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ABSTRACT14

Real-time control of stormwater systems can reduce flooding and improve water quality. Current

industry real-time control strategies use simple rules based on water quantity parameters at a local

scale. However, system-level control methods that also incorporate observations of water quality

could provide improved control and performance. Therefore, the objective of this research, is to

evaluate the impact of local and system-level control approaches on flooding and sediment-related

water quality in a stormwater system within the flood-prone coastal city of Norfolk, Virginia, USA.

Deep reinforcement learning (RL), an emerging machine learning technique, is used to learn

system-level control policies that attempt to balance flood mitigation and treatment of sediment.

RL is compared to the conventional stormwater system and two methods of local-scale rule-based

control: (i) industry standard predictive rule-based control with a fixed detention time and (ii) rules

based on water quality observations. For the studied system, both methods of rule-based control

improved water quality compared to the passive system, but increased total system flooding due

to uncoordinated releases of stormwater. An RL agent learned controls that maintained target

pond levels while reducing total system flooding by 4% compared to the passive system. When

pre-trained from the RL agent that learned to reduce flooding, another RL agent was able to learn

to decrease TSS export by an average of 52% compared to the passive system and with an

average of 5% less flooding than the rule-based control methods. As the complexity of stormwater

RTC implementations grows and climate change continues, system-level control approaches such

as the RL used here will be needed to help mitigate flooding and protect water quality.
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Water Impact Statement36

Advances in smart and connected technologies can reduce flooding and improve water quality37

through real-time stormwater system control. Currently, real-time stormwater control operates at38

local-scales with fixed rules. We present a method for learning system-level control strategies that39

balance competing flood mitigation and pollutant treatment goals. With continued adoption of40

stormwater real-time control, these system-level control approaches can improve flood and pollutant41

mitigation.42
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1 INTRODUCTION43

Communities rely on stormwater systems to mitigate flooding and treat polluted runoff from urban44

areas. However, as urbanization increases and climate change continues to alter precipitation,45

temperature, and sea levels, communities will be faced with increased stormwater runoff causing46

greater flooding and water pollution1–4. Conventional stormwater systems are designed based on47

historic data assuming stationarity of future conditions. They are largely static systems, unable to48

dynamically adapt to unanticipated conditions. Increasing the resilience of stormwater systems to49

these unanticipated and changing land use and climate conditions will require new approaches to50

dynamically control both flood mitigation and pollutant treatment.51

The adoption of smart cities approaches is allowing stormwater managers to begin to monitor52

and control individual components of conventional stormwater systems, which are gravity-driven53

and behave statically, in real-time5. While the use of real-time control (RTC) is fairly established in54

combined sewer systems6–8, recent research has shown that retro-fitting conventional stormwater55

components (e.g., a retention pond) for RTC can allow more efficient local operation, mitigating56

flooding from storms9,10 and preventing erosive, high velocity flows11. RTC can also provide57

more efficient treatment of pollutants such as sediment and nutrients, primarily through increased58

detention time12,13. For instance, RTC of a retention pond increased removal of total suspended59

solids (TSS) and nitrate (NO3) by roughly 40%, compared to passive pond operation14.60

In practice, stormwater RTC is generally performed using local rule-based control (RBC), which61

is almost exclusively based on volumetric data (e.g., depth, current and forecast rainfall)14–16. For62

instance, a rule may open a valve when the water level in a storage pond reaches a certain height or63

proactively drain water from a pond based on a rainfall forecast to create additional storage capacity64

before a large storm. In most studies using RBC, water quality is not considered or is inferred65

through hydraulic retention time, rather than directly observed or used in control rules. However,66

pollutant characteristics are highly variable between sites and storms and there is a need for more67

generalizable RTC methods for enhancing pollutant treatment. Toward this end, the benefits of using68

real-time water quality observations in control rules has recently been explored in simulation. For69

example, using the concentration of TSS to trigger a valve controlling outflow from a storage pond70

can improve TSS capture in the pond compared to the passive system and other volumetric control71
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rules17. Given the effectiveness of RTC-enabled individual infrastructure components to adapt to72

different storm events, system-level RTC (i.e., control of multiple infrastructure components based73

on information from locations throughout the system) has the potential to more holistically enhance74

flood and pollution mitigation through coordinated control of multiple components18.75

As the complexity of controlled stormwater systems increases, the task of creating rules to (i)76

mitigate flooding, (ii) protect the quality of receiving waters, or (iii) balance both flooding and water77

quality, becomes nontrivial. Further, controlling for flooding and water quality can be competing78

goals. For example, draining a stormwater pond is the simplest way to prevent it from flooding.79

However, treatment of pollutants can require holding more water; TSS requires still conditions80

for settling, but stormwater inflow could resuspend sediment if a pond is drawndown to shallow81

depths. Maintaining more submerged (anaerobic) areas can increase denitrification, but reduces82

capacity to capture additional stormwater without flooding. Control rules or thresholds can be set to83

attempt to balance these goals, but they may only perform well under a limited range of conditions.84

Instead of attempting to create rules that cover all possible interactions between stormwater system85

components, pollutants, and environmental conditions, recent research has explored system-level86

methods of optimizing stormwater RTC. For instance, system-level control of a coastal urban87

stormwater system reduced total system flooding, even under sea level rise conditions9. In terms of88

water quality, flow from a system of ponds to a treatment wetland has been controlled to increase89

the efficiency of nitrate removal by 46%18. A study using system-level RTC for both water quantity90

and quality used linear optimization to control retention basin outflows. However, water quality91

control still relied on fixed rules to extend detention time (i.e., hold water after a storm for a set92

amount of time) and system control based on either observed or simulated real-time water quality93

measurements was not included. Continuing improvements in real-time water quality sensors, could94

allow more direct observation and control of water quantity in conjunction with some water quality95

parameters19,20. Making the best use of these growing sensing capabilities requires new methods of96

creating stormwater RTC policies that balance flood mitigation and water quality improvement.97

Recent advances in Reinforcement Learning (RL), a type of machine learning, provide an98

alternate approach to system-level stormwater RTC where control policies can be learned , instead99

of using predetermined rules21. In RL, an agent (i.e., algorithm) does not have known answers to100

learn from, which is the standard supervised machine learning paradigm, but instead is rewarded101
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based on how well its control actions meet specified stormwater system goals (e.g., flood mitigation,102

improved water quality). The reward signal is used to guide the agent’s learning towards actions103

that maximize the return from areward function. Classical tabular RL is closely related to Dynamic104

Programming and has been explored for multi-objective reservoir management22–26. However,105

because tabular RL is limited to systems with relatively small numbers of possible states and actions,106

Deep Reinforcement Learning (also widely referred to as RL), which uses neural networks as107

function approximators instead of using lookup tables, has been used for control of more complex108

systems27,28. This approach to learning allows RL increased flexibility to optimize control actions,109

balance competing objectives based on the formulation of the reward function, and has the potential110

to continually adapt system controls to evolving environmental conditions (e.g., increased runoff111

from urbanization or climate change).112

Initial research with RL for stormwater systems demonstrated control policies that reduced peak113

flows could be learned using water quantity observations from a complex system29. Flood mitigation114

improvements have also been achieved using RL-based RTC to learn system-level policies with water115

quantity data10,30, while being robust to uncertainty in observations and forecasts31.Despite the fact116

that many stormwater systems are used for pollutant treatment as well as flood mitigation,previous117

RL research has not considered using water quality observations to inform RTC methods. Given118

real-time water quality observations, RL may be able to learn to balance competing water quantity119

and quality goals throughout a stormwater system over a large range of conditions and could120

outperform rule-based methods. This paper is the first to incorporate water quality observations into121

RL-based control policies and, therefore, aims to illustrate RL’s ability to learn system-level control122

policies considering the competing goals of flood mitigation and water quality protection.123

2 METHODS124

This research compares RL and RBC for their ability to both mitigate flooding and improve125

water quality compared to conventional static stormwater infrastructure. A simulation of Norfolk,126

Virginia’s stormwater system including water quantity and quality processes is used as the controlled127

system. Two methods of local-scale, rule-based control are implemented: (i) predictive RBC with128

a fixed detention time and (ii) RBC based on water quality observations. RL is implemented129

for system-level control that incorporates measures of water quality and flood mitigation. After130
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comparing the performance of these methods, their robustness to changes in system behavior is131

evaluated by simulating groundwater exchange within the controlled ponds.132

2.1 Study Area133

The City of Norfolk, Virginia, specifically its Hague neighborhood, is used as the study area for134

this research. Norfolk is situated near the mouth of the Chesapeake Bay on the eastern coast of135

the U.S. (Fig. 1, A and B). The city has a high rate of relative sea level rise partly due to regional136

land subsidence32 and its low elevation, flat topography, and regular hurricane season contribute to137

increasingly frequent and severe recurrent flooding1. Additionally, Norfolk has a high groundwater138

table that responds quickly to storm events33 and could contribute significant amounts of water to139

retention ponds that are being actively controlled10. The Hague neighborhood is a historic part140

of Norfolk and is adjacent to many city government buildings and the region’s main hospital; the141

Hague also experiences some of the most frequent flooding in the city9,34.142

The quality of stormwater runoff from the city contributes to the health of the Chesapeake Bay,143

which has a long history of impairments such as hypoxia caused by eutrophication35,36. Pollutants144

carried by the city’s stormwater (such as TSS, nitrogen, and phosphorous) are regulated to meet the145

Total Maximum Daily Loads (TMDLs) set for the Bay. As outlined in the City’s Chesapeake Bay146

TMDL Action Plan, the City is required to reduce pollutant loadings by 5.75%, 35%, and 60% by147

2021, 2026, and 2031, respectively37.148
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Figure 1. Study area - Hague area of Norfolk, Virginia USA with (C) the SWMM model and (D)

land cover data.

2.2 SWMM Model149

The Hague’s recurrent flooding prompted Norfolk to build a model of the existing conventional150

stormwater system using the U.S. Environmental Protection Agency’s (EPA) Stormwater Manage-151

ment Model (SWMM) (Fig. 1, C). The city verified that the SWMM model behavior sufficiently152

represented the physical system and calibrated it to match observed flooding in the Hague from153

Hurricane Matthew, which caused wide-spread flooding in October, 2016. The Hague SWMM154

model was updated by Sadler et al.9 to simulate real-time control infrastructure (i.e., an additional155

retention pond and a valve, pump, and inflatable dam). In the current study, the SWMM simulation156

from Sadler et al.9 is driven by long-term observed rainfall with a tidal boundary condition and157
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has been enhanced to include groundwater and water quality processes. Land cover within the158

Hague SWMM model domain was extracted for each subwatershed from a 1m resolution dataset38
159

and included three pollutant generating land covers: impervious, turf grass, and trees (Fig. 1, D).160

Impervious cover represents 56% of the model domain, while turf grass and trees cover 37% and161

6%, respectively; the remainder of the land cover is water. SWMM input files with full configuration162

details can be found in the open source code repository (see Section 5).163

2.2.1 Input Data164

Observed rainfall, tide, and groundwater data were collected from gauges in Norfolk for the period165

between 1 January, 2010 and 6 November, 2019 (Fig. 1, B). Fifteen minute rainfall data came from166

two stations near the Hague that are operated by the Hampton Roads Sanitation District (HRSD).167

Rainfall data is processed by first removing any values over the 1000-year 15-minute value for168

Norfolk (59.2mm); these large values represented less than 0.01% of the rainfall datasets. Any169

missing values from one rain gauge are filled with the value from the other gauge if available; there170

were no periods where both rain gauges were missing data. Finally, the mean of the two rain gauges171

is taken to create a single time series for the SWMM model. Observed 6-minute tide data came172

from the Sewells Point gauge operated by the National Oceanic and Atmospheric Administration173

(NOAA). Tide data are referenced to the North American Vertical Datum of 1988 (NAVD88) and174

were resampled to an hourly interval for use as a SWMM boundary at the stormwater system outfall.175

Forecasts for use in the RTC control methods were created from the observed rainfall and tide176

data.These forecasts are a rolling window of values over the next n time steps. In this work, a 24177

hour forecast of 15 minute rainfall contains n=96 values. Because the focus of this work is on178

comparison of the RTC scenarios, the forecasts were assumed to represent perfect knowledge.179

2.2.2 Groundwater Exchange Simulation180

Because Norfolk has a high groundwater table and is already experiencing impacts from a high181

rate of relative sea level rise, the robustness of stormwater RTC methods to groundwater exchange182

will be increasingly important. While groundwater interactions with the retention ponds in Norfolk183

have not been studied specifically, it has been demonstrated that increased groundwater table levels184

due to sea level rise could contribute to retention ponds in coastal areas, decreasing their ability to185

appropriately manage consecutive storm events39. To address this need, groundwater exchange186
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with controlled ponds is simulated in a number of the scenarios in this research.187

Groundwater data was collected from two shallow monitoring wells operated by HRSD and188

referenced to NAVD88. Outliers from these data were removed with a Hampel filter (as in33) to189

remove large erroneous values and replace them with the median of a one-day rolling window.190

Groundwater observations are then aggregated to an hourly time step. A single time series for the191

Hague area was interpolated using inverse distance weighting between Pond 1, the two groundwater192

monitoring wells, and the tidal level at the stormwater system outfall (assumed to be equal to the193

groundwater table level at the land/water interface). From 2010-2019, the groundwater table is194

higher than the water level in Pond 1 and lower than the water level in Pond 2, 93.7% and 73.8%195

of the time, respectively. This indicates that Pond 1 may be gaining water from groundwater flow196

while Pond 2 may be losing water to groundwater. The groundwater table level is only below the197

bottom elevation of either pond 0.09% of the time.198

The Hague SWMM model provided by the City of Norfolk did not originally simulate ground-199

water processes and was not configured to easily allow simulation of groundwater exchange with200

the controlled ponds using SWMM’s aquifer components. To address this, a conceptual model of201

the unconfined aquifer surrounding the existing Hague pond (Pond 1) was developed. Groundwater202

exchange was calculated externally from the SWMM simulation using the Dupuit equation and203

added (or subtracted, in the case of infiltration) to the pond as an inflow using pyswmm functional-204

ity40. The Dupuit equation is commonly used to calculate exchange between a water body and an205

unconfined aquifer41 and is written as206

Q =
K
2L

(h2
1 −h2

2) ·A (1)

where Q is the seepage rate into or out of the pond, K is the saturated hydraulic conductivity of soil207

surrounding the pond, h1 and h2 are the heights above a fixed datum for the pond water level and208

groundwater table level, respectively. L is the horizontal distance between h1 and h2, and A is the209

surface area over which seepage can occur (a function of pond water level).210

Saturated hydraulic conductivity of the soil surrounding the existing pond (Pond 1) was estimated211

from the National Resource Conservation Service (NRCS) Web Soil Survey as 0.60m/day. This212

soil is classified as a fine sandy loam with 61% sand, 22% clay, and 17% silt. Values for h1 were213
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based on SWMM’s simulation of pond water level and h2 was the observed groundwater table level.214

Because L controls the hydraulic gradient (when the other variables are held constant), smaller215

values of L should increase exchange between the ponds and the simulated aquifer. The sensitivity216

of pond depth and inflow to the distance between measured water levels (L), was tested for L = 7.62,217

3.0, 1.5, and 0.3m using the passive (i.e., uncontrolled) SWMM model. A single value of L was218

chosen and used to demonstrate the impact of groundwater exchange on flooding and water quality219

with the control methods.220

The impact of groundwater exchange with the controlled ponds was evaluated for the month221

of September, 2016. This month had two hurricanes and one tropical storm, which caused the222

groundwater table level to reach a height of 1.08m (compared to the mean of 0.61m). Because223

groundwater exchange may increase infiltration and reduce flooding and TSS outflow from the224

controlled ponds, a direct comparison of a single RTC method’s performance with and without225

groundwater exchange may not be fair. To account for this, the percent difference between the226

passive system and each RTC method’s total flooding and TSS loads (with or without groundwater227

exchange) will be compared.228

2.2.3 Water Quality Simulation229

Water quality processes, specifically for TSS, were modelled using SWMM’s buildup, washoff,230

and treatment equations42. TSS was chosen for this study to allow comparison with previous RTC231

literature, and because it is straight-forward to simulate (through gravitational settling) and known232

to carry other sorbed pollutants43. Pollutant buildup within each subcatchment is modelled as a233

power function234

B = min(C1,C2 · tC3) (2)

where B is the buildup of TSS (mass per unit area), C1 is the maximum buildup possible, C2 is the235

buildup rate (buildup per day), t is the antecedent dry period, and C3 is a dimensionless buildup236

time exponent. Washoff of accumulated TSS from subcatchments is modelled with an exponential237

function238

W = E1 ·qE2 ·B (3)
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where W is the washoff rate (mass per area per hr), E1 is the washoff coefficient (per unit of rain),239

q is the runoff rate (per hr), E2 is the washoff exponent, and B is the amount of built-up pollutant240

remaining. Treatment of TSS occurs in the retention ponds and is modelled as a first order decay241

based on a generalized settling velocity (similar to17) with resuspension as a factor of depth and242

inflow velocity (inspired by6)243

C =


T SS · exp(−vs/DEPT H ·DT/3600)) FLOW ≤ τ

T SS FLOW > τ

T SS · (1− exp(−vs/DEPT H ·DT/3600)) FLOW > τ, DEPT H ≤ δ

(4)

where C is the TSS concentration (mg/L) in the pond after treatment, T SS is the inflow concentration,244

vs is the generalized settling velocity (m/hr), DEPT H is the pond water depth (m), DT is the245

SWMM routing time step (seconds), FLOW is the total inflow rate (m3/s) (including groundwater,246

when simulated), τ is a flow threshold to distinguish when settling occurs, and δ is a depth247

threshold to distinguish when resuspension occurs (one quarter of the maximum pond depth in this248

implementation). The first case in Eq. (4) allows settling over the simulation time step when inflow249

is low and reduces TSS concentration. When the inflow rate is above the threshold, no settling250

occurs (i.e., no TSS treatment). The final case in Eq. (4) simulates resuspension when inflow is251

high and the pond depth is low by increasing the TSS concentration by the amount that would have252

been settled according to vs. Resuspension is included because RTC creates the potential for low253

water depths in retention ponds; if a pond is drawndown before high storm inflows, sediment may254

be resuspended and carried downstream.255

Each land cover category within the SWMM model domain is given individual characteristics256

for the buildup and washoff processes (starting values were taken from44). With no observed257

pond water quality data available, the SWMM pollutant processes were calibrated to the annual258

loading and treatment percent of TSS in Pond 1 (the existing pond) (Table 1). TSS loading was259

estimated using the loading rates provided in Norfolk’s Virginia Stormwater Management Permit45.260

The treatment efficiencies of the passive retention ponds were assumed to be 60% as specified in261

the Virginia Department of Environmental Quality’s Chesapeake Bay TMDL Special Condition262

Guidance46. The load into Pond 1 was calibrated using the buildup coefficient C2 so that the mean263
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annual load over 2010-2019 was within 2% of the estimated value. The treatment was calibrated264

using the flow threshold (τ) and the settling velocity (vs) so that the mean annual reduction was265

within 5% of the estimated value for the passive simulation. While calibrating this SWMM model266

to observed values would be desirable, the scope of this paper is on comparison of the RTC methods267

and not exact quantification of TSS.268

Table 1. Calibrated buildup, washoff, and treatment parameters used in the Hague SWMM model.

Note that treatment occurs in the stormwater ponds and is not dependent on land cover.

Buildup Washoff Treatment

Land Use C1 C2 C3 E1 E2 vs τ

Impervious 150.16 0.364 1.54 6.97 1.57

0.105 5.66Turf Grass 62.0 0.325 1.26 5.91 1.46

Trees 9.22 0.133 0.87 2.11 1.02

2.3 Real-time Control Scenarios269

Real-time control of the Hague stormwater system was simulated with three strategies and compared270

to the passive system. The three control strategies are (i) predictive RBC with a fixed detention271

time, (ii) TSS concentration-based RBC, and (iii) RL approaches that includes simulated real-time272

measurement of TSS concentration in the system state and/or reward function. In the passive273

system scenario, weirs control flow out of the retention ponds and maintain a permanent pool of274

approximately half capacity. In the RTC scenarios, the passive weirs are replaced with valves. The275

valve on Pond 1 is at the same elevation of the passive weir (i.e., halfway up the pond’s side) due to276

pipe configuration constraints). The valve on Pond 2 is at the bottom of the pond side, which allows277

Pond 2 to be fully emptied or filled. Both RBC scenarios represent local (i.e., individual) control of278

the retention ponds, while RL can coordinate its control actions based on system-level information.279

The pyswmm Python package40 is used to implement all RTC scenarios on a standard PC with 8280

cores, 16GB RAM, and an NVIDIA Quadro P2000 Graphical Processing Unit (GPU).281

2.3.1 Detention Rule-based Control282

In this scenario, RBC is based on industry standard methods that use rainfall forecasts for predictive283

control of stored water to mitigate flooding, while controlling water quality with a fixed detention284
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time12,14,47. The general process of this RBC (RBC-DTN) is shown in Figure 2 and detailed in10.285

Briefly, if a forecast storm is expected to flood the pond, the valve will open to drain an equivalent286

volume of water (plus a safety factor). When the pond is drawndown sufficiently, the valve will287

close to retain the incoming runoff for a fixed time (24hr in this case). At the end of the retention288

period, the valve opens to the minimum setting to bring the water level back to the target operating289

depth within a fixed time (24hr). Outside of storm events, the valve operates based on the observed290

water level in order to maintain a target depth in the pond. A fail-safe rule overrides any previous291

rules by completely opening the valve if the pond is flooding. A decision diagram detailing these292

rules is shown in Appendix A (Fig. 1).293

Figure 2. General schema of the Detention Rule-based Control (RBC-DTN) scenario. Forecasts

allow predictive control of the pond water level to mitigate flooding while a fixed detention time

after storm events helps improve water quality.

2.3.2 TSS Rule-based Control294

The TSS RBC (RBC-TSS) scenario was inspired by Sharior et al.17. Instead of using a fixed295

detention time, this RBC is innovative because it uses the real-time concentration of TSS in a296

retention pond to trigger valve operation (Fig. 3). For example, when the TSS concentration is297

above a threshold, the valve can be closed to retain stormwater and allow treatment by settling.298

Otherwise, the valve is open and acts as a weir to maintain a permanent pool of water. In this study,299

the TSS threshold was set to 1 mg/L because observed data from the ponds were not available for a300
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more realistic threshold; in Sharior et al.17, the threshold is 15 mg/L based on regulatory constraints301

for their study area and calibrated model. A contingency rule limits flooding of the pond by opening302

the valve if a threshold depth is reached. A decision diagram detailing these rules is shown in303

Appendix A (Fig. 2).304

Figure 3. General schema of the TSS Rule-based Control (RBC-TSS) scenario. Detention is

based on observed TSS concentration, not a fixed length of time, making it adaptive to individual

storm events.

2.3.3 Reinforcement Learning305

Reinforcement learning can be visualized as an agent that interacts with an environment (Fig. 4).306

The RL agent learns through sequential interactions with the environment. At each step in the307

learning process, the RL agent receives information about the state (s) of the environment and308

can take actions (a). The next state (s′), therefore, depends on the agent’s actions and the agent is309

rewarded (positively or negatively) based on how well its actions meet user-specified objectives310

in a reward function (r). The agent’s ultimate goal is to find a policy (π(a|s)) that maximizes the311

expected return312

Gt = rt + γrt+1 + γ
2rt+2 + · · ·=

∞

∑
k=0

γ
krt+k (5)

where rt = r(st ,at ,st+1) and γ ∈ [0,1] is a discount factor weighting the importance of short-term313

and long-term reward.314
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Figure 4. Reinforcement learning paradigm.

In this case the environment is the SWMM model described in section 2.2, which provides state315

information at a 15-minute simulation time step. The state space (S) is defined as: the current depth316

(m) and outflow (m3/s) of the two retention ponds, the load of TSS (mg) in each pond’s outflow,317

the current position of each controllable valve, the sum of the 24 hr rainfall forecast (mm), and the318

mean value of the 24 hr tide forecast (m). The action space (A) of the agent is to open or close either319

valve to any degree. The reward (r) is based on how well the agent meets user-specified objectives320

such as flood and pollutant reduction.321

The deep reinforcement learning algorithm used in this research, Deep Deterministic Policy322

Gradients (DDPG), is an actor-critic RL agent using deep neural networks as function approxima-323

tors28. DDPG allows controls (i.e., valve positions) over a continuous action state and has been324

used in previous research to learn control policies that mitigate flooding10,30,31. The actor in DDPG325

is a deep feed-forward neural network that learns a policy (π(a|s)); the critic is a deep feed-forward326

neural network that approximates the value of being in a specific state and taking specific actions327

called the Q-value328

Qπ(s,a) = r(s,a,s′)+ γ ∑
s′∈S

Pa
s,s′ ∑

a′∈A
π(a′|s′)Qπ(s′,a′) (6)

where Pa
s,s′ is the probability of transitioning between two states. This equation is known as the329

Bellman equation and is a key component of RL21. By approximating the Q-value, the critic can330

reduce the variance of policy gradients from the actor, which helps speed the learning process.331

During training, the actor receives the state of the stormwater system and outputs the actions to332

be taken based on its learned policy. The critic then receives the actions and states and outputs an333
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estimated Q-value. The actions and Q-value estimates output from the critic are used to update the334

agent. An in-depth description of the DDPG algorithm can be found in Lillicrap et al.28.335

When training RL agents, more explicit reward functions can improve the ability to learn336

appropriate policies29. The reward functions used here have a conditional format based on the337

rainfall forecast that guide agent learning under different conditions; this structure has been used to338

improve RL agent policies for flood mitigation10. The rainfall forecast can signal to the agent that339

flooding may occur and control actions are rewarded differently because the pond level may need340

to be altered from the target. When no rainfall is forecast, a different set of rewards is triggered341

that incentivize actions for goals like maintaining target depths or increasing retention time for342

additional TSS treatment.343

In this research, three RL agents are trained and tested. The first agent (RL-FD) is rewarded for344

reducing total flooding throughout the stormwater system and maintaining target pond depths345

r =

−ΣFlooding[system, Pond1∗1000, Pond2] F ≥ δ

−(|Pond1depth − τ|+ |Pond2depth − τ|) F < δ

(7)

where Flooding[system] is the incremental system flood volume, Flooding[Pond1] is the flooding346

rate at Pond 1, and Flooding[Pond2] is a binary reward (0 or 1000). F is the sum of rainfall in a347

24hr forecast, δ is the rainfall threshold (12.7mm in this research), and τ is the target depth (1.8m348

and 1.1m for Ponds 1 and 2, respectively). Several of the nodes upstream of Pond 2 are at lower349

elevations than the top of the pond and flood before Pond 2 will; therefore instead of the Pond 2350

flooding rate, the binary reward acts as a penalty in cases where the pond is above the depth that351

causes flooding upstream (1.75m).352

The second RL agent (RL-FDTSS) is rewarded for reducing total flooding throughout the353

stormwater system, maintaining target pond depths, and minimizing the export of TSS from the354

ponds355
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r =



−ΣFlooding[system, Pond1∗1000, Pond2]

+T SS[Valve1, Valve2] F ≥ δ

−(|Pond1depth − τ|+ |Pond2depth − τ|

+T SS[Valve1, Valve2]+Flooding[system/35000]) F < δ

(8)

where T SS[Valve1,Valve2] is the incremental TSS load of the controlled valves.356

The third RL agent (RL-FD+FDTSS) aims to balance RL-FD and RL-FDTSS by initializing357

the trained neural network weights and memory from RL-FD and training for 50,000 additional358

time steps using the reward for RL-FDTSS (Eq. 8). This can be considered as pre-training for RL-359

FD+FDTSS, a common practice in deep machine learning to provide appropriate initial conditions360

and reduce computational time (for examples in hydrology see48 or49).361

The RL agents are trained on one month of data (August, 2019), which has the fifth highest362

monthly total rainfall (256.5mm) of the dataset distributed across 7 storm events. The mean tide363

level in this month is 0.16m, with a maximum value of 1.0m from Tropical Storm Erin late in364

the month. In previous research, this month of data was found to provide a representative range365

of state information that allowed an RL agent to learn effective flood mitigation policies10, while366

also keeping computational costs reasonable. A visualization of the rainfall and sea level training367

data, as well as the TSS concentration in each pond is given in Figure 5. RL-FD is trained for368

100,000 steps of the training data with a discount factor (weighting of current and future rewards)369

of 0.5. RL-FDTSS and RL-FD+FDTSS are both trained for 150,000 steps, when the pre-training370

from RL-FD is considered for RL-FD+FDTSS, with a discount factor of 0.99. RL agents are371

tested on the remaining data (2010-2019). Each RL agent has the same neural neural network372

architecture; these and the shared RL hyperparameters are documented in the open source code373

repository linked in section 5. The DDPG algorithm is implemented with the keras-rl50, openai374

gym51, and Tensorflow52 python packages; the wandb53 python package was used for tracking375

training progress and comparing agents during the hyperparameter tuning process.376

2.3.4 RTC Comparisons377

The RTC scenarios are evaluated in three main comparisons as shown in Table 2; each comparison378

has a different control scale and prioritization of flooding and water quality improvement. First, a379
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baseline for flood mitigation is established by comparing the passive system and RL-FD, which380

does not consider water quality in its control policy. While the design of the passive system does381

consider pollutant treatment, the main focus is on flood mitigation. Second, trade-offs between the382

RBC methods, which focus on flooding and TSS at the pond scale, are compared to the passive383

system. In this comparison, the RBC controls prioritize enhancing pollutant treatment as this is one384

of the largest benefits these systems have had in practice. Third, system-level control trade-offs385

with RL-FDTSS and RL-FD+FDTSS, which considered both flooding and TSS in their training, are386

compared to the passive system and RL-FD. These three comparisons are made without simulating387

groundwater exchange to keep the focus on control actions and reduce computational expense. The388

impact of groundwater exchange is then examined on a subset of the data to evaluate its potential389

impact on RTC of the stormwater system.390

Table 2. Comparisons of stormwater control scenarios

Comparison Control Method

Baseline Passive RL-FD

Local RBC-DTN RBC-TSS

System RL-FDTSS RL-FD+FDTSS

3 RESULTS391

3.1 Baseline Flood and TSS Control392

Figure 5 illustrates how the passive system and RL-FD respond to the storm events in August, 2019.393

Operation of Pond 1 is similar between these two methods because the controllable valve is at the394

same elevation as the fixed weir; water is released as soon as depth increases from a storm event.395

However, RL-FD learned to close the valve when high tide levels caused backflow into the pond to396

prevent water level fluctuations (e.g., Aug. 26-27). RL-FD learned to lower Pond 2’s depth, which397

is fully controllable, before certain storm events (e.g., the Aug. 4 storm) while remaining close to398

the target depth during dry periods.399
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Figure 5. Comparison of passive and RL-FD system operation for August, 2019. From top to

bottom, these plots illustrate the hydrological model drivers (rainfall, sea level, and groundwater

level) and the depth, TSS concentration, and valve position for Ponds 1 and 2, respectively. In this

case, the passive system cannot alter its behavior, while RL-FD can control the valves in response

to observed and forecast water quantity conditions.
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The system-level control policy learned by RL-FD allowed it to reduce the total volume of400

flooding by 4.0% (72301m3) compared to the passive system (Fig. 6, A). While RL-FD’s training401

did not include any water quality information, it’s policy does provide improved TSS capture at402

both ponds (i.e., lower loads at the valves). Compared to the passive system, RL-FD reduced TSS403

by 15.1% (16436kg) and 14.8% (14074kg) at Valves 1 and 2, respectively (Fig. 6, B).404

Figure 6. Total flood volumes (A) and TSS loads (B) for the passive and RL-FD baseline

scenarios, 2010-2019.

3.2 Local Control with RBC405

An example of the RBC methodologies compared to the passive system is shown in Figure 7. Both406

RBC methods operate the ponds individually (i.e., rules are not coordinated between the ponds) to407

mitigate flooding of the pond by releasing water or to improve water quality by retaining runoff after408

a storm event. RBC-DTN has a fixed detention time, while RBC-TSS adapts detention time based409

on the concentration of TSS in the pond. For example, after the Aug. 8 storm both methods retain410

water for similar amounts of time. This indicates that the fixed 24hr retention time of RBC-DTN411

was adequate to treat the TSS washed into the ponds after the short buildup period following the412

Aug. 4 storm. However, after longer periods of TSS buildup, RBC-TSS retains stormwater longer413

than RBC-DTN until TSS is sufficiently treated and the concentrations drop below the threshold414

(e.g., following the Aug. 15 and 22 storms).415
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Figure 7. Comparison of local RTC methods (RBC-TSS, RBC-DTN) and passive system

operation for August, 2019. From top to bottom, these plots illustrate the hydrological model

drivers (rainfall, sea level, and groundwater level) and the depth, TSS concentration, and valve

position for Ponds 1 and 2, respectively. In this case, the passive system cannot alter its behavior,

RBC-DTN retains water for a fixed period after storm events to allow settling of TSS, and

RBC-TSS adaptively retains water when TSS concentrations are above a threshold.
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Both rule-based control methods provide reductions in TSS export from the controlled ponds416

compared to the passive system. However, this is at the expense of increased flooding because417

operation of the two valves is not coordinated and does not consider flooding in other parts of the418

stormwater system (Fig. 8). Compared to the passive system, RBC-TSS increased total system flood419

volume by 12.0% (215011m3), while decreasing TSS by 95.5% (104222kg) and 32.8% (31116kg)420

at Valves 1 and 2, respectively. RBC-DTN increased flooding by 9.0% (161259kg) and decreased421

TSS for Valves 1 and 2 by 49.2% (53710kg) and 4.5% (4227kg) compared to the passive system.422

RBC for Pond 2 does not treat TSS as efficiently as Pond 1 due in part to the system configuration.423

Water needs to be released if the Pond 2 depth exceeds 1.75m; this is necessary to alleviate upstream424

flooding due to this SWMM model’s specific pipe configuration. Further, valve 1 is approximately425

halfway up the side of Pond 1 (i.e., Pond 1 cannot be fully drained), which increases the detention426

time compared to Pond 2.427

Figure 8. Total flood volumes (A) and TSS loads (B) for local RTC methods (RBC-TSS,

RBC-DTN) and passive system operation, 2010-2019.

3.3 System-level Control with RL428

Both RL-FDTSS and RL-FD+FDTSS learned policies with multiple objectives of flood mitigation,429

TSS reduction, and target pond depths. When tested on the training data (Fig. 9), these agents430

generally kept valve 1 open to maintain the target depth before and between storms (neither agent431
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can lower the water level in Pond 1 below the target, due to the valve placement) and closed valve 1432

during storms to capture TSS. After storm events, RL-FDTSS held water to improve TSS treatment;433

in contrast RL-FD+FDTSS closed valve 1 long enough to capture initial TSS inflow, but quickly434

released water to return the pond to its target depth. The agents have similar policies for valve 2 that435

favor holding water above the target depth to treat TSS while draining the pond before storm events436

to prevent flooding. However, RL-FDTSS tended to release water more gradually and hold it at437

high levels between storms than RL-FD+FDTSS, increasing TSS treatment.438
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Figure 9. Comparison of RL-FDTSS, RL-FD+FDTSS, and passive system operation for August,

2019. From top to bottom, these plots illustrate the hydrological model drivers (rainfall, sea level,

and groundwater level) and the depth, TSS concentration, and valve position for Ponds 1 and 2,

respectively. The passive system cannot alter its behavior; RL-FDTSS and RL-FD+FDTSS use

water quantity and quality (i.e., TSS observations) information to make control decisions.

RL-FD+FDTSS was pre-trained from RL-FD and learned a different balance of flood and TSS

control than RL-FDTSS.
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On the test dataset (2010-2019), RL-FDTSS had 11.3% (212740m3) more total system flooding439

and 74.6% (179429m3) more flooding at Pond 1 than RL-FD+FDTSS (Fig. 10). Both RL-440

FDTSS and RL-FD+FDTSS increased system-wide flooding compared to the passive system by441

16.8% (300183m3) and 4.9% (87443m3), respectively. In terms of TSS reduction, both of these442

agents provide improvements compared to the passive system. RL-FDTSS reduced TSS by 95.1%443

(103816kg) and 81.3% (77185kg) at valves 1 and 2, while RL-FD+FDTSS reduced TSS by 39.5%444

(43129kg) and 65.0% (61701kg).445

Figure 10. Total flood volumes (A) and TSS loads (B) for RL-FDTSS and RL-FD+FDTSS,

2010-2019.

3.4 Multi-objective Comparison of RTC Methods446

A comparison of performance trade-offs for each stormwater control method is shown in Figure447

11. In terms of flood volume, only RL-FD reduced flooding compared to the passive system at448

both the system-level and at Pond 1. RL-FD+FDTSS outperformed the local-scale RBC methods449

and RL-FDTSS. Pond 2 did not flood in any of the scenarios because of the configuration of this450

SWMM model; several nodes upstream of Pond 2 have lower maximum depths and flood with any451

rainfall when the pond is above a certain level.452

All RTC methods reduced TSS loads at both valves compared to the passive system. TSS load453

reduction at valve 1 was greatest for RBC-TSS and RL-FDTSS; RBC-TSS used water quality454
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Figure 11. Comparison of flood volume and TSS load trade-offs for each control method,

2010-2019.

observations to inform control, while RL-FDTSS learned a control policy from scratch that included455

penalties for high TSS loads. At valve 2, the local-scale RBC methods had fixed rules to release456

water when Pond 2’s depth reached the threshold for upstream flooding. This limited their ability to457

capture the first flush of TSS during large storm events. The system-level RL agents outperformed458

the passive system and had similar trends in performance for both valves. RL-FD did not consider459
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TSS in its policy and had the smallest reduction; RL-FD+FDTSS, which had some training with460

the reward function for RL-FDTSS, had more TSS reduction than RL-FD. RL-FDTSS was trained461

from start to finish with a reward function that penalized TSS export from the ponds and had the462

greatest reductions in TSS.463

The RTC methods made varying degrees of progress towards meeting the city’s TMDL TSS464

reduction goals of 5.75, 35, and 60% by 2021, 2026, and 2031, respectively. The percent reductions465

achieved by the RTC methods compared to the passive system are given in Table 3. All RTC466

methods exceeded the 5.75% reduction goal. RL-FD+FDTSS exceeded the 35% goal and both467

RBC-TSS and RL-FDTSS exceeded the 60% goal.468

Table 3. Percent reduction in total pond TSS export for each RTC method compared to the Passive

system.

Control Method RL-FD RBC-DTN RBC-TSS RL-FDTSS RL-FD+FDTSS

Reduction (%) 14.94 28.38 66.29 88.66 51.35

In terms of maintaining the target depth at Pond 2, RBC-TSS was most similar to the passive469

system because the valve was at the same height as the target depth (Fig. 12). However, RBC-TSS470

was able to close the valve to treat TSS and therefore had a greater percentage of time above the471

target compared to the passive system. RBC-DTN and the RL agents could fully drain or fill Pond 2472

and had a greater percentage of time at lower depths. This helped prevent the pond from flooding,473

but long periods of time at low depths are undesirable in reality. The target depth comparison also474

illustrates differences in policy learned by RL-FDTSS and RL-FD+FDTSS. Across the entire test set,475

RL-FDTSS had a tendency to keep Pond 2 at very low water levels. In contrast, RL-FD+FDTSS’s476

policy kept the water level at or above the target depth approximately 90% of the time, indicating477

that it learned a policy to only drain the ponds when needed (a benefit of pretraining RL-FD+FDTSS478

from RL-FD).479
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Figure 12. Comparison of time below or above the Pond 2 target depth (1.1m) for each control

method, 2010-2019.

3.5 Impact of Groundwater Exchange on RTC Methods480

In comparing the sensitivity of pond-aquifer flow to the Dupuit fitting parameter L, it was found that481

L=7.6m and L=3.0m had no noticeable impact on the mean depth of Pond 1, while the mean depth482

at Pond 2 increased by 14% (Table 4). When L=1.5m, Pond 1 tends to gain a small amount of water,483

while Pond 2 gains slightly less water compared to the larger values of L. As an example, during484

the dry period without groundwater exchange between Sept. 9 and 19, the water level at both ponds485

is slightly elevated compared to the simulation without groundwater exchange (Fig. 13, No GW).486

When L=0.3m, the mean depth at Ponds 1 and 2 increased by 10% and 7%, respectively. This value487

of L caused total monthly inflow volume to increase at Pond 1 by 24%. At Pond 2, however, total488

monthly inflow volume decreased by 1% and the pond lost water between Sept. 9 and 19 (Fig. 13).489

Because L=0.3m had the largest increase in depth at Pond 1 and altered Pond 2’s behavior during490

dry weather, it was chosen for use in the RTC simulation with groundwater exchange.491

Because groundwater exchange also allows increased infiltration, all of the RTC methods have a492
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Table 4. Percent difference in mean pond depth for groundwater exchange simulated with varying

values of L compared to the simulation without groundwater exchange over the month of Sept.

2016.

L (m) 7.6 3.0 1.5 0.3

Pond 1 0.0 0.0 +2.8 +10.3

Pond 2 +13.9 +13.9 +12.8 +6.9

Figure 13. Comparison of passive pond operation for simulations without groundwater exchange

(No GW) and with L = 1.5m or L = 0.3m in the Dupuit equation, September, 2016.

smaller change in total flood volume compared to the passive system when groundwater exchange is493

included (with the exception of RBC-DTN, which had a larger percent change and reduced flooding,494

instead of increasing it) (Fig. 14, A). All RTC methods were still effective at reducing TSS loads495
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for valves 1 and 2 (Fig. 14, B and C, respectively). Of the RBC methods, RBC-DTN had a smaller496

decrease in Valve 1 TSS load with groundwater exchange than without. RL-FDTSS was the only497

RL method to perform worse for TSS reduction when groundwater exchange was added to the498

simulation. This may indicate overfitting to the training data (which did not include groundwater499

exchange), limiting RL-FDTSS’s ability to control new pond behaviors. An example time series500

visualization and statistics of valve operation by the RTC methods is available in Appendix A, Figs.501

3 and 4).502

Figure 14. Comparison of percent difference from the passive system for each RTC method’s total

flood volume (A) and TSS loads (B and C) for simulations with and without groundwater (GW)

exchange for September, 2016.

4 DISCUSSION503

4.1 Towards System-level Control504

As the complexity of an environment and control objectives increases, it becomes much harder505

for a single RL agent to learn an effective control policy. This can be seen in the performance506

of RL-FD and RL-FDTSS. RL-FD had fewer goals and a simpler reward function that allowed507

it to learn an effective policy. In contrast, RL-FDTSS had a more complicated reward function508
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and more goals. While it learned an effective policy for minimizing TSS, that was at the expense509

of both increasing system flooding and allowing Pond 2 to remain at undesirably low depths for510

long periods of time. As demonstrated by RL-FD+FDTSS, pretraining from an agent that performs511

well on simpler, but related, goals is one way to approach this challenge. This pretraining allowed512

RL-FD+FDTSS to outperform RL-FDTSS for flood mitigation, but at the expense of somewhat513

reduced TSS treatment. Other methods such as Multi Agent RL (MARL), Multi-Objective RL514

(MORL), and boosting/ensemble methods may also be beneficial. In MARL, each pond could515

be controlled by an individual agent tuned to that pond’s specific goals, while also operating516

cooperatively towards system-level goals54,55. In MORL, sets of policies are learned to approximate517

a Pareto frontier56; this is especially valuable for comparing trade-offs among agents. Similar518

multi-objective optimization is well studied for reservoir operation and could provide an alternative519

to MORL57. Boosting and other ensemble methods attempt to combine agent policies or neural520

network outputs to increase performance58,59. In the context of RL for stormwater systems, this521

maybe beneficial for combining agents that are trained for different purposes (e.g., an agent for522

extreme events, an agent for average events, an agent for dry periods).523

Of the RTC methods implemented here, both RBC-DTN and the RL agents use current observa-524

tions and forecasts to inform control decisions ahead of storm events. Perfect forecast data were525

used in this research to keep the focus on the control methodology, however, forecasts can contain a526

significant amount of uncertainty in reality. As an example specific to coastal systems, tide forecasts527

are based on the astronomical tide cycle which does not account for storm tides. In practice, RBC528

implementations have handled forecast uncertainty by using a probability threshold (e.g., take an ac-529

tion if the rainfall forecast probability is greater than 50%), as well as other fail-safes14. Stormwater530

RTC research using linear optimization and water quality control rules found that errors in rainfall531

prediction (i.e., an unforeseen storm event) could cause flooding of stormwater ponds, but that the532

system-level control could quickly adapt and recover based on observations of current conditions60.533

Recent work with RL (specifically the DDPG algorithm used in this study) for stormwater RTC534

has indicated that this algorithm is robust to uncertainty in sensed and forecast data in both training535

and testing31. While quality-controlled observations could be used in off-line training, doing so536

could limit an agent’s performance when deployed and using noisy data to inform control actions.537

In the current research, the RL agents were robust to altered pond behavior when groundwater538
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exchange was simulated (groundwater exchange was not included in the RL training process).539

However, as stormwater RTC continues to move towards system-level control to accommodate the540

increasing density of controlled infrastructure components, changing environmental conditions, and541

more stringent environmental regulations, understanding the impact of sensed and forecast data542

uncertainty on RTC methods will be essential.543

While sensed and forecast data can be a source of uncertainty, the formulation of RTC methods544

can also introduce uncertainty in their performance. For example, both RBC methods use thresholds545

to trigger control actions. RBC-DTN uses a time threshold (24 hours) for retaining runoff after546

storm events. RBC-TSS uses a TSS concentration threshold to either retain or release water from547

the ponds. Changing these thresholds would change the performance of the RBC methods (e.g.,548

increased detention time can be expected to increase TSS treatment to a certain extent), however549

the exact impact on the performance of the RBC methods used in this study is uncertain. The550

RL implementations in this research also include user defined thresholds in their reward functions551

and the agents’ performance can be very sensitive to these values. In addition, the RL agents552

benefit from system-level information when learning their control policies. In practice, sensor553

networks are subject to accuracy limitations, communication interruptions, and cyber-cognitive554

vulnerabilities (i.e., automated control algorithms, like the RL agents trained here, being used in555

unexpected situations that they may not have been trained or tested for)61, to name a few sources556

of uncertainty.557

RL is known to suffer from issues including reward gaming, where the agent learns to exploit558

its environment in unintended ways to gain reward62. In the context of stormwater RTC, reward559

gaming was observed in early attempts at training RL agents related to simulation processes within560

the SWMM model. For example, flood water in the Hague SWMM model does not pond and561

reenter the stormwater system as it would in reality, but is simply recorded as flooding and lost562

from the simulation. One consequence of this model process is that any TSS within flood water is563

also lost from the system. If rewards are poorly shaped (i.e., TSS much more heavily weighted than564

flooding), the RL agent can learn policies that induce flooding because the rewards gained by the565

corresponding TSS reduction outweigh penalties for flooding. This highlights the need for domain566

specific knowledge when crafting reward functions and careful consideration of simplifications567

within simulated environments.568
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Beyond water level, flooding, and water quality, more direct monetary costs could be included569

in the RL reward functions. Some costs of RTC are long term (e.g., the purchase and installation570

of sensors and valves, as well as their maintenance), and may not be useful when learning real-571

time control policies. A small cost could be incurred for every valve adjustment, which could be572

considered in optimization. However, a city may not want to limit valve movements based on a573

small cost if it also limits system efficiency. As with trade-offs between flooding and TSS capture,574

the balance between limiting and allowing valve movements could be difficult to find. Another575

potential cost that could be included is that of dredging retention ponds to remove accumulated576

sediment and maintain appropriate capture volumes. Such maintenance may have to become more577

frequent with RTC methods that capture sediment, but may still be too long of a time scale when578

developing sub-hourly control policies. Additionally, improved water quality and flood mitigation579

could offset costs associated with RTC (see, for example,14,47).580

4.2 Trade-offs of Local-scale RBC581

Both RBC methods used in this research performed RTC at the local-scale (i.e., operating each582

pond individually) and reduced TSS loads, but at the expense of increased system-level flooding.583

RBC-DTN showed similar TSS reductions for Pond 1 (49%) as previous studies in other locations584

(approximately 40% reported by Marchese et al.12. However, as water quality sensor technology585

becomes less expensive and more robust63–66, control based on water quality observations, such as586

the RBC-TSS implemented here, may provide a more adaptive solution. RBC-TSS reduced TSS587

by 96% for Pond 1 compared to the passive system, similar to the value found by Sharior et al.17
588

for a different site. The RBC methods did not perform as well for Pond 2 in this study due to the589

configuration of the upstream pipes. Specifically, when water reached 1.75m (which is less than the590

maximum depth), the contingency rules to prevent upstream flooding would open valve 2. Without591

this rule, the RBC methods greatly increased upstream flooding, but it also releases stormwater with592

high concentrations of TSS during large storm events.593

The results of RBC demonstrate that fixed rules, like those used in RBC-DTN, may not provide594

the most efficient treatment because pollutants are highly variable between sites and storms19. One595

solution could be the combination of the two RBC methods used here (e.g., the predictive drawdown596

capability of RBC-DTN coupled with adaptive detention time based on observed water quality as597
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in RBC-TSS), but this is still limited as a local-control scheme. While adapting rules based on598

water quality may be fairly straight-forward for a single pollutant at a single site, controlling a599

stormwater system for multiple pollutants with different treatment processes (e.g., nitrogen species)600

will require system-level control18. As an example, consider two ponds in series; the upstream601

pond is controlled to optimize TSS removal, while the downstream pond is controlled to maintain602

anaerobic conditions for denitrification. If the upstream pond retains water to allow settling of603

sediment, it might deprive the downstream pond of inflow needed to maintain anaerobic conditions604

unless these ponds are operated as a system.605

4.3 Groundwater Exchange Limitations and Impact606

Due to the specific configuration of the studied SWMM model, groundwater exchange was calcu-607

lated externally from the SWMM model and added (or subtracted in the case of infiltration) to the608

ponds’ inflow at each control time step. While this process is based on in-situ soil properties for609

Pond 1 in Norfolk’s Hague region, the Dupuit equation (which is intended for systems at a steady610

state) may not provide the most accurate representation of groundwater exchange. Under real-time611

control, ponds can be rapidly drained and refilled before and during a storm event. The Boussinesq612

equation for transient unconfined aquifer flow would provide a more realistic representation and613

is commonly implemented as a simpler alternative to Richards equation (see, for example,67).614

Coupling such a model with the SWMM model used here would allow for more precision, but as an615

initial demonstration of groundwater impact on ponds controlled in real-time, the Dupuit equation616

was quick to implement and run.617

In the simulated RTC scenarios set up in this research, groundwater exchange with controlled618

ponds decreased flooding through infiltration; TSS loads were also reduced because less water619

was exiting the ponds through the valves. It should be noted that neither of the RBC methods620

were recalibrated to account for groundwater exchange nor were the RL agents retrained with621

groundwater exchange being simulated. Retraining with groundwater exchange simulated and622

including groundwater observations or forecasts as part of the RL agents’ state may allow the agents623

to learn more effective policies. However, with the limited impact of groundwater exchange in this624

specific simulation, it was not necessary; the RL agents’ learned policies and the local scale RBC625

methods were robust toward altered pond behavior when groundwater exchange was simulated.626
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5 CONCLUSIONS627

In this research, real-time control (RTC) methods are applied to a coastal stormwater infrastructure628

system and evaluated on their ability to mitigate flooding and improve water quality by capturing629

TSS in controlled retention ponds. The RTC methods used include local control with rules (RBC)630

and system-level control with deep reinforcement learning (RL). The impact of groundwater631

exchange on the performance of the controlled ponds was evaluated as a condition that may be632

important in coastal areas. This research contributes to the growing field of stormwater RTC633

by being the first to evaluate the ability of RL to learn system-level control policies considering634

both water quantity and water quality goals, as well as being the first to consider the impact of635

groundwater on the performance on controlled ponds in a coastal city.636

Two methods of RBC were used (i) RBC-DTN, which is based on industry standard stormwater637

RTC and predictively manages ponds to prevent flooding while retaining runoff for a fixed detention638

time to improve water quality and (ii) RBC-TSS, which uses observations of water quality to inform639

valve operation in order to improve TSS capture. Both RBC methods are transparent and provide640

water quality benefits compared to the passive system. RBC-TSS provided more adaptive operation641

and demonstrates the potential for water quality observations to be incorporated with RTC as sensor642

technology improves. However, the local operation of both RBC methods caused increased total643

system flooding.644

Three RL agents were trained and tested for their ability to learn effective system-level control645

policies. The goal of the first agent (RL-FD) was to mitigate flooding and maintain target pond646

depths; it reduced flooding compared to the passive system, but did not consider water quality in647

its control policy. The second and third RL agents (RL-FDTSS and RL-FD+FDTSS) attempted648

to learn policies for more objectives: mitigate flooding, maintain target pond depths, and reduce649

TSS load at the controlled valves. RL-FDTSS learned a policy from scratch, while RL-FD+FDTSS650

was pretrained by using the neural network weights and memory from RL-FD, but was trained to651

consider water quality as well using the reward function from RL-FDTSS. Both RL-FDTSS and652

RL-FD+FDTSS provided water quality benefits but increased flooding compared to the passive653

system. RL-FDTSS decreased TSS loads by an average of 88%, but increased system-wide flooding654

by 17%. RL-FD+FDTSS’s pretraining was effective at reducing training time and allowed it to learn655
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a policy that reduced TSS by an average of 52%, with only a 5% increase in total flood volume,656

compared to the passive system.657

Given the growing adoption of rule-based stormwater RTC and the ability of RL to learn system-658

level control policies, future work could investigate control of more complex stormwater systems and659

integrations of RL and RBC. More complex stormwater systems could include retention ponds in660

series, pollutants that are treated through chemical and biological processes (e.g., nitrogen)/multiple661

pollutants, and different controllable assets such as pumps. Integration of RL and RBC could662

include using RL to better parameterize variables within an existing control rule (see Likmeta, et663

al.,68 for an example in autonomous vehicles), as well as adding or removing rules from a set of664

rules. These avenues for future research could allow stormwater RTC providers to increase the665

complexity of controlled networks, improving flood mitigation and water quality, while maintaining666

the operational transparency needed for critical stormwater infrastructure systems.667

DATA, MODEL, AND CODE AVAILABILITY668

The data, models, and code used in this study are available on GitHub at https://github.com/669

UVAdMIST/swmm wq rl.670
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A ADDITIONAL FIGURES679

Figure 1. RBC-DTN decision tree (adapted from10).

37



Figure 2. RBC-TSS decision tree.
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Figure 3. Comparison of RL-FD and passive system operation for September, 2016 with

groundwater exchange at the controlled ponds.
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Figure 4. Comparison of control policies (% of time a valve is fully closed (A), fully open (B),

and the mean valve position (C)) for simulations with and without groundwater (GW) exchange for

September, 2016.
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