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Abstract— Low-lying coastal cities across the world are
increasingly seeing flooding due to climate change and ac-
companying sea-level rise. Many such cities rely on old and
passive stormwater infrastructure which cannot cope up with
the increasing flood risk. One potential solution for addressing
coastal flooding is implementing active control strategies in the
stormwater systems. Existing stormwater control mostly relies
on rule-based strategies, which are not sufficient to manage
the increasing flood risk. Model predictive control (MPC)
for stormwater management has received attention for this
problem. However, building physics-based models for MPC in
stormwater management is very cost and time prohibitive. In
this paper, we propose a data-driven approach, which utilizes
unstructured state-space models for system identification and
predictive control implementation. We demonstrate our results
using two real stormwater network configurations, one from the
Norfolk, VA region and another model of Ann Arbor region, MI,
respectively using the SWMM simulator. Our results indicate
that MPC outperforms rule-based strategies by up to 60% for
the Norfolk system and up to 90% for the Ann Arbor system
in flood management.

Stormwater, Real-time control, Model Predictive Control,
System Identification

I. INTRODUCTION

In much of the United States, flooding is occurring and
is a growing source of significant economic loss, social
disruption, and housing inequality over the past decade .
This is amplified in coastal cities due to sea level rise ;
global mean sea level has risen about 8 inches since 1880,
with a third of that happening in the last 25 years [1]. This
exacerbates flooding risk in cities where the tide level can
be above stormwater outlets and may slow or block drainage
to the pipes leading to flooding.

There are mainly three approaches to address the increas-
ing threat of flooding: (i) Using locally placed stormwater
control measures to prevent stormwater from entering the
stormwater system, (ii) expanding the capacity of existing
infrastructure, and (iii) implementing more advanced control
strategies [2]. Creating new stormwater control measures
may not be feasible in developed cities and expanding
existing infrastructure can be extremely disruptive and costly.
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Therefore, we focus on developing a data-driven model
predictive control (MPC) strategy for urban flood mitigation.

Real time control (RTC) has become a promising strategy
in nuisance flooding mitigation [3]. The implementation of
RTC in a stormwater system requires three major compo-
nents: (i) sensors (e.g., rain gauges, water level sensors, flow
meters), to provide real-time input information of system
states; (ii) a stormwater system model, to precisely estimate
the behaviors of real-world stormwater system; and (iii)
actuators, like valves, to manage the outflow from the system.

The current state of the art for RTC of stormwater system
is rule-based control (RBC) [4]. This type of control is based
on both observed and forecast conditions. For example, a
valve on a pond can be opened prior to a storm to ensure
enough capacity to store the stormwater and prevent flooding.
RBC is transparent to users, but is generally limited to
the coverage of the scenarios specified by the rules. An
alternative to rule-based strategies is to use MPC.

However, The biggest challenge to implementing MPC
is that building control-oriented models using physics-based
techniques is extremely cost and time prohibitive. This
includes hydrologic and hydraulic modeling, and evaluation
of the stormwater drainage system including: stormwater
inlets, pipes, ponds, outfalls, etc.. In many cases topographic
surveys need to be conducted to obtain this information and
additional sensors have to be deployed to identify measures
to fill or mitigate data gaps. Finally, thousands of parameters
need to be tuned using historical rainfall, tidal surge, or
combination rainfall and surge events for which input data
and flooding impacts are known and available [5]. This
effort can amount to $100k-300k per watershed for a city
to build the physics-based model from scratch, and can take
3-6 months depending on what is needed to verify in the
field with surveys. For a city like Norfolk, Virginia, this can
amount up to millions of dollars for modeling cost alone.

To address the modeling and rule-based limitations above,
the contribution of this work is in implementing MPC for
urban flood control but using data-driven state-space models
as opposed to the physics-based models used in previous
work. The proposed MPC approach formulates the control
problem as an optimization problem, which focuses on flood
mitigation during storm events.

The key research contributions of this paper are:

1) We demonstrate the use of a data-driven unstructured
state-space identification technique to estimate input-
output behavior.

2) We formulate flood mitigation as a data-driven MPC



problem and implement a receding horizon controller
using a data-driven model.

3) We evaluate the baseline RBC and MPC performance
using both a simple model derived from the coastal city
of Norfolk, Virginia, and a large-scale model derived
from the city of Ann Arbor, Michigan.

II. RELATED WORK

Performance of MPC relies deeply on the accuracy of
model used in the optimization problem. Without an accurate
model, MPC will not generate reasonable control decisions.
In the hydrological cycle, rainfall-runoff plays an important
role by returning excess rainfall to the oceans and controlling
water flows into stormwater systems. Modeling rain-runoff
helps gain a better understanding of hydrologic phenomena
and how changes affect the hydrological cycle [6].There are
typically three modeling techniques: (i) physics-based model,
(ii) grey-box model, and (iii) data-driven model.

1) Physics-based model (white-box model): Physics-
based modeling is based on the first-principles, which re-
quires thorough knowledge of physics related to the entire
hydrological processes. An example of early development of
physics-based models is the MIKE-SHE model [7]. A recent
study utilizes EPA-SWMM5 to build a physics-based model
for MPC on flood mitigation [8]. A physics-based model
can adequately represent the spatial and temporal variations
of the real system, however, it does not scale due to the
amount of data, sensors, and retrofits needed required.

2) Grey-box model: Grey-box models interpret runoff
process based on simplified governing physics equations.
A semi-distributed grey-box model, called Hydrologiska
Byrans Vattenbalansavdelning (HBV) hydrology model [9],
was developed in 1976 and recent studies on river Demer
have also showed the impact of MPC flood control based
on grey-box modeling [10]. Grey-box models have simple
model structures, and are easier to calibrate than physics-
based models. They are useful when computation time is
limited and catchment characteristics are not analyzed in
detail.

3) Data-driven model: As known as the black-box model,
which means very little is known about the internal processes
that control how runoff results are determined [11]. These
models approximate real-world systems based on statistical
relationships between inputs and outputs. Vafakhah et al. pro-
vided an evaluation of data-driven techniques, including the
ANN, ANFIS, ARX and ARMAX models for rainfall-runoff
modeling [12]. The disadvantages of data-driven models are
the lack of interpretability, and the non-linear relationship
between inputs and outputs increases the difficulty of the
implementation of MPC on data-driven models.

In this paper, we design a data-driven state-space model,
which combines the advantages of physics-based models and
data-driven models. Therefore, is able to represent stormwa-
ter system dynamics using physical variables without the
need of redundant physics equations or expert knowledge
of stormwater systems.

III. PROBLEM STATEMENT AND METHODS

We now describe the problem statement in this work
followed by explanations of the methodology (i) system
identification, (ii) RBC strategies, and (iii) MPC formulation.

A. Problem statement

We present a system identification methodology, which
uses an unstructured linear state-space model to estimate the
system dynamics. The modeling approach does not require
expert knowledge of stormwater systems since the identified
model is built only on the input-output relationship.

After creating a system dynamic model, we formulate
MPC as an optimization problem for flood control. The
objective is to minimize the flood volume at each storage
unit (Sti) and junction node (Ji) by minimizing the least
squared error of depth level and set-point level of Sti and
Ji. We also implement RBC strategies to compare with MPC
and evaluate their performance.

Following steps are taken to formulate the flood mitigation
problem.

1) Implement RBC strategy inspired by real-world
stormwater control as baseline scenario.

2) Use SWMM5 models of sites 1 and 2 to obtain data for
system identification from simulation under different
RBC strategies.

3) Use N4SID unstructured state-space identification to
estimate stormwater system dynamics.

4) Formulate MPC problem for flood management based
on the identified state-space model.

5) Evaluate the effectiveness of MPC for SWMM5 mod-
els for site 1 and 2, and compare with RBC strategy.

B. System identification

To determine the control policies for a stormwater system,
we need to have knowledge of the system dynamics. System
identification is a useful technique to help us obtain a math-
ematical model to precisely estimate the system behaviors.

We use unstructured state-space model for stormwater
system identification. Specifically, we construct a multiple-
input, multiple-output (MIMO) linear time-invariant state-
space model, as shown in Eq. 1, from input-output storm
event data to estimate the system behaviors.

In any system identification problem for state-space mod-
els, the goal is to estimate the values of state matrices:
A, B, C, and D. In a physics-based model, these matrices
are built based on physical parameters such as properties
of catchments, storage nodes, or pipes. However, there is
no need for state matrices to have physical interpretation
in unstructured state-space models; the goal is to find the
elements of state matrices that can best explain the data.

{
x(t+ 1) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
(1)



C. Control strategies

For data collection of system identification procedure,
we implement different RBC control strategies, including:
(i) bang-bang control, (ii) linear control and (iii) step-wise
control. These strategies are inspired by rule-based con-
trollers used in the real world. In addition, to demonstrate the
capability of MPC, we implement RBC adopted from [13],
shown in Fig. 1. We use passive control as baseline control
strategy and compare the performance of flood control.

1) Passive control: Passive control is when no real-time
control is involved, and runoff regulators, such as weirs,
gates, and valves, are controlled by fixing to a certain static
setting. The valves are fully opened under passive control
during simulation, thus the discharges from storage nodes
were drained by gravity alone.

Fig. 1. Rule-based control strategy implemented based on documented
industry-standard methods. The depth of pond is kept between 0.61-
0.76m by implementing an ”if-then” rule-based model to control the valve
positions.

2) RBC strategies: For RBC strategies, logical rules are
used to control the openings of valves, such rules can be
based on experience and knowledge gained over time. RBC
strategies change the valve position based on changes of
model states, such as depths of storage and junction nodes.
We design three RBC strategies to obtain data for system
identification, included: (i) Bang-bang control, (ii) Linear
control, and (iii) Step-wise control.

Bang-bang control switches between two states, fully
opened and fully closed. This control strategy has been used
widely in flood control, [14]. We implement the Bang-bang
controller based on the status of storage node depth. Linear
control strategy changes the valve positions depending upon
the water level in Sti and Ji. The changing rate of positions
depends on the current flooding volumes. Step-wise control
is similar to the linear control, but changes the valve positions

by a random amount at each time step.
We also adopt a more sophisticated RBC strategy, see in

Fig. 1 [13], which was implemented based on documented
industry-standard methods [15]. In this strategy, the valve
positions are switched among 0%, 50%, and 100%, the
depths of storage nodes are kept between 0.61-0.76m by
implementing an ”if-then” rule-based model to control the
valve positions. Forecast of rainfall event is used for making
control decision.

D. Model predictive control

Fig. 2 shows the workflow of the proposed MPC sys-
tem. Firstly, we use EPA Stormwater Management Model
version 5 (SWMM5) to build a simulation model of real-
world stormwater system. The SWMM5 model will provide
input data (i.e. forecast of precipitation, tide) to the system
identification state-space model. After that, MPC formulates
an optimal control policy to the plant based on prediction
outputs from the state-space model every time step.

Fig. 2. System workflow. SWMM5 represents the ground truth of
stormwater systems.

The control policy of MPC is found by solving the QP
optimization problem. The advantage of MPC over the rule-
based control is the ability to adjust the actuators based on
forecasts of model input, such as rainfall events and tidal
conditions. We use a control time step of 6 min and a
prediction horizon of half an hour (5-step ahead) as same
as control horizon, these values are the best combination to
provide the most accurate estimation of system dynamics in
system identification process. The objective is to minimize
the flood volume by reducing the least square error between
current depth value and set-point value of each storage node.
Eq. 2 shows the MPC formulation procedure:

min
Y,U

(Rs − Y )TQy(Rs − Y ) + Uc
TQuUc

s.t. Y = Px(t) +QU,

Uc ≤ Uc ≤ Uc,

Y ≥ Y ,

RT
s = [1 1 . . . 1]r(ki)

(2)



Where, U =
[
Ud Uc

]
; P =


CA
CA2

CA3

...
CANp

;

Q =


CB 0 0 . . . 0
CAB CB 0 . . . 0
CA2B CAB CB . . . 0

...
CANp−1B CANp−2B CANp−3B . . . CANp−NcB


with Np the prediction horizon, Nc the control horizon,

A ∈ Rnx×nx the state matrix of state-space model, B ∈
Rnx×nu , the input-to-state matrix of state-space model, C ∈
Rny×nx , the state-to-output matrix of state-space model, Uc

and Uc the operational limits on the inputs, Rs ∈ RNp×1,
data vector that contains the set-point information, r(ki) ∈
RNp×N−P the set-point depth of each Sti and Ji, Qy ∈
Rny×ny ≥ 0 and Qu ∈ Rnu×nu ≥ 0 two diagonal weighting
matrices of input and output, respectively, Ud ∈ R2Nc×1 the
disturbance input vector such as precipitation and tide data,
Y ∈ RNp×1 the output vector, and Uc ∈ RNc×1 the control
vector.

The objective of MPC in both sites is to not only minimize
the flooding, but also maintain a desired water level at each
storage unit before releasing into the receiving environment.
In site 1, the goal is to control the flooding in both Sti and
Ji. We first specify a set-point depth value for each storage
node, then we use the least squares method to calculate the
difference between set-point values and current water levels
of storage nodes. After that, we use linear programming
method to minimize these difference, and thus minimize the
flood volumes. We repeat the same procedure in site 2, except
the objective is only to manage the flooding of Sti, which
means the output vector Y =

[
Sti depth

]
at site 2.

IV. EXPERIMENT SETUP

We now describe implementation of MPC on two
stormwater sites . Recall that we are only using the SWMM
models as representations of the ground truth for the systems.
Our MPC methodology and implementation does not depend
on the knowledge of SWMM in any manner.

A. Stormwater sites description
1) Site 1 - Norfolk, Virginia - Hague model: The Hague

neighborhood is a subsection of the Norfolk city and its
SWMM model was presented in [8]. This model consists
of 2 subcatchments, and 2 rain gages provide precipitation
data for subcatchments, respectively. Rainfall-runoff drains
into two storage units, and outflow from each storage unit is
controlled by a valve. The valves of the storage units meet
at junction node J1 and flow through a junction node J2,
before leaving the system through the outfall.

2) Site 2 - Ann Arbor model: We use a calibrated SMWW
model from a stormwater system in Ann Arbor, Michigan, to
test the scalability of our method. This model is adopted from
[16], it is composed of 19 subcatchments, 11 storage nodes,
ranging in volume from 370 to 32,000 m3, 11 junction node,
and four rain gages. No tide level is present in this model.

B. Simulating storm surge events

To simulate stormwater events, we rely on the use of
the US National Oceanic and Atmospheric Administration
(NOAA) database [17]. The US NOAA database allows us
to specify the intensity and duration of the simulated storm
event. Each storm event in this paper is sampled at a 6-min
resolution and serves as the rainfall time series input for the
SWMM models.

In order to create an extreme storm event, and to investi-
gate the effectiveness of MPC on flood mitigation, we selecte
a 50-year 12-hour rainfall event(6.76 in) [18], which means
this event lasts 12 hour and happens once every 50 years.
The drainage through the outfall is also influenced by the
tide level of this site, which is the observations from the
Sewells Point tide gauging station operated by NOAA [19].

For site 2, we select a storm event of 10-year 12-hour
rainfall event, which has an average cumulative rainfall of
3.46(in) in Southeast Michigan.

C. System identification procedure

In the system identification process, Eq. 3 is learned to
estimated both two models, except there is no tide input in
the Ann Arbor model.{

x(t+ 1) = Ax(t) +Bu(t)

y(t) = Cx(t)
(3)

where,

y =
[
Sti depth
Ji depth

]
, u =

[
ud
uc

]
, ud =

[
Rainfall
T ide

]
,

uc =
[
V alve openings

]
1) Site 1 - Norfolk, Virginia - Hague model: In this model,

input data includes: (i) rainfall data, provided by each rain
gage Gi, (ii) tidal level data, collected from the Sewells Point
tide gauging station, and (iii) valve positions of each valve
Ri. The output data is the depth values of storage units, Sti.
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Fig. 3. Predicted system response against the original measurement data
in the abstract Hague model. (prediction horizon: 5 steps)

We split the data into training and testing sets: the training
set is composed of 13-day, 6-min sampling time, (3120
samples) data, and the testing set is composed of 4-day,
6-min sampling time, (960 samples) data. We implement
N4SID subspace algorithm on frequency-domain data [20]
with MOESP weighting algorithm [21], and focus on mini-
mizing the prediction error between measured and predicted
outputs. The identified state-space model had 5 orders and 5



TABLE I
PREDICTED SYSTEM RESPONSE AGAINST THE ORIGINAL MEASUREMENT

DATA IN ANN ARBOR MODEL. (PREDICTION HORIZON: 5 STEPS)

Nodes Prediction
St1 91.99%
St2 83.11%
St3 98.08%
St4 98.28%
St5 83.33%
St6 98.28%
St7 95.92%
St8 94.88%
St9 90.50%
St10 97.70%
St11 96.35%

states. Prediction results are shown in Fig. 3, which indicate
that the identified model has the ability to accurately predict
the system dynamics at least 5 steps ahead.

2) Site 2 - Ann Arbor model: The training set is composed
of 10-day, 6-min sampling time, (2400 samples) data, and
the testing set is composed of 4-day, 6-min sampling time,
(960 samples) data. The estimated state-space model has 12
orders in site 2, and it is able to precisely estimate the system
behaviors. Prediction results are shown in Table I.

V. DATA-DRIVEN MPC EVALUATION

We have evaluated and compared the effectiveness of both
RBC strategies and MPC in flood management.

A. Site 1 - Norfolk, Virginia - Hague model

Fig. 4. Simulation results of localized flooding volume at each node and
total flooding volume. Noted that flooding has never occurred at J2.

Results of flooding volumes at different nodes and total
volumes across different control strategies are shown in
Fig. 4. MPC is the most effective approach to mitigate
flooding, which reduces total flooding volume around 60%
of passive control, and 21% of RBC.

In addition, we have compared the computational cost of
our approach to a physics based MPC approach presented
in [6]. Details are shown in Table II. Both approaches are
implemented on the same SWMM model with the same
24-hr storm event duration. However, The wall-clock time
of our proposed MPC is 500 times faster than the MPC

TABLE II
MPC COMPUTATIONAL COST COMPARE BETWEEN PHYSICS-BASED

MODELING AND DATA-DRIVEN MODELING

Modeling Time step Prediction horizon CPU cores wall-clock time
Physics 15-min 1-hr (4-step) 8 214.7-min

Data-driven 6-min 30-min (5-step) 6 0.4-min

TABLE III
TOTAL FLOODING VOLUMES (ft3) UNDER DIFFERENT CONTROL

STRATEGIES

MPC Passive Bang-bang Linear Step-wise
Full 42837.9 536693.2 228496.4 330526.7 369069.8
Best 42028.1 536693.2 227054.3 292649.4 305121.7

based on physics-based modeling approaches, with fewer
CPU cores. One of the advantages of data-driven modeling is
its computational effectiveness because it only relies on the
input-output relationship to form the model without complex
physical parameters or governing equations involved.

B. Site 2 - Ann Arbor model

We evaluate the performance of flood management across
different control strategies with different configurations: fully
controlled by 11 valves (full) and configurations of best
performance (best). The results are shown in Fig. 5, with
details shown in Table III. Specifically, MPC reduces total
flooding volume around 92% compared to passive control,
81% of bang-bang control, 85% of step-wise control, and
86% of linear control policy.

Fig. 5. Flooding management performance under different control strate-
gies. MPC reduced most flooding volume among all RTC.

To further evaluate the effectiveness of MPC, we adopted
the evaluation metrics from [16], see Eq. 4. The performance
is evaluated by combining the volume of flooding along with
the overflow (Qi,outflow = 15ft3/s ) at each storage node
across the duration of an entire storm event.

P =
∑
nodes

∑
step

Qi,fl(t) + α ·max(Qi,out(t)−Q∗
i,max, 0) (4)

Where, α, is a weighting parameter that can be tuned to
reflect the relative importance of each objective (localized
flooding vs. downstream erosion, e.g.). In this evaluation,
since we focus on flooding control, α is set to be 0.1.
Qi,flood(t) ∈ R ≥ 0 is the flooding rate of each storage
node at time t, Qi,outflow(t) ∈ R ≥ 0 is the outflow rate.



Fig. 6. Performance of different real-time control strategies in Ann Arbor
model. MPC had the best performance among all control strategies.

TABLE IV
FLOOD MANAGEMENT PERFORMANCE OF PASSIVE AND MPC ON

DIFFERENT INTENSITY OF STORM EVENTS

Control Storm event Rain depth (in) Flood volume (ftˆ3)
Passvie 10 yr, 12 hr 3.2 536693.2
MPC 100 yr, 12 hr 5.1 519096.7

The performances P for both MPC and RBC strategies
are evaluated using a 10-year, 12-hr storm. In addition, we
use the same storm event to evaluate the different model
configurations, ranging from only one node being controlled
to all 11 storage nodes being controlled in coordination. As
the results show in Fig. 6, the system with 4 nodes being
controlled tends to have the best performance.

Additionally, we implement MPC for different precip-
itation intensities to explore its max capability of flood
management. As shown in Table IV, our proposed MPC has
the ability to cope with a much rarer storm event, 100yr-12hr,
and reach similar total flood volume as a ten times more
common event, 10yr-12hr, under passive control. This result
proves that MPC has the ability to overcome an extreme
storm event.

VI. CONCLUSION

This paper presents the use of data-driven MPC for the
problem of minimizing stormwater flooding. We use system
identification to learn an unstructured state-space dynamical
model of the system. The control problem is to manage the
opening of valves that directly affect upstream and down-
stream flooding. We evaluate the effectiveness of MPC and
RBC strategies on real-world stormwater systems in Norfolk,
VA and Ann Arbor, MI, respectively. As shown in section V,
MPC outperforms all other strategies for the abstract Hague
model and Ann Arbor model, respectively. Therefore, our
proposed data-driven state-space models can be effectively
used for real-time flood mitigation for stormwater manage-
ment. In the future, we plan to explore other data-driven
methods of system identification as well as scale our pro-
posed MPC flood control approach on stormwater systems
with more complicated structures. Long-term storm events
will be used to test our MPC system in the future.
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