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Abstract—Compared with capital improvement projects,
real-time control of stormwater systems may be a more effective
and efficient approach to address the increasing risk of flooding
in urban areas. One way to automate the design process
of control policies is through reinforcement learning (RL).
Recently, RL methods have been applied to small stormwater
systems and have demonstrated better performance over passive
systems and simple rule-based strategies. However, it remains
unclear how effective RL methods are for larger and more
complex systems. Current RL-based control policies also suffer
from poor convergence and stability, which may be due to large
updates made by the underlying RL algorithm. In this study,
we use the Proximal Policy Optimization (PPO) algorithm and
develop control policies for a medium-sized stormwater system
that can significantly mitigate flooding during large storm
events. Our approach demonstrates good convergence behavior
and stability, and achieves robust out-of-sample performance.

Keywords—Stormwater Systems, Reinforcement Learning, Real-
time Control, Flood Mitigation

I. INTRODUCTION

Flooding poses a significant and growing risk for many ur-
ban areas, with the potential to disrupt normal and emergency
operations, damage infrastructure, and cause loss of life [1].
One way to adapt traditional stormwater systems to changing
weather and climate conditions is to make them larger (e.g.
replacing small pipes with larger ones). These capital improve-
ment projects are typically costly and disruptive for the normal
operation of a city. In fact, research suggests that such piece-
wise improvements can degrade total system performance [2],
[3]. Instead of increasing the physical capacity of a stormwater
system, controlling them in real-time could increase their
effective capacity in a more cost efficient way [4].

In current practice, control policies are often predefined sim-
ple heuristics and may require expert knowledge or experience
[5] [6]. Coupled with the fact that urban areas are constantly
evolving (changing the input to stormwater systems over time),

it can become increasingly difficult to design effective control
policies for larger and more complex stormwater systems.

One approach to automate the learning process of control
policies is by using reinforcement learning (RL), in which
an agent learns to optimize its behavior by interacting with
its environment [7]. Combined with deep learning, RL has
achieved great successes in many fields such as Atari games
[8], the game of Go [9], and StarCraft II [10].

More recently, different RL methods such as Deep Q-
Network (DQN) [8] and Deep Deterministic Policy Gradient
(DDPG) [11] have been applied to stormwater control tasks
[12]–[15]. However, stormwater systems considered in these
studies remain relatively simple and small (with just a few
control assets). It is yet unclear how effective RL methods are
for more complex systems. In addition, although the learned
control policies are able to mitigate flooding or keep the
controlled sites at a desired water level, they may be unstable
or may not have converged (as in [15]) and often require erratic
adjustments (e.g., frequently opening and closing a valve),
which could make them difficult to implement in real-world
scenarios.

In this study, we develop RL-based control policies for a
medium-sized stormwater system that are able to significantly
reduce flooding during large storm events. Based on the Prox-
imal Policy Optimization (PPO) algorithm [16], our approach
demonstrates good convergence behavior and stability, and
achieves robust out-of-sample performance.

II. METHODS

A. Stormwater System Simulation

Stormwater system simulations are conducted using the U.S.
Environmental Protection Agency’s Stormwater Management
Model (SWMM), version 5. The NRCS Type II synthetic
storms are used as inputs to the SWMM simulations, and a
Python wrapper for SWMM – pyswmm [17] is used to enable
the step-by-step running of simulations. Each step corresponds
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Fig. 1. Abstraction of the stormwater system considered in this study. There are 11 storage units and 10 junction nodes. Flow out of storage units can be
regulated by valves (orifices).

to 10 minute simulation time and a full simulation lasts for
48 hours.

The stormwater system used in this study (Fig. 1) is from
Scenario Gamma of the pystorms library [18] and is closely
related to the system used in [15], which is inspired by an
urban watershed in Ann Arbor, Michigan, USA. The system
consists of eleven storage units, ten junction nodes, and pipes
going to the system outfall that discharges to a waterbody.
At the bottom of each storage unit, there is a valve (orifice)
that can be used to control the outflow from the corresponding
storage unit.

During a storm event, flooding can occur at any storage
units or junction nodes. While letting more water flow out of
a storage unit may reduce the risk of flooding locally, it could
result in too much water going through the storage units and/or
junction nodes downstream too quickly. Therefore, mitigating
flooding for the whole stormwater system requires coordinated
controls in accordance with system conditions.

B. Reinforcement Learning

In Reinforcement learning, an agent learns to optimize its
behavior by interacting with its environment [7]. Formally, the
environment in RL is defined as a Markov decision process
(MDP): (S,A, P, r, γ), where S is the state space, A is the
action space, P : S × A → S is the transition function, r :
S × A → R is the reward function and γ ∈ [0, 1] is the
discount factor that is used to determine the present value of
future rewards. A policy, π, is a mapping from states to actions.
At each time step t, an RL agent observes a state st, takes an

action at and then transitions to a new state st+1, and receives
a reward rt = r(st, at, st+1). The return Gt =

∑∞
k=0 γ

krt+k
is the total discounted future rewards from time t. The goal
of an RL agent is to learn an optimal policy that maximizes
the expected return: Eπ[Gt].

In value-based methods (also known as critic-only
methods), the optimal action-value function Q∗(s, a) =
maxπ Eπ[Gt|st = s, at = a] is learned and is then used
to derive an optimal policy π∗(s) = argmaxaQ

∗(s, a). On
the other hand, policy-based methods (or actor-only methods)
directly parameterize the policy π(a|s; θ) and optimizes a
performance measure J(θ) (e.g., the expected return) through
gradient ascent. To reduce the variance of the estimate of the
policy gradient, actor-critic methods use the value function,
Vπ(s) = Eπ[Gt|st = s], as a baseline in the policy gradient
estimator. For example, one commonly used gradient esti-
mator has the form ∇J(θ) = Et[∇θ log πθ(at|st)At], where
At = Q(st, at)− V (st) is called the advantage function.

We apply one of the state-of-the-art actor-critic algorithms,
Proximal Policy Optimization (PPO) [16], to the stormwater
system shown in Fig. 1. To prevent large policy updates
that could lead to performance collapse, PPO uses a clipped
surrogate objective function

E
[
min

(
ρt(θ)At, clip(ρt(θ), 1− ε, 1 + ε)At

)]
, (1)

where ε is a hyperparameter (usually a small positive number)
and ρt(θ) = πθ(at|st)/πθold(at|st) is the probability ratio of
the new policy over the old policy. In practice, the objective
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Fig. 2. Rewards received by the RL agent during training.

function in (1) is often augmented by adding an entropy bonus
to keep the agent from being stuck in a locally optimal policy.

As our objective is to minimize the total flood volume, the
MDP for the stormwater system in Fig.1 is defined as follows:
• State: remaining depths and flooding rates at all storage

units and junction nodes;
• Action: valve openings (between 0.0 and 1.0) for all

storage units;
• Reward: negative of the increase in cumulative flood

volume at storage units and junction nodes.
To deal with the continuous state and action spaces, the

value function (the critic) and the control policy (the actor) are
approximated by two separate feed-forward neural networks
with leaky ReLU as the activation function. Each neural
network has 300 and 150 neurons in the first and the second
layer, respectively.

III. RESULTS

In this section we report both the training and testing
results of RL-based control policies. The RL agent is trained
on a single 100-year, 24-hour design storm and tested on
100 25-year, 100-year, and 500-year 24-hour storm events,
respectively.

A. Training Performance

We first plot the reward graph during the training process
in Fig. 2. Recall that reward from each step is the negative
of the flood volume, therefore, Fig. 2 shows that as training
progresses, the RL agent is able to greatly mitigate flooding,
if not eliminate it altogether. To further confirm that the RL
policy has converged and the good training performance is
not due to random actions by the agent, the loss functions on
the value function, policy, and entropy are also examined in
Fig. 3. All loss functions appear to have converged after 800
thousand training steps. The gradual increase on the entropy

loss shows that as training progresses, the RL agent is more
confident in its actions and its policy is becoming less random.

In order to select the best candidate policy for testing on
other storm events, an RL policy is saved after every 10
thousand training steps and is then validated on the same
training storm without any exploration (i.e., no random actions
by the agent). The total flood volumes from these policies
are shown in Fig. 4. The best-performing one, learned after
800 thousand steps, completely eliminates flooding. Its actions
during the training storm event are plotted in Fig. 5. In general,
changes in valve openings are gradual and smooth, making the
policy easy to implement in practice. Still, adjusting valves
frequently may pose practical challenges in some real-world
scenarios. To further examine the practicability and robustness
of the learned RL policy, an additional constraint on control
frequency is implemented. For every selected action, the RL
agent is required to repeat the same action for the next hour. In
other words, once valve openings have been determined, they
must be kept at the same settings. Fig. 6 plots actions from
the same policy under this constraint and shows that flooding
can still be eliminated even with less frequent control actions.

B. Testing Performance

To evaluate the generalization ability of the RL-based
control system, the best-performing policy from the training
process is tested on a total of 300 storms with different
intensities. The results are compared with a baseline policy
selected from a set of passive control policies.

TABLE I
FLOOD VOLUME (M3) FROM PASSIVE CONTROL POLICIES DURING ONE

HUNDRED 100-YEAR 24-HOUR STORMS

Opening Level 0% 25% 50% 75% 100%
Mean 1676 939 923 1099 2211
Std 149 115 103 138 389
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Fig. 3. Training losses on the value function (top panel), policy (middle panel), and entropy (bottom panel).
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Fig. 4. Total flood volume during training.

Fig. 5. RL policy during the training storm event.

A commonly used baseline in stormwater control systems
is the uncontrolled policy (e.g., in [15]), which keeps valves
fully open at all times. It is possible to find better (hence more
challenging) baselines by considering different fixed settings.
Table I shows the average and standard deviation of flood
volumes during one hundred 100-year 24-hour storms from
static policies that keep all valves open at 0%, 25%, 50%,
75%, and 100% levels, respectively. It turns out that keeping
valves half open results in the fewest average flooding amount,
and therefore we will use this policy as the baseline in the
following comparisons with RL policies.

Table II reports the statistics on flood volumes during
different storm events using the baseline, the RL policy, and
the RL policy with repeated actions. It shows that for 25-
year and 100-year storms, RL policies are able to completely
eliminate flooding, while the baseline policy will always result
in flooding at some nodes in the system. For storms with
an even larger recurrence interval such as 500-year, flooding

can still be greatly reduced by RL-based control policies. On
average, total flood volume from the one hundred 500-year 24-
hour testing storms is reduced by approximately 90%. And in
some scenarios, flooding is almost eliminated by RL policies.

Surprisingly, the constraint on control actions’ frequency
actually leads to a slightly better performance than the original
RL policy during 500-year 24-hour storm events. Although
being less adaptive to the changing environment, the extra time
may have helped the RL agent evaluate states more accurately
and hence make better decisions.

IV. CONCLUSION

This study explores the possibility of using reinforcement
learning to discover effective control policies for flood pre-
vention and mitigation in stormwater systems. Compared with
a set of static policies, the RL-based policies demonstrate
superior performance during a range of large storm events, sig-
nificantly reducing the total flood volume for a medium-sized
stormwater system. Even after limiting its control frequency,
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Fig. 6. RL policy with repeated actions during the training storm event.

TABLE II
FLOOD VOLUME (M3) DURING TESTING STORM EVENTS

Storm Stat Baseline RL RL-Repeat

25-year
24-hour

Mean 216 0 0
Max 280 0 0
Min 149 0 0

100-year
24-hour

Mean 923 0 0
Max 1129 0 0
Min 771 0 0

500-year
24-hour

Mean 1649 210 146
Max 2103 488 395
Min 1270 3 3

the RL agent is still able to achieve comparable or even better
performance, which further indicates the effectiveness of our
RL-based approach.

Future work may explore: (i) more complex objective func-
tions such as by considering pollution and desired flow/water
levels in combination with flooding risks; (ii) longer storm du-
rations or historical storm events; and (iii) other formulations
with expanded state space or different reward functions.
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