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A B S T R A C T   

Flooding increases in recent years, in particular for coastal communities facing sea level rise, have 
brought renewed attention to real-time, street-scale flood forecasting. Such flood models using 
conventional physics-based modeling approaches are often unrealistic for real-time decision 
support use cases due to their long model runtime. Machine learning offers an alternative strategy 
whereby a surrogate model can be trained to mimic relationships present within the physics- 
based model and, after training, can run in seconds rather than hours. This study used the 
Random Forest (RF) algorithm to emulate a 1D/2D physics-based model simulating surface water 
depths in an urban coastal watershed in Norfolk, Virginia. Environmental features from a selected 
set of pluvial and tidal flood events and topographic information of the roadway were the input 
variables to train the surrogate model. Results show the potential for the surrogate model to 
predict flood extent and depth for both pluvial and tidal flood events. Furthermore, the surrogate 
model can differentiate between flooding locations dominated by pluvial or tidal flooding or 
impacted by both flooding mechanisms. Flood reports from the mobile app Waze were used for 
model validation and show 90% agreement with flooding locations from the surrogate model. 
Finally, feature importance methods were investigated to interpret the performance of the RF 
models and understand the contribution of different physical features to localized flooding.   

1. Introduction 

The projected global increase in sea level rise (SLR) and heavy rainfall threatens to increase the frequency and severity of coastal 
flooding worldwide (Church et al., 2013; USGCRP, 2017). While most past studies estimating the impacts of SLR focused on rarely 
occurring extreme events (Hallegatte et al., 2013; Hinkel et al., 2014; Hsiang et al., 2017), the impacts of seemingly less threatening 
high tide flooding have been highlighted in recent studies. High tide flooding, also known as “nuisance flooding,” has increased 5- to 
10-fold since 1960 and will continue to increase with SLR projections (Dahl et al., 2017; Moftakhari et al., 2015; Sweet et al., 2018; 
USGCRP, 2017). Although short-duration nuisance flooding is less destructive on a per-event basis, it can disrupt the transportation 
systems multiple times annually (Jacobs et al., 2018) and negatively impacts the local economy (Hino et al., 2019). In coastal cities, 
high tide levels compromise the sewer system by inundating the outlets and often flowing backward to inland areas (Sadler et al., 2020; 
Shen et al., 2019). The joint occurrence of rainfall and high tide can worsen the impact of nuisance flooding events (Lian et al., 2015; 
Shen et al., 2019). Therefore, real-time flood forecasting at the street-scale is needed for early flood warning systems and flood risk 
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management (Henonin et al., 2013). 
The use of physics-based 1D/2D dual drainage models is a traditional approach for simulating the depth and extent of surface 

flooding in urban areas (Kourtis et al., 2017). These models simulate flow through sewer/river systems and overland flow by coupling 
1D and 2D hydrodynamic models (Fan et al., 2017; Lin et al., 2006; Seyoum et al., 2012). Many software packages such as HEC-RAS 
2D, MIKE FLOOD, SOBEK (Deltares, 2018), or TUFLOW (BMT WBM, 2016) are commercially available to facilitate 1D/2D flood 
simulation in urban scenarios. Although this approach can simulate realistic urban flooding with high resolution and accuracy, the 
associated computational time can limit the application for early flood warning systems (Lhomme et al., 2006; Tanaka et al., 2011). 
While the advancement in graphical processing unit (GPU) based parallel computing has sped up the execution of these 2D shallow 
water equation models for flood simulation, high-resolution, real-time flood forecasting is still challenging (Guo et al., 2020). 

To enable real-time flood forecasting, recent studies have used “response surface surrogates” or “metamodels” (Box and Wilson, 
1951; Razavi et al., 2012; Simpson et al., 2001; Zhang et al., 2018), where machine learning (ML) acts as a surrogate to emulate 

Fig. 1. Map showing the City of Norfolk with rainfall and tide gauges, physics-based model TUFLOW boundary, locations of flood reports from 
Waze, and road segments (S) with highest flood reports within the model boundary. 
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complex, high-fidelity physics-based models (Berkhahn et al., 2019; Contreras et al., 2020). These models are similar to the digital twin 
approach, which is popular in manufacturing systems and building information modeling (Lu et al., 2019; Schleich et al., 2017) and is 
beginning to be applied in water resources (Bartos and Kerkez, 2021; Inan et al., 2021). In this approach, a database is generated with 
several explanatory variables and simulation outputs from a physics-based model to train the surrogate model. The surrogate model 
learns from the input/output relationship rather than simulating complex, physical processes to emulate the physics-based model 
generated outputs. After training, the surrogate model is validated on independent data and then can make predictions on provided 
new input data with predictions made in seconds rather than the hours required by the original physics-based model (Berkhahn et al., 
2019; Zahura et al., 2020). 

Response surface surrogate models for real-time flood forecasting applications have been used by several studies to predict flood 
depths, volume, and velocity (Bass and Bedient, 2018; Bermúdez et al., 2019, 2018; Chang et al., 2010; Contreras et al., 2020; Jhong 
et al., 2017; Liu and Pender, 2015; Löwe et al., 2021). Most past studies have explored the ability of surrogate models in approximating 
pluvial and fluvial flood events or extreme typhoon events. However, the past studies have not emphasized relatively frequent 
nuisance flooding events due to high tide and rainfall in an urban coastal environment. Only two studies used tidal data as inputs for 
pluvial flood prediction (Bermúdez et al., 2019; Zahura et al., 2020). None of the past studies investigated the potential of ML sur
rogates to predict flooding due to high tide or the combined occurrence of rainfall and high tide in coastal cities. Given that tidal 
flooding has increased in US coastal cities with cumulative impacts surpassing the impacts of rare extreme events (Moftakhari et al., 
2018), a real-time flood forecasting model predicting not only flooding from extreme events but also nuisance flooding in coastal cities 
is urgently needed. Additionally, most of the prior studies ignored topographic data in training the surrogate models. Some past studies 
used reference points to make flood predictions followed by interpolation based on the topology. Only studies by Löwe et al. (2021) 
and Zahura et al. (2020) used topographic information from urban settings in model training and found them essential in emulating 
pluvial flood depths. The capability of the ML surrogates in approximating different flood dynamics based on topography is yet to be 
investigated. 

To address the existing knowledge gaps, this study builds on the work done by Zahura et al. (2020) to create a response surface 
surrogate model that emulates pluvial and tidal flooding simulated by a coupled 1D/2D hydrodynamic model, TUFLOW, calibrated 
and validated for the coastal city Norfolk, Virginia, USA. An ML algorithm, Random Forest (RF), was trained using two types of input 
features, (i) roadway topography and (ii) environmental information, for selected flood events, while the output was 
TUFLOW-simulated hourly water depths on the roadways in the study domain. The RF surrogate’s performance in predicting both 
pluvial and tidal flooding was evaluated for two different training approaches (i) training with only pluvial and no tidal events and (ii) 
training with both pluvial and tidal events. These two training approaches were compared to evaluate the value of including tidal 
flooding explicitly within the training data. Sixteen rainfall-dominant and eight tide-dominant events were used for this purpose. The 
surrogate models were tested on four rainfall and two high tide dominant events independent of the training events. The physics-based 
and surrogate models were validated using crowdsourced flood reports from the mobile app Waze to build trust in the model-predicted 
flooding. The surrogate model’s potential to differentiate between tidal-dominate and rainfall-dominate flooding while making pre
dictions was also investigated, as were approaches for gaining insight and interpretability of the RF model output. Overall, this study 
advances the potential for creating surrogate ML flood models for real-time, street-scale decision support that can capture combined 
pluvial and tidal flooding in coastal-urban environments. 

2. Study area and data 

2.1. Study area 

The City of Norfolk, Virginia (Fig. 1), located along the US east coast, is one of the most vulnerable coastal cities to SLR (Fears, 
2012). This coastal city and the surrounding Hampton roads region are experiencing two times faster local SLR than the global SLR due 
to land subsidence and ocean circulation dynamics (Atkinson et al., 2013). The frequency of nuisance flooding in Norfolk has increased 
by 325% since 1960 (Burgos et al., 2018). This increased flood frequency threatens the city, which is home to 244,000 people and vital 
for the US economy and national security. The City of Norfolk is actively adapting coastal resilience strategies to become resilient to 
extreme events. 

2.2. Environmental data 

The surrogate model required environmental data, such as rainfall and tide level observations, as inputs to predict water depths on 
streets based on characteristics of the given events. These data were collected from Hampton Roads Sanitation District (HRSD) and U.S. 
National Oceanic and Atmospheric Administration (NOAA) stations from Jan 1, 2016, to Dec 31, 2018. Ten HRSD rainfall stations were 
used to collect 15-minute rainfall observations. Daily rainfall and hourly tide level observations referenced to the North American 
Vertical Datum (NAVD88) were collected from NOAA’s Norfolk International Airport (NOAA, 2018a) and Sewells Point Station 
(NOAA, 2018b), respectively. 

2.3. Topographic and roadway data 

Topographic data were required as model input to distinguish between the topographic characteristics of the roadways causing 
flooding and validate the models with crowdsourced data. From the U.S. Geological Survey (USGS), a Digital Elevation Model (DEM) 
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with 1 m resolution (USGS, 2016) and LiDAR (Light Detection and Ranging) point cloud data (USGS, 2013) for Norfolk were collected. 
A shapefile of Norfolk street centerlines was collected through the city’s official website (City of Norfolk GIS Bureau, 2018). 

2.4. Crowdsourced street-scale flood data 

Crowdsourced flood reports were collected from two sources: the City of Norfolk’s System to Track, Organize, Record, and Map 
(STORM) (Sep 2010- Dec 2019) and Waze (Aug 2017-Dec 2019). The city uses STORM to record the impacts from storms, including the 
coordinates of flooded locations reported by the city workers at a daily timescale. Waze, owned by Google, is a GPS navigation app that 
provides real-time traffic updates and allows riders to report live updates on the street condition, such as accidents, flooded streets, etc. 
The exact time and coordinates of reported flooding were collected from Waze. The four locations with maximum reported flooding 
were identified using both STORM and Waze reports (Fig. 1). Flood reports around these locations mainly occurred during high tide 
(S1 in Fig. 1), during both high tide and rainfall (S2 in Fig. 1), and during rainfall events (S3 and S4 in Fig. 1). As Waze provided more 
extensive and diverse flood data with exact reporting time than STORM, it was used for model validation. 

2.5. Simulated street-scale flood depth data 

A 1D/2D dual drainage model, TUFLOW, built for a large area in Norfolk by Shen et al. (2019), was used to simulate street-level 
flood depth and generate output to train the surrogate model. TUFLOW links 1D pipe flow solved using ESTRY to 2D surface flow 
solved using 2D shallow water equations. The urban flood model covered an area of 56.4 km2 in Norfolk. The pluvial flooding inside 
this area was generated internally, as no rainfall-generated flow from the surrounding basins entered the study domain. The tide level 
at the outlet was considered the same as Sewells Point station, which is the closest tide gauge to the study area. This model required 
rainfall and tide level to simulate detailed surface flooding maps for every hour of the event at a spatial resolution of 5 m, which was 
used to build the surrogate model. 

3. Methodology 

3.1. Model data preprocessing 

Four environmental and three topographic features were generated from the raw environmental and topographic data, respectively 
(Table 1). The 15-min interval rainfall data from HRSD were aggregated to produce three rainfall features: hourly rainfall to describe 
the rainfall during the hour of interest, cumulative rainfall in the last 2 hr and cumulative rainfall in the last 72 h to describe ante
cedent soil moisture conditions or exceedance of stormwater system capacity from the past occurrences of rainfall. Due to the spatial 
variability of rainfall among stations, rainfall features were interpolated across the study domain using inverse distance weighted 
interpolation. As tide level is one of the dominant factors for flooding in coastal cities, hourly tide level was used as an input feature. 

The three topographic features derived from 1 m DEM were elevation, topographic wetness index (TWI), and depth to water 
(DTW). Elevation was used to describe the variation of street elevations within the study domain. TWI explains the likelihood of an 
area accumulating surface runoff based on local topography, with higher TWI indicating a higher tendency for runoff accumulation. 
TWI is defined as 

TWI = ln (
α

tan(β)
), (1)  

where α = contributing area per unit contour length and tan(β) = local slope (Beven and Kirkby, 1979). 
DTW measures the soil moisture condition (Murphy et al., 2007) for i, a pixel on the landscape as 

DTW = [
∑

(
dzi

dxi

)

a]xc , (2)  

where 
∑(

dzi
dxi

)
= sum of slopes across the least-slope path from i to the closest pixel of waterbodies, a = 1 or 

̅̅̅
2

√
based on whether the 

Table 1 
Description of input features (Zahura et al., 2020).  

Input Features Feature abbreviation Unit Variability 

Environmental features 
Total hourly rainfall RH mm Spatial and temporal 

Cumulative rainfall in the previous 2 hr HR_2 mm 
Cumulative rainfall in the previous 72 hr HR_72 mm 

Hourly tide level TD_HR m Temporal 
Topographic features 

Elevation ELV mm Spatial 
Topographic wetness index TWI – 

Depth to water DTW cm  
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pixel boundary is crossed parallelly or diagonally by the path and xc = pixel resolution. The lower value of DTW indicates the pixel on 
the landscape is closer to waterbodies in terms of both vertical and horizontal distance; therefore, wetter soil. 

The input file for the surrogate model was prepared by extracting the input features for the streets within the study domain. 
Regarding the restriction of vehicular movement on a road during flood events, we assumed that the deepest flood depth along a street 
would be sufficient for road closure decisions. Therefore, the street centerline shapefile for Norfolk was divided into segments with 
50 m length. Due to lack of road width data, we assumed the roads consisted of two lanes, each 3.6 m wide, the average lane width in 
the US (US Department of Transportation, 2014). The ArcGIS software system (Esri, 2020) was implemented to prepare a shapefile of 
street segments, where each segment was 50 m long and 7.2 m wide. This shapefile was used to extract the mean and maximum of the 
input features and TUFLOW-simulated hourly water depths, respectively, at each segment. The information on pump stations oper
ational at the underpasses in Norfolk was unavailable to be incorporated in the TUFLOW model. Therefore, the street segments 
representing underpasses were excluded from the analysis, resulting in 16,914 segments to develop the surrogate model. 

3.2. Training and testing data 

The RF surrogate models were developed using training data containing only rainfall events (RF-P) and both rainfall and high tide 
events (RF-P&T). The daily rainfall data and higher high tide data collected from NOAA were used to select the top 20 daily rainfall 
events (Table 2a) and the top 10 high tide events (Table 2b). These events were divided into training and testing with an 80%/20% 
split (Agranoff et al., 2006) with 16 rainfall events in training for RF-P, and 16 rainfall and 8 tide events in training for RF-P&T. The 
number of hours for the rainfall and tidal training events were 375 and 282, respectively. In our previous study, we found that 
oversampling the minority class with flood depths ≥ 0.3 m and maintaining a one-to-one ratio between minority and majority (depth 
< 0.3 m) groups improved predictive performance (Zahura et al., 2020). Using a 1:1 ratio between these groups resulted in training 
samples with 12,227,103 rows and 7 columns, and 21,754,398 rows and 7 columns for RF-P and RF-P&T, respectively. 

The predictive capability of both models was tested on four rainfall and two tide events. Test events were chosen based on the 
availability of Waze data. The chosen rainfall events for testing had a wide variety of storm events, while testing high tide events were 
selected to represent tide events with considerable and minor occurrence of rainfall. 

Table 2a 
Rainfall events to train and test the surrogate models.  

Date Daily rainfall 
(mm) 

Maximum hourly rainfall averaged across 
stations (mm) 

Higher high tide (m from 
NAVD) 

Number of flood reports from 
Waze 

Train or 
test 

10/8/ 
2016  

188.98  29.74  0.739 – Train 

7/31/ 
2016  

177.29  34.29  0.475 – Train 

9/21/ 
2016  

99.82  21.84  0.734 – Train 

8/29/ 
2017  

99.82  13.97  1.094 – Train 

8/11/ 
2018  

94.49  27.94  0.609 105 Test 

9/19/ 
2016  

77.22  23.37  0.643 – Train 

5/6/2018  65.28  18.03  0.244 15 Test 
9/3/2016  61.21  13.21  1.377 – Train 
9/20/ 

2016  
60.45  10.67  0.750 – Train 

7/30/ 
2018  

59.94  18.54  0.479 60 Train 

6/22/ 
2018  

57.91  15.49  0.684 9 Train 

6/5/2016  53.59  28.19  0.624 – Train 
10/29/ 

2017  
53.09  7.06  0.603 12 Test 

8/20/ 
2018  

52.32  35.31  0.610 24 Train 

5/28/ 
2018  

47.75  13.46  0.633 19 Test 

10/9/ 
2016  

45.72  19.30  1.270 – Train 

7/15/ 
2017  

45.47  28.96  0.441 – Train 

8/9/2016  44.70  15.49  0.401 – Train 
1/2/2017  43.94  8.38  0.390 – Train 
8/7/2017  43.94  16.76  0.445 – Train  
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3.3. ML algorithm: RF regressor 

RF was used in this study because it is faster to tune and train than the other ML methods, and preprocessing inputs to improve 
predictive accuracy is generally not needed (Ahmad et al., 2017). The RF regressor used in this study is an ensemble ML algorithm that 
uses many decorrelated regression trees to make predictions (Breiman, 2001; Breiman et al., 1984). Tree-based approaches tend to 
overfit to the training data. Random forest solves this problem by creating a collection of multiple trees, where each tree learns from 
randomly chosen samples and input features, and predictions are made by averaging the predictions from each tree. Additionally, the 
overfitting problem can be solved by not using fully grown trees in the forest or pruning the trees. This can be done by controlling the 
maximum depth of trees and the minimum number of samples required for splitting. In addition to making predictions, RF also 
provides an overall interpretation of feature importance, known as Gini importance, by measuring the total decrease in mean squared 
error by each feature. The RF regression was performed using sklearn.ensemble.RandomForestRegressor from python Scikit-learn 
module (Pedregosa et al., 2011; Scikit-learn Developers, 2018). 

The RF regressor was optimized by tuning hyperparameters: number of trees (n_estimators), number of input features at each split 
(max_features), and the maximum depth of a tree (max_depth). The function GridSearchCV in the Scikit-learn module can find the 
optimal values of model hyperparameters by iterating all combinations of predefined hyperparameter values using k-fold cross- 
validation. Using the training data, this function was applied to tune n_estimators, max_features, and max_depth (Table 3) with 4- 
fold cross-validation, and the best values were 50, 5, and ‘None’, respectively. However, with max_depth = ‘None’, there was mini
mal improvement in the average accuracy from cross-validation for n_estimators above 30 (Fig. 2(a)). Similarly, with n_estimators 
= 30, increasing max_depth beyond 40 caused little improvement in accuracy (Fig. 2(b)). As the best values of max_depth and n_es
timators did not improve model performance significantly and increased run time by consuming up to 97% computer memory, 40 and 
30 were set as the parameter values, respectively. A sample weight of 2 was assigned for samples with water depths ≥ 0.2 m to 
maximize the predictive performance while fitting the RF models. 

3.4. Model evaluation 

The surrogate models accuracy and bias towards overprediction or underprediction in emulating TUFLOW-simulated time-series 
water depths on streets during the flood events were evaluated using root mean squared error (RMSE) and mean error (ME) for each 
street segment as 

RMSEs(m) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

(ytuflow,s,h − yrf,s,h)
2

n

√

(3) 

Table 2b 
High tide events to train and test the surrogate models.  

Date Daily rainfall 
(mm) 

Maximum hourly rainfall averaged across 
stations (mm) 

Higher high tide (m from 
NAVD) 

Number of flood reports from 
Waze 

Train or 
test 

1/23/ 
2016  

37.80  13.61  1.114 – Train 

9/19/ 
2017  

0  0  1.098 28 Train 

9/9/ 
2018  

39.40  6.45  1.082 22 Test 

9/10/ 
2018  

0  0  1.076 28 Train 

5/5/ 
2016  

1.30  0.66  1.072 – Train 

3/21/ 
2018  

6.40  0.66  1.021 3 Train 

9/29/ 
2016  

9.90  4.90  1.012 – Train 

2/9/ 
2016  

0.30  0.30  0.996 – Train 

1/24/ 
2017  

0  0  0.994 – Train 

11/8/ 
2017  

8.60  2.82  0.981 19 Test  

Table 3 
Hyperparameters optimized to improve model performance.  

Hyperparameters n_estimators max_features max_depth 

Parameter values 1, 10–50 (incremented by 10) 1–7 (incremented by 1) 1, 5–50 (incremented by 5), and None 
Best parameter values 50 5 None  
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MEs(m) =

∑
(ytuflow, s, h-yrf, s, h)

n
, (4)  

where ytuflow and yrf were TUFLOW-simulated and RF-predicted water depth, respectively, on a street segment (s) during an hour (h). 
“n” represented the total number of hours with rainfall > 0 mm or tide level > 0.8 m from NAVD or TUFLOW-simulated flood depths 
above 0.1 m during the events. According to NOAA, a tide level above 0.845 m from NAVD is the threshold for minor flooding in 
Norfolk (Sweet et al., 2018), and flooding can occur below this threshold (Burgos et al., 2018). Therefore, a tide level of 0.8 m above 
NAVD was used to identify flood depth relevant to tidal flooding. 

The spatial performance of the surrogate models in mapping the maximum inundation extent and magnitude was evaluated for 
threshold depths: 0.1, 0.2, and 0.3 m. The inundation extent was defined with a wet/dry threshold of 0.1 m (Bermúdez et al., 2019; 
Shen et al., 2019), limiting high-velocity water depth on streets (Shand et al., 2011). Thresholds of 0.2 and 0.3 m were used to identify 
different flood intensities. As the air inlet height of passenger vehicles ranges within 0.25–0.35 m, a street becomes impassable at 0.3 m 
of water depth (AusRoads, 2008; Yin et al., 2016). Also, 0.3 m water depth can wash away cars and should be closed to ensure safety 
(NOAA National Weather Service, 2018). Therefore, replicating the extent of such streets was important. Three performance metrics, 
precision, recall, and F1 scores, were used to evaluate RF’s potential in emulating spatial flood patterns. 

Recall, representing the percentage of TUFLOW-simulated flooded streets, emulated correctly by RF, is calculated as 

Recall =
RF-predicted true flooded streets

Total TUFLOW-simulated flooded streets
, (5) 

Precision represents the percentage of correct RF-predicted flooded streets and calculated as 

Precision =
RF-predicted true flooded streets

Total RF-predicted flooded streets
, (6) 

Both precision and recall values range between 0 and 1. Lower recall and precision indicate underprediction and overprediction of 
flooding, respectively, compared to TUFLOW simulations. Higher values of these metrics are important for prompt action in hazardous 
locations and avoiding unnecessary actions in less threatening areas. F1-score, the harmonic mean of precision and recall, is calculated 
as 

F1-score =
2 ∗ Precision ∗ Recall

Precision + Recall
, (7) 

The F1-score can reach a maximum value of 1 when both recall and precision are 1, indicating RF-predicted and TUFLOW- 
simulated inundation extents matched perfectly. The sklearn.metrics module in Python (Scikit-learn Developers, 2018) was used to 
calculate the performance measures. 

3.5. Crowdsourced data processing and model validation 

Flood reports from Waze were used to validate the location and time of flood occurrences during the six test events. Waze data 
provide binary “yes” or “no” values rather than the flood depth. To identify the flooded locations surrounding Waze flood reports, the 

Fig. 2. Improvement in RF model performance for (a) increasing n_estimators with max_depth = None, and (b) increasing max_depth with n_es
timators = 30. 
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“Viewshed” tool on ArcGIS was implemented. This tool determines locations on a raster surface visible from the observer location, 
which is the location of Waze reports in this study. LiDAR point cloud data for Norfolk were utilized to produce a DEM raster. The 
LiDAR point cloud data contain tree canopy heights over streets resulting in a higher elevation in the LiDAR-derived DEM than the 
street elevation and interfered with viewshed analysis. At these locations, elevation from LiDAR-derived DEM was substituted with 

Fig. 3. Time series water depth on the four most reported flood locations from TUFLOW, RF-P, and RF-P&T during the pluvial testing events.  
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street elevation from bare earth DEM to obtain continuous viewshed. Street segments with > 50% area covered by viewshed were used 
to extract the maximum water depth from TUFLOW and RF during the flood events. 

The performance of the models was analyzed using hit rate (H), which describes the proportion of Waze reported flood locations 
identified with > =0.10 m of water depth by the models, defined as 

H(%) =
Hits

Hits + Misses
(8)  

where “Hits” and “Misses” indicated a flood report from Waze with ≥ 0.10 m and < 0.10 m of water depth, respectively, within its 
viewshed from the flood models. The time difference between Waze reports and peak flood depths was also evaluated. 

4. Results and discussion 

4.1. Approximating flood depth 

Comparison between TUFLOW-simulated, and RF-P and RF-P&T predicted water depths on the four highest reported flooded 
streets during the pluvial and tidal test events are shown in Fig. 3 and Fig. 4, respectively. The RMSEs between TUFLOW-simulated and 
surrogate model predicted water depths at the four locations and across the study domain are listed in Table 4. 

As flooding on S1 is mostly tide-driven, the intensity of TUFLOW-simulated flooding on this segment was low during the pluvial 
events, which both surrogate models emulated. At S2 and S3, the average difference between the TUFLOW-simulated and RF-P 
predicted peaks on Aug 11, 2018, and May 6, 2018 events were 0.041 and 0.057 m, respectively. On Oct 29, 2017 event, no flood
ing was simulated on S2 and S3. The May 28, 2018 event had two separate rainfall peaks resulting in two flood peaks simulated by 
TUFLOW. The first peak was overpredicted on S2 by 0.069 m by RF-P and S3 by 0.10 and 0.065 m by RF-P and RF-P&T, respectively. 
At S4, as the surrogate models drained out the accumulated water earlier than TUFLOW, this segment had RMSE higher than the 90th 

Fig. 4. Time series water depth on the four most reported flood locations from TUFLOW, RF-P, and RF-P&T during the high tide testing events.  
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percentile for the pluvial events. However, the surrogate models predicted the peak time precisely, and the predicted peak depths were 
close to the TUFLOW-simulated peak and above 0.3 m to cause road closure decision. During the pluvial events, the predicted time 
series water depths by RF-P and RF-P&T on the four segments were close, and the differences between peak values ranged within 
0–0.059 m. 

On Nov 8, 2017 event, TUFLOW-simulation showed increasing flood depths on S1 and S3 during the astronomical high tide periods, 
which receded during low tide. RF-P underpredicted the first and overpredicted the second peak on both S1 and S2. The differences 
between maximum depths were 0.23 and 0.13 m on S1 and S2, respectively. RF-P&T predicted the peak depth and time of flooding on 
both segments accurately with RMSE 0.046 and 0.025 m for S1 and S2, respectively. As S3 and S4 are prone to rainfall-driven flooding, 

Table 4 
RMSEs (m) of water depth from the surrogate models at the four most reported flood locations with average and 90th percentile RMSEs across the 
study domain during the testing events.  

Events Surrogate Model S1 S2 S3 S4 Average RMSE 90th percentile RMSE 

Pluvial events 
Aug 11, 2018 RF-P 0.012 0.075 0.066 0.076 0.054 0.078 

RF-P&T 0.017 0.082 0.074 0.149 0.054 0.078 
May 6, 2018 RF-P 0.015 0.039 0.045 0.213 0.045 0.054 

RF-P&T 0.017 0.057 0.048 0.216 0.050 0.060 
Oct 29, 217 RF-P 0.01 0.021 0.024 0.093 0.026 0.035 

RF-P&T 0.008 0.020 0.026 0.083 0.029 0.041 
May 28, 2018 RF-P 0.015 0.042 0.045 0.180 0.030 0.038 

RF-P&T 0.034 0.026 0.047 0.150 0.032 0.043 
Tidal events 

Sep 9, 2018 RF-P 0.121 0.080 0.041 0.177 0.063 0.090 
RF-P&T 0.084 0.031 0.040 0.097 0.036 0.050 

Nov 8, 2017 RF-P 0.146 0.074 0.030 0.077 0.046 0.063 
RF-P&T 0.046 0.025 0.017 0.020 0.029 0.041  

Fig. 5. Box plots of RMSE between water depths from surrogate model prediction and TUFLOW simulation during (a) pluvial events and (b) tidal 
events at different street segments. 
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no flooding was simulated on these segments. While RF-P overpredicted the depth on S4, RF-P&T emulated no flooding on this street. 
On Sep 9, 2018 event, RF-P overpredicted the peak depths on S1 with RMSE 0.121 m. RF-P&T prediction on S1 showed better 
agreement with TUFLOW-simulation compared to RF-P. However, RF-P&T predicted peaks occurred an hour earlier than the 
TUFLOW-simulated peak resulting in an RMSE (0.084 m) higher than 90th percentile RMSE (0.05 m). As S4 experiences rainfall- 
driven flooding, two flood peaks with depth > 0.1 m appeared in the TUFLOW simulation during hours with rainfall rather than 
the high tide period. RF-P could not identify the separate flood peaks during the rainfall period and predicted water depth ranging 
within 0.09–0.3 m throughout the day. RF-P&T emulated the two flood peaks on S4 during the rainfall period; however, the peaks 
were overpredicted by 0.13 and 0.11 m. 

Although RF-P predicted the presence of tidal flooding, the estimated water depths showed a high deviation from TUFLOW- 
simulated values. On the contrary, RF-P&T predicted flood depths with low errors for both pluvial and tidal events. Also, it differ
entiated between the locations driven by pluvial and tidal flooding and accurately predicted the time of occurrence. 

The capability of the surrogate models to predict water depths across the street segments was measured using segment-wise RMSE, 
represented as histograms in Fig. 5. During Aug 11, 2018 event with the maximum daily rainfall among the testing events, the average 
and 90th percentile RMSE from RF-P were the highest among the pluvial events. Among 16,914 segments, 65% and 31% had RMSE 
< 0.05 and within 0.05–0.10 m, respectively and only 4% had RMSE > 0.10 m. 88% of the segments had RMSE < 0.05 m on May 6, 
2018 event with < 3% falling above RMSE 0.10 m. The rest of the two pluvial events had > 96% and < 1% of the segments with RMSEs 
< 0.050 and > 0.10 m, respectively. For RF-P&T, having high tide events in training increased RMSEs during the pluvial events except 
for Aug 11, 2018 event. However, the increase in average and 90th percentile RMSEs was less than 0.005 and 0.006 m, respectively, 
indicating the inclusion of tide events did not significantly affect the performance of RF-P&T. 

The predictive ability of RF-P was worse for the tidal events compared to the pluvial events. The 90th percentile RMSE on Sep 9, 
2018 (0.09 m) was higher than Aug 11, 2018 (0.078 m) event, and on Nov 8, 2017 event was higher than RMSEs during the other three 
pluvial events. RF-P&T showed a significant decrease in RMSEs during the tidal events. On average, 92% and < 1% segments had 
RMSE < 0.05 and > 0.10 m, respectively, from RF-P&T predictions. 

Fig. 6 shows the ME between the simulated and predicted flooding on each road segment during pluvial and tidal flood events. 
Negative values of ME indicate the mean water depths were overpredicted, whereas positive values indicate underprediction. ME 
values for RF-P during pluvial events were closer to zero, with 1.3% and 2% of segments having ME < −0.025 and ME > 0.025 m, 
respectively. Using RF-P&T, the bias in prediction increased; however, only 3% and 4.2% of segments had ME < −0.025 and ME 
> 0.025 m, respectively. RF-P showed more bias toward overprediction of mean depth with ME < −0.025 m for 35% of streets for tidal 
flood events, while 14.5% of the segments had ME > 0.025 m. Using RF-P&T, this bias in tidal flood prediction was reduced to ME 
< −0.025 m at 5% road segments and ME > 0.025 m at 9% segments. 

Although tide level was one of the input features for RF-P, there were high discrepancies between predicted and simulated water 
depth on tidal events. While RF-P&T maintained similar RMSEs like RF-P during pluvial events, it improved predictions during high 
tide events. Therefore, RF-P&T could serve as a unified flood prediction model, as it emulated TUFLOW-simulated flooding with low 
RMSEs on most of the segments for both types of flood events. 

4.2. Flood extent mapping 

The recall, precision, and F1 scores evaluating the maximum extent of flooding from RF-P and RF-P&T during the flood events for 
thresholds 0.1, 0.2, and 0.3 m are listed in Table 5. During the pluvial events for threshold > =0.1 m defining flood boundary, recall 
scores ranged within 0.83–0.96, indicating RF-P emulated above 83% of the flood locations from TUFLOW-simulation. Precision scores 
ranged within 0.72–0.92, indicating more than 72% of the predicted flood locations were correct for the pluvial events. While precision 
scores remained consistently high throughout all the threshold values, recall values dropped with an increased threshold. RF-P 

Fig. 6. Histograms of ME (m) between TUFLOW simulated and RF predicted water depths for all (a) pluvial and (b) tidal events.  
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correctly predicted 55%− 87% and 50%− 85% of the flooded streets for 0.2 and 0.3 m thresholds, respectively. Like RMSEs, intro
ducing tidal events in training for RF-P&T caused minimal alteration in recall and precision scores, and the decrease in F1 scores was at 
most 0.04. 

For the tidal events, with a threshold > =0.1 m, RF-P predicted the extent of flooding less accurately than the pluvial events, as 
reflected by the performance scores. For thresholds > =0.2 and > =0.3 m, F1-scores dropped below 0.58 for both tidal events, sug
gesting RF-P’s poor predictive performance in emulating tidal flooding. With high tide events in training for RF-P&T, F1 improved up 
to 0.80 and 0.84 for events on Nov 8, 2017, and Sep 9, 2018, respectively. On the Nov 8, 2017, and Sep 9, 2018 events, RF-P&T 
correctly emulated 67% and 93% of the TUFLOW-simulated flood extent, and 71% and 78% of the roads unsafe to passenger vehicles, 
respectively. This suggested that using tide level as an input feature to develop surrogate flood models in an urban-coastal environment 
was insufficient to correctly emulate the extent of tidal flooding or combined pluvial and tidal flooding. Training events should have 
representation from different flood types. 

4.3. Validation using crowdsourced flood report 

Fig. 7 and Fig. 8 demonstrate the rainfall, tide level, and time of Waze reports, and the maximum water depth during the events 
within the viewshed of the Waze reports, respectively. Table 6 lists the H values quantifying the agreement between Waze reports and 
flooding from TUFLOW and RF-P&T. A maximum of 58 flood locations was reported on Aug 11, 2018, and 93% and 96.6% of the 
reports had maximum water depth ranging within 0.1–1 m inside viewshed, according to TUFLOW and RF-P&T, respectively. The 
lowest H was found for TUFLOW on Sep 9, 2018 event. By investigating the streets with base map imagery in ArcMap and TUFLOW- 
simulated water depth, it was found that two reports had water depth > 0.1 m within viewshed. However, creating segments with 
7.2 m width did not cover the actual road width, and missed the corners of the roads where flooding happened, decreasing H. 
Similarly, 1, 1, and 3 flood reports on Nov 8, 2017, May 6, and Aug 11, 2018, respectively, had water depths > 0.10 m within 
viewshed, which were missed due to the geometric bias, reducing H. Overall, 87.5% and 90.4% of the Waze flood reports were 
associated with water depth > 0.10 m from TUFLOW and RF-P&T, respectively. While this agreement validated both models, it also 
suggested that RF-P&T could predict flood depth on the four highest reported flood locations and other user-reported locations across 
the study domain. The minor mismatch between Waze and flood models could be resulting from the uncertainty regarding crowd
sourced data reliability (Boutsis et al., 2016). As experts do not generate these reports, the perception of a flood would widely vary 
among the users. 

The distance between 95% of the flood reports and the location of maximum flood depth ranged within 0–150 m. Reports located 
> 150 m from the maximum flood depth had > 0.10 m of water depth within 0–47 m on streets. Fig. 9 demonstrates the difference 
between the time of the Waze reports and the peak depths. 68% of flood reports appeared within 1 h of the peak depth for all the test 
events, as indicated by the boxplots. The reports appearing 3–4 h from the peak depth on Oct 29, 2017, Nov 8, 2017, and Aug 11, 2018, 
had > 0.10 m of water depth during or within 1 h of the reports. The May 28, 2018 event had two peak rainfalls generating two flood 
peaks. Although the maximum flood depth was simulated during the second peak, flood reports appeared during the first peak (Fig. 7), 
with depths ranging between 0.08 and 0.23 m. Therefore, the time difference was calculated between the first peak and the flood 
reports for this event. Overall, 17%, 28%, and 55% of the reports appeared before, during, and after the time of peak flood depth, 

Table 5 
Recall, precision, and F1 scores for maximum flood extent.  

Event Metrics Thresholds (m) 

> =0.1 > =0.2 > =0.3 

RF-P RF-P&T RF-P RF-P&T RF-P RF-P&T 

Pluvial events 
Oct 29, 2017 Recall  0.94  0.95  0.87  0.85  0.85  0.84 

Precision  0.90  0.83  0.95  0.89  0.93  0.92 
F1 score  0.92  0.89  0.90  0.87  0.89  0.88 

May 6, 2018 Recall  0.83  0.80  0.55  0.54  0.50  0.48 
Precision  0.86  0.89  0.95  0.93  0.98  0.95 
F1 score  0.84  0.84  0.7  0.68  0.67  0.63 

May 28, 2018 Recall  0.96  0.95  0.82  0.81  0.8  0.80 
Precision  0.73  0.72  0.85  0.83  0.91  0.91 
F1 score  0.83  0.82  0.83  0.82  0.85  0.85 

Aug 11, 2018 Recall  0.95  0.93  0.68  0.7  0.61  0.68 
Precision  0.72  0.74  0.66  0.66  0.73  0.62 
F1 score  0.82  0.83  0.67  0.68  0.67  0.65 

Tidal events 
Nov 8, 2017 Recall  0.60  0.67  0.51  0.60  0.61  0.71 

Precision  0.62  0.94  0.59  0.97  0.48  0.93 
F1 score  0.61  0.78  0.55  0.74  0.54  0.80 

Sep 9, 2018 Recall  0.79  0.93  0.54  0.77  0.56  0.78 
Precision  0.60  0.76  0.63  0.87  0.59  0.84 
F1 score  0.68  0.84  0.58  0.82  0.57  0.81  
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Fig. 7. Tide level, average rainfall across the rainfall stations, and time of reported flooding on Waze during the test events.  

Fig. 8. Maximum water depths within the visible distance from Waze flood reports.  
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respectively. 

4.4. Feature importance 

RF-generated Gini importance measures the global importance of each feature for the whole dataset (Saarela and Jauhiainen, 
2021). Among the seven input features, RF-P found TWI to be the most important in predicting street flooding, followed by ELV and 
HR_72 (Fig. 10). TD_HR was the least important feature in RF-P, which could be due to the lack of representation of tidal flood events in 
training. However, RF-P&T computed importance of TD_HR dropped by 0.008 and was the least important feature, despite tidal flood 
incidents improving flood prediction. The importance of HR_72 increased by 0.10 and was the most important feature calculated by 
RF-P&T, while the importance of TWI dropped. While rainfall and tide are the commonly known features for flooding in coastal cities, 
RH and TD_HR were unimportant, according to RF. This deviation of feature importance from physical expectations could be due to the 
bias in Gini importance towards variables varying in scale, which are artificially preferred during splitting (Strobl et al., 2007). Also, 
Gini importance fails to find the true predictors when the relationship between predictors and response is weak (Archer and Kimes, 
2008). Correlations between training features and water depths varied between − 0.30 and 0.43 (RF-P&T), indicating a weak 
predictor-response relationship. TWI had the highest correlation coefficient: 0.452 and 0.436 for RF-P and RF-P&T, respectively. The 
second most correlated feature was HR_72, which experienced an increase in correlation coefficient from 0.349 (RF-P) to 0.432 
(RF-P&T), suggesting that correlation between the features and response might have influenced the global feature importance from RF. 

An alternative approach for determining variable importance for RF is Local Interpretable Model-agnostic Explanations (LIME) 
(Ribeiro et al., 2016). We applied LIME for S1 and S3 during hours 17:00 and 9:00 for the Aug 11, 2018, and Sep 9, 2018 events, 
respectively (Fig. 11). For the Aug 11, 2018 event, ELV and RH were the top two features contributing positively towards flood 
prediction for both segments. TWI was important for both segments, but contributed negatively to S1 and positively for S3. This may be 
because high TWI for S3 caused runoff accumulation during rainfall, whereas S1 had low TWI and was impacted more by tidal 
flooding. For the event on Sep 9, 2018, ELV and TD_HR contributed positively to the TUFLOW-simulated 0.499 m depth of water, while 
all the other features had a negative effect. In all four examples, ELV was the most important feature in explaining flood depth pre
diction, while HR_72 was consistently one of the least important features. While RH, HR_2, and TD_HR were the least important 
features according to Gini importance, they played a crucial role in flood prediction according to the local analysis, which is what one 
might expect given the physical understanding of flood generation. Therefore, we suggest there is more value in analyzing variable 
importance locally using an approach like LIME than global approaches like Gini for flood applications. 

4.5. Computational cost 

The comparison between the computational cost for TUFLOW and RF is listed in Table 7. The computational time for TUFLOW 

Table 6 
Estimating the agreement between Waze flood report and flood occurrence from 
TUFLOW and RF-P&T.  

Events H (%) 

TUFLOW RF-P&T 

Oct 29, 2017 100% 100% 
Nov 8, 2017 82.4% 76.5% 
May 6, 2018 77.8% 77.8% 
May 28, 2018 88.9% 100% 
Aug 11, 2018 93% 96.6% 
Sep 9, 2018 57.1% 71.4% 
Overall 87.5% 90.4%  

Fig. 9. Time difference between the occurrence of Waze report and peak flood depth.  
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Fig. 10. Feature importance from RF-P and RF-P&T.  

Fig. 11. Explaining individual predictions using LIME for Aug 11, 2018 event on (a) S1 and (b) S3, and Sep 9, 2018 event on (c) S1 and (d) S3. The 
green bars towards the right and red bars towards the left indicate the feature’s positive and negative contribution to flood depth prediction, 
respectively. The features are ranked according to their level of contribution for each prediction. 

Table 7 
The computational cost for TUFLOW and surrogate models.  

Models CPU RAM GPU Computational time 

TUFLOW 4.4 GHz, 4cores 64 GB 2 NVIDIA(R) GeForce(R) Titan X each with 12 GB GDDR5X 4.5–6 hr 
RF-P 3.6 GHz, 4 cores 16 GB – Train: 30 min 

Test: 4.5 ± 2 s 
RF-P&T 3.6 GHz, 4 cores 16 GB – Train: 56 min 

Test: 4.2 ± 1.5 s  
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model execution on CPUs would be > 120 hr per event (Morsy et al., 2018). TUFLOW Heavily Parallelized Compute (HPC) engine 
allowed simulation on two GPUs and reduced execution time to 4.5–6 hr per event. Training time for RF-P trained with 16 events 
containing 375 hr was 30 min, which increased to 56 min for RF-P&T due to increased training samples (627 hr). However, the 
average time predicting each event was 4.5 and 4.2 s for RF-P and RF-P&T, respectively. Thus, RF-P&T could make predictions 3800 
times faster than TUFLOW with reasonable flood depth and extent prediction errors. 

5. Conclusion 

This study resulted in RF surrogate models for real-time, street-scale forecasting of both pluvial and tidal flooding using the coastal 
city of Norfolk, VA, as a study region. Responses from a physics-based model, TUFLOW, were approximated by learning from inputs 
containing topographic variables for roadways and environmental variables for flood events and the corresponding target variable, 
TUFLOW-simulated water depths. Two surrogate models were trained with (i) only pluvial (RF-P) and (ii) both pluvial and tidal (RF- 
P&T) flood events. Comparison between these approaches showed that training on pluvial events with the tide as an input inade
quately predicted the depth and extent of inundation during high tide or combined rainfall and high tide occurrence in coastal cities. 
The representation of both pluvial and tidal flood events in training significantly improved the predictive performance on test events 
by predicting 67%− 95% of the TUFLOW-simulated flood extent with average RMSEs of water depth ranging within 0.029–0.054 m. 
The predictive capability of the surrogate model for locations not in training was not explored in this study. To apply this model in a 
different urban area may require retraining using corresponding topographic data and physics-based model outputs. Future work 
should explore the transferability of this ML modeling approach to other urban areas. 

Analyzing the locations of Waze flood reports showed that 87.5% and 90.4% of the reports had > 0.10 m water depth within the 
reporter’s visibility from TUFLOW-simulated and RF-P&T predicted flooding, respectively. The distance between the reports and 
simulated flooding ranged within 0–150 m. 68% of the reports were within 1 hr from the time of peak depth. The agreement between 
time and location of flood reports with TUFLOW-simulated and RF-P&T predicted flooding served as validation for both models. The 
high agreement between the models and the flood reports suggested that the surrogate model could identify problematic flood spots on 
the roadway network in both space and time to support real-time decisions. For the locations with disagreement between flood reports 
and modeled results, further work is needed to determine if this was due to errors in the crowdsourced data or errors with the model’s 
predictive skill. If the latter, it would be interesting and worth determining if the error is in the physics-based model itself or the ML 
surrogate model. 

The RF algorithm can facilitate real-time street flood forecasting due to its short runtime, while maintaining an acceptable loss of 
accuracy compared to the high-fidelity physics-based model, TUFLOW. RF-P&T required 56 mins for training and 4.2 s on average for 
predicting each test event, increasing the computational speed by a factor of 3800 compared to TUFLOW. Additionally, RF provides 
global feature importance for the whole dataset, which was analyzed to understand the contribution of input features in flood pre
diction. The least important features from RF-P&T were surprisingly found to be hourly rainfall and tide level, which are the main 
physical drivers of flooding in a coastal city. Analyzing local feature importance using LIME revealed that these two features were 
significant in flood depth estimation with either positive or negative contribution levels based on the type of flood events. Thus, while 
the global feature importance provides insight into the RF model’s general behavior, it can be biased towards the training data and 
affected by the correlation between inputs and target variable. Therefore, to interpret any black-box RF model for flood prediction or to 
perform feature selection, the local contribution of features should be investigated in future studies. 
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