is possible to obtain precision

levels of up to ∼3% for radii, ∼5% for mass, and ∼20%
for ages when incorporating both spectroscopy and par-
allax information in modelling the brightest (V ∼ 6−7)

TESS red giants. Similar precision levels were found by
Stello et al. (2021) when comparing seismic results from
TESS data against those from 4-year Kepler data for
∼2,000 red giants observed by both Kepler and TESS.
Furthermore, Mackereth et al. (2021) recovered median
mass uncertainties of ∼ 8% and age uncertainties of
∼ 26% for ∼1,700 red giants with G < 11 near the
southern ecliptic pole, where FFI targets were observed
by TESS for up to a year. Mackereth et al. (2021) ad-
ditionally indicate that the seismic ages of giants from

TESS are sufficiently precise to distinguish chemically-
and kinematically-defined structures within the Milky
Way disk. Although the current outlook for red giant as-
teroseismology with TESS is promising, it has yet to be
extended to the majority of TESS FFI targets. Not only
is this because significantly more effort is required to sys-

tematically detect populations of oscillating red giants
across the millions of TESS FFI targets, but detailed
seismic parameters like the large frequency separation
are difficult to measure with one-month long observa-
tions (Hekker et al. 2012; Mosser et al. 2019; Mackereth
et al. 2021; Stello et al. 2021). The frequency at maxi-
mum oscillation power, νmax, however, can be measured
from any star with a detected oscillation power excess,
making it a more accessible seismic measurement for in-
ferring fundamental stellar properties.

The systematic detection of red giant oscillations,
which has previously posed a significant challenge in the
field, can now be facilitated using machine learning al-
gorithms (Hon et al. 2018b, 2019). Such tools are vital
in the era of TESS given the enormous volume of data
the mission will provide, and indeed particular empha-
sis on the analyses of TESS-like datasets in asteroseis-

mic machine learning has been provided in recent work
(e.g., Armstrong et al. 2016; Hon et al. 2018a; Bugnet
et al. 2019; Kgoadi et al. 2019; Kuszlewicz et al. 2020;

Audenaert et al. 2021). However, an important aspect
of supervised learning — which comprise most of cur-
rent machine learning algorithms in asteroseismology —
is the presence of training data that is expected to be

representative of the data upon which inference is to
be performed. In comparison to Kepler and K2, TESS
has photometric qualities and instrumental noise sources

that are unique to its observing instrument. This prop-
erty makes it challenging to generalize algorithms that
learn from Kepler/K2 data towards TESS data.

Despite these challenges, we proceed with applying
machine learning to perform the first all-sky detection
of red giants across the full two-year TESS Primary
Mission. We examine all light curves that have been

extracted from FFIs by the MIT Quick-Look Pipeline
(Huang et al. 2020a,b, QLP) as High Level Science Prod-
ucts. In conjunction with detecting a substantial num-

ber of oscillating TESS red giants, we also provide a
‘first look’ at TESS’s asteroseismic potential for full-sky
Galactic archeology.

2. DATA

We use all FFI light curves from the QLP team’s
first data release1, which comprises observations across
Sectors 1-26. This data release includes all targets
brighter than a TESS magnitude of 13.5 and contains
24,376,080 light curves that have an observing cadence
of ∼30 minutes. In this study, we use only the ‘raw’
light curves obtained using simple aperture photome-

1 https://archive.stsci.edu/hlsp/qlp/

https://archive.stsci.edu/hlsp/qlp/
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Figure 1. A comparison of red giant frequency power spec-
tra from Kepler and TESS. Each row corresponds to a red
giant oscillating at a specific νmax value (red line). Power
spectra in the left column correspond to 27-day light curves
from Kepler, while those in the right column correspond to
the same Kepler targets but observed by TESS.

try (SAP FLUX). We do not use the detrended light
curves (KSPSAP FLUX), which are optimized for planet

searches and therefore have stellar variability over long
timescales filtered out. Additionally, we only use times-
tamps with a good quality flag (QUALITY=0). Next, we
high-pass filter each light curve using a boxcar filter with
a width of 2-days and compute the light curve’s power
spectral density using the generalized Lomb-Scargle pe-
riodogram (Lomb 1976; Scargle 1982). During this
processing, we exclude light curves which have most
(≥ 95%) of their timestamps empty, resulting in a total

of 23,962,744 power spectra corresponding to 14,702,113
unique stars observed by TESS2.

3. METHOD

3.1. Neural Networks

We use the deep learning method as described by Hon
et al. (2018b) to ‘visually’ detect the presence of red gi-
ant oscillations within frequency power spectra. In par-
ticular, two convolutional neural networks are applied
towards 2D images of log-log3 power spectra. By bin-
ning each star’s power spectrum into a 128x128 binary
image, the first neural network outputs a classification
score, pdet, between 0 and 1 indicating the likelihood
that red giant oscillations are visible within the spec-
trum. The second network, which trained independently
from the first, is a regression network that measures the
frequency at maximum oscillation power, νmax and its

corresponding uncertainty, σνmax . Specific details of the
structure of both networks are provided in Appendix A.

3.2. Training Data

To train and test the classifier, we use KEPSEISMIC4

light curves (Mathur et al. 2019) of 196,581 Kepler tar-
gets of which 21,914 were identified to be oscillating
red giants from the detections provided by Hon et al.

(2019). For the νmax regression network, we use a sub-
set of the oscillating giants, specifically 16,194 red giants
that have νmax values measured from the asteroseismic
data pipeline by Yu et al. (2018). For both classifica-

tion and regression datasets, we allocate 70% of data to
be used for training, 15% to be used to internally vali-
date and tune the network, and the remaining 15% for

network testing, which we describe in Section 3.3.
Because we want to train the deep learning method on

light curves of comparable duration to TESS data, each
4-year light curve in the training sets is segmented into
multiple, unique 27-day segments. Due to the stochastic
behaviour of solar-like oscillations, there is, however, no
guarantee that oscillations detectable in a 4-year light

curve will be visible over its constituent 27-day light
curve segments. Using 4-year νmax measurements from
Yu et al. (2018), we apply the formalism of Chaplin
et al. (2011) to statistically assess the significance of
the oscillations within ±0.66 ν0.88

max around νmax for the

2 A fraction of targets are observed in multiple TESS sectors within
overlapping fields of view, resulting in more power spectra than
unique stars within the data release.

3 The power spectra are represented in log-frequency on the x-axis
and log-power density on the y-axis.

4 https://archive.stsci.edu/prepds/kepseismic/

https://archive.stsci.edu/prepds/kepseismic/
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Figure 2. The estimated difference in yield for oscillat-
ing Kepler red giants between 4-year Kepler data and 1-
month TESS data, depicted with a νmax-magnitude diagram
in panel (a) and a Kiel diagram in panel (b). The νmax and
log(g) values shown here are from Yu et al. (2018), while
the estimate for the 1-month yield is calculated using the
Chaplin et al. (2011) formalism for predicting seismic yields
adapted to a 27-day observations following Campante et al.
(2016); Schofield et al. (2019).

power spectrum of each 27-day light curve segment5.
For a power spectrum of a light curve segment to be
included in the training set, it must have an oscillation

SNR exceeding the 1% false alarm threshold of a pure
white noise spectrum. Because the νmax for each power
spectrum is already known from 4-year Kepler data, we
measure the oscillation SNR directly from the spectrum
rather than estimating it from fundamental stellar prop-
erties as per the original Chaplin et al. (2011) approach.
Our final classification training set comprising Kepler

data contains 714,820 light curves showing red giant os-
cillations and 4,959,892 light curves without red giant
oscillations. Meanwhile, there are a total of 550,786 red
giant power spectra for training the νmax regression net-
work.

5 Following Mosser et al. (2012), this frequency range is approxi-
mately twice the full width at half maximum of the oscillation
power envelope.

One major challenge with using our Kepler training
set is its difference in photometric data quality compared
to TESS. In particular, TESS observations have lower
photometric precision levels and are more susceptible
to crowding effects (Sullivan et al. 2015). Additionally,
TESS data may contain poorly characterized systematic
noise. Power spectra from TESS data are therefore ex-
pected to have greater noise levels compared to Kepler
data that we use for training, as demonstrated in Fig-
ure 1. As a result, the visibility of the oscillations for
low luminosity (high νmax) red giants, particularly for
those at the red giant branch, are diminished when ap-
proaching fainter TESS magnitudes as shown in Figure
Figure 2a. Here, it can be seen that for TESS mag-
nitudes ? 10, high νmax oscillations that can be seen
with 4 years of data are not expected to be observed in
1 month of data, in agreement with the analytical pre-
dictions made by Mosser et al. (2019). Consequently,
we expect to detect oscillations primarily in giants with
log(g) ? 3.0 dex as shown in Figure 2b.

Besides the expected yield, the difference in photo-
metric data quality between Kepler and TESS will also
affect how well our networks can perform; it is thus

important to identify this difference in performance so
that we can determine a decision threshold that can
adequately recover oscillating giants from TESS data.

3.3. Setting a Network Decision Threshold

3.3.1. Classification Thresholds

Figure 3a demonstrates how changing the acceptance
threshold for the classifier affects the recall (sample com-
pleteness) and precision (sample purity) of the resulting
oscillating giant yield of our 27-day Kepler test data.

The recall metric reports the fraction of true oscillating
giants within the test data that are successfully recov-
ered by the classifier, while precision reports the fraction
of accepted test stars that are truly oscillating giants.
A lower acceptance threshold, pthresh, accepts more tar-
gets and thus has greater completeness but at the cost of
lower purity (more false positives). Conversely, a higher
pthresh may miss a greater number of genuinely oscil-
lating giants (lower recall) but is less likely to admit
false positives. Indeed, Figure 3b shows that a strict

threshold of pthresh = 0.95 significantly reduces the false
positive rate across all magnitudes in the test set. Be-
cause we expect raw QLP light curves to contain greater
white noise levels and uncorrected instrumental noise
compared to our Kepler test set, we choose to be con-
servative in accepting positive detections and thus adopt

pthresh = 0.95.
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Figure 3. Performance of the classifier network on 27-day
Kepler test data. (a) Precision-recall plot for different ac-
ceptance thresholds of the network. Two particular thresh-
olds are highlighted: a default threshold of pthresh = 0.5
and a stricter threshold of pthresh = 0.95 that we adopt in
this study. (b) False positive rate as a function of Kepler
magnitude for different pthresh. The decrease towards fainter
magnitudes suggests that most false positives in this test set
are not from pure white noise spectra, but from spectra con-
taining signals from other forms of variability like binarity
or rotation, which can confuse the classifier.

To assess how greater noise levels from TESS will af-
fect our ability to detect oscillations, we evaluate the
classifier’s completeness on synthetic TESS-like light
curves created using celerite6(Foreman-Mackey et al.
2017), which models stochastic variability in astrophys-
ical time series using Gaussian processes. Artificial red
giant light curves are generated using current informa-
tion available about oscillation mode parameters and the
granulation background. The granulation background
emulates ‘model F’ from Kallinger et al. (2014) with pa-

rameter values derived from the scaling relations found
therein. The red giant universal pattern (Mosser et al.

6 https://celerite.readthedocs.io/

Figure 4. Completeness of the classifier on a test set of syn-
thetic TESS red giants. (a) The recovery rate of oscillating
red giants as a function of TESS magnitude and νmax when
using an acceptance threshold, pthresh = 0.5. (b) Similar to
panel (a) but with pthresh = 0.95. The red line in each panel
delineates the boundary of the test set defined as where the
height of the oscillation power excess is equal to ten times
the white noise level in the power spectra.

2011) is used to generate frequencies of ` = 0, 2, 3 oscilla-
tion modes from a given νmax value, with amplitudes es-
timated from the scaling relations given in Mosser et al.

(2012) and the mixed ` = 1 oscillation modes computed
according to the formalism by Vrard et al. (2016) and
Mosser et al. (2018). Because the mixed mode param-
eters depend on red giant evolutionary states, we de-
termine evolutionary states for a synthetic red giant
with a given νmax by sampling from a known νmax-
dependent distribution of known Kepler red giant evolu-
tionary states (Elsworth et al. 2019). Next, we convert
all derived oscillation parameters into the parameteriza-
tion accepted by the simple harmonic oscillator kernel
in celerite following Pereira et al. (2019) and subse-
quently generate light curves of 27-day duration. To
mimic the TESS observing window, we include a 1-day
gap in the middle of the light curve, which simulates the

data downlink event. Finally, we add white noise into
the light curves following the TESS long-cadence noise
properties described by Sullivan et al. (2015), where we

https://celerite.readthedocs.io/
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Figure 5. (a) The distribution of estimated fractional un-
certainties of the νmax regression network for the Kepler red
giant test set, which comprises 15% of the 16,194 red giants
analyzed by Yu et al. (2018) as described in Section 3.2. (b)
Same as panel (a) but for the simulated TESS test set. The
red lines delineate boundaries that we use to indicate a con-
fident estimate of νmax.

assume observations with no instrumental noise contri-
bution and an ecliptic latitude of 30◦. Examples of sim-
ulated power spectra are shown in Appendix B.

We simulate light curves across a uniform νmax range
of [5, 250] µHz and a uniform TESS magnitude range
of [6.0, 13.5] at the same time. Figure 4 shows the
completeness of the classifier on a synthetic test set of
152,520 TESS red giants, where we can observe the per-
formance of the network across a range of magnitudes
and νmax. As expected, using a larger pthresh primarily
affects the detection completeness of the test set near

its upper boundary (red line), which is where the white
noise levels in the simulated power spectra becomes com-
parable to the oscillation amplitudes. Both panels in
Figure 4 distinctly show low detection completeness for
the faint and luminous giants, i.e., stars with TESS mag-
nitudes fainter than 11 and νmax > 25µHz. As discussed

previously by Hon et al. (2018b), an important feature

of a low νmax oscillating giant to the classifier is the vis-
ibility of the granulation profile, i.e., the slope of the
red noise in power spectra. The high white noise lev-
els for fainter stars significantly diminish the visibility
of the granulation slope (see the examples in Appendix
C), which makes the classifier less confident in identify-
ing oscillations in such stars.

3.3.2. Regression Threshold

Additionally, we set a criterion based on the properties
of the νmax regression network, which is trained indepen-
dently of the classifier. Figure 5 shows a comparison of
fractional νmax uncertainties from the network across the
Kepler (real) and TESS-like (simulated) test sets in this
study. The uncertainties shown for the Kepler test set
represent the best-case scenario for the network because
the νmax regression network is trained on Kepler data.
Results on the synthetic test set, which has a broader

range of white noise levels compared to its Kepler coun-
terpart, show a broader scatter of uncertainties — this
includes a larger upwards scatter for fainter targets with

νmax > 25µHz that we associate with the network’s in-
ability to locate a distinct oscillation power excess for
such stars. We therefore determine a piecewise bound-

ary (in red) below which we consider the network’s νmax

estimate to be consistent with a correct identification
of an oscillation power excess. This boundary preserves
over 96% of the test set estimates in Figure 5 and is

described by σνmax/νmax = 20% for νmax < 90µHz and
σνmax

/νmax = 10% for νmax ≥ 90µHz.

3.3.3. Threshold Summary

The combined criteria that we use in our networks are

as follows:

• pdet ≥ 0.95 from the classifier.

• σνmax
/νmax ≤ 20% for stars with νmax < 90µHz.

• σνmax
/νmax ≤ 10% for stars with νmax ≥ 90µHz.

These criteria are heuristic approaches that prioritize
the precision of the detection yield using our methods.
We apply these concessions because we aim to report
the highest quality detections from TESS QLP data to
cater towards optimizing early spectroscopic follow-up

across both northern and southern hemispheres of the
sky. Additionally, we assert that the recall and preci-
sion metrics reported in Figure 3 are highly optimistic
of our method’s true performance on real TESS data.
Their primary purpose is to guide us in the selection of
pdet for our preliminary analysis over TESS QLP data.
An important consequence of this is that our reported

results in the forthcoming sections are not expected to
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Figure 6. νmax-magnitude distribution of all initial detec-
tions from the TESS QLP data. The number N corresponds
to the number of individual light curves whose power spec-
tra show red giant oscillations, while the number NU corre-
sponds to the total number of unique oscillating giants.

represent a complete population of all oscillating giants
from TESS FFIs. To properly assess the completeness
of our networks in detecting oscillating giants, we re-
quire more principled approaches to calibrating decision

thresholds by benchmarking our networks on real, la-
beled TESS data. Such a dataset has yet to be made
because the systematic differences in photometric data

quality between TESS and Kepler have yet to be fully
quantified, in addition to the recency of FFI light curves
extracted in bulk. We will thus investigate the detection
completeness of near all-sky TESS data in forthcoming

work.

4. SEISMIC DETECTION

4.1. Preliminary Yield

Figure 6 shows the initial detection result from our
neural networks comprising 202,322 unique FFI targets
that meet the threshold criteria outlined in Section 3.3.
However, at this stage in our analysis, not all detected
targets are guaranteed to be red giants because some
are potentially faint non-red giants whose light curves
show red giant oscillations due to flux contamination
(‘blending’) from neighbouring giants. Due to the large
TESS pixels, blending is expected to be particularly
problematic for the detection task for fainter giants. In-
deed, while the decline of detections at TESS magni-

tudes (Tmag) fainter than 10 is expected especially for

Figure 7. (a) A comparison between spectroscopic tem-
peratures from APOGEE DR16 with the values measured
in this work for 6,459 targets in our final yield in Section
5. The red line indicates the one-to-one relation. For visual
clarity, we do not show outliers whose temperatures differ-
ences are beyond the 99.7th percentile range within this set
of targets. (b) Residual differences in temperature defined
as ∆Teff = (isoclassify Teff − APOGEE DR16 Teff). The
dashed lines delineate a 2% interval range representing the
adopted isoclassify Teff uncertainties. The cyan points de-
lineate the observed uncertainty interval by calculating the
dispersion of the residuals across different Teff values.

high νmax giants (c.f. Figure 2), we observe an increase
in the quantity of detected giants for Tmag ? 11 due
to blending. We thus infer that the onset of significant
blending in TESS occurs around Tmag ∼ 12.

4.2. Effective Temperatures and Radii

To eliminate blended targets, we require that each tar-
get has a effective temperature (Teff) and radius (R)
that is representative of an oscillating red giant. We
calculate these stellar parameters for each target in
our preliminary yield using the ‘direct method’ of the
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isoclassify7 stellar classification code (Huber et al.
2017; Berger et al. 2020). The code uses parallaxes from
Gaia EDR3 (Gaia Collaboration et al. 2020) as an input.
These parallaxes are first corrected for zero-point offsets
following the prescription by Lindegren et al. (2020),
which applies corrections to stars with five- and six-
parameter astrometric solutions. For stars brighter than
a Gaia magnitude of 10.8 that are corrected by the five-
parameter offset model, we further subtract 0.015mas
from their corrected parallaxes following the recommen-
dation by Zinn (2021), who identified that the zero-
point model over-corrects the Gaia parallaxes for such
stars through a comparison with Kepler targets with
known asteroseismic parallaxes. Using these corrected
parallaxes, we then calculate distance posteriors using
an exponentially decreasing volume density prior with
a length scale of 1.35 kpc (Bailer-Jones 2015; Astraat-
madja & Bailer-Jones 2016).

We then calculate extinction values, AV , for each star

using the combined 3D dust maps of Drimmel et al.
(2003), Marshall et al. (2006), and Green et al. (2019)
from the mwdust repository8(Bovy et al. 2016), where
we assume an extinction uncertainty of 0.02 mag. These

extinction values are applied to 2MASS K band mag-
nitudes to calculate apparent magnitudes. Bolomet-
ric corrections are inferred by interpolating Teff , log g,

[Fe/H], and AV in the MESA Isochrones and Stellar
Tracks (Choi et al. 2016) bolometric correction tables
(MIST/C3K, Conroy et al., in prep9), where we adopt

an absolute solar bolometric magnitude of 4.74 mag,
as appropriate to reproduce solar values for the bolo-
metric corrections in the MIST grid. These bolometric
corrections, which have an assumed uncertainty of 0.02

mag, are applied to the apparent magnitudes to derive
absolute magnitudes and subsequently values of lumi-
nosities, L. Using 2MASS JHK photometry, we apply

the infrared flux method-based color-Teff relations from
González Hernández & Bonifacio (2009) to infer values
of Teff . Finally, we use L and Teff to estimate R using
the Stefan-Boltzmann relation.

A comparison between our temperature measurements
with those from APOGEE Data Release 16 spectroscopy
(Majewski et al. 2017, DR16) in Figure 7a shows
good levels of agreement and additionally demonstrates
that the residual dispersion between both temperature
sources are generally at the 2% level (Figure 7b). We

therefore approximate σTeff
as 2% of the reported Teff

7 https://github.com/danxhuber/isoclassify
8 https://github.com/jobovy/mwdust
9 http://waps.cfa.harvard.edu/MIST/model grids.html

Figure 8. (a) Radius-temperature plot of all targets in the
preliminary detection sample in Figure 6 (black) and the re-
maining targets after retaining only those with pstat ≥ 0.99.
(b) The νmax-magnitude distribution of the stars in panel (a).
The blue line delineates a detection limit above which white
noise levels are too high to detect visible red giant oscillations
in power spectra. The deficiency of stars at νmax > 20µHz
and Tmag ? 11 is caused by the limitations of our method
as discussed in 3.3.

value. Meanwhile, output estimates for distances, L and
R are reported as their distribution median values from
Monte-Carlo sampling, with 1σ confidence intervals de-
rived from distribution percentiles. Fractional uncer-

tainty estimates are typically 4% for L and 5% for R.
With these fundamental stellar parameters, we now pro-
ceed with the analysis of our seismic sample.

4.3. Removing Blended Targets

Having measured Teff and R for each target, we cal-

culate their statistical detection probabilities, pstat, us-
ing the Chaplin et al. (2011) global SNR estimation ap-
proach that has been adapted to TESS following the
modifications described by Campante et al. (2016) and
Schofield et al. (2019). More specifically, asteroseismic

https://github.com/danxhuber/isoclassify
https://github.com/jobovy/mwdust
http://waps.cfa.harvard.edu/MIST/model_grids.html
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Table 1. List of 158,505 unique TESS targets comprising the final sample in this study. Included are
each target’s TESS magnitude (Tmag), its estimated frequency at maximum oscillation power (νmax), and
measurements of effective temperature (Teff), radii (R), luminosity (L), and distances (d). Values of the
re-normalized unit weight error (ruwe) from Gaia EDR3 (Gaia Collaboration et al. 2020) are included to flag
potential non-single sources whose astrometric solutions may be problematic, which can affect the accuracy
of our radius measurements. Values of mass flag are binary indicators of whether the target’s stellar mass
as estimated using the seismic scaling relation (Equation 1) are within the ‘typical’ mass range of a red giant
from Kepler (see text). The full version of this table is available in a machine-readable format in the online
journal, with a portion shown here for guidance regarding its form and content.

TIC νmax Tmag Teff R L d ruwe mass flag

(µHz) (mag) (K) (R�) (L�) (kpc)

1078 30.8± 2.2 9.7 4629± 92 11.3± 0.5 52.6± 2.3 0.828± 0.012 1.21 1

41959 14.9± 2.2 10.3 4462± 89 14.8± 1.4 77.5± 13.0 1.333± 0.109 2.17 1

2026646 47.0± 5.6 12.8 4415± 88 16.3± 1.2 90.1± 11.0 4.249± 0.250 0.95 0

31635521 112.1 ± 6.1 7.6 4909± 98 6.4± 0.3 21.5± 0.7 0.212± 0.001 1.10 1

51931461 69.8± 4.0 9.3 4803± 96 8.2± 0.4 32.4± 2.1 0.554± 0.015 4.43 1

113288314 7.8± 1.0 9.7 4092± 81 24.6± 1.1 152.1± 7.2 1.348± 0.018 0.97 1

150440218 87.5 ± 5.4 10.4 4815± 96 6.2± 0.3 18.8± 0.7 0.699± 0.005 0.97 1

· · · · · · · · · · · · · · · · · · · · · · · · · · ·

scaling relations are used to predict oscillation and gran-
ulation amplitudes (Chaplin et al. 2011; Kallinger et al.

2014) from Teff and R, while contributions from white
noise and instrumental effects are estimated following
the TESS instrumental specifications by Sullivan et al.

(2015). These quantities are used to estimate the SNR
of oscillations in a power spectrum and subsequently
pstat. The value pstat indicates the probability that the

oscillation SNR exceeds a particular threshold, which
— following Campante et al. (2016)— is the SNR at
which there exists a 5% chance the detected oscillation
signal arises from noise alone. Crucially, pstat is a simple

prediction of how likely oscillations can be observed for
a given TESS target using only its fundamental stellar
parameters and survey properties (e.g., apparent magni-
tude, observing cadence); it therefore does not directly
use information from the observed power spectra of each
target. As a result, our neural network detection algo-
rithm is still needed to directly confirm the presence of
visible oscillations from the observed data. Nonetheless,
pstat removes most of the obvious blends from our neural
network detections. In particular, pstat is small (� 0.99)

for detected targets that either have Teff and R that are
not representative of a red giant or TESS magnitudes
too faint to expect detectable red giant oscillations.

When calculating pstat, we assume that each target
experiences no blending (hence a flux dilution factor of
1) and a negligible systematic noise level (σsys = 0).
However, we do take into account the positional de-

pendence of the background noise across the sky. To
be conservative, we enforce a threshold of pstat ≥ 0.99,

which as shown in Figure 8a, removes all blended tar-
gets and false positives within the instability strip (i.e.,
hot classical pulsators) and on the main sequence (dwarf
stars). The νmax-magnitude plot in Figure 8b shows

that removing these false positives reveals a distinct
boundary (blue line), which we parameterize as νmax =
10−0.32·Tmag +5.3. We interpret this boundary as the os-

cillation detection limit above which white noise levels
are too high for oscillations to be detectable. In both
Figures 6 and 8b we note the lack of detected targets

with νmax > 30µHz and Tmag ? 11 — we infer this ob-
servation to be caused by the limitation of our classifier
as discussed in Section 3.3, rather than a true deficiency
of luminous giants in the underlying stellar population.
The remaining stars after the pstat filtering comprises
our final sample. Several examples of these stars docu-
mented in Appendix D.

5. FINAL SAMPLE

5.1. Target Lists

Table 1 lists 158,505 unique targets comprising the
final sample together with their measured parameters
in this study. Note that we report νmax measurements
from only one sector for targets with multi-sector de-
tections; we find this to be reasonable given that most
multi-sector νmax measurements are consistent with the

reported single-sector value. In particular, 97% of νmax
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Figure 9. (a) The distribution of fractional parallax un-
certainties (σ$/$) for our final sample. The vertical line
indicates a typical fractional uncertainty of 0.9%. (b) The
distribution of fractional radius uncertainties for our final
sample, with the vertical line indicating typical radius un-
certainties are about 4.4%.

measurements across individual sectors of the same star
deviate less than 2σ of the quoted uncertainties in Table

1.
We consider our yield of 158,505 oscillating giants to

be a lower bound estimate of the yield of oscillating gi-
ants across TESS’s nominal mission because of the con-

servative measures we have used in both detection and
vetting methods. In comparison to the predicted all-sky
yield of ∼ 3×105 as reported by Mackereth et al. (2021),
our current yield suggests that there are still many gi-
ants that can potentially be detected from TESS. We
defer more extensive detections across TESS FFIs to
future work, which will better assess the sample com-
pleteness of red giants.

In Table 1, we include values of the Gaia re-
normalized unit weight error (Lindegren 2018, ruwe).

Values of ruwe > 1.40 for a target indicate that the
adopted astrometric solution is less likely to be reliable
due to neighbouring companions (e.g., Evans 2018; Be-

Figure 10. Comparisons of our estimates for the frequency
at maximum oscillation power, (νmax,DL), with measure-
ments from asteroseismic data pipelines (νmax,pipe) from in-
dependent studies of specific giant populations. The compar-
isons are for our detected targets that are: (a) in the Kepler
field (Stello et al. 2021), and (b) in the Southern Continu-
ous Viewing Zone (Mackereth et al. 2021, TESS SCVZ). The
number N indicates the total number of stars in each com-
parison, while the errorbars indicate the binned combined
νmax uncertainties.

lokurov et al. 2020), which can affect the accuracy of the
target’s reported value for R.

Although we have used measurements of Teff and R to
filter out obvious blends in the final sample, such an ap-
proach cannot discern the occurrence of blending when
both target and blending star are red giants. To poten-

tially identify such scenarios, we additionally introduce
a mass flag parameter that indicates whether or not
the asteroseismic scaling mass (M ) for each target falls
within the ‘typical’ mass range of a red giant. Follow-

ing Stello et al. (2008), we estimate masses using the
following:

M

M�
=

(
νmax

νmax,�

)(
R

R�

)2(
Teff

Teff,�

)0.5

, (1)
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with νmax,� = 3090µHz (Huber et al. 2011) and Teff,� =
5772K (Prša et al. 2016). Equation 1 is the seismic νmax

scaling relation that relates the acoustic cutoff frequency
of a star to its M , R, and Teff (Brown et al. 1991; Kjeld-
sen & Bedding 1995; Belkacem et al. 2011). We define
the typical mass range of a red giant to be the values
between the 0.5th and 99th percentile of ∼16,000 Kepler
red giant masses as measured by Yu et al. (2018), which
corresponds to the interval 0.6M� ≥M ≥ 2.9M�. The
vast majority of stars in our final sample are within this
range and are assigned mass flag=1. There are a to-
tal of 3,415 (∼ 2.2%) stars in our sample with value
outside the typical mass interval and are thus assigned
mass flag=0 to indicate an outlier mass value. We do
not exclude these targets from our list because there
are rare circumstances under which such extreme mass
measurements can occur (such as a 3M� giant), but we
caution that many of these are likely blends.

5.2. Measurement Consistency

In Figure 9a, we show the uncertainty distribution
for the parallaxes and radii estimates in our final sam-
ple. Given that our sample probes a relatively local

region of the Galaxy (as further discussed in Section 6),
the vast majority of our detected targets have precise
astrometric measurements that result in a typical frac-
tional radius uncertainty of 4.4% as shown in Figure 9b.

Additionally, we compare our νmax measurements from
Tables 1, νmax,DL, with those from asteroseismic data
pipelines, νmax,pipe, from independent studies of TESS

targets in specific sky regions. The comparison in Fig-
ure 10a is for targets in the Kepler field of view with
observation lengths between 1-2 months based on the

analysis by Stello et al. (2021). Meanwhile, the compar-
ison in Figure 10b is for targets in the TESS Southern
Continuous Viewing Zone (TESS SCVZ) that comprise
the ‘gold’ sample from the Mackereth et al. (2021) study
— these typically have light curves with a duration of
3-12 months. In both comparisons, we find good levels
of agreement between νmax,DL and νmax,pipe, which sug-
gests that our estimates of the frequency at maximum
oscillation power are generally reliable.

5.3. Caveats

There are two important additional caveats that
should be considered with the current target lists:

1. Blending may still be prevalent, especially when
both the target and blending star have νmax val-
ues comparable to one another. We recommend
more caution with the fainter targets (Tmag ∼ 12)
in our sample as well as those located closer to

the Galactic plane, where crowding effects become

more problematic. One approach that can inform
the presence of blending, which we will explore
in future work, is to systematically determine a
contamination/crowding metric calculated across
the photometric aperture of each target. Another
possible method to identify giant-giant blending
would be to determine if the stellar mass as esti-
mated from Equation 1 (which uses Gaia-derived
radii) is consistent with a mass determined from
the combined ∆ν-νmax scaling relation (e.g., Pin-
sonneault et al. 2018, Equation 4), where ∆ν is
the large frequency separation of the oscillation
modes.

2. The search performed in this study is not intended
to be exhaustive, meaning that there are poten-
tially many more oscillating giants from TESS that
are yet to be detected. In the interest of producing
an early, all-sky catalogue comprising strong can-

didates of oscillating giants, we make concessions
to the population completeness of our final sam-
ple by vetting our preliminary yield with several

thresholds. Because these thresholds are conser-
vative, the number of stars in our final sample is
expected to be a reasonable approximation of the

minimum yield of oscillating giants that we can
observe across the first two years of TESS.

6. POTENTIAL FOR GALACTIC STUDIES

6.1. All-Sky Mass Map

In this section, we aim to demonstrate that our list
of asteroseismic detections opens up prospects of in-

specting broad spatial, chemical, and kinematic corre-
lations over a near all-sky, continuous volume of the
Milky Way using a sample of stars with their physi-
cal properties uniformly determined. At the same time,

our demonstrations seek to provide an astrophysical val-
idation of the accuracy of our results from a compari-
son with known physical trends from Galactic studies.
To ensure that the measurements for our sample in the
demonstrations are reliable, we include only the 139,789
oscillating giants in our final sample with ruwe ≤ 1.40
and mass flag = 1.

In Figures 11 and 12, we show all-sky Hammer map
projections of the final yield of our final sample, col-
ored by seismic scaling masses derived using Equation
1. Given that red giants follow an age-mass relation
(e.g., Miglio 2011; Bellinger 2020), our results show that
younger stars (higher mass stars) are mainly confined to
the plane of the Galactic disc, i.e., the equator in Figure
12, with older stars (lower mass stars) generally populat-
ing higher Galactic latitudes. Notably, these trends are

broadly consistent with global age trends obtained from
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Figure 11. All-sky Gaia-asteroseismology mass map of stars in the final sample with ruwe ≤ 1.40 and mass flag = 1 plotted
in ecliptic coordinates. There are 150 bins across each dimension (longitude and latitude), with bins having fewer than 3 stars
excluded. The missing patches of sky in the northern hemisphere correspond to Sectors 14-16 and 24-26, during which TESS’s
boresight was shifted towards higher ecliptic latitudes to avoid excessive stray Earth- and moonlight.

Figure 12. Same as Figure 11, but using the Galactic coordinate system (l, b).
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Figure 13. (a) Density map of oscillating giants detected
in our study as a function of Galactocentric coordinates
(RGal, ZGal). (b) Distance distribution of the stars in panel
(a), with the mode of the distance distribution indicated by
the line.

large spectroscopic surveys (Xiang et al. 2017; Sanders

& Das 2018). At |l| > 120◦ in Figure 12, we observe
a slight trend of higher mass stars towards higher lat-
itudes, which may indicate the presence of disk flaring

(e.g., Minchev et al. 2015; Mackereth et al. 2017).

6.2. Spatial Extent

We investigate the spatial distribution of our sample

by calculating Galactocentric coordinates (ZGal, RGal)
using the Galactocentric module from Astropy (As-
tropy Collaboration et al. 2018). We adopt a right-
handed coordinate system that assumes a Galactic cen-
ter position of (XGal, YGal, ZGal) = (−8.122, 0, 0), such
that the Sun’s radial distance from the Galactic center is
8.122 kpc and the Sun’s height above the Galactic plane
is taken to be 20.8 pc. Figure 13 shows that our sample
extends to distances primarily within 1 kpc indicating
that our TESS yield is relatively local compared to Ke-
pler (e.g., Rodrigues et al. 2014; Mathur et al. 2016) or
K2 (e.g., Rendle et al. 2019). This outcome is expected
given that the focus of the TESS mission is primarily

on nearby, bright stars, and that our current yield is
limited to TESS magnitudes brighter than 13.5. We ad-
ditionally observe a lack of stars at RGal > 7.7 kpc and
|ZGal| > 0.1 kpc. Stars within this region are positioned
towards the highly crowded Galactic center, resulting

Figure 14. Mass distribution of our sample in Galactocen-
tric coordinates. In each visualization, bins with fewer than
5 stars are not shown. (a) The map in Figure 13a colored
by mass. (b) Distribution of masses as a function of vertical
distance from the Galactic plane, |ZGal|.

in large levels of flux contamination that significantly
lowers the detectability of red giant oscillations.

Figure 14a shows the distribution of masses as a func-
tion of coordinates (RGal, ZGal). Similar to Figure 12,

we find that more massive (and therefore young) stars
near the Galactic plane at ZGal = 0. In this plot, a dis-
tinct dependence of masses with ZGal can be seen, which
we further visualize in Figure 14b. It is known that a
vertical mass gradient of the Milky Way disk exists (e.g.,
Casagrande et al. 2016), and therefore the large volume
of our TESS yield presents the opportunity to probe the
mass and age structure of the Galactic disk in greater
detail.

6.3. Kinematic Properties

To examine the kinematic properties of our red giant
sample, we use parallaxes, radial velocities, and proper
motions from Gaia EDR3 to determine Galactocentric
velocities V = (VR, Vφ, VZ). Here, we consider a clock-
wise rotation of the Galaxy such that the azimuth angle



14 Hon et al.

Figure 15. Kinematic properties of the seismic sample in
this study. (a) A Toomre diagram, with a line defined by |V −
VLSR| > 220 km/s corresponding to the boundary used by
Bonaca et al. (2017) to separate halo and disk populations,
with VLSR assumed as (0, 220, 0) km/s. (b) The phase space
of our seismic sample, represented in the (RGal, Vφ) plane. In
this plane, phase space substructures in the form of diagonal
ridges that were first observed by Antoja et al. (2018) can be
seen. (c) Normlized radial and vertical velocity dispersions
as a function of mass, computed following the Sharma et al.
(2020) approach. Uncertainties are indicated as the 16th and
84th percentile values in each mass bin, which are determined
by bootstrapping.

φ = tan(XGal/YGal) increases in the anti-clockwise di-
rection. Figure 15a visualizes the distribution of our
sample with a Toomre diagram, which is a useful repre-
sentation for differentiating Galactic populations based
on their kinematics (e.g., Venn et al. 2004). We observe
that most stars have Vφ ∼ 200 − 250 km/s, which is
approximately the circular velocity of the Local Stan-
dard of Rest (LSR, e.g., Ding et al. 2019). In other
words, most stars have velocities that are typical to ob-
jects orbiting the Milky Way within the disk. We ad-
ditionally find a smaller population of stars with atypi-
cal disk kinematics — these stars may have larger com-
bined radial and vertical velocities (VRZ) compared to
those in the disk as well as highly retrograde motion
relative to the LSR. Such stars are identified as having
kinematics representative of a Galactic halo population;
for instance Bonaca et al. (2017) identifies stars with
|V − VLSR > 220| km/s (outside the line in Figure 15)
as belonging to the halo. Using this criterion, we iden-

tify 354 potential halo candidates in our sample, which
carries forward prospects of probing the Milky Way halo
with TESS in subsequent work.

Figure 15b shows the kinematic distribution of our

sample in the (RGal, Vφ) plane, where we can observe the
phase-space substructures in the form of diagonal ridges
that were discovered by Antoja et al. (2018). The study

by Khanna et al. (2019) demonstrated that the stars
forming such substructures are primarily those that are
close to the Galactic plane (small |ZGal|) and suggested
that they are either due to: a) kinematic perturba-

tions from the phase-mixing of transient spiral arms; b)
the interactions between low |ZGal| stars that may have
been externally perturbed by a satellite such as a dwarf

galaxy; c) stars near the Galactic plane being kinemat-
ically ‘cold’ and thus easier to perturb. In Figure 15b,
we indeed find that typically stars with higher masses

(younger) show the diagonal ridges more prominently,
which is consistent with the results by Khanna et al.
(2019) that these stars belong to regions near the Milky
Way plane.

We provide another astrophysical validation of our
seismic sample using velocity dispersions in Figure 15c.
Using the Sharma et al. (2020) approach, we calculate
radial (σR) and vertical (σZ) velocity dispersion profiles
solely as a function of mass under a solar metallicity
approximation. The observed decrease of the dispersion

profiles with mass is consistent with the expectation that
velocity dispersions are expected to increase with age
due to dynamical heating over time from sources such
as giant molecular clouds (e.g., Lacey 1984) and spi-
ral arms (e.g., Barbanis & Woltjer 1967). Qualitatively,
the greater steepness of the (VZ/σZ) profile compared
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Figure 16. The [α/Fe]-[Fe/H] diagram of 6,459 stars in our
sample that have chemical abundances from APOGEE Data
Release 16. Different panels correspond to different mass
bins.

to that of (VR/σR) in Figure 15c agrees with the obser-

vational results by Sharma et al. (2020) that suggests
a high efficiency of heating by giant molecular clouds
(a significant contributor to vertical scattering) early in

the dynamical history of the Galaxy — this is notably
a result predicted by the simulations by Aumer et al.
(2016).

Based on theory, the asymmetric drift (Strömberg

1946), namely how much a star’s circular motion (−Vφ)
lags behind the VLSR, is larger with for stars with high
σR because such kinematically hot stars require less

centrifugal support to remain in dynamical equilibrium
(e.g., Binney 2008; Sharma et al. 2014). Therefore,
the greater the difference between −Vφ and VLSR =
(0, 220, 0) km/s in Figures 15a and 15b, the larger the
asymmetric drift. Because σR scales with age (and mass,
as per Figure 15c), we should expect a reduction in the
average stellar mass as −Vφ decreases below 220 km/s.

Indeed, such a trend is observed in Figure 15b, which
again shows the consistency of the masses of our sample
from a kinematic perspective.

6.4. Chemical Properties

Figure 16 shows the [α/Fe]-[Fe/H] diagram for
6,459 stars with measured chemical abundances from
APOGEE Data Release 16 (Majewski et al. 2017) of
the Sloan Sky Digital Survey (Ahumada et al. 2020).

The [α/Fe]-[Fe/H] relation is a frequently examined di-

agnostic in chemical evolution studies of the Milky Way
disk (e.g., Adibekyan et al. 2011; Haywood et al. 2013;
Bensby et al. 2014; Hayden et al. 2015; Anders et al.
2017; Silva Aguirre et al. 2018), which reveals two dis-
tinct stellar populations from a bi-modality in the ob-
served [α/Fe] abundances in Figure 16. The first is a
population of solar-[α/Fe] stars spanning a wide range
of metallicities — these are expected to comprise young
stars confined to the plane of the Galaxy (e.g., Hayden
et al. 2015). Assuming mass as an age proxy, we observe
that most stars with M ≥ 1.6M� (thus typically young)
in Figure 16 have solar-[α/Fe] abundances, in agreement
with expectations. However, about ∼20 targets within
these high-mass bins have [α/Fe] ∼ 0.3 dex — such stars
are potentially the peculiar ‘young-α rich’ stars (Chiap-
pini et al. 2015; Martig et al. 2015) whose features are
not predicted by standard chemical evolution models of
the Galaxy.

The second distinct population in Figure 16 is seen
at [α/Fe] ? 0.15 dex, which corresponds to the high-α

sequence. This populations is typically associated with
metal-poor stars with larger vertical scale heights com-
pared to those in the low-α population (e.g., Bovy et al.

2012). Although stars in the high-α sequence were pre-
viously found to strongly correlate with age (Haywood
et al. 2013), more recent studies present evidence to the
contrary from the identification of old, metal-rich low-

α stars (e.g., Bensby et al. 2014; Silva Aguirre et al.
2018). We find stars with M > 1.0M� (typically older)
in Figure 16 to be distributed in both low- and high-

α populations, which does support the presence of old,
metal-rich stars. While a detailed investigation in these
chemical trends is beyond the scope of this paper, we

aim to show that our seismic sample provides great util-
ity not only in revealing trends in chemical abundances,
but also in potentially identifying a subset of chemically
interesting targets within large stellar populations.

7. CONCLUSIONS

We have presented the first all-sky sample of oscillat-
ing red giants using MIT Quick-Look Pipeline photom-
etry of the first 26 sectors of TESS Full Frame Images.
Our main results are summarized as follows:

• We reported red giant oscillations in a total of
158,505 targets from over 20 million light curves
spanning TESS magnitudes as faint as 13.5 us-
ing neural networks. The detected giants have
frequencies at maximum oscillation power (νmax)

spanning 6µHz > νmax > 250µHz, which cor-
responds to a surface gravity range of 1.5 dex
> log(g) > 3.0 dex. Due to the limitations of the
neural network classifier, our reported yield does
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not currently include the most faint and luminous
targets, which are those with TESS magnitudes
? 11 and νmax > 15µHz.

• For each seismic detection, we reported estimates
of its frequency at maximum power (νmax), lumi-
nosity (L), radius (R), effective temperature (Teff),
and distance (d). To produce a high quality tar-
get list of oscillating red giants, we have applied
thresholds in our machine learning algorithms and
applied statistical detection probabilities based on
global SNR estimates to minimize the number of
false positives. Our reported results are therefore
that of an early detection yield and not that of a
complete survey of all underlying oscillating giants
from TESS Full Frame Images. Due to (1) our use
of conservative vetting measures, (2) the lack of
optimal light curve corrections required for aster-
oseismology, and (3) the use of only one month-
long observations, it is reasonable to expect that

the number of targets in our reported detection
yield is a lower bound to the complete set of oscil-
lating red giants that can be obtained from TESS’s

nominal mission.

• With our detection yield we demonstrated the
enormous potential of TESS for all-sky Galac-

tic archeology by presenting the first near all-sky
Gaia-asteroseismology mass map. With data from
the Quick-Look Pipeline limited to a TESS mag-
nitude of 13.5, we found our yield to typically span

distances within 1 kpc. Despite being limited to
a relatively local volume of the Galaxy, our yield
provides the most comprehensive distribution of

seismic measurements across the Galaxy to date.
Our measurements, when applied to spatial, kine-
matic, and chemical studies of the Galaxy, show
good qualitative agreement with expected astro-
physical trends as a function of mass. Specifically,
we showed that 1) the masses of stars within the
Galactic plane is on average larger than those far-
ther from the plane; 2) a vertical mass gradient
of the Milky Way disk can be distinctly observed
within our sample; 3) there are 354 oscillating gi-
ants in our sample that are have Galactic halo-
like kinematics; 4) stars prominently showing kine-
matic phase-space ridges are on average those that
are higher in mass and reside within the Galactic

plane; 5) lower mass stars typically have larger
radial and vertical velocity dispersions, consistent
with the interpretation that such stars are older; 6)
there exists distinctions between low-α and high-

α populations as a function of stellar mass in our
sample.

With a good qualitative agreement with trends from
Galactic studies using masses as a proxy for stellar age,
it is reasonable to expect that the use of actual age es-

timates from a combination of TESS all-sky asteroseis-
mology, Gaia parallaxes, and large survey spectroscopy
will provide very powerful probes of Milky Way evolu-
tion. Finally, we note that our ‘quick look’ at the all-

sky asteroseismic yield from TESS has provided insights
on how to improve our data and methodology for fur-
ther work to expand the yield across Full Frame Images.

Currently, we have used only ‘raw’ data from the Quick-
Look Pipeline, which lack detrending to remove instru-
mental noise. Upcoming data releases from the TESS
Asteroseismic Science Consortium (e.g., Handberg et al.

2021) will provide light curves with instrumental noise
corrections that are optimized for asteroseismology for
all FFI targets up to a TESS magnitude of 15, which will
significantly increase the detection yield across all TESS
sectors. Another vital insight is the need for improved
machine learning algorithms and training data. As the
asteroseismic analyses of TESS data further progresses
across the scientific community, it will become possible
to use or develop training data that is more representa-
tive of real TESS FFI observations. The availability of
better training data will subsequently facilitate improve-
ments with our deep learning algorithms, particularly
in the detection of oscillations for the faintest and most

luminous targets from TESS. These future prospects,
when combined with TESS’s potential for all-sky Galac-
tic studies, will certainly provide a more complete and
detailed view of the Milky Way.
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2018), celerite (Foreman-Mackey et al. 2017),
isoclassify (Huber et al. 2017; Berger et al. 2020), Py-
torch (Paszke et al. 2019)

APPENDIX

A. NETWORK ARCHITECTURE

Tables 1A and 1B detail the structure of the classifier and the regression network, respectively. The networks are

developed using the Pytorch version 1.1.0 deep learning library (Paszke et al. 2019). The networks are trained using
the Adam optimizer (Kingma & Ba 2014) with an initial learning rate of 0.0001 and early stopping applied.

The networks are generally similar to those implemented by Hon et al. (2018b), with a few key differences. First,

both networks have dropout applied only to the final feature extraction layer, with a small dropout probability of
0.1. Because this current work has significantly more training data compared to the Kepler -as-K2 used by Hon
et al. (2018b), weaker regularization is required to prevent network overfitting. The second difference relates to
the uncertainty estimation of the νmax regression network. The previous study uses Monte Carlo dropout (Gal &

Ghahramani 2016), while our work in this study explicitly estimates σνmax through an auxiliary output layer (e.g.,
Kendall & Gal 2017). Consequently, optimizing the νmax regression network is not done by minimizing the mean
squared error (as before), but the negative log-likelihood, E, given by the following:

p(y | x) =
1

(2π)1/2σ(x)
exp

(
− (y − νmax,pred)2

2σ(x)2

)
, (A1)

E =

mtot∑
m=1

− ln p(ym | xm). (A2)

Here, x is the input image, σ(x) is σνmax
, y is the ground truth value of νmax, νmax,pred is the estimated value of

the frequency at maximum power by the νmax regression network, and mtot is total number of power spectra in the
training set.

B. CELERITE POWER SPECTRA

Figure 17 shows example power spectra of oscillating red giants generated by celerite compared to real TESS giants
with the same νmax and TESS magnitudes. There are differences between the noise levels of real and simulated data,
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Table 1A. Structure of the classifier to detect oscillating red
giants from images of power spectra.

Component Layer Filter Size Output Shape

conv1b (5,5) (128,128,4)

pool1 (2,2) (64,64,4)

conv2 (3,3) (64,64,8)

Feature Extraction pool2 (2,2) (32,32,8)

conv3 (3,3) (32,32,16)

pool3 (2,2) (16,16,16)

flatten - (4096,)

dropc - (4096,)

Class Score
Estimation

dense1 (4096,128) (128,)

output (128,1) (1,)

Note—The rectified linear unit activation (Nair & Hinton
2010, ReLU) is applied after every conv and dense layer.
a For convolutional layers, this column corresponds to the
dimensions of the convolving kernel, whereas for dense
layers the column corresponds to (number of neurons in

previous layer, number of neurons in current layer).
b For convolutional layers, weight shapes are in format (num-
ber of filters, receptive field size), while output shapes are in
format (height, width, number of filters).
c We implement regular Dropout (Hinton et al. 2012; Srivas-
tava et al. 2014) with a drop probability of 0.1.

which is typically attributed to the lack of noise contributions from both instrumental sources and flux contamination
in simulated data. Additionally, in the absence of such contributions, the frequency-power profile of the simulated

power spectra appear different to that of the real data, particularly at low frequencies. Future work will include more
realistic simulations; however, the current data are sufficient to benchmark the network trained on Kepler -as-TESS
data in Section 3.3).

C. FAINT AND LUMINOUS GIANTS

Figure 18 shows power spectra of two oscillating red giants with νmax ∼ 15µHz. The giant in Figure 18a is brighter
than the giant in Figure 18b and therefore has a power spectrum with lower noise levels. As a result, the slope of
the granulation profile (red noise), which is an important feature for the neural network classifier in detecting low
νmax oscillations (Hon et al. 2018b), can still be observed. In contrast, the power spectrum in Figure 18b is more
white noise-dominated, which obscures the granulation profile and makes the detection of oscillating luminous giants
at fainter TESS magnitudes more difficult.

D. EXAMPLES OF OSCILLATING GIANTS

We show several examples of oscillating red giants spanning a higher range of νmax (lower luminosity) in Figure 19,
while Figure 20 shows giants across a lower range of νmax (higher luminosity).
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Figure 19. Examples of detected oscillating giants spanning νmax ∼ 30 − 120µHz. Each row corresponds to a particular
νmax value, while each column corresponds to a specific TESS magnitude. The bottom right panels are greyed out because no
oscillating giants are found with such values of νmax and TESS magnitudes in our sample as a consequence of the oscillation
detection limit (Figure 8b).

Figure 20. Same as Figure 19, but for oscillating giants spanning νmax ∼ 10− 25µHz.
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