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A B S T R A C T   

Crowdsourced Personal Weather Stations (PWSs) adoption has been growing rapidly and provides the potential 
to fill in hyper-local rainfall observation gaps. However, current adoption patterns exhibit spatial biases that 
must be understood when using the data for modeling and decision-making. Here, we first examine the PWS 
rainfall spatial representation at HUC-12 watersheds in twelve metropolitan areas in the U.S. Furthermore, by 
modeling the PWS adoption using socio-economic and flood-related data at census tract level, the results suggest 
current adoption patterns exhibit spatial biases toward wealthier neighborhoods and flood-prone regions. The 
findings provide insights to inform how policies could be made to distribute resources to improve the rainfall 
data collection efforts in PWS-underrepresented regions. As crowdsourced data are increasingly used for 
decision-making by policymakers, efforts to close the gap in current non-uniform PWS spatial adoption will allow 
crowdsourced rainfall data to be better positioned to support decision-makers in their flood resilience efforts.   

1. Introduction 

Flooding causes significant social and economic damage and loss in 
the United States each year (The National Academies of Science, Engi
neering, 2019). Hurricane Harvey is an extreme example of bringing 
unprecedented rainfall across the city of Houston, Texas, leading to 
catastrophic flooding that impacted more than 100,000 homes and 
incurred an estimated damage cost of $125 billion (Van Oldenborgh 
et al., 2017). With the increase in frequency and intensity of heavy 
rainfall due to climate change, the impact of flooding is projected to 
become more severe over time (Cheng and Aghakouchak, 2014; Fowler 
et al., 2021). In urban watersheds with large portions of impervious 
surfaces and low-lying areas, rainfall-driven flooding has been causing 
even more considerable damage, affecting greater numbers of people 
(Rosenzweig et al., 2018). Therefore, there is a need for improved flood 
assessments as well as building flood resilience in urban areas to adapt to 
the increasing severity of flood hazards (Bertilsson et al., 2019). 

Flood assessments at high spatial and temporal resolution remain a 
challenge. An ideal flood assessment will require a spatially and 
temporally representative dataset, as flood modeling involves complex 
and nonlinear flow and physical processes (Hu et al., 2019). 

Traditionally, flood assessments have mainly been efforts by govern
ment agencies. Local government agencies are responsible for identi
fying flood risks and creating flood forecasting models (Tyler et al., 
2019). However, flood-related data available from government agencies 
needed for enabling high-resolution flood modeling at flood-prone areas 
are usually insufficient or lacking (Cristiano et al., 2017). Furthermore, 
increasing attention has been focused on incorporating the public and a 
wider representation of stakeholders in the decision-making process of 
flood assessment and management (White et al., 2010). Lack of 
engagement from communities for locally specific flood knowledge will 
lead to inadequate flood model calibration and validation (Gebremedhin 
et al., 2020). In such cases, flood forecasting models generated by gov
ernment agencies may not be fully accepted and supported by local 
stakeholders, as they may not reflect adequate representations of floods 
in certain regions (Gebremedhin et al., 2020; Rosenzweig et al., 2018; Sy 
et al., 2019). Lack of engagement of local stakeholders may also worsen 
the disparities of social, economic, and environmental resources across 
communities (White et al., 2010). 

Crowdsourced data can provide a potential solution. Crowdsourcing 
is a method of collecting information from as many involved contribu
tors from the general public (Muller et al., 2015), which offers a way of 
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obtaining large amounts of flooding-related data cost-efficiently 
(Assumpção et al., 2018). With the development of inexpensive sen
sors and communication technology, the amount of data collected by the 
public has been growing rapidly, generating a wealth of information 
(Muller et al., 2015). For example, social media such as Twitter data 
produces geotagged information that can be extracted to map the po
tential extent of flood events (Wang et al., 2018). Mobile apps such as 
Google Waze enable users to report floods in a convenient and efficient 
way, which greatly supports government efforts to identify the location 
of floods (Praharaj et al., 2021). In the case of rainfall monitoring, the 
adoption of personal weather stations (PWSs) by the general public fills 
in the rainfall observation gap in locations where government agency 
data are unavailable (de Vos et al., 2017). PWSs are off-the-shelf 
weather stations installed and maintained by individuals, and the re
ported data can be easily shared through websites such as Weather 
Underground (Gharesifard and Wehn, 2016). In recent years, crowd
sourced PWS adoption has been growing rapidly to supplement agency- 
maintained rain gauges which are usually limited in coverage (de Vos 
et al., 2017), as well as remote sensing rainfall (e.g. satellite and radar) 
which requires validation from ground rain gauges (Muller et al., 2015). 
For example, in Houston, Texas, PWS adoption density has grown from 
0.06 to 0.24 PWS per km2 from 2016 to 2019. Such exponential growth 
suggests that in populated areas in the U.S., PWSs could alone provide 
sufficient spatial resolutions for rainfall observations needed for urban 
hydrology in a few years (Berne et al., 2004; Chen et al., 2021). 

Furthermore, by participating in data collection via crowdsourcing, 
the public may also become more proactive in engaging in local 
decision-making processes (Buytaert et al., 2016). In fact, the motivation 
behind adopting PWSs and sharing the collected data often starts with 
owners using the data for personal purposes. Simultaneously, growth in 
PWS adoption has the potential to benefit society at large since the 
collected data could implicitly create crucial knowledge for local com
munities (Gharesifard and Wehn, 2016). Therefore, as local stakeholders 
(e.g. PWS owners) gain better understanding of the their environments 
with time, empowering them to grow from collecting data toward 
developing models and decision support systems becomes key (Almor
adie et al., 2015; Voinov et al., 2016). The ongoing trend of increasing 
crowdsourcing participation (e.g., rainfall data collection by PWS 
adoption) from the general public in local communities, therefore, lays 
the foundation for generating collective knowledge to support flood 
resilience efforts (Paul et al., 2018). 

Despite the rapid growth of PWS adoption for generating a wealth of 
rainfall observations, current adoption patterns exhibit spatial biases 
caused by underrepresentation or overrepresentation of certain regions 
(Muller et al., 2015). Using non-representative and spatially-biased 
datasets as model inputs could lead to biased modeling results and 
decision-making (Towe et al., 2020). Furthermore, recent advancements 
of data-driven techniques has enabled modeling flood at high spatial and 
temporal resolution (Mosavi et al., 2018; Sadler et al., 2018; Shen et al., 
2019; Zahura et al., 2020), which has also highlighted the importance of 
using representative datasets, as large datasets are not always compre
hensive (Torralba and Efros, 2011). Therefore, it is important to ensure 
that crowdsourced rainfall datasets are analyzed for spatial and tem
poral representation and variability and, if biases exist, such biases are 
clearly understood and accounted for when using the crowdsourced data 
in modeling and decision-making. 

Spatial bias in crowdsourced data has been studied across a variety of 
fields. For example, social media usage is mainly concentrated in 
populous areas, leading to certain groups not receiving needed assis
tance during disasters (Fan et al., 2020). Mobile phone applications have 
the potential to enhance resilience building against disasters, but the 
lack of user-centered design often results in low uptakes in marginalized 
and vulnerable groups who are more vulnerable in disaster situations 
(Craig et al., 2019; Paul et al., 2021). Crowdsourced bicycle ridership 
data are biased toward recreational riders (who track exercise activity), 
which requires a correction for better representation of the ridership 

patterns of all riders, such as commuter cyclists (Roy et al., 2019). 
Biodiversity data collected from crowdsourcing exhibited spatial biases 
toward accessible areas or recreational summer homes (Millar et al., 
2019). PWS adoption and other crowdsourced climate and atmospheric 
data have spatial biases toward populous areas (Muller et al., 2015). In 
previous studies, regression models using socio-economic and de
mographic factors have been widely used for assessing the factors that 
affect the spatial bias pattern. Examples include exploring the effect of 
socio-economic factors and environmental attitudes on rain barrel 
spatial adoption patterns (Ando and Freitas, 2011), the presence of 
hazardous waste sites affecting life expectancy (Kiaghadi et al., 2021), 
and spatial models to predict electric vehicle ownership choice behavior 
(Chen et al., 2015). However, limited studies have been focused on the 
fast-growing crowdsourced PWS network to provide high-resolution 
rainfall observations and engage communities in supporting flood 
resilience. Therefore, the research questions that guide this study are: 
(1) Are PWS providing a spatially representative sample of rainfall data? 
(2) What are the underlying factors that affect the spatial pattern of PWS 
adoption? 

In this study, we used a unique PWS adoption dataset obtained from 
Weather Underground, which is one of the largest crowdsourced PWS 
platforms. This dataset consists of the location of more than 100,000 
PWS in the contiguous U.S. PWS rainfall representation in United States 
Geological Survey (USGS) level-12 Hydrological Unit Codes(U.S. 
Geological Survey, 2021) (HUC-12) watersheds in 12 selected metro
politan areas were analyzed to quantify to what extent current PWS 
adoption can contribute to rainfall observations. We further applied 
logistic regression models using socio-economic and flood-related data 
to identify the factors that influence the spatial bias in PWS adoption. 
Moreover, we measured and analyzed the marginal effects of resulting 
models to quantify the PWS adoption disparities across neighborhoods. 

2. Materials and methods 

2.1. PWS adoption data acquisition 

PWS adoption dataset used in this study was obtained from Weather 
Underground database using their previous version of Application Pro
gramming Interface (API). The analysis dataset contains metadata 
including the ID and the geographic location (latitude and longitude) of 
more than 100,000 PWSs. The geographical location of these PWSs were 
then mapped using ArcGIS to explore the PWS adoption spatial pattern 
in the contiguous U.S. Note that at the end of 2019, this version of the 
API has been retired. The new version of the API (introduced in 2020) 
requires a Weather Underground key which can be obtained through 
connecting a PWS to the platform. Furthermore, the number of API calls 
per day in order to download the data was greatly limited, and some of 
the metadata including PWS installation date were no longer available. 
Therefore, to preserve such details in the dataset, this study focused on 
the PWS adoption dataset gathered on April 2019. 

2.2. PWS rainfall representation calculation 

PWS rainfall representation was evaluated based on the PWS density 
in an urban watershed within a metropolitan area (MA). In this study, an 
urban watershed is defined as HUC-12 watersheds that intersected with 
United States Census Bureau (USCB) delineated urban areas within the 
MA boundary (U.S. Census Bureau, 2021). To compute the PWS density 
in an urban watershed of each MA, we used the point density tool in 
ArcGIS (version 10.6) to convert PWS location point data to gridded 
raster which represents the PWS density, followed by using the zonal 
statistics tool to compute the average PWS point density in a watershed 
(see Fig. 1 for the workflow). Like traditional rain gauges, rainfall data 
recorded from PWSs are point observations which can only be repre
sentative of the rainfall of a specific area due to the spatial variability of 
rainfall events (Cristiano et al., 2017). To have a sufficient 
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representation of rainfall spatial variability in terms of rain gauge den
sity in a monitoring network, the World Meteorological Organization 
recommends at least one rain gauge per 10–20 km2 for urban areas 
(World Meteorological Organization (WMO), 2008). Therefore, we used 
an average PWS point density of 0.1 PWS per km2 (1 PWS per 10 km2) as 
the threshold to assess PWS rainfall representation. An underrepre
sented (UR) watershed is defined as having a point density lower than 
the threshold, while a non-UR watershed is defined as having a point 
density above the threshold. Using an one-way ANOVA test, we further 
extracted the population density estimates from the WorldPop popula
tion dataset (Tatem, 2017) to test if a significant mean difference in 
mean population density exists between UR and non-UR watersheds. 

2.3. PWS adoption logistic regression model 

We used logistic Regression to assess the association between the 
PWS adoption and selected socio-economic data. The built-in “glm” 
package in R programming language (version 3.6.1) was applied to run 
the regression models. Census tract (CT) level socio-economic data were 
obtained from the USCB’s 2017 American Community Survey 5-year 
estimate, including population, median household income, household 
density, and owner-occupied household ratio (the number of owner- 
occupied households divided by the total number of households). CT 
was selected as the common geographic unit for analysis because it is the 
smallest geographic boundary used by the Census Bureau. To build the 
logistic Regression model, we aggregated the PWS location information 
into total counts of PWS adopted in each CT, then classified these counts 
into binary groups: PWS adoption = 1 for CTs that have at least 1 PWS (1 
+ PWS) and PWS adoption = 0 for CTs that have no PWS adoption. The 
logistic Regression equation is shown as follows: 

p(PWS adoption) =
eβ0+

∑n

i=1
βiQi+

∑m

i=n+1
βiXi

1 + eβ0+
∑n

i=1
βiQi+

∑m

i=n+1
βiXi

(1)  

where p is the probability of 1 + PWS adoption in a CT, β0 is the 
intercept, β1, β2, …., βn−1 are the coefficients for the categorical variable 
Qi(i = 1, 2, ⋯, n − 1) and Qi are the dummy variables for each category 
with the value of either 0 or 1. βn, βn+1, …., βm are the coefficients for the 
continuous variables Xi. The regression coefficients are estimated by 
maximum likelihood. In the explanatory variables, to account for 
household income differences across MAs, the median household in
come (MHI) was converted into categorical variables using quartile 
groups MHI Q1, MHI Q2, MHI Q3, and MHI Q4. In each analyzed MA, a 
CT falling within first quartile of MA MHI was assigned to MHI Q1; a CT 
falling between first and second quartile assigned to MHI Q2; a CT 
falling between second and third quartile was assigned to MHI Q3. a CT 
falling above the fourth quartile was assigned to MHI Q4. Population 
(POP), household density (HHD) and owner-occupied household ratio 
(OOHR) are used as continuous variables for the logistic regression 
model. 

2.4. Flood vulnerability and PWS adoption 

Two types of flood-related datasets at the CT level, (i) the total 
number of flood claims (FC) and (ii) percent housing units in the 100- 
year flood zone (FZ), were used to assess the association between 

potential flood risk and PWS adoption. FC data were obtained from 
National Flood Insurance Program (NFIP) Redacted Claims, which is a 
large database containing more than two million claims transactions 
since the NFIP launched (Federal Emergency Management Agency, 
2021). FZ data were obtained from a dataset published by NYU Furman 
Center. This dataset was created by combining housing and population 
data with FEMA floodplain maps to calculate the percent of housing 
units intersecting with a FEMA 100-year floodplain (NYU Furman 
Center, 2021). In this study, we used the FC and FZ data to represent the 
flood vulnerability of a CT. We assumed that a CT with a higher number 
of flood insurance claims is more likely to have a higher flood risk, and a 
CT with a higher percentage of housing units in the floodplain also 
implies that this CT is more vulnerable to flooding. For each analyzed 
MA, we classified CTs into high/low FC groups based on the FC value, 
with the low FC group having FCs below the median value of the CTs 
within the MA representing the lower flood risk CTs, and high FC group 
having FCs above the median values representing the higher flood risk 
CTs. Similarly, the FZ data were used to classify CTs into in FZ and not in 
FZ groups, with in FZ group representing CTs that have any percent 
housing units in the floodplain, and not in FZ group representing CTs that 
have zero percent in the floodplain. 

3. Results 

3.1. PWS adoption in the contiguous U.S. 

The spatial pattern of PWS shows that adoption is concentrated in the 
metropolitan areas in the east and west coast of the contiguous U.S. 
(Fig. 2a). Unlike the agency-operated rainfall network where rainfall 
stations are usually uniformly distributed, PWS is spatially biased to
ward populous areas. At the metropolitan area (MA) level, PWS adop
tion is also highly correlated with population (Fig. 2b), with a 
correlation coefficient of 0.88 for all MAs in the contiguous U.S. To 
assess the PWS representation in the MAs in the contiguous U.S., the top 
12 MAs by PWS adoption (Fig. 2b) were selected in this study. The 
analyzed MAs are distributed across the contiguous U.S., with the 
number of PWS adoption ranging from 1,300 to 2,569 units per MA and 
PWS density ranging from 0.03 to 0.27 PWS per km2. 

3.2. PWS rainfall representation in HUC-12 watersheds 

In this study, watersheds with PWS point density<0.1 are considered 
underrepresented (UR); otherwise, they are considered well-represented 
(non-UR). The results of the PWS representation calculation showed that 
the current PWS rainfall representation exhibits three characteristics 
(Table 1). First, at the MA level, PWS rainfall representation in HUC-12 
watersheds varied across the analyzed MAs. The average PWS point 
density ranges from 0.14 in Atlanta to 0.59 in San Francisco. Most of the 
analyzed MAs (besides Chicago) have a maximum PWS point density 
above 0.40, indicating that PWS has the potential to contribute to the 
coverage of rainfall observations for at least every 2.5 km2 in those 
watersheds. Among the analyzed MAs, San Francisco has the highest 
maximum PWS point density of 1.34 PWS per km2, which could provide 
a considerable rainfall representation that is even greater than the cur
rent resolution of radar-derived rainfall (e.g., The Next Generation 
Weather Radar (NEXRAD) typically has 1 km by 1 km resolution). 

Fig. 1. GIS workflow of the PWS rainfall representation calculation. The ArcGIS tools used are the italics text in the gray box.  
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Second, though the average PWS point density for analyzed 12 MAs is 
well-represented at the MA level, large disparities occurred at the HUC- 
12 watershed level when uneven representation begins to appear. For 
example, in Seattle and Denver, PWS adoptions are more uniformly 
distributed where no UR watersheds were observed. However, the per
centage of UR watersheds is larger in MAs such as Atlanta (40%) and 
Houston (30%). Third, the mapping of the PWS representation shows 
that the PWS representation has certain spatial distribution patterns 
which merit further analysis. As shown in Fig. 2, UR watersheds are 
generally clustered in a specific region of a MA. For example, in Hous
ton, UR watersheds are concentrated on the east portion of the MA 
where PWS adoption in these watersheds is relatively low. In Chicago 
and Atlanta, large portions of UR watersheds are concentrated in the 
southern part of the MA. 

We hypothesized that population density is explanatory for the PWS 
adoption spatial disparities. To test this hypothesis, population density 
estimates for each HUC-12 watershed were computed using the 
WorldPop dataset (Tatem, 2017). As shown in Table 1, the average 
population density in non-UR watersheds was higher than in UR wa
tersheds. However, the result of the one-way ANOVA test showed that 
the mean difference of population density in UR and non-UR watersheds 
in most MAs was not statistically significant. Although there is a notable 
PWS adoption difference in UR and non-UR watersheds, population 
density did not fully explain the spatial bias in PWS adoption. As can be 
seen in the scatterplots in Fig. 3, most UR watersheds (shown in red dots) 
have similar levels of population density compared to non-UR water
sheds (shown in blue dots) while lacking PWS representation. Therefore, 

we implemented further analysis at a finer geographic scale (census 
tract) to assess other factors affecting the spatial pattern of PWS 
adoption. 

3.3. PWS adoption logistic regression model 

Logistic regression models were built for the 12 analyzed MAs (12 
regression models) to assess the factors affecting the spatial pattern of 
PWS adoption. Table 2 shows the summary statistics of the response 
variable (PWS adoption) and the selected socio-economic explanatory 
variables at the census tract (CT) level. Multicollinearity diagnostics 
performed using the variance inflation factor (VIF) indicated that the 
selected input variables do not pose a concern of collinearity since all the 
VIFs are below 3.0 (Midi et al., 2013). Using the PWS point density 
threshold of 0.1 per km2 in the previous section, we assumed that the 
presence of 1 PWS could provide the minimum rainfall representation 
for a CT, since the area of a CT in the analyzed MAs is mostly below 10 
km2. Therefore, the CTs were classified into binary groups of “1 + PWS 
adoption” and “no PWS” as the response variables in the Logistic 
Regression models. The summary statistics (Table 2) showed that the 
percentage of CTs with 1 + PWS adoption ranged from 21% (New York) 
to 77% (Seattle), and is generally lower in MAs with a larger number of 
CTs, such as New York, Los Angeles, and Chicago. Notably, the com
parison of CTs in “no PWS” and “1 + PWS” groups (Table 2) across MAs 
shows that the median household income (MHI) and owner-occupied 
household ratio (OOHR) are significantly higher in the CTs with 1 +

PWS, while household density (HHD) is mostly higher in CTs with no 

Fig. 2. PWS adoption pattern of the contiguous U.S. as of April 2019. a Each gray dot represents a PWS. The 12 metropolitan areas (MAs) with the largest number of 
PWS adoption were selected for analysis. b PWS adoption highly correlates with the population in MAs in the contiguous U.S. 

Table 1 
PWS representation in HUC-12 watersheds for the 12 analyzed metropolitan areas (MAs). The one-way ANOVA test showed that the mean population density 
difference in underrepresented (UR) and non-UR watersheds is not significant.  

MA N. of watersheds 
in urbanized area 

PWS point density (/km2) Num. of UR UR % Population density (/km2) 

Mean Max Std Avg. UR Avg. 
Non-UR 

F-test 
p-value 

New York 111  0.18  0.43  0.07 15 14% 1039 1928  0.189 
Dallas 53  0.29  0.64  0.16 6 11% 1130 1285  0.440 
Houston 30  0.25  0.48  0.15 9 30% 1076 1459  0.100 
Los Angeles 28  0.26  0.46  0.11 1 4% 2011 2467  – 
Washington DC 37  0.25  0.62  0.15 6 16% 751 1418  0.032 
Seattle 20  0.40  0.73  0.15 0 0% – 1195  – 
San Francisco 17  0.59  1.34  0.29 0 0% – 2163  – 
Boston 38  0.22  0.58  0.09 1 3% 600 789  – 
Chicago 84  0.15  0.37  0.07 19 23% 972 1235  0.340 
Denver 15  0.42  0.67  0.16 0 0% – 1322  – 
Phoenix 18  0.28  0.44  0.11 1 6% 601 1404  0.155 
Atlanta 88  0.14  0.40  0.10 35 40% 626 870  0.002  
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PWS. The mean population in the two groups was similar, since CTs, by 
definition, are delineated based on the population.3 

The exponentiated coefficients (odds ratio) of the logistic regression 
models are shown in Table 3. Among the input variables to the models, 
MHI, POP, and OOHR have positive effects on PWS adoption (odds ratio 
greater than 1), while HHD has negative effects (odds ratio less than 1) 
which indicates negative effects on PWS adoption. The MHI variables 
were converted into categorical variables using quartile groups. Based 
on the coefficients of the MHI for the 12 analyzed MAs, the odds ratio of 

the fourth MHI quartile group (MHI_Q4) was the highest, followed by 
the third (MHI_Q3) and second (MHI_Q4) MHI quartile group. Notably, 
in MAs such as Dallas and Houston, the odds ratio of the third and fourth 
MHI quartile was significantly greater than first MHI quartile group 
(MHI_Q1), which indicated that PWS adoptions are much more likely to 
occur in wealthier neighborhoods. The coefficients of population vari
ables were significant for every analyzed MA in predicting PWS adop
tion, suggesting that an increase of 1,000 in population could lead to an 
increase of 9.6% (Houston) – 48.5% (Boston) of the odds ratio that a CT 

Fig. 3. The PWS adoption pattern in HUC-12 watersheds for the MAs with higher percentage of UR watersheds. The scatterplots of PWS point density and population 
density show that underrepresentation of PWS adoption can occur in watersheds with similar level of population density as non-UR watersheds. 
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has 1 + PWS adoption. The coefficients of OOHR showed that PWS 
adoption is more likely to occur in CTs with a larger percentage of 
owner-occupied households, suggesting that an increase of 1% in OOHR 
in a CT could lead to an increase of 3% – 11% of the 1 + PWS adoption 
odds ratio. However, PWS adoption is less likely in densely populated 
CTs. For an increase of 1000 households per km2 in HHD in a CT, the 
odds ratio of PWS adoption could be decreased by 3.5% to 50.5% across 
analyzed MAs. 

3.4. The effects of median household income on PWS adoption 

Marginal effects of MHI were calculated to provide an intuitive 
comparison of MHI effects on PWS adoption across analyzed MAs. A 
marginal effect (ME) is defined as the change in the response variable 
associated with a change in one explanatory variable while holding 
other variables at a specific value. In the PWS adoption logistic regres
sion models, the MEs of MHI demonstrate the discrete change in pre
dicted probability of PWS adoption from the reference category 
(MHI_Q1) to other categories (MHI_Q2, MHI_Q3 and MHI_Q4), keeping 
POP, HHD and OOHR at their mean values. The MEs of MHI for the 
analyzed MAs are shown in Fig. 4a. Based on the results of the ME, 
common patterns were observed for every analyzed MA. The predicted 
probability of PWS adoption is always the lowest in the reference 
category (MHI_Q1), followed by the second (MHI_Q2), third (MHI_Q3). 
The predicted probability of PWS adoption of the MHI_Q4 is consistently 
the highest. This indicates that in a hypothetical CT with identical POP, 
HHD, and OOHR, the probability of PWS adoption is greater in upper 
MHI quartile categories. For example, for Houston, the ME for the 
MHI_Q1 category is 19%, while in MHI_Q2, MHI_Q3 and MHI_Q4 the 
MEs are 34%, 58% and 81%, respectively. 

Despite the common pattern that predicted PWS adoption is gener
ally higher in upper MHI quartile groups, the level of PWS adoption 
disparities due to MHI varied significantly across analyzed MAs. As 
shown in Fig. 3a, Seattle generally has a higher probability (greater than 
66%) of PWS adoption, regardless of the MHI quartile group. However, 
the adoption probability varied largely in MAs such as Houston 
(MHI_Q1 = 19%, MHI_Q4 = 81%) and Chicago (MHI_Q1 = 7% and 
MHI_Q4 = 45%). The ratio of the average MEs of the upper MHI quartile 
group (MHI_Q2, MHI_Q3, and MHI_Q4) to the MHI_Q1 was computed to 
quantify the level of disparities. As shown in Fig. 4b, in MAs such as 
Seattle and Denver, the level of disparities between MHI quartile group 
are lower (ratio to Q1 were 1.3 and 1.5, respectively), while in MAs such 
as Houston and Chicago, the level of disparities is much higher (ratio to 
Q1 were 3.3 and 5.4, respectively). The PWS adoption pattern versus 
MHI quartiles of these example MAs are shown in Fig. 5. 

3.5. The effects of potential flood risk on PWS adoption 

In this study, we further theorized that flood risk may influence PWS 
adoption. Therefore, two types of flood related dataset at the CT level 
were used to assess the association between potential flood risk and PWS 
adoption (i) total number of flood claim (FC), and (ii) percent housing 
units in the 100-year flood zone (FZ). A comparison of FZ and FC data 
showed that CTs with a lower number of flood claims (low FC group) are 
associated with a lower percentage of CTs that are in the in FZ group, 
while CTs with a higher number of flood claims (high FC group) are 
associated with a higher percentage of CTs that are in the in FZ group. As 
can be seen in Fig. 6, this relationship is consistent for the analyzed MAs, 
which indicates that CTs that have any percent of occupied housing units 
in the FEMA 100-year flood plain are more likely to have a greater 

Table 2 
Summary statistics for census-level PWS adoption and the selected explanatory variables.a  

MA N (census tracts) N of 1 + PWS Mean of CTs with no PWS Mean of CTs with 1 + PWS 

MHI ($) POP HHD (/km2) OOHR MHI ($) POP HHD (/km2) OOHR 

New York 3586 758 (21%) 66,521 4,073 5,529  0.41 102,044 4,968 2,178  0.69 
Dallas 917 467 (51%) 53,938 4,469 923  0.46 83,949 5,649 612  0.64 
Houston 743 353 (48%) 50,488 5,123 890  0.47 83,013 6,499 672  0.63 
Los Angeles 2141 516 (24%) 55,801 4,313 1,969  0.40 86,607 4,854 1,232  0.59 
Washington DC 924 430 (47%) 86,810 4,014 1,783  0.51 125,384 4,794 1,016  0.71 
Seattle 517 396 (77%) 66,789 4,663 1,272  0.49 86,380 5,387 967  0.62 
San Francisco 511 262 (51%) 73,320 4,153 3,833  0.38 109,486 4,857 1,937  0.59 
Boston 580 291 (50%) 73,701 4,080 2,742  0.43 98,589 5,340 1,134  0.66 
Chicago 1797 548 (30%) 57,369 3,781 1,878  0.54 86,831 4,921 957  0.74 
Denver 408 242 (59%) 56,757 4,174 1,142  0.50 82,503 4,750 849  0.68 
Phoenix 721 366 (51%) 49,714 4,272 840  0.51 67,391 4,697 665  0.65 
Atlanta 660 338 (51%) 51,092 4,814 558  0.46 84,032 6,550 419  0.69  

a MHI: median household income ($); POP: total population; HHD: household density (/km2); HHOR: owner-occupied household ratio. 

Table 3 
PWS adoption logistic regression model exponetiated coefficients (odds ratio).a,b  

MA Intercept 
(MHI_Q1) 

MHI_Q2 MHI_Q3 MHI_Q4 POP HHD OOHR 

New York 0.021 ** 1.890 ** 3.156 ** 6.847 ** 1.311 ** 0.897 ** 1.011 ** 
Dallas 0.136 ** 2.568 ** 5.274 ** 14.306 ** 1.279 ** 0.495 ** 1.001 
Houston 0.271 ** 2.446 ** 6.413 ** 20.051 ** 1.096 ** 0.559 ** 0.994 
Los Angeles 0.044 ** 1.375 3.902 ** 10.944 ** 1.175 ** 0.886 1.003 
Washington DC 0.053 ** 3.400 ** 5.840 ** 10.982 ** 1.336 ** 0.866 ** 1.005 
Seattle 0.189 ** 1.849 * 3.266 ** 3.726 ** 1.353 ** 0.967 1.012 
San Francisco 0.145 ** 2.042 * 4.116 ** 7.691 ** 1.212 ** 0.864 ** 1.009 
Boston 0.037 ** 2.069 * 2.698 ** 3.468 ** 1.485 ** 0.876 * 1.017 * 
Chicago 0.021 ** 3.671 ** 8.275 ** 12.789 ** 1.252 ** 0.823 ** 1.009 * 
Denver 0.114 ** 1.439 2.279 * 5.387 ** 1.231 ** 0.920 1.018 * 
Phoenix 0.139 ** 1.596 2.516 ** 3.951 ** 1.162 ** 0.792 1.014 ** 
Atlanta 0.042 ** 2.478 ** 5.879 ** 14.749 ** 1.253 ** 0.965 1.011  

a * indicates 5% significance (p-value < 0.05), and ** indicates 1% significance (p-value < 0.01). 
b MHI: median household income ($); POP: total population; HHD: household density (/km2); HHOR: owner-occupied household ratio. 
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number of flood claims. For example, in New York, only 4.6% of the CTs 
in the low FC group are in the In FZ group, while 59.3% of the CTs in the 
high FC group are also in the In FZ group. 

Next, we look at the relationship between PWS adoption and the two 
flood-related variables to investigate whether the vulnerability to flood 
affects the likelihood of PWS adoption. Logistic regression models were 
built for the 12 analyzed MAs using socio-economic explanatory vari
ables along with FC and FZ data to assess the potential flood risk 
affecting the spatial pattern of PWS adoption. Note that these models 
were built separately from the models in previous section, since the FZ 
data have larger percentage of CTs with missing data the in analyzed 

MAs (100%, 27%, 18% and 17% missing in Seattle, San Francisco, 
Washington DC, and Chicago, respectively). In addition, since the cor
relation exists between FC and FZ variable, two separated regression 
models (one adding FC data and another one adding FZ data) were built. 
The coefficients for the models adding FC and FZ data are shown in 
Table 4 and Table 5, respectively. Compared to the reference group of 
low FC, high FC groups for most of the analyzed MAs have odds ratio 
greater than 1.0, indicating positive effects on the PWS adoption. 
Similarly, compared to the reference group of Not in FZ group, the odds 
ratios for In FZ group are greater than 1.0 which also suggesting positive 
effect on PWS adoption. 

Fig. 4. Marginal effect of median household income (MHI) quartile groups in analyzed MAs. a Predicted PWS adoption probability (the error bars represent 95% 
confidence interval) of the analyzed MAs (sorted by average probability). b PWS adoption disparities regarding MHI (sorted by average ratio of Q2, Q3 and Q4 to Q1 
from low to high). 
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We further used Marginal Effects (ME) to demonstrate the effects of 
flood vulnerability on PWS adoption. Using the ME adjusted for the 
second quartile MHI group as an example, as shown in Fig. 7, a 
consistent relationship was found that the MEs of the predicted proba
bility of PWS adoption in high FC groups were higher than the MEs in the 
low FC groups (Fig. 7a), which means that CTs that have higher number 
of flood claims will be more likely to have PWS adoption. Similarly, the 
MEs of the FZ variable also suggested that CTs that intersected the 100- 
year floodplain have higher probability of PWS adoption than those not 
in the floodplain (Fig. 7b). These findings suggest that, with the 
assumption that the number of flood claims and the percentage of 
households in the 100-year floodplain represent the flood vulnerability 
of a CT, current PWS adoption pattern is spatially biased toward flood- 

prone regions. 

4. Discussion 

In this study, we analyzed a large PWS adoption dataset to explore 
the rainfall representation of crowdsourced PWS in metropolitan areas 
(MAs) in the contiguous U.S. Consistent with previous literature, PWS 
adoptions are generally concentrated in populous MA (Muller et al., 
2015). However, our analysis showed that PWS adoption exhibited 
significant spatial biases, which may result in overrepresentation and 
underrepresentation of crowdsourced rainfall observations across HUC- 
12 watersheds within a MA.. In the 12 analyzed MAs, the results of lo
gistic regression models revealed that current PWS rainfall 

Fig. 5. The spatial pattern of PWS adoption shows clusters in census tracts with higher median household income (MHI). a In the example of Seattle and Denver, the 
PWS adoption disparities across MHI quartile are less significant, but b in the example of Houston and Chicago, the PWS adoption are more biased toward wealthier 
census tracts. 
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representation is biased toward wealthier neighborhoods and higher 
flood risk regions due to adoption disparities. 

Potential causes of these biases could be because wealthier families 
have more resources and leisure to participate in PWS adoption, since 
purchasing and maintaining PWSs are often regarded as a hobby rather 
than a necessity in the household (Gharesifard and Wehn, 2016). On the 
other hand, continuous urban development might be driving the popu
lation growth in the floodplains, which potentially explains the higher 
possibility of PWS adoption in floodplains due to increased population 
(Qiang, 2019). In addition, areas with higher number of flood claims are 
usually associated with homeownership and higher value homes 
(Kousky and Michel-Kerjan, 2017), which is the proportion of de
mographics that are more likely to adopt PWS. However, these are 

speculations based on the correlation and regression model results. 
Future studies are needed to test and better understand causality for 
these correlations. 

Policies could be made to direct the distribution of resources of 
rainfall data collection efforts in PWS-underrepresented regions. Unlike 
the non-uniform PWS spatial adoption, traditional rainfall monitoring 
networks are often designed as uniformly deployed rainfall stations 
across the watersheds. For example, Harris County Flood Control Dis
trict (HCFCD) maintains a large rainfall network consisted of ~ 175 rain 
gauges uniformly distributed across Harris County. As shown in Fig. 8, 
the point density of PWS and HCFCD comparison shows that in HUC-12 
watersheds, the point density of HCFCD maintained network ranges 
from 0.01 to 0.07, whereas the point density of PWS widely ranges from 

Fig. 6. The relationship between any percent of occupied housing units in/not in 100-year flood zone (FZ) and total NFIP flood claims from 1970 to 2020 (FC). 
Higher percentage of census tracts with zero percent FZ (in black) are in low FC group (below median FC), while census tracts with greater than zero percent FZ are 
more likely to be in higher FC group (above median FC). 

Table 4 
PWS adoption logistic regression model coefficients (odds ratio) adding FC data.a  

MA Intercept  MHI_Q2 MHI_Q3 MHI_Q4 POP HHD OOHR FZ 

New York 0.02 ** 1.84 ** 2.94 ** 6.04 ** 1.27 ** 0.91 ** 1.01 ** 1.57 ** 
Dallas 0.12 ** 2.54 ** 5.35 ** 15.55 ** 1.28 ** 0.52 ** 0.999 1.61 ** 
Houston 0.23 ** 2.37 ** 6.20 ** 19.85 ** 1.09 ** 0.59 ** 0.993 1.46 * 
Los Angeles 0.04 ** 1.35 3.70 ** 9.53 ** 1.17 ** 0.89 1.003 1.45 ** 
Washington DC 0.05 ** 3.43 ** 5.79 ** 10.73 ** 1.33 ** 0.87 * 1.004 1.25 
Seattle 0.19 ** 1.83 3.24 ** 3.67 ** 1.35 ** 0.97 1.01 1.12 
San Francisco 0.10 ** 2.26 ** 4.44 ** 8.06 ** 1.18 ** 0.90 * 1.01 2.40 ** 
Boston 0.04 ** 2.11 * 2.71 ** 3.50 ** 1.47 ** 0.88 * 1.02 * 1.20 
Chicago 0.02 ** 3.64 ** 8.16 ** 12.67 ** 1.24 ** 0.84 ** 1.01 * 1.27 
Denver 0.11 ** 1.47 2.32 * 5.37 ** 1.22 ** 0.93 1.02 * 1.29 
Phoenix 0.13 ** 1.61 2.52 ** 3.96 ** 1.16 ** 0.80 1.01 ** 1.19 
Atlanta 0.04 ** 2.47 ** 5.89 ** 14.51 ** 1.25 ** 0.97 1.01 1.20  

a * indicates 5% significance (p-value < 0.05), and ** indicates 1% significance (p-value < 0.01). 
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0.01 to 0.48. This observation suggests that to make the best use of the 
limited public resources, city managers and engineers should consider 
the spatial pattern of PWS adoption when designing future rainfall 
monitoring networks. Rather than evenly deploying rain gauges, relo
cating resources to set up more rain gauges in PWS-underrepresented 
regions would support the current non-uniform PWS adoption. More
over, local agencies and organizations could leverage their resources to 
conduct science, technology, engineering, and mathematics (STEM) 
related programs and workshop that incentivize the communities in 
PWS-underrepresented regions to participate in data-driven decision- 
making processes, and thus increasing their representation in crowd
sourced rainfall data (Mondschein et al., 2019). 

Incentivizing PWS adoptions to increase participation in crowd
sourced data collection could strengthen the awareness of stakeholders 
for their local environment in the PWS-underrepresented regions. Past 
examples include the use of volunteered stream monitoring to increase 
the community’s awareness for protecting environmental resources 
(Overdevest et al., 2004). The application of participative geographic 
information approaches could strengthen work relations among local 
actors and authorities to prevent river flooding (Usón et al., 2016). 
Crowdsourced rainfall data collection in the Community Collaborative 
Rain, Hail and Snow Network (CoCoRaHS) were shown to have educa
tional benefits that improve the climate literacy of the participants 
(Reges et al., 2016). Additionally, the increased participation in PWS 
adoption could improve the usefulness of the crowdsourced rainfall 
data. Unlike traditional rainfall networks that are maintained and 
collected by experts with rigorous quality control procedures, the utility 
of crowdsourced PWS rainfall network is often compromised by its data 
quality because of limited quality control processes and lack of trust for 
data contributed from non-experts (Muller et al., 2015). As PWS quality 
control and trustworthiness assessments methods often require a suffi
cient number of neighboring PWSs for optimal performance (Chen et al., 
2021; de Vos et al., 2019), increased number of PWS adoption in the 
PWS-underrepresented areas can therefore help ensure the quality and 
trustworthiness of the crowdsourced data, and thus improve the use
fulness of the crowdsourced rainfall data. Future work could also focus 
on the design of crowdsourcing incentivizing programs for PWS adop
tion by coupling the regression model results with agent-based modeling 
to better identify the behavior of crowdsourcing participants and 
therefore increase adoption (Yang et al., 2019). 

Our research merits further exploration in terms of methodology and 
underlying datasets, which limited the potential of our analytical 
framework in understanding the spatial biases of crowdsourced envi
ronmental data. First, to explore the PWS adoption spatial patterns, we 
only considered socio-economic factors of population, including median 
household income, household density and owner-occupied household 
ratio. Incorporating other demographic characteristics such as the pro
portion of retired people/students (which potentially form a sizable 
proportion of the PWS owners) or marginalized/vulnerable groups 

(which may likely to have lower uptake) may aid the understanding of 
the spatial pattern of PWS adoption (Paul et al., 2021). Second, this 
study focused on analyzing the factors that affect PWS rainfall repre
sentation in a census tract. Therefore, binary results of PWS adoption 
were used for building regression models to assess the socio-economic 
and flood vulnerability differences in census tracts with adoption or 
no adoption. Future work could expand the results by building regres
sion models to predict the number of PWSs or per capita PWS to un
derstand the factors that influence the PWS growth (De Groote et al., 
2016). Finally, this study focused on the PWS adoption at the census 
tract level, which may not be adequate to fully capture the factors that 
affect PWS adoption, since aggregation of data can inflate estimates of 
association between variables within a CT. Future work could be focused 
on surveying individual PWS owners at household level to permit un
derstandings for finer level of PWS adoption (Gharesifard and Wehn, 
2016). 

Another unexplored question in this study is the difference of 
adoption rates between the analyzed MAs. For example, Seattle gener
ally has higher probability (>66%) of PWS adoption, regardless of the 
MHI quartile group, while in Chicago the probability is lower than 45% 
for every MHI quartile group. This can be caused by some other factors 
that were not explored in this study. For example, while PWS adoption 
often occur at the individual household level, large number of PWSs 
could be adopted by corporations that are used for the benefits for their 
business. PWS adoption could also be adopted by non-profit organiza
tions (NGOs) that initiate weather monitoring programs. Furthermore, 
the difference in cost of living across MAs might be explanatory of PWS 
adopt number difference in MAs. Since PWS are devices that could be 
easily purchased online with the similar costs, a PWS of $200 USD, for 
example, may be affordable in MAs with higher cost of living, while in 
MAs with lower cost of living this price could be relatively costly. 

While most of the past literature on crowdsourced rainfall has 
focused on the usefulness, quality, and trustworthiness of the observed 
data, they tended to focus on a single study area (a watershed or a city) 
of interest (Bardossy et al., 2021; Chen et al., 2021; de Vos et al., 2017, 
2019; Mandement and Caumont, 2020). This study, on the other hand, 
opens a door for spatial pattern analysis of broader crowdsourced data. 
Using PWS adoption as a case study, our study highlights a phenomenon 
that generates cross-disciplinary research opportunities between engi
neers, designers, social sciences, city managers, planners, and NGO 
groups. Moving forward, alongside the rapid growth of the number of 
crowdsourced data to support flood assessment efforts, the methodology 
could be applied to other types of crowdsourced data to assess the po
tential spatial biases in crowdsourced data collection, enabling crowd
sourced networks to be better positioned for decision-makers in their 
flood resilience efforts. 

Table 5 
PWS adoption logistic regression model coefficients (odds ratio) adding FZ variable.a  

MA Intercept  MHI_Q2 MHI_Q3 MHI_Q4 POP HHD OOHR FZ 

New York 0.02 ** 1.76 ** 2.84 ** 5.52 ** 1.28 ** 0.92 ** 1.01 ** 1.65 ** 
Dallas 0.10 ** 2.61 ** 5.66 ** 15.84 ** 1.27 ** 0.55 ** 0.999 1.79 ** 
Houston 0.24 ** 2.40 ** 6.13 ** 19.71 ** 1.10 ** 0.59 ** 0.994 1.12 
Los Angeles 0.05 ** 1.35 3.86 ** 10.69 ** 1.16 ** 0.88 1.003 1.32 
Washington DC 0.07 ** 2.64 ** 3.86 ** 6.04 ** 1.34 ** 0.83 ** 1.01 1.06 
Seattle – – – – – – – – 
San Francisco 0.10 ** 1.76 4.41 ** 6.30 ** 1.16 * 1.01 1.01 1.43 
Boston 0.04 ** 2.18 * 2.82 ** 4.04 ** 1.44 ** 0.90 1.01 1.80 ** 
Chicago 0.02 ** 3.75 ** 7.89 ** 13.60 ** 1.22 ** 0.86 ** 1.01 1.66 ** 
Denver 0.13 ** 1.43 2.29 * 5.52 ** 1.21 ** 0.91 1.02 * 1.07 
Phoenix 0.14 ** 1.58 2.50 ** 4.02 ** 1.15 ** 0.80 1.01 ** 1.32 
Atlanta 0.04 ** 2.49 ** 5.90 ** 14.63 ** 1.26 ** 0.94 1.01 0.86  

a * indicates 5% significance (p-value < 0.05), and ** indicates 1% significance (p-value < 0.01). 
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Fig. 7. Marginal effect of the predicted probability of 1 + PWS adoption in MHI_Q2 census tracts of the number of total flood claims (FC) and in/not in flood zone 
(FZ) for analyzed MAs. a The predicted PWS adoption probability is generally higher in census tracts in the higher FC group. b The probability is also higher in census 
tracts intersected with the FZ. 

A.B. Chen et al.                                                                                                                                                                                                                                 



Journal of Hydrology 609 (2022) 127724

12

5. Conclusion 

In this study, we first examined the rainfall spatial representation of 
PWSs at HUC-12 watersheds in twelve metropolitan areas in the U.S. 
The results show disparities across the analyzed metropolitan areas, 
with the percentage of PWS-underrepresented watersheds ranging from 
0 to 40%. Furthermore, by modeling PWS adoption using socio- 
economic and flood-related data at census-tract level, the results sug
gest that the current PWS adoption pattern exhibits spatial biases toward 
wealthier neighborhoods and flood-prone regions. The findings provide 
insights to inform how policies could be made to distribute resources to 
improve the rainfall data collection efforts in PWS-underrepresented 
regions. As crowdsourced data are increasingly used for decision- 
making by policymakers, efforts to close the gap in current non- 
uniform PWS spatial adoption will allow crowdsourced rainfall data to 
be better positioned to support decision-makers in their flood resilience 
efforts. 
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Buytaert, W., Dewulf, A., De Bièvre, B., Clark, J., Hannah, D.M., 2016. Citizen Science for 
Water Resources Management: Toward Polycentric Monitoring and Governance? 
J. Water Resour. Plan. Manag. 142, 01816002. https://doi.org/10.1061/(ASCE) 
WR.1943-5452.0000641. 

Chen, A.B., Behl, M., Goodall, J.L., 2021. Assessing the Trustworthiness of Crowdsourced 
Rainfall Networks: A Reputation System Approach. Water Resour. Res. 57 https:// 
doi.org/10.1029/2021WR029721. 

Chen, T.D., Wang, Y., Kockelman, K.M., 2015. Where are the electric vehicles? A spatial 
model for vehicle-choice count data. J. Transp. Geogr. 43, 181–188. https://doi.org/ 
10.1016/j.jtrangeo.2015.02.005. 

Cheng, L., AghaKouchak, A., 2015. Nonstationary Precipitation Intensity-Duration- 
Frequency Curves for Infrastructure Design in a Changing Climate. Sci. Rep. 4 (1). 

Craig, L., Craig, N., Calgaro, E., Dominey-Howes, D., Johnson, K., 2019. People with 
disabilities: Becoming agents of change in Disaster Risk Reduction. Emerg. Voices 
Nat. Hazards Res. 327–356 https://doi.org/10.1016/B978-0-12-815821-0.00020-5. 

Cristiano, E., Veldhuis, M.C.T., Van De Giesen, N., 2017. Spatial and temporal variability 
of rainfall and their effects on hydrological response in urban areas - A review. 
Hydrol. Earth Syst. Sci. 21, 3859–3878. https://doi.org/10.5194/HESS-21-3859- 
2017. 

Fig. 8. Comparison of point density of HCFCD and PWS rainfall network in Houston MA. HCFCD rainfall stations are evenly distributed across HUC-12 watersheds, 
while PWS is spatially biased toward certain watersheds. 

A.B. Chen et al.                                                                                                                                                                                                                                 

http://FloodzoneData.us
https://doi.org/10.1111/jfr3.12076
https://doi.org/10.1111/jfr3.12076
https://doi.org/10.1029/2011WR011070
https://doi.org/10.5194/hess-22-1473-2018
https://doi.org/10.5194/hess-25-583-2021
https://doi.org/10.1016/J.JHYDROL.2004.08.002
https://doi.org/10.1016/j.jhydrol.2018.06.052
https://doi.org/10.1016/j.jhydrol.2018.06.052
https://doi.org/10.1061/(ASCE)WR.1943-5452.0000641
https://doi.org/10.1061/(ASCE)WR.1943-5452.0000641
https://doi.org/10.1029/2021WR029721
https://doi.org/10.1029/2021WR029721
https://doi.org/10.1016/j.jtrangeo.2015.02.005
https://doi.org/10.1016/j.jtrangeo.2015.02.005
http://refhub.elsevier.com/S0022-1694(22)00299-2/h0050
http://refhub.elsevier.com/S0022-1694(22)00299-2/h0050
https://doi.org/10.1016/B978-0-12-815821-0.00020-5
https://doi.org/10.5194/HESS-21-3859-2017
https://doi.org/10.5194/HESS-21-3859-2017


Journal of Hydrology 609 (2022) 127724

13

De Groote, O., Pepermans, G., Verboven, F., 2016. Heterogeneity in the adoption of 
photovoltaic systems in Flanders. Energy Econ. 59, 45–57. https://doi.org/10.1016/ 
J.ENECO.2016.07.008. 

de Vos, L., Leijnse, H., Overeem, A., Uijlenhoet, R., 2017. The potential of urban rainfall 
monitoring with crowdsourced automatic weather stations in Amsterdam. Hydrol. 
Earth Syst. Sci. 21, 765–777. https://doi.org/10.5194/hess-21-765-2017. 

de Vos, L.W., Leijnse, H., Overeem, A., Uijlenhoet, R., 2019. Quality Control for 
Crowdsourced Personal Weather Stations to Enable Operational Rainfall Monitoring. 
Geophys. Res. Lett. 46, 8820–8829. https://doi.org/10.1029/2019GL083731. 

Fan, C., Esparza, M., Dargin, J., Wu, F., Oztekin, B., Mostafavi, A., 2020. Spatial biases in 
crowdsourced data: Social media content attention concentrates on populous areas 
in disasters. Comput. Environ. Urban Syst. 83, 101514 https://doi.org/10.1016/j. 
compenvurbsys.2020.101514. 

Federal Emergency Management Agency, 2021. OpenFEMA Dataset: FIMA NFIP 
Redacted Claims | FEMA.gov [WWW Document]. URL https://www.fema.gov/openf 
ema-data-page/fima-nfip-redacted-claims (accessed 6.4.21). 

Fowler, H.J., Wasko, C., Prein, A.F., 2021. Intensification of short-duration rainfall 
extremes and implications for flood risk: current state of the art and future 
directions. Philos. Trans. A. Math. Phys. Eng. Sci. 379, 20190541. https://doi.org/ 
10.1098/rsta.2019.0541. 

Gebremedhin, E.T., Basco-Carrera, L., Jonoski, A., Iliffe, M., Winsemius, H., 2020. 
Crowdsourcing and interactive modelling for urban flood management. J. Flood Risk 
Manag. 13, e12602 https://doi.org/10.1111/jfr3.12602. 

Gharesifard, M., Wehn, U., 2016. To share or not to share: Drivers and barriers for 
sharing data via online amateur weather networks. J. Hydrol. 535, 181–190. https:// 
doi.org/10.1016/j.jhydrol.2016.01.036. 

Hu, R., Fang, F., Pain, C.C., Navon, I.M., 2019. Rapid spatio-temporal flood prediction 
and uncertainty quantification using a deep learning method. 10.1016/j. 
jhydrol.2019.05.087. 

Kiaghadi, A., Rifai, H.S., Dawson, C.N., 2021. The presence of Superfund sites as a 
determinant of life expectancy in the United States. Nat. Commun. 12, 1–12. https:// 
doi.org/10.1038/s41467-021-22249-2. 

Kousky, C., Michel-Kerjan, E., 2017. Examining Flood Insurance Claims in the United 
States: Six Key Findings. J. Risk Insur. 84, 819–850. https://doi.org/10.1111/ 
JORI.12106. 

Mandement, M., Caumont, O., 2020. Contribution of personal weather stations to the 
observation of deep-convection features near the ground. Nat. Hazards Earth Syst. 
Sci. 20, 299–322. https://doi.org/10.5194/nhess-20-299-2020. 

Midi, H., Sarkar, S.K., Rana, S., 2013. Collinearity diagnostics of binary logistic 
regression model. J. Interdiscip. Math. 13, 253–267. https://doi.org/10.1080/ 
09720502.2010.10700699. 

Millar, E.E., Hazell, E.C., Melles, S.J., 2019. The ‘cottage effect’ in citizen science? Spatial 
bias in aquatic monitoring programs. Int. J. Geogr. Inf. Sci. 33, 1612–1632. https:// 
doi.org/10.1080/13658816.2018.1423686. 

Mondschein, A., Zhang, Z., Khafif, M. El, 2019. Community-Centered Urban Sensing: 
Smart, Engaged Planning and Design in a Dysfunctional Urban Context. Int. J. E- 
Planning Res. 

Mosavi, A., Ozturk, P., Chau, K.W., 2018. Flood prediction using machine learning 
models: Literature review. Water (Switzerland). https://doi.org/10.3390/ 
w10111536. 

Muller, C.L., Chapman, L., Johnston, S., Kidd, C., Illingworth, S., Foody, G., Overeem, A., 
Leigh, R.R., 2015. Crowdsourcing for climate and atmospheric sciences: Current 
status and future potential. Int. J. Climatol. 35 (11), 3185–3203. 

NYU Furman Center, 2021. FloodzoneData.us [WWW Document]. URL FloodzoneData. 
us (accessed 6.4.21). 

Overdevest, C., Huyck Orr, C., Stepenuck, K., 2004. Volunteer Stream Monitoring and 
Local Participation in Natural Resource Issues, Source. Human Ecology Rev. 

Paul, J.D., Bee, E., Budimir, M., 2021. Mobile phone technologies for disaster risk 
reduction. Clim. Risk Manage. 32, 100296 https://doi.org/10.1016/J. 
CRM.2021.100296. 

Paul, J.D., Buytaert, W., Allen, S., Ballesteros-Cánovas, J.A., Bhusal, J., Cieslik, K., 
Clark, J., Dugar, S., Hannah, D.M., Stoffel, M., Dewulf, A., Dhital, M.R., Liu, W., 
Nayaval, J.L., Neupane, B., Schiller, A., Smith, P.J., Supper, R., 2018. Citizen science 
for hydrological risk reduction and resilience building. Wiley Interdiscip. Rev. Water 
5, e1262. https://doi.org/10.1002/wat2.1262. 

Praharaj, S., Chen, T.D., Zahura, F.T., Behl, M., Goodall, J.L., 2021. Estimating impacts of 
recurring flooding on roadway networks: a Norfolk. Nat. Hazards 107 (3), 
2363–2387. 

Qiang, Y., 2019. Disparities of population exposed to flood hazards in the United States. 
J. Environ. Manage. 232, 295–304. https://doi.org/10.1016/J. 
JENVMAN.2018.11.039. 

Reges, H.W., Doesken, N., Turner, J., Newman, N., Bergantino, A., Schwalbe, Z., 2016. 
CoCoRaHS: The evolution and accomplishments of a volunteer rain gauge network. 
Bull. Am. Meteorol. Soc. 97, 1831–1846. https://doi.org/10.1175/BAMS-D-14- 
00213.1. 

Rosenzweig, B.R., McPhillips, L., Chang, H., Cheng, C., Welty, C., Matsler, M., 
Iwaniec, D., Davidson, C.I., 2018. Pluvial flood risk and opportunities for resilience. 
WIREs Water 5 (6). https://doi.org/10.1002/wat2.1302. 

Roy, A., Nelson, T.A., Fotheringham, A.S., Winters, M., 2019. Correcting Bias in 
Crowdsourced Data to Map Bicycle Ridership of All Bicyclists. Urban Sci. 3, 62. 
https://doi.org/10.3390/urbansci3020062. 

Sadler, J.M., Goodall, J.L., Morsy, M.M., Spencer, K., 2018. Modeling urban coastal flood 
severity from crowd-sourced flood reports using Poisson regression and Random 
Forest. J. Hydrol. 559, 43–55. https://doi.org/10.1016/J.JHYDROL.2018.01.044. 

Shen, Y., Morsy, M.M., Huxley, C., Tahvildari, N., Goodall, J.L., 2019. Flood risk 
assessment and increased resilience for coastal urban watersheds under the 
combined impact of storm tide and heavy rainfall. J. Hydrol. 579, 124159 https:// 
doi.org/10.1016/j.jhydrol.2019.124159. 

Sy, B., Frischknecht, C., Dao, H., Consuegra, D., Giuliani, G., 2019. Flood hazard 
assessment and the role of citizen science. J. Flood Risk Manage. 12, e12519 https:// 
doi.org/10.1111/jfr3.12519. 

Tatem, A.J., 2017. WorldPop, open data for spatial demography. Sci. Data 4, 1–4. 
https://doi.org/10.1038/sdata.2017.4. 

The National Academies of Science, Engineering, and M., 2019. Framing the Challenge of 
Urban Flooding in the United States, Framing the Challenge of Urban Flooding in the 
United States. National Academies Press. 10.17226/25381. 

Torralba, A., Efros, A.A., 2011. Unbiased look at dataset bias. Proc. IEEE Comput. Soc. 
Conf. Comput. Vis. Pattern Recognit. 1521–1528. 10.1109/CVPR.2011.5995347. 

Towe, R., Dean, G., Edwards, L., Nundloll, V., Blair, G., Lamb, R., Hankin, B., Manson, S., 
2020. Rethinking data-driven decision support in flood risk management for a big 
data age. J. Flood Risk Manag. 13, e12652 https://doi.org/10.1111/jfr3.12652. 

Tyler, J., Sadiq, A.-A., Douglas, ⋅, Noonan, S., Noonan, D.S., 2019. A review of the 
community flood risk management literature in the USA: lessons for improving 
community resilience to floods 96, 1223–1248. 10.1007/s11069-019-03606-3. 

U.S. Census Bureau, 2021. Metropolitan and Micropolitan [WWW Document]. URL 
https://www.census.gov/programs-surveys/metro-micro.html (accessed 4.20.21). 

U.S. Geological Survey, 2021. Hydrologic Unit Maps [WWW Document]. URL https: 
//water.usgs.gov/GIS/huc.html (accessed 4.20.21). 
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