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Crowdsourced Personal Weather Stations (PWSs) adoption has been growing rapidly and provides the potential
to fill in hyper-local rainfall observation gaps. However, current adoption patterns exhibit spatial biases that
must be understood when using the data for modeling and decision-making. Here, we first examine the PWS
rainfall spatial representation at HUC-12 watersheds in twelve metropolitan areas in the U.S. Furthermore, by
modeling the PWS adoption using socio-economic and flood-related data at census tract level, the results suggest
current adoption patterns exhibit spatial biases toward wealthier neighborhoods and flood-prone regions. The
findings provide insights to inform how policies could be made to distribute resources to improve the rainfall
data collection efforts in PWS-underrepresented regions. As crowdsourced data are increasingly used for
decision-making by policymakers, efforts to close the gap in current non-uniform PWS spatial adoption will allow
crowdsourced rainfall data to be better positioned to support decision-makers in their flood resilience efforts.

1. Introduction

Flooding causes significant social and economic damage and loss in
the United States each year (The National Academies of Science, Engi-
neering, 2019). Hurricane Harvey is an extreme example of bringing
unprecedented rainfall across the city of Houston, Texas, leading to
catastrophic flooding that impacted more than 100,000 homes and
incurred an estimated damage cost of $125 billion (Van Oldenborgh
et al.,, 2017). With the increase in frequency and intensity of heavy
rainfall due to climate change, the impact of flooding is projected to
become more severe over time (Cheng and Aghakouchak, 2014; Fowler
et al., 2021). In urban watersheds with large portions of impervious
surfaces and low-lying areas, rainfall-driven flooding has been causing
even more considerable damage, affecting greater numbers of people
(Rosenzweig et al., 2018). Therefore, there is a need for improved flood
assessments as well as building flood resilience in urban areas to adapt to
the increasing severity of flood hazards (Bertilsson et al., 2019).

Flood assessments at high spatial and temporal resolution remain a
challenge. An ideal flood assessment will require a spatially and
temporally representative dataset, as flood modeling involves complex
and nonlinear flow and physical processes (Hu et al, 2019).
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Traditionally, flood assessments have mainly been efforts by govern-
ment agencies. Local government agencies are responsible for identi-
fying flood risks and creating flood forecasting models (Tyler et al.,
2019). However, flood-related data available from government agencies
needed for enabling high-resolution flood modeling at flood-prone areas
are usually insufficient or lacking (Cristiano et al., 2017). Furthermore,
increasing attention has been focused on incorporating the public and a
wider representation of stakeholders in the decision-making process of
flood assessment and management (White et al., 2010). Lack of
engagement from communities for locally specific flood knowledge will
lead to inadequate flood model calibration and validation (Gebremedhin
et al., 2020). In such cases, flood forecasting models generated by gov-
ernment agencies may not be fully accepted and supported by local
stakeholders, as they may not reflect adequate representations of floods
in certain regions (Gebremedhin et al., 2020; Rosenzweig et al., 2018; Sy
et al., 2019). Lack of engagement of local stakeholders may also worsen
the disparities of social, economic, and environmental resources across
communities (White et al., 2010).

Crowdsourced data can provide a potential solution. Crowdsourcing
is a method of collecting information from as many involved contribu-
tors from the general public (Muller et al., 2015), which offers a way of
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obtaining large amounts of flooding-related data cost-efficiently
(Assumpcao et al., 2018). With the development of inexpensive sen-
sors and communication technology, the amount of data collected by the
public has been growing rapidly, generating a wealth of information
(Muller et al., 2015). For example, social media such as Twitter data
produces geotagged information that can be extracted to map the po-
tential extent of flood events (Wang et al., 2018). Mobile apps such as
Google Waze enable users to report floods in a convenient and efficient
way, which greatly supports government efforts to identify the location
of floods (Praharaj et al., 2021). In the case of rainfall monitoring, the
adoption of personal weather stations (PWSs) by the general public fills
in the rainfall observation gap in locations where government agency
data are unavailable (de Vos et al., 2017). PWSs are off-the-shelf
weather stations installed and maintained by individuals, and the re-
ported data can be easily shared through websites such as Weather
Underground (Gharesifard and Wehn, 2016). In recent years, crowd-
sourced PWS adoption has been growing rapidly to supplement agency-
maintained rain gauges which are usually limited in coverage (de Vos
et al., 2017), as well as remote sensing rainfall (e.g. satellite and radar)
which requires validation from ground rain gauges (Muller et al., 2015).
For example, in Houston, Texas, PWS adoption density has grown from
0.06 to 0.24 PWS per km? from 2016 to 2019. Such exponential growth
suggests that in populated areas in the U.S., PWSs could alone provide
sufficient spatial resolutions for rainfall observations needed for urban
hydrology in a few years (Berne et al., 2004; Chen et al., 2021).

Furthermore, by participating in data collection via crowdsourcing,
the public may also become more proactive in engaging in local
decision-making processes (Buytaert et al., 2016). In fact, the motivation
behind adopting PWSs and sharing the collected data often starts with
owners using the data for personal purposes. Simultaneously, growth in
PWS adoption has the potential to benefit society at large since the
collected data could implicitly create crucial knowledge for local com-
munities (Gharesifard and Wehn, 2016). Therefore, as local stakeholders
(e.g. PWS owners) gain better understanding of the their environments
with time, empowering them to grow from collecting data toward
developing models and decision support systems becomes key (Almor-
adie et al., 2015; Voinov et al., 2016). The ongoing trend of increasing
crowdsourcing participation (e.g., rainfall data collection by PWS
adoption) from the general public in local communities, therefore, lays
the foundation for generating collective knowledge to support flood
resilience efforts (Paul et al., 2018).

Despite the rapid growth of PWS adoption for generating a wealth of
rainfall observations, current adoption patterns exhibit spatial biases
caused by underrepresentation or overrepresentation of certain regions
(Muller et al., 2015). Using non-representative and spatially-biased
datasets as model inputs could lead to biased modeling results and
decision-making (Towe et al., 2020). Furthermore, recent advancements
of data-driven techniques has enabled modeling flood at high spatial and
temporal resolution (Mosavi et al., 2018; Sadler et al., 2018; Shen et al.,
2019; Zahura et al., 2020), which has also highlighted the importance of
using representative datasets, as large datasets are not always compre-
hensive (Torralba and Efros, 2011). Therefore, it is important to ensure
that crowdsourced rainfall datasets are analyzed for spatial and tem-
poral representation and variability and, if biases exist, such biases are
clearly understood and accounted for when using the crowdsourced data
in modeling and decision-making.

Spatial bias in crowdsourced data has been studied across a variety of
fields. For example, social media usage is mainly concentrated in
populous areas, leading to certain groups not receiving needed assis-
tance during disasters (Fan et al., 2020). Mobile phone applications have
the potential to enhance resilience building against disasters, but the
lack of user-centered design often results in low uptakes in marginalized
and vulnerable groups who are more vulnerable in disaster situations
(Craig et al., 2019; Paul et al., 2021). Crowdsourced bicycle ridership
data are biased toward recreational riders (who track exercise activity),
which requires a correction for better representation of the ridership
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patterns of all riders, such as commuter cyclists (Roy et al., 2019).
Biodiversity data collected from crowdsourcing exhibited spatial biases
toward accessible areas or recreational summer homes (Millar et al.,
2019). PWS adoption and other crowdsourced climate and atmospheric
data have spatial biases toward populous areas (Muller et al., 2015). In
previous studies, regression models using socio-economic and de-
mographic factors have been widely used for assessing the factors that
affect the spatial bias pattern. Examples include exploring the effect of
socio-economic factors and environmental attitudes on rain barrel
spatial adoption patterns (Ando and Freitas, 2011), the presence of
hazardous waste sites affecting life expectancy (Kiaghadi et al., 2021),
and spatial models to predict electric vehicle ownership choice behavior
(Chen et al., 2015). However, limited studies have been focused on the
fast-growing crowdsourced PWS network to provide high-resolution
rainfall observations and engage communities in supporting flood
resilience. Therefore, the research questions that guide this study are:
(1) Are PWS providing a spatially representative sample of rainfall data?
(2) What are the underlying factors that affect the spatial pattern of PWS
adoption?

In this study, we used a unique PWS adoption dataset obtained from
Weather Underground, which is one of the largest crowdsourced PWS
platforms. This dataset consists of the location of more than 100,000
PWS in the contiguous U.S. PWS rainfall representation in United States
Geological Survey (USGS) level-12 Hydrological Unit Codes(U.S.
Geological Survey, 2021) (HUC-12) watersheds in 12 selected metro-
politan areas were analyzed to quantify to what extent current PWS
adoption can contribute to rainfall observations. We further applied
logistic regression models using socio-economic and flood-related data
to identify the factors that influence the spatial bias in PWS adoption.
Moreover, we measured and analyzed the marginal effects of resulting
models to quantify the PWS adoption disparities across neighborhoods.

2. Materials and methods
2.1. PWS adoption data acquisition

PWS adoption dataset used in this study was obtained from Weather
Underground database using their previous version of Application Pro-
gramming Interface (API). The analysis dataset contains metadata
including the ID and the geographic location (latitude and longitude) of
more than 100,000 PWSs. The geographical location of these PWSs were
then mapped using ArcGIS to explore the PWS adoption spatial pattern
in the contiguous U.S. Note that at the end of 2019, this version of the
API has been retired. The new version of the API (introduced in 2020)
requires a Weather Underground key which can be obtained through
connecting a PWS to the platform. Furthermore, the number of API calls
per day in order to download the data was greatly limited, and some of
the metadata including PWS installation date were no longer available.
Therefore, to preserve such details in the dataset, this study focused on
the PWS adoption dataset gathered on April 2019.

2.2. PWS rainfall representation calculation

PWS rainfall representation was evaluated based on the PWS density
in an urban watershed within a metropolitan area (MA). In this study, an
urban watershed is defined as HUC-12 watersheds that intersected with
United States Census Bureau (USCB) delineated urban areas within the
MA boundary (U.S. Census Bureau, 2021). To compute the PWS density
in an urban watershed of each MA, we used the point density tool in
ArcGIS (version 10.6) to convert PWS location point data to gridded
raster which represents the PWS density, followed by using the zonal
statistics tool to compute the average PWS point density in a watershed
(see Fig. 1 for the workflow). Like traditional rain gauges, rainfall data
recorded from PWSs are point observations which can only be repre-
sentative of the rainfall of a specific area due to the spatial variability of
rainfall events (Cristiano et al.,, 2017). To have a sufficient
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Fig. 1. GIS workflow of the PWS rainfall representation calculation. The ArcGIS tools used are the italics text in the gray box.

representation of rainfall spatial variability in terms of rain gauge den-
sity in a monitoring network, the World Meteorological Organization
recommends at least one rain gauge per 10-20 km? for urban areas
(World Meteorological Organization (WMO), 2008). Therefore, we used
an average PWS point density of 0.1 PWS per km? (1 PWS per 10 km?) as
the threshold to assess PWS rainfall representation. An underrepre-
sented (UR) watershed is defined as having a point density lower than
the threshold, while a non-UR watershed is defined as having a point
density above the threshold. Using an one-way ANOVA test, we further
extracted the population density estimates from the WorldPop popula-
tion dataset (Tatem, 2017) to test if a significant mean difference in
mean population density exists between UR and non-UR watersheds.

2.3. PWS adoption logistic regression model

We used logistic Regression to assess the association between the
PWS adoption and selected socio-economic data. The built-in “glm”
package in R programming language (version 3.6.1) was applied to run
the regression models. Census tract (CT) level socio-economic data were
obtained from the USCB’s 2017 American Community Survey 5-year
estimate, including population, median household income, household
density, and owner-occupied household ratio (the number of owner-
occupied households divided by the total number of households). CT
was selected as the common geographic unit for analysis because it is the
smallest geographic boundary used by the Census Bureau. To build the
logistic Regression model, we aggregated the PWS location information
into total counts of PWS adopted in each CT, then classified these counts
into binary groups: PWS adoption = 1 for CTs that have at least 1 PWS (1
+ PWS) and PWS adoption = 0 for CTs that have no PWS adoption. The
logistic Regression equation is shown as follows:

n m
gﬁ"JrZ;,]ﬁ’Q’JrEFHI PiXi

g 1
1+ LoD BOTY L B L)

p(PWS adoption) =

where p is the probability of 1 + PWS adoption in a CT, f, is the

intercept, f1, fo, -..., fn_1 are the coefficients for the categorical variable
Qi(i=1,2,---,n—1) and Q; are the dummy variables for each category
with the value of either O or 1. §,, .1, -..., B, are the coefficients for the

continuous variables X;. The regression coefficients are estimated by
maximum likelihood. In the explanatory variables, to account for
household income differences across MAs, the median household in-
come (MHI) was converted into categorical variables using quartile
groups MHI_Q1, MHI_Q2, MHI_Q3, and MHI_Q4. In each analyzed MA, a
CT falling within first quartile of MA MHI was assigned to MHI_Q1; a CT
falling between first and second quartile assigned to MHI_Q2; a CT
falling between second and third quartile was assigned to MHI_Q3. a CT
falling above the fourth quartile was assigned to MHI_Q4. Population
(POP), household density (HHD) and owner-occupied household ratio
(OOHR) are used as continuous variables for the logistic regression
model.

2.4. Flood vulnerability and PWS adoption

Two types of flood-related datasets at the CT level, (i) the total
number of flood claims (FC) and (ii) percent housing units in the 100-
year flood zone (FZ), were used to assess the association between

potential flood risk and PWS adoption. FC data were obtained from
National Flood Insurance Program (NFIP) Redacted Claims, which is a
large database containing more than two million claims transactions
since the NFIP launched (Federal Emergency Management Agency,
2021). FZ data were obtained from a dataset published by NYU Furman
Center. This dataset was created by combining housing and population
data with FEMA floodplain maps to calculate the percent of housing
units intersecting with a FEMA 100-year floodplain (NYU Furman
Center, 2021). In this study, we used the FC and FZ data to represent the
flood vulnerability of a CT. We assumed that a CT with a higher number
of flood insurance claims is more likely to have a higher flood risk, and a
CT with a higher percentage of housing units in the floodplain also
implies that this CT is more vulnerable to flooding. For each analyzed
MA, we classified CTs into high/low FC groups based on the FC value,
with the low FC group having FCs below the median value of the CTs
within the MA representing the lower flood risk CTs, and high FC group
having FCs above the median values representing the higher flood risk
CTs. Similarly, the FZ data were used to classify CTs into in FZ and not in
FZ groups, with in FZ group representing CTs that have any percent
housing units in the floodplain, and not in FZ group representing CTs that
have zero percent in the floodplain.

3. Results
3.1. PWS adoption in the contiguous U.S.

The spatial pattern of PWS shows that adoption is concentrated in the
metropolitan areas in the east and west coast of the contiguous U.S.
(Fig. 2a). Unlike the agency-operated rainfall network where rainfall
stations are usually uniformly distributed, PWS is spatially biased to-
ward populous areas. At the metropolitan area (MA) level, PWS adop-
tion is also highly correlated with population (Fig. 2b), with a
correlation coefficient of 0.88 for all MAs in the contiguous U.S. To
assess the PWS representation in the MAs in the contiguous U.S., the top
12 MAs by PWS adoption (Fig. 2b) were selected in this study. The
analyzed MAs are distributed across the contiguous U.S., with the
number of PWS adoption ranging from 1,300 to 2,569 units per MA and
PWS density ranging from 0.03 to 0.27 PWS per km?.

3.2. PWS rainfall representation in HUC-12 watersheds

In this study, watersheds with PWS point density<0.1 are considered
underrepresented (UR); otherwise, they are considered well-represented
(non-UR). The results of the PWS representation calculation showed that
the current PWS rainfall representation exhibits three characteristics
(Table 1). First, at the MA level, PWS rainfall representation in HUC-12
watersheds varied across the analyzed MAs. The average PWS point
density ranges from 0.14 in Atlanta to 0.59 in San Francisco. Most of the
analyzed MAs (besides Chicago) have a maximum PWS point density
above 0.40, indicating that PWS has the potential to contribute to the
coverage of rainfall observations for at least every 2.5 km? in those
watersheds. Among the analyzed MAs, San Francisco has the highest
maximum PWS point density of 1.34 PWS per km?, which could provide
a considerable rainfall representation that is even greater than the cur-
rent resolution of radar-derived rainfall (e.g., The Next Generation
Weather Radar (NEXRAD) typically has 1 km by 1 km resolution).
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Fig. 2. PWS adoption pattern of the contiguous U.S. as of April 2019. a Each gray dot represents a PWS. The 12 metropolitan areas (MAs) with the largest number of
PWS adoption were selected for analysis. b PWS adoption highly correlates with the population in MAs in the contiguous U.S.

Table 1

PWS representation in HUC-12 watersheds for the 12 analyzed metropolitan areas (MAs). The one-way ANOVA test showed that the mean population density

difference in underrepresented (UR) and non-UR watersheds is not significant.

MA N. of watersheds PWS point density (/km?) Num. of UR UR % Population density (/km?)

in urbanized area Mean Max Std Avg. UR Avg. F-test

Non-UR p-value

New York 111 0.18 0.43 0.07 15 14% 1039 1928 0.189
Dallas 53 0.29 0.64 0.16 6 11% 1130 1285 0.440
Houston 30 0.25 0.48 0.15 9 30% 1076 1459 0.100
Los Angeles 28 0.26 0.46 0.11 1 4% 2011 2467 -
Washington DC 37 0.25 0.62 0.15 6 16% 751 1418 0.032
Seattle 20 0.40 0.73 0.15 0 0% - 1195 -
San Francisco 17 0.59 1.34 0.29 0 0% - 2163 -
Boston 38 0.22 0.58 0.09 1 3% 600 789 -
Chicago 84 0.15 0.37 0.07 19 23% 972 1235 0.340
Denver 15 0.42 0.67 0.16 0 0% - 1322 -
Phoenix 18 0.28 0.44 0.11 1 6% 601 1404 0.155
Atlanta 88 0.14 0.40 0.10 35 40% 626 870 0.002

Second, though the average PWS point density for analyzed 12 MAs is
well-represented at the MA level, large disparities occurred at the HUC-
12 watershed level when uneven representation begins to appear. For
example, in Seattle and Denver, PWS adoptions are more uniformly
distributed where no UR watersheds were observed. However, the per-
centage of UR watersheds is larger in MAs such as Atlanta (40%) and
Houston (30%). Third, the mapping of the PWS representation shows
that the PWS representation has certain spatial distribution patterns
which merit further analysis. As shown in Fig. 2, UR watersheds are
generally clustered in a specific region of a MA. For example, in Hous-
ton, UR watersheds are concentrated on the east portion of the MA
where PWS adoption in these watersheds is relatively low. In Chicago
and Atlanta, large portions of UR watersheds are concentrated in the
southern part of the MA.

We hypothesized that population density is explanatory for the PWS
adoption spatial disparities. To test this hypothesis, population density
estimates for each HUC-12 watershed were computed using the
WorldPop dataset (Tatem, 2017). As shown in Table 1, the average
population density in non-UR watersheds was higher than in UR wa-
tersheds. However, the result of the one-way ANOVA test showed that
the mean difference of population density in UR and non-UR watersheds
in most MAs was not statistically significant. Although there is a notable
PWS adoption difference in UR and non-UR watersheds, population
density did not fully explain the spatial bias in PWS adoption. As can be
seen in the scatterplots in Fig. 3, most UR watersheds (shown in red dots)
have similar levels of population density compared to non-UR water-
sheds (shown in blue dots) while lacking PWS representation. Therefore,

we implemented further analysis at a finer geographic scale (census
tract) to assess other factors affecting the spatial pattern of PWS
adoption.

3.3. PWS adoption logistic regression model

Logistic regression models were built for the 12 analyzed MAs (12
regression models) to assess the factors affecting the spatial pattern of
PWS adoption. Table 2 shows the summary statistics of the response
variable (PWS adoption) and the selected socio-economic explanatory
variables at the census tract (CT) level. Multicollinearity diagnostics
performed using the variance inflation factor (VIF) indicated that the
selected input variables do not pose a concern of collinearity since all the
VIFs are below 3.0 (Midi et al., 2013). Using the PWS point density
threshold of 0.1 per km? in the previous section, we assumed that the
presence of 1 PWS could provide the minimum rainfall representation
for a CT, since the area of a CT in the analyzed MAs is mostly below 10
km?. Therefore, the CTs were classified into binary groups of “1 + PWS
adoption” and “no PWS” as the response variables in the Logistic
Regression models. The summary statistics (Table 2) showed that the
percentage of CTs with 1 + PWS adoption ranged from 21% (New York)
to 77% (Seattle), and is generally lower in MAs with a larger number of
CTs, such as New York, Los Angeles, and Chicago. Notably, the com-
parison of CTs in “no PWS” and “1 4+ PWS” groups (Table 2) across MAs
shows that the median household income (MHI) and owner-occupied
household ratio (OOHR) are significantly higher in the CTs with 1 +
PWS, while household density (HHD) is mostly higher in CTs with no



A.B. Chen et al.

=
o
1

©
wn
1

Q0

AR O
0 —

T
0 B
Population density

PWS point density (/kmz)?/‘

(1,000/km?)

T
0 5 10

(1,000/km?)

Houston

[
3]

=
o
I

o
o w
1
SR

PWS point denisity (/km?)

~ Population density
(1,000/km?)

|:| MA boundary HUC-12 watersheds
I:l HUC-12 watersheds in urbanized areas

D Non-UR watersheds E UR watersheds

50km

- PWS

15

Population density

Journal of Hydrology 609 (2022) 127724

Washington DC
c ‘E 15
2 1.0
g
Jed 0I5 —%
=
ey (O [ ] ]
w 0 T T
E 0 5| 10 XE=
- Population density
(1,000/km?)
Chicago
ft E 1.5
E 1.0 A
g
T 05 - 5
g
B O
= %ﬂ —————————
(7] T T
0 50,10 =15
g
Population density
(1,000/km?)
Atlanta
By
3
=
5 10 ™5
Population density
(1,000/km?)

Fig. 3. The PWS adoption pattern in HUC-12 watersheds for the MAs with higher percentage of UR watersheds. The scatterplots of PWS point density and population
density show that underrepresentation of PWS adoption can occur in watersheds with similar level of population density as non-UR watersheds.

PWS. The mean population in the two groups was similar, since CTs, by
definition, are delineated based on the population.3

The exponentiated coefficients (odds ratio) of the logistic regression
models are shown in Table 3. Among the input variables to the models,
MHI, POP, and OOHR have positive effects on PWS adoption (odds ratio
greater than 1), while HHD has negative effects (odds ratio less than 1)
which indicates negative effects on PWS adoption. The MHI variables
were converted into categorical variables using quartile groups. Based
on the coefficients of the MHI for the 12 analyzed MAs, the odds ratio of

the fourth MHI quartile group (MHI_Q4) was the highest, followed by
the third (MHI_Q3) and second (MHI_Q4) MHI quartile group. Notably,
in MAs such as Dallas and Houston, the odds ratio of the third and fourth
MHI quartile was significantly greater than first MHI quartile group
(MHI_Q1), which indicated that PWS adoptions are much more likely to
occur in wealthier neighborhoods. The coefficients of population vari-
ables were significant for every analyzed MA in predicting PWS adop-
tion, suggesting that an increase of 1,000 in population could lead to an
increase of 9.6% (Houston) — 48.5% (Boston) of the odds ratio that a CT
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Summary statistics for census-level PWS adoption and the selected explanatory variables.”

MA N (census tracts) Nof 1 + PWS Mean of CTs with no PWS Mean of CTs with 1 + PWS

MHI ($) POP HHD (/km?) OOHR MHI ($) POP HHD (/km?) OOHR
New York 3586 758 (21%) 66,521 4,073 5,529 0.41 102,044 4,968 2,178 0.69
Dallas 917 467 (51%) 53,938 4,469 923 0.46 83,949 5,649 612 0.64
Houston 743 353 (48%) 50,488 5,123 890 0.47 83,013 6,499 672 0.63
Los Angeles 2141 516 (24%) 55,801 4,313 1,969 0.40 86,607 4,854 1,232 0.59
Washington DC 924 430 (47%) 86,810 4,014 1,783 0.51 125,384 4,794 1,016 0.71
Seattle 517 396 (77%) 66,789 4,663 1,272 0.49 86,380 5,387 967 0.62
San Francisco 511 262 (51%) 73,320 4,153 3,833 0.38 109,486 4,857 1,937 0.59
Boston 580 291 (50%) 73,701 4,080 2,742 0.43 98,589 5,340 1,134 0.66
Chicago 1797 548 (30%) 57,369 3,781 1,878 0.54 86,831 4,921 957 0.74
Denver 408 242 (59%) 56,757 4,174 1,142 0.50 82,503 4,750 849 0.68
Phoenix 721 366 (51%) 49,714 4,272 840 0.51 67,391 4,697 665 0.65
Atlanta 660 338 (51%) 51,092 4,814 558 0.46 84,032 6,550 419 0.69
@ MHIL: median household income ($); POP: total population; HHD: household density (/km?); HHOR: owner-occupied household ratio.

Table 3
PWS adoption logistic regression model exponetiated coefficients (odds ratio).™"
MA Intercept MHI_Q2 MHI_Q3 MHI_Q4 POP HHD OOHR
(MHL Q1)

New York 0.021 ** 1.890 ** 3.156 ** 6.847 ** 1.311 ** 0.897 ** 1.011 **
Dallas 0.136 ** 2.568 ** 5.274 ** 14.306 ** 1.279 ** 0.495 ** 1.001
Houston 0.271 ** 2.446 ** 6.413 ** 20.051 ** 1.096 ** 0.559 ** 0.994
Los Angeles 0.044 ** 1.375 3.902 ** 10.944 ** 1.175 ** 0.886 1.003
Washington DC 0.053 ** 3.400 ** 5.840 ** 10.982 ** 1.336 ** 0.866 ** 1.005
Seattle 0.189 ** 1.849 * 3.266 ** 3.726 ** 1.353 ** 0.967 1.012
San Francisco 0.145 ** 2.042 * 4.116 ** 7.691 ** 1.212 ** 0.864 ** 1.009
Boston 0.037 ** 2.069 * 2.698 ** 3.468 ** 1.485 ** 0.876 * 1.017 *
Chicago 0.021 ** 3.671 ** 8.275 ** 12.789 ** 1.252 ** 0.823 ** 1.009 *
Denver 0.114 ** 1.439 2.279 * 5.387 ** 1.231 ** 0.920 1.018 *
Phoenix 0.139 ** 1.596 2.516 ** 3.951 ** 1.162 ** 0.792 1.014 **
Atlanta 0.042 ** 2.478 ** 5.879 ** 14.749 ** 1.253 ** 0.965 1.011
a %

indicates 5% significance (p-value < 0.05), and ** indicates 1% significance (p-value < 0.01).

> MHI: median household income ($); POP: total population; HHD: household density (/kmz); HHOR: owner-occupied household ratio.

has 1 + PWS adoption. The coefficients of OOHR showed that PWS
adoption is more likely to occur in CTs with a larger percentage of
owner-occupied households, suggesting that an increase of 1% in OOHR
in a CT could lead to an increase of 3% — 11% of the 1 + PWS adoption
odds ratio. However, PWS adoption is less likely in densely populated
CTs. For an increase of 1000 households per km? in HHD in a CT, the
odds ratio of PWS adoption could be decreased by 3.5% to 50.5% across
analyzed MAs.

3.4. The effects of median household income on PWS adoption

Marginal effects of MHI were calculated to provide an intuitive
comparison of MHI effects on PWS adoption across analyzed MAs. A
marginal effect (ME) is defined as the change in the response variable
associated with a change in one explanatory variable while holding
other variables at a specific value. In the PWS adoption logistic regres-
sion models, the MEs of MHI demonstrate the discrete change in pre-
dicted probability of PWS adoption from the reference category
(MHI_Q1) to other categories (MHI_Q2, MHI_Q3 and MHI_Q4), keeping
POP, HHD and OOHR at their mean values. The MEs of MHI for the
analyzed MAs are shown in Fig. 4a. Based on the results of the ME,
common patterns were observed for every analyzed MA. The predicted
probability of PWS adoption is always the lowest in the reference
category (MHI_Q1), followed by the second (MHI_Q2), third (MHI_Q3).
The predicted probability of PWS adoption of the MHI_Q4 is consistently
the highest. This indicates that in a hypothetical CT with identical POP,
HHD, and OOHR, the probability of PWS adoption is greater in upper
MHI quartile categories. For example, for Houston, the ME for the
MHI_Q1 category is 19%, while in MHI_Q2, MHI_Q3 and MHI_Q4 the
MEs are 34%, 58% and 81%, respectively.

Despite the common pattern that predicted PWS adoption is gener-
ally higher in upper MHI quartile groups, the level of PWS adoption
disparities due to MHI varied significantly across analyzed MAs. As
shown in Fig. 3a, Seattle generally has a higher probability (greater than
66%) of PWS adoption, regardless of the MHI quartile group. However,
the adoption probability varied largely in MAs such as Houston
(MHLQ1 = 19%, MHI_ Q4 = 81%) and Chicago (MHIL Q1 = 7% and
MHI_Q4 = 45%). The ratio of the average MEs of the upper MHI quartile
group (MHI_Q2, MHI_Q3, and MHI_Q4) to the MHI_Q1 was computed to
quantify the level of disparities. As shown in Fig. 4b, in MAs such as
Seattle and Denver, the level of disparities between MHI quartile group
are lower (ratio to Q1 were 1.3 and 1.5, respectively), while in MAs such
as Houston and Chicago, the level of disparities is much higher (ratio to
Q1 were 3.3 and 5.4, respectively). The PWS adoption pattern versus
MHI quartiles of these example MAs are shown in Fig. 5.

3.5. The effects of potential flood risk on PWS adoption

In this study, we further theorized that flood risk may influence PWS
adoption. Therefore, two types of flood related dataset at the CT level
were used to assess the association between potential flood risk and PWS
adoption (i) total number of flood claim (FC), and (ii) percent housing
units in the 100-year flood zone (FZ). A comparison of FZ and FC data
showed that CTs with a lower number of flood claims (low FC group) are
associated with a lower percentage of CTs that are in the in FZ group,
while CTs with a higher number of flood claims (high FC group) are
associated with a higher percentage of CTs that are in the in FZ group. As
can be seen in Fig. 6, this relationship is consistent for the analyzed MAs,
which indicates that CTs that have any percent of occupied housing units
in the FEMA 100-year flood plain are more likely to have a greater
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confidence interval) of the analyzed MAs (sorted by average probability). b PWS adoption disparities regarding MHI (sorted by average ratio of Q2, Q3 and Q4 to Q1

from low to high).

number of flood claims. For example, in New York, only 4.6% of the CTs
in the low FC group are in the In FZ group, while 59.3% of the CTs in the
high FC group are also in the In FZ group.

Next, we look at the relationship between PWS adoption and the two
flood-related variables to investigate whether the vulnerability to flood
affects the likelihood of PWS adoption. Logistic regression models were
built for the 12 analyzed MAs using socio-economic explanatory vari-
ables along with FC and FZ data to assess the potential flood risk
affecting the spatial pattern of PWS adoption. Note that these models
were built separately from the models in previous section, since the FZ
data have larger percentage of CTs with missing data the in analyzed

MAs (100%, 27%, 18% and 17% missing in Seattle, San Francisco,
Washington DC, and Chicago, respectively). In addition, since the cor-
relation exists between FC and FZ variable, two separated regression
models (one adding FC data and another one adding FZ data) were built.
The coefficients for the models adding FC and FZ data are shown in
Table 4 and Table 5, respectively. Compared to the reference group of
low FC, high FC groups for most of the analyzed MAs have odds ratio
greater than 1.0, indicating positive effects on the PWS adoption.
Similarly, compared to the reference group of Not in FZ group, the odds
ratios for In FZ group are greater than 1.0 which also suggesting positive
effect on PWS adoption.
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PWS adoption disparities across MHI quartile are less significant, but b in the example of Houston and Chicago, the PWS adoption are more biased toward wealthier

census tracts.

We further used Marginal Effects (ME) to demonstrate the effects of
flood vulnerability on PWS adoption. Using the ME adjusted for the
second quartile MHI group as an example, as shown in Fig. 7, a
consistent relationship was found that the MEs of the predicted proba-
bility of PWS adoption in high FC groups were higher than the MEs in the
low FC groups (Fig. 7a), which means that CTs that have higher number
of flood claims will be more likely to have PWS adoption. Similarly, the
ME:s of the FZ variable also suggested that CTs that intersected the 100-
year floodplain have higher probability of PWS adoption than those not
in the floodplain (Fig. 7b). These findings suggest that, with the
assumption that the number of flood claims and the percentage of
households in the 100-year floodplain represent the flood vulnerability
of a CT, current PWS adoption pattern is spatially biased toward flood-

prone regions.
4. Discussion

In this study, we analyzed a large PWS adoption dataset to explore
the rainfall representation of crowdsourced PWS in metropolitan areas
(MAs) in the contiguous U.S. Consistent with previous literature, PWS
adoptions are generally concentrated in populous MA (Muller et al.,
2015). However, our analysis showed that PWS adoption exhibited
significant spatial biases, which may result in overrepresentation and
underrepresentation of crowdsourced rainfall observations across HUC-
12 watersheds within a MA.. In the 12 analyzed MAs, the results of lo-
gistic regression models revealed that current PWS rainfall
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Table 4

PWS adoption logistic regression model coefficients (odds ratio) adding FC data.”
MA Intercept MHI_Q2 MHI_Q3 MHI_Q4 POP HHD OOHR FZ
New York 0.02 ** 1.84 ** 2.94 ** 6.04 ** 1.27 ** 0.91 ** 1.01 ** 1.57 **
Dallas 0.12 == 2.54 == 5.35 ** 15.55 ** 1.28 ** 0.52 ** 0.999 1.61 **
Houston 0.23 ** 2.37 ** 6.20 ** 19.85 ** 1.09 ** 0.59 ** 0.993 1.46 *
Los Angeles 0.04 ** 1.35 3.70 ** 9.53 ** 1.17 ** 0.89 1.003 1.45 **
Washington DC 0.05 ** 3.43 ** 5.79 ** 10.73 ** 1.33 ** 0.87 * 1.004 1.25
Seattle 0.19 ** 1.83 3.24 ** 3.67 ** 1.35 ** 0.97 1.01 1.12
San Francisco 0.10 ** 2.26 ** 4.44 ** 8.06 ** 1.18 ** 0.90 * 1.01 2.40 **
Boston 0.04 ** 211+ 2.71 ** 3.50 ** 1.47 ** 0.88 * 1.02 * 1.20
Chicago 0.02 ** 3.64 ** 8.16 ** 12.67 ** 1.24 ** 0.84 ** 1.01 * 1.27
Denver 0.11 ** 1.47 2.32 % 5.37 ** 1.22 ** 0.93 1.02 * 1.29
Phoenix 0.13 ** 1.61 2.52 ** 3.96 ** 1.16 ** 0.80 1.01 ** 1.19
Atlanta 0.04 ** 2.47 ** 5.89 ** 14.51 ** 1.25 ** 0.97 1.01 1.20

a

representation is biased toward wealthier neighborhoods and higher
flood risk regions due to adoption disparities.

Potential causes of these biases could be because wealthier families
have more resources and leisure to participate in PWS adoption, since
purchasing and maintaining PWSs are often regarded as a hobby rather
than a necessity in the household (Gharesifard and Wehn, 2016). On the
other hand, continuous urban development might be driving the popu-
lation growth in the floodplains, which potentially explains the higher
possibility of PWS adoption in floodplains due to increased population
(Qiang, 2019). In addition, areas with higher number of flood claims are
usually associated with homeownership and higher value homes
(Kousky and Michel-Kerjan, 2017), which is the proportion of de-
mographics that are more likely to adopt PWS. However, these are

* indicates 5% significance (p-value < 0.05), and ** indicates 1% significance (p-value < 0.01).

speculations based on the correlation and regression model results.
Future studies are needed to test and better understand causality for
these correlations.

Policies could be made to direct the distribution of resources of
rainfall data collection efforts in PWS-underrepresented regions. Unlike
the non-uniform PWS spatial adoption, traditional rainfall monitoring
networks are often designed as uniformly deployed rainfall stations
across the watersheds. For example, Harris County Flood Control Dis-
trict (HCFCD) maintains a large rainfall network consisted of ~ 175 rain
gauges uniformly distributed across Harris County. As shown in Fig. 8,
the point density of PWS and HCFCD comparison shows that in HUC-12
watersheds, the point density of HCFCD maintained network ranges
from 0.01 to 0.07, whereas the point density of PWS widely ranges from



A.B. Chen et al. Journal of Hydrology 609 (2022) 127724

Table 5

PWS adoption logistic regression model coefficients (odds ratio) adding FZ variable.”
MA Intercept MHI_Q2 MHI_Q3 MHI_Q4 POP HHD OOHR FZ
New York 0.02 ** 5.52 ** 1.28 ** 1.01 ** 1.65 **
Dallas 0.10 ** 15.84 ** 1.27 ** 0.999 1.79 **
Houston 0.24 ** 19.71 ** 1.10 ** 0.994 1.12
Los Angeles 0.05 ** 10.69 ** 1.16 ** 1.003 1.32
Washington DC 0.07 ** 6.04 ** 1.34 ** 1.01 1.06
Seattle - - - - - - -
San Francisco 0.10 ** 1.76 6.30 ** 1.16 * 1.01 1.01 1.43
Boston 0.04 ** 2.18 4.04 ** 1.44 ** 0.90 1.01 1.80 **
Chicago 0.02 ** 3.75 ** 1.22 ** 0.86 1.01 1.66
Denver 0.13 ** 1.43 1.21 ** 0.91 1.02 * 1.07
Phoenix 0.14 ** 1.58 1.15 ** 0.80 1.01 ** 1.32
Atlanta 0.04 ** 2.49 ** 1.26 ** 0.94 1.01 0.86

a

0.01 to 0.48. This observation suggests that to make the best use of the
limited public resources, city managers and engineers should consider
the spatial pattern of PWS adoption when designing future rainfall
monitoring networks. Rather than evenly deploying rain gauges, relo-
cating resources to set up more rain gauges in PWS-underrepresented
regions would support the current non-uniform PWS adoption. More-
over, local agencies and organizations could leverage their resources to
conduct science, technology, engineering, and mathematics (STEM)
related programs and workshop that incentivize the communities in
PWS-underrepresented regions to participate in data-driven decision-
making processes, and thus increasing their representation in crowd-
sourced rainfall data (Mondschein et al., 2019).

Incentivizing PWS adoptions to increase participation in crowd-
sourced data collection could strengthen the awareness of stakeholders
for their local environment in the PWS-underrepresented regions. Past
examples include the use of volunteered stream monitoring to increase
the community’s awareness for protecting environmental resources
(Overdevest et al., 2004). The application of participative geographic
information approaches could strengthen work relations among local
actors and authorities to prevent river flooding (Uson et al., 2016).
Crowdsourced rainfall data collection in the Community Collaborative
Rain, Hail and Snow Network (CoCoRaHS) were shown to have educa-
tional benefits that improve the climate literacy of the participants
(Reges et al., 2016). Additionally, the increased participation in PWS
adoption could improve the usefulness of the crowdsourced rainfall
data. Unlike traditional rainfall networks that are maintained and
collected by experts with rigorous quality control procedures, the utility
of crowdsourced PWS rainfall network is often compromised by its data
quality because of limited quality control processes and lack of trust for
data contributed from non-experts (Muller et al., 2015). As PWS quality
control and trustworthiness assessments methods often require a suffi-
cient number of neighboring PWSs for optimal performance (Chen et al.,
2021; de Vos et al., 2019), increased number of PWS adoption in the
PWS-underrepresented areas can therefore help ensure the quality and
trustworthiness of the crowdsourced data, and thus improve the use-
fulness of the crowdsourced rainfall data. Future work could also focus
on the design of crowdsourcing incentivizing programs for PWS adop-
tion by coupling the regression model results with agent-based modeling
to better identify the behavior of crowdsourcing participants and
therefore increase adoption (Yang et al., 2019).

Our research merits further exploration in terms of methodology and
underlying datasets, which limited the potential of our analytical
framework in understanding the spatial biases of crowdsourced envi-
ronmental data. First, to explore the PWS adoption spatial patterns, we
only considered socio-economic factors of population, including median
household income, household density and owner-occupied household
ratio. Incorporating other demographic characteristics such as the pro-
portion of retired people/students (which potentially form a sizable
proportion of the PWS owners) or marginalized/vulnerable groups
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* indicates 5% significance (p-value < 0.05), and ** indicates 1% significance (p-value < 0.01).

(which may likely to have lower uptake) may aid the understanding of
the spatial pattern of PWS adoption (Paul et al., 2021). Second, this
study focused on analyzing the factors that affect PWS rainfall repre-
sentation in a census tract. Therefore, binary results of PWS adoption
were used for building regression models to assess the socio-economic
and flood vulnerability differences in census tracts with adoption or
no adoption. Future work could expand the results by building regres-
sion models to predict the number of PWSs or per capita PWS to un-
derstand the factors that influence the PWS growth (De Groote et al.,
2016). Finally, this study focused on the PWS adoption at the census
tract level, which may not be adequate to fully capture the factors that
affect PWS adoption, since aggregation of data can inflate estimates of
association between variables within a CT. Future work could be focused
on surveying individual PWS owners at household level to permit un-
derstandings for finer level of PWS adoption (Gharesifard and Wehn,
2016).

Another unexplored question in this study is the difference of
adoption rates between the analyzed MAs. For example, Seattle gener-
ally has higher probability (>66%) of PWS adoption, regardless of the
MHI quartile group, while in Chicago the probability is lower than 45%
for every MHI quartile group. This can be caused by some other factors
that were not explored in this study. For example, while PWS adoption
often occur at the individual household level, large number of PWSs
could be adopted by corporations that are used for the benefits for their
business. PWS adoption could also be adopted by non-profit organiza-
tions (NGOs) that initiate weather monitoring programs. Furthermore,
the difference in cost of living across MAs might be explanatory of PWS
adopt number difference in MAs. Since PWS are devices that could be
easily purchased online with the similar costs, a PWS of $200 USD, for
example, may be affordable in MAs with higher cost of living, while in
MAs with lower cost of living this price could be relatively costly.

While most of the past literature on crowdsourced rainfall has
focused on the usefulness, quality, and trustworthiness of the observed
data, they tended to focus on a single study area (a watershed or a city)
of interest (Bardossy et al., 2021; Chen et al., 2021; de Vos et al., 2017,
2019; Mandement and Caumont, 2020). This study, on the other hand,
opens a door for spatial pattern analysis of broader crowdsourced data.
Using PWS adoption as a case study, our study highlights a phenomenon
that generates cross-disciplinary research opportunities between engi-
neers, designers, social sciences, city managers, planners, and NGO
groups. Moving forward, alongside the rapid growth of the number of
crowdsourced data to support flood assessment efforts, the methodology
could be applied to other types of crowdsourced data to assess the po-
tential spatial biases in crowdsourced data collection, enabling crowd-
sourced networks to be better positioned for decision-makers in their
flood resilience efforts.



A.B. Chen et al.

New York
a 100%-
75%-
50%-
- 25%-
S -
7] 0%-
5 0-6
N )
o Washington DC
= 100%-
3
75%:-
R=! 0
=]
2 s0%
8.( .
= 25%-
|72]
Z
+ 0-3
—
("5 Chicago
100%-
E b
=
__g 75%-
]
&
50%-
25%-  __
L
0%-
0-4
New York
b 100%-
75%-
50%-
25%-
S
E’_/ .
7 0%-
S Not in FZ
N .
O‘l Washington DC
— 100%-
jas)
= 75%-
=
g
2 50%- E
£
< 25%-
2]
g oo
i Notin FZ
bS] Chicago
2 100%-
IE
8 75%-
£
50%-
25%-
0%
Not in FZ

Dallas Houston
100%- 100%-
75%- 75%-
50% ; 50%-
L] L
I L]
25%- 25%- L
.
| 0% I 0%
6 - 2848 0-4 4-176 0-103
Seattle San Francisco
100%- 100%-
75%- ¢ L 75%-
3 50%- 50%-
T .
25%- 25%-
0%- 0%-
3-218 0-2 2-200 0-2
Denver Phoenix
100%- 100%-
75%: 75%-
50% ¢ 50% T
e L L]
. 25%: 25%-
‘ 0% | 0%-
4-511 0-2 2-38 0-2
# of FC (High/Low FC)
Dallas Houston
100%- 100%-
75%- 75%-
50%- o 50%-
1 i .
25%- 25%-
[
! 0% | 0%
InFZ Not in FZ InFZ Not in FZ
Seattle (No Data) San Francisco
100%-
75%-
-
T N/A 50%- ?
25%-
. 0% .
InFZ Notin FZ
Denver Phoenix
100%- 100%-
75%- 75%-
50%- E + 50%- E
i 25%- 25%-
] 0% ‘ 0%
InFz Not in FZ InFz Not in FZ

In/Not in 100-yr Flood Zone

Journal of Hydrology 609 (2022) 127724

Los Angeles
100%-
75%-
50%-
L]
25%-
i K3
. 0(%- . .
103 -'2507 0-2 2-145
Boston
100%-
== 75%-
¢ T
b 50%- i ?
25%-
i 0%-
2-134 0-6 6-334
Atlanta
100%-
75%-
° 50%- + “F
2%
0%-
2-176 0-5 5-270
Los Angeles
100%-
75%-
50%-
E 25%-
< .
InFz Not in FZ InFZ
Boston
100%-
75%-
i 50% T \
L ]
25%-
. O% . .
InFZ Not in FZ InFZ
Atlanta
100%-
75%-
—{ 50% |
: 1
25%-
0% ‘
InFz Not in FZ InFz

Fig. 7. Marginal effect of the predicted probability of 1 + PWS adoption in MHI_Q2 census tracts of the number of total flood claims (FC) and in/not in flood zone
(FZ) for analyzed MAs. a The predicted PWS adoption probability is generally higher in census tracts in the higher FC group. b The probability is also higher in census

tracts intersected with the FZ.

11



A.B. Chen et al.

Journal of Hydrology 609 (2022) 127724

ilometers 06
3 15 0 30 Kil t .HCFCD
A PWS
W@;E 0.5
o4
2
] z 0.3
] Q
<
£02
)
&
| HUC-12 Watershed 0.1
HCFCD PWS
0.00-001 0.00-0.10 0 ||||I.||I|II|||I||...|||I 11 1
I 002-003 ¢ o0.11-027 0 10 20 30 40 50 60 70
B oo4-007 e 028-048 HUC-12 watersheds
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while PWS is spatially biased toward certain watersheds.
5. Conclusion

In this study, we first examined the rainfall spatial representation of
PWSs at HUC-12 watersheds in twelve metropolitan areas in the U.S.
The results show disparities across the analyzed metropolitan areas,
with the percentage of PWS-underrepresented watersheds ranging from
0 to 40%. Furthermore, by modeling PWS adoption using socio-
economic and flood-related data at census-tract level, the results sug-
gest that the current PWS adoption pattern exhibits spatial biases toward
wealthier neighborhoods and flood-prone regions. The findings provide
insights to inform how policies could be made to distribute resources to
improve the rainfall data collection efforts in PWS-underrepresented
regions. As crowdsourced data are increasingly used for decision-
making by policymakers, efforts to close the gap in current non-
uniform PWS spatial adoption will allow crowdsourced rainfall data to
be better positioned to support decision-makers in their flood resilience
efforts.

Data availability
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Station adoption data was downloaded from the Weather Underground
database using the Weather Underground API (Weather Underground,
2019). HUC-12 watershed boundary was downloaded from USGS Na-
tional Water Information System (U.S. Geological Survey, 2021). Socio-
economic data was downloaded from the United States Census Bureau
(U.S. Census Bureau, 2021). Population raster data was downloaded
from Worldpop website (Tatem, 2017). NFIP redacted flood claim data
is available from OpenFEMA website (Federal Emergency Management
Agency, 2021), and the flood zone data was accessed from NYU Furman
Center FloodzoneData.us website (NYU Furman Center, 2021).
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