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Abstract. Natural policy gradient (NPG) methods are among the most widely used policy
optimization algorithms in contemporary reinforcement learning. This class of methods is
often applied in conjunction with entropy regularization—an algorithmic scheme that en-
courages exploration—and is closely related to soft policy iteration and trust region policy
optimization. Despite the empirical success, the theoretical underpinnings for NPG methods
remain limited even for the tabular setting. This paper develops nonasymptotic convergence
guarantees for entropy-regularized NPG methods under softmax parameterization, focusing
analysis: theory on discounted Markov decision processes (MDPs). Assuming access to exact policy evalua-
Area of Review: Machine Learning and Data tion, we demonstrate that the algorithm converges linearly—even quadratically, once it en-
Science ters a local region around the optimal policy—when computing optimal value functions of
the regularized MDP. Moreover, the algorithm is provably stable vis-a-vis inexactness of pol-
icy evaluation. Our convergence results accommodate a wide range of learning rates and
shed light upon the role of entropy regularization in enabling fast convergence.
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1. Introduction

Policy gradient (PG) methods and their variants
(Williams 1992, Konda and Tsitsiklis 2000, Sutton et al.
2000, Kakade 2002, Peters and Schaal 2008), which aim
to optimize (parameterized) policies via gradient-type
methods, lie at the heart of recent advances in
reinforcement learning (RL) (see, e.g., Mnih et al. (2015),
Schulman et al. (2015), Silver et al. (2016), and Schulman
et al. (2017b)). Perhaps most appealing is their flexibility
in adopting various kinds of policy parameterizations
(e.g., a class of policies parameterized via deep neural
networks), which makes them remarkably powerful and
versatile in contemporary RL.

As an important and widely used extension of
PG methods, natural policy gradient (NPG) methods,
propose to employ natural policy gradients (Amari
1998) as search directions in order to achieve faster
convergence than the update rules based on policy
gradients (Kakade 2002, Peters and Schaal 2008,
Bhatnagar et al. 2009, Even-Dar et al. 2009). Informally
speaking, NPG methods precondition the gradient di-
rections by Fisher information matrices (which are the
Hessians of a certain divergence metric) and fall
under the category of quasi second-order policy opti-
mization methods. In fact, a variety of mainstream RL
algorithms, such as trust region policy optimization
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(TRPO) (Schulman et al. 2015) and proximal policy opti-
mization (PPO) (Schulman et al. 2017b), can be viewed
as generalizations of NPG methods (Shani et al.
2019). In this paper, we pursue in-depth theoretical
understanding about this popular class of methods in
conjunction with entropy regularization to be intro-
duced momentarily.

1.1. Background and Motivation

Despite the enormous empirical success, the theoretical
underpinnings of policy gradient type methods have
been limited even until recently, primarily because of
the intrinsic nonconcavity underlying the value maximi-
zation problem of interest (Bhandari and Russo 2019,
Agarwal et al. 2020b). To further exacerbate the situation,
an abundance of problem instances contain suboptimal
policies residing in regions with flat curvatures (namely,
vanishingly small gradients and high-order derivatives)
(Agarwal et al. 2020b). Such plateaus in the optimization
landscape could, in principle, be difficult to escape once
entered, thereby necessitating a higher degree of explo-
ration in order to accelerate policy optimization.

In practice, a strategy that has been frequently adopted
to encourage exploration and improve convergence is to
enforce entropy regularization (Williams and Peng 1991,
Cen et al. 2021, Peters et al. 2010, Duan et al. 2016, Mnih
et al. 2016, Haarnoja et al. 2017, Hazan et al. 2019, Xiao
et al. 2019, Vieillard et al. 2020). By inserting an addition-
al penalty term to the objective function, this strategy pe-
nalizes policies that are not stochastic/exploratory
enough, in the hope of preventing a policy optimization
algorithm from being trapped in an undesired local re-
gion. Through empirical visualization, Ahmed et al.
(2019) suggested that entropy regularization induces a
smoother landscape that allows for the use of larger
learning rates and hence, faster convergence. However,
the theoretical support for regularization-based policy
optimization remains highly inadequate.

Motivated by this, a very recent line of works set out
to elucidate, in a theoretically sound manner, the effi-
ciency of entropy-regularized policy gradient methods.
Assuming access to exact policy gradients, Agarwal
et al. (2020b) and Mei et al. (2020) developed conver-
gence guarantees for regularized PG methods (with rel-
ative entropy regularization considered in Agarwal
et al. 2020b and entropy regularization in Mei et al.
2020). Encouragingly, both papers suggested the posi-
tive role of regularization in guaranteeing faster conver-
gence for the tabular setting. However, these works fell
short of explaining the role of entropy regularization
for other policy optimization algorithms like NPG
methods, which we seek to understand in this paper.

1.2. This Paper
Inspired by recent theoretical progress toward under-
standing PG methods (Bhandari and Russo 2019,

Agarwal et al. 2020b, Mei et al. 2020), we aim to develop
nonasymptotic convergence guarantees for entropy-
regularized NPG methods in conjunction with softmax
parameterization. We focus attention on studying tabular
discounted Markov decision processes (MDPs), which is
an important first step and a stepping stone toward de-
mystifying the effectiveness of entropy-regularized poli-
cy optimization in more complex settings.

1.2.1. Settings. Consider a y-discounted infinite-horizon
MDP with state space S and action space 4. Assuming
availability of exact policy evaluation, the update rule of
entropy-regularized NPG methods with softmax parame-
terization admits a simple update rule in the policy space
(see Section 2 for precise descriptions)

1-1%

(t+1) o) % Q7" (s,a)

" (als) « (n (als)) exp(ﬁ) )
for any (s,a) € S X A, where 7 > 0 is the regularization
parameter, 0 <7 < % is the learning rate (or stepsize),
n®) indicates the t-th policy iterate, and QT is the soft
Q-function under policy 7t (to be defined in (11a)). The
update rule (1) is closely connected to several popular al-
gorithms in practice. For instance, the trust region policy op-
timization (TRPO) algorithm (Schulman et al. 2015), when
instantiated in the tabular setting, can be viewed as imple-
menting (1) with line search. In addition, by setting the
learning rate as ) = %, the update rule (1) coincides with
soft policy iteration (SPI) studied in Haarnoja et al. (2017).

1.2.2. Our Contributions. The results of this paper de-
liver fully nonasymptotic convergence rates of
entropy-regularized NPG methods without any hid-
den constants, which are previewed as follows (in an
orderwise manner). The definition of e-optimality can
be found in Table 1.

o Linear convergence of exact entropy-regularized
NPG methods. We establish linear convergence of
entropy-regularized NPG methods for finding the opti-
mal policy of the entropy-regularized MDP, assuming
access to exact policy evaluation. To yield an e-optimal
policy for the regularized MDP (cf. Table 1), the algorithm
(1) with a general learning rate 0 < 1 < Y needs no more

than an order of ‘
i lo (1)
nt & €

iterations, where we hide the dependencies that
are logarithmic on salient problem parameters (see
Theorem 1). Some highlights of our convergence re-
sults are (i) their near dimension-free feature and (ii)
their applicability to a wide range of learning rates
(including small learning rates).

e Linear convergence of approximate entropy-
regularized NPG methods. We demonstrate the stabil-
ity of the regularized NPG method with a general
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Table 1. The Iteration Complexities of NPG Methods to Reach e-Accuracy in Terms of Optimization Error, Where the
Unregularized (Resp. Regularized) Version is Given by (13) (cf. (15)) with 1 the Learning Rate

Paper Iteration complexity upper bound Regularization Learning rates

Agarwal et al. (2020b) a 2)2 +% Unregularized constant: (0, o0)
-y)’e €

Bhandari and Russo (2020) Wmlog@ Unregularized exact line search

This work 1%},log(%) Regularized constant: 1:"

This work qlflog(%) Regularized constant: (0, 1%

Notes. We assume exact gradient evaluation and softmax parameterization and hide the dependencies that are logarithmic on problem
parameters. Here, e-accuracy or e-optimality for the unregularized (resp. regularized) case means that V*(s)— vi'(s) <e (resp.
Vi(s) - V’jm (s) <€) holds simultaneously for all s € S; p denotes the initial state distribution, which clearly obeys m >8]

1-y

learning rate 0<n<-—* even when the soft
Q-functions of interest are only available approximate-
ly. This paves the way for future investigations that in-
volve finite-sample analysis. Informally speaking, the
algorithm exhibits the same convergence behavior as in
the exact gradient case before an error floor is hit,
where the error floor scales linearly in the entry-wise
error of the soft Q-function estimates (see Theorem 2).

e Quadratic convergence in the small-e regime. In
the high-accuracy regime, where the target level € is
very small, the algorithm (1) with n :¥ converges
superlinearly, in the sense that the iteration complexity
to reach e-accuracy for the regularized MDP is at most
on the order of

1
loglog(g),
after entering a small local neighborhood surrounding
the optimal policy. Here, we again hide the dependen-

cies that are logarithmic on salient problem parame-
ters (see Theorem 3).

1.2.3. Comparisons with Prior Art. Agarwal et al
(2020b) proved that unregularized NPG methods with
softmax parameterization attain an e-accuracy within
O(1/e) iterations. In contrast, our results assert that
O(log(1/e)) iterations suffice with the assistance of
entropy regularization, which hints at the potential
benefit of entropy regularization in accelerating the
convergence of NPG methods. Shortly after the initial
posting of our paper, Bhandari and Russo (2020)
posted a note that proves linear convergence of un-
regularized NPG methods with exact line search,
by exploiting a clever connection to policy iteration.
Their convergence rate is governed by a quantity
mingesp(s), resulting in an iteration complexity at least
|S| times larger than ours. In comparison, our results
cover a broad range of fixed learning rates (including
small step sizes that are of particular interest in prac-
tice) and accommodate the scenario with inexact
gradient evaluation. See Table 1 for a quantitative
comparison. Moreover, we note that the entropy-
regularized NPG method with general learning rates

is closely related to TRPO in the tabular setting (see
Shani et al. 2019). The recent work by Shani et al. (2019)
demonstrated that TRPO converges with an iteration
complexity O(1/e) in entropy-regularized MDPs. The
analysis therein is inspired by the mirror descent theory
in generic optimization literature, which characterizes
sublinear convergence under properly decaying step
sizes and accommodates various choices of divergence
metrics. In comparison, our analysis strengthens the
performance guarantees by carefully exploiting proper-
ties specific to the current version of the NPG method.
In particular, we identify the delicate interplay between
the crucial operational quantities Qf —Q(Tt) and Qf —
Tlog &® (to be defined later) and invoke the linear sys-
tem theory to establish appealing contractions, which
allow for the use of more aggressive constant step sizes
and hence, improved convergence.

It is also helpful to compare our results with the
state-of-the-art theory for PG methods with softmax
parameterization (Agarwal et al. 2020b, Mei et al.
2020). Specifically, Agarwal et al. (2020b) established
the asymptotic convergence of unregularized PG
methods with softmax parameterization, whereas an
iteration complexity of O(1/€) was recently pinned
down by Mei et al. (2020). In the presence of entropy
regularization, Agarwal et al. (2020b) showed that PG
with relative entropy regularization and softmax pa-
rameterization enjoys an iteration complexity of
O(1/€?), whereas Mei et al. (2020) showed that the
entropy-regularized softmax PG method converges
linearly in O(log(1l/€)) iterations. However, the de-
pendencies of the iteration complexity in Mei et al.
(2020) on other salient parameters like |S|, |A| and
1%), are not fully specified. Very recently, Li et al.
(2021b) delivered a negative message demonstrating
that these dependencies can be highly pessimistic; in
fact, one can find an MDP instance that takes soft-
max PG methods (super)-exponential time (in terms
of |S| and ﬁ) to converge. In contrast, the bounds
derived in the current paper are fully nonasymp-

totic, delineating clear dependencies on all salient
problem parameters, which clearly demonstrate the
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algorithmic advantages of NPG methods. Figure 1 de-
picts the policy paths of PG and NPG methods with
entropy regularization for a simple bandit problem
with three actions. It is evident from the plots that
the NPG method follows a more direct path to the
global optimum compared with the PG counterpart
and hence, converges faster. In addition, both algo-
rithms converge more rapidly as the regularization
parameter 7 increases.

1.3. Other Related Works

There has been a flurry of recent activities in studying
theoretical behaviors of policy optimization methods.
For example, Fazel et al. (2018), Jansch-Porto et al.
(2020), Tu and Recht (2019), Zhang et al. (2019a), and
Mohammadi et al. (2019) established the global con-
vergence of policy optimization methods for a couple
of control problems, Bhandari and Russo (2019) iden-
tified structural properties that guarantee the global
optimality of PG methods without parameterization,
Karimi et al. (2019) studied the convergence of PG
methods to an approximate first-order stationary
point, and Zhang et al. (2019b) proposed a variant of

PG methods that converges to locally optimal policies
leveraging saddle-point escaping algorithms in non-
convex optimization. Beyond the tabular setting, the
convergence of PG methods with function approxima-
tions has been studied in Agarwal et al. (2020b), Wang
et al. (2019), and Liu et al. (2019). In particular, Cai
et al. (2019) developed an optimistic variant of NPG
that incorporates linear function approximation. We
do not elaborate on this line of works since our focus
is on understanding the performance of entropy-
regularized NPG in the tabular setting; we also do not
elaborate on PG methods that involve sample-based
estimates, since we primarily consider exact gradients
or black-box gradient estimators.

Regarding entropy regularization, Neu et al. (2017)
and Geist et al. (2019) provided unified views of
entropy-regularized MDPs from an optimization per-
spective by connecting them to algorithms such as
mirror descent (Nemirovsky and Yudin 1983) and
dual averaging (Nesterov 2009). The soft policy itera-
tion algorithm has been identified as a special case of
entropy-regularized NPG, highlighting again the link
between policy gradient methods and soft Q-learning

Figure 1. (Color online) Comparisons of PG and NPG Methods with Entropy Regularization for a Bandit Problem (y = 0) with
Three Actions, Whose Corresponding Rewards are 1.0, 0.9, and 0.1, Respectively
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Notes. The regularization parameter is set as T = 0.1 for the first row and 7 = 1 for the second row. In (a) and (d), the policy paths of (log m(al),
log m(a2)) following the PG method are plotted in orange, with the blue lines indicating the gradient flow; in (b) and (e), the policy paths of (log
ni(al), log 1t(a2)) following the NPG method are depicted in red, with the blue lines indicating the natural gradient flow. The error contractions of

both PG and NPG methods with 1 = 0.1 are shown in (c) and (f).
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(Schulman et al. 2017a). The asymptotic convergence
of soft policy iteration was established in Haarnoja
et al. (2017), which fell short of providing explicit con-
vergence rate guarantees. Additionally, Grill et al.
(2019) developed planning algorithms for entropy-
regularized MDPs, and Mei et al. (2020) showed that
the suboptimality gap of soft policy iteration is small
if the policy improvement is small in consecutive
iterations.

1.4. Notation

We denote by A(S) (resp. A(A)) the probability sim-
plex over the set S (resp. .A). When scalar functions
such as ||, exp(-) and log(-) are applied to vectors,
their applications should be understood in an entry-
wise fashion. For instance, given any vector z=
[zili<i<, € R, the notation |-| denotes |z| := [|zi|]1<i<ns
other functions are defined analogously. For any vec-
tors z = [zi] <<, and w = [wi];<;<,, the notation z > w
(resp. z<w) means z;>w; (resp. z;<w;) for all
1 <i<n. The softmax function softmax:R" — R" is
defined such that [softmax(0)]; := exp(6;)/(Ziexp(6;))
for a vector 0 =[0;]1<;c, €R". Given two probability
distributions 7t; and 7, over A, the Kullback-Leibler
(KL) divergence from m, to m; is defined by

KL(111712) 1= Tgeams (a)log 2

o(a)”
distributions p and g over S, we introduce the notation

Given two probability

MaXes

121l 2= maxees S and |12l = maxees 7y

q(s)

2. Model and Algorithms

2.1. Problem Settings

2.1.1. Markov Decision Processes. The current paper
studies a discounted Markov decision process (MDP)
(Puterman 2014) denoted by M = (S, A,P,r,y), where
S is the state space, A is the action space, y €(0,1)
indicates the discount factor, P: S X A — A(S) is the
transition kernel, and 7:Sx A —[0,1] stands for
the reward function." To be more specific, for each
state-action pair (s,4) € S X A and any state s’ € S, we
denote by P(s’ls,a) the transition probability from state
s to state s” when action a is taken and r(s, a) the in-
stantaneous reward received in state s due to action a.
A policy m:S8— A(A) represents a (randomized)
action selection rule; namely, 1(als) specifies the prob-
ability of executing action a in state s for each
(s,a) e S x A.

2.1.2. Value Functions and Q-functions. For any given
policy 7, we denote by V™ : S — R the corresponding
value function, namely, the expected discounted cu-
mulative reward with an initial state sy = s, given by

VseS: Vi(s):=E

i Vtr(strﬂt)|50 = Sl/ (2)
=0

where the action a; ~ 7t(-|s;) follows the policy 7, and
St+1 ~ P(-|st, a;) is generated by the MDP M for all t > 0.
We also overload the notation V™(p) to indicate the ex-
pected value function of a policy m when the initial
state is drawn from a distribution p over S, namely,

V(p) = Es-p[VT(s)]. C)

Additionally, the Q-function Q™ : § X A — R of a poli-
cy m—namely, the expected discounted cumulative
reward with an initial state sy = s and an initial action
ay = a—is defined by

V(s,a) e Sx A:

Q" (s,a):=E )

(o]
S yr(suanlso =s,a0 = al,
t=0

where the action a; ~ n(:|s¢) follows the policy 7 for all
t>1, and si1 ~ P(¢|s;,a;) is generated by the MDP M
forallt>0.

2.1.3. Discounted State Visitation Distributions. A
type of marginal distributions—commonly dubbed as
discounted state visitation distributions—plays an impor-
tant role in our theoretical development. To be specif-
ic, the discounted state visitation distribution d” of a
policy 7t given the initial state 5o € S is defined by
VseS: dl(s):=(1- y)Z V!P(s; = slso), (5)
t=0
where the trajectory (so,s1, ---) is generated by the
MDP M under policy n starting from state syp. In
words, df (-) captures the state occupancy probabilities
when each state visitation is properly discounted de-
pending on the time stamp. Further, for any distribu-
tion p over S, we define the distribution df as follows
VseS:  dj(s):= E [d )], (6)
which describes the discounted state visitation distri-

bution when the initial state sy is randomly drawn
from a prescribed initial distribution p.

2.1.4. Softmax Parameterization. It is common prac-
tice to parameterize the class of feasible policies in a
way that is amenable to policy optimization. The focal
point of this paper is softmax parameterization, a
widely adopted scheme that naturally ensures that the
policy lies in the probability simplex. Specifically, for
any 6:Sx A — R (called “logic values”), the corre-
sponding softmax policy mg is generated through the
softmax transform

Tt := softmax(f) or V(s,a)eSxA:
exp(0(s,a)) ?)
Za'eAeXP(G(S/ Ll’)) '

Tig(als) :=
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In what follows, we shall often abuse the notation to
treat 1o and O as vectors in R and suppress the sub-
script 0 from 71y, whenever it is clear from the context.

2.1.5. Entropy-Regularized Value Maximization. To
promote exploration and discourage premature con-
vergence to suboptimal policies, a widely used strategy
is entropy regularization, which searches for a policy
that maximizes the following entropy-regularized val-
ue function

Vip) :=V™(p) + - H(p, ). 8)

Here, the quantity 7>0 denotes the regularization
parameter, and H(p, ) stands for a sort of discounted
entropy defined as follows

H(p, ) :=
so~p,ar~7i("[s),
st41~P(|s,a;), V=0

1
Zn(als)log (ls)} 9)

1 Vs Nd acA

[i - Vflogn(atlst)l
=0

P

Equivalently, VI can be viewed as the value function
of 1t by adjusting the instantaneous reward to be the
policy-dependent regularized version as follows:

V(s,a)e SX A:  r.(s,a):=r(s,a)— 7 log m(als). (10)

We also define V7(s) analogously when the initial
state is fixed to be any given state s € S. The regular-
ized Q-function QT of a policy 7, also known as the
soft Q-function,” is related to V7 as

Vi) € Sx A Qi) = sty E VI,
(11a)

VseS: VIis) = I[*%I )[—T log m(als) + Q7 (s,a)].

(11b)

2.1.6. Optimal Policies and Stationary Distributions.
Denote by 7* (resp. m) the policy that maximizes
the value function (resp. regularized value function
with regularization parameter 7), and let V* (resp.
V7) represent the resulting optimal value function
(resp. regularized value function). Importantly, the
optimal policies 7* and 7} of the MDP do not de-
pend on the initial distribution p (Mei et al. 2020). In
addition, 7* and 7 maximize the Q-function and
the soft Q-function, respectively (which is self-
evident from (11a)). A simple yet crucial connection
between 7* and 7} can be demonstrated via the fol-
lowing sandwich bound®

V™ (p) < V(p) < V¥ (p) + 1 fylogl.Al, (12)

which holds for all initial distributions p. The key take-
away message is that the optimal policy m} of the

regularized problem could also be nearly optimal in
terms of the unregularized value function, as long as the
regularization parameter 7 is chosen to be sufficient-
ly small.

2.2. Algorithm: NPG Methods With Entropy
Regularization

2.2.1. Natural Policy Gradient Methods. Toward com-
puting the optimal policy (in the parameterized form),
perhaps the first strategy that comes into mind is to
run gradient ascent w.r.t. the parameter 6 until con-
vergence, a first-order method commonly referred to
as the policy gradient (PG) algorithm (see, e.g., Sutton
et al. 2000). In comparison, the natural policy gradient
(NPG) method (Kakade 2002) adopts a precondi-
tioned gradient update rule

6 — 0+ 1(FS) vov(p), (13)

in the hope of searching along a direction indepen-
dent of the policy parameterization in use. Here, 7 is
the learning rate or step size, 7 ? denotes the Fisher in-
formation matrix given by

Fi= E [(ologmolals))(7ologmo(als)| (1)

P s~dp? ,a~mig(|s)
and we use B! to indicate the Moore-Penrose pseu-
doinverse of a matrix B. It has been understood that
the NPG method essentially attempts to monitor/con-
trol the policy changes approximately in terms of the
Kullback-Leibler (KL) divergence (see, e.g., Section 7
in Schulman et al. 2015).

2.2.2. NPG Methods With Entropy Regularization.
Equipped with entropy regularization, the NPG up-
date rule can be written as

0 « 9+q(f§)+vevge(p), (15)

where F g is defined in (14) and V7(p) is defined in

(8). Under softmax parameterization, this update rule
admits a fairly simple form in the policy space, which,
interestingly, is invariant to the choice of p. More pre-

cisely, if we let 0" denote the tth iterate and ) =

softmax(6")) the associated policy, then the entropy-
regularized NPG updates satisfy

e
(n(f)(g|s)) xp( nQr (s a)),

7D (als) =

1
ZW(s) —y

(16)

where Q™ is the soft Q-function of policy 7'¥), and
Z®(s) is some normalization factor. This can alterna-
tively be viewed as an instantiation/variant of the
trust region policy optimization (TRPO) algorithm (see
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Schulman et al. 2015 and Shani et al. (2019). As anim-  update rule (18) simplifies to (up to normalization)
portant special case, the update rule (16) reduces to 2 (g) o 7(a) exp(nr (@) - nelogn® (a))
" ()s) = ! ex (ng(s' )) when n = 1=y 1=t
—Z0(s) L — =" = (n(t)(a)) exp(nr(a)), (21)

(17)

for some normalization factor Z)(s). The procedure (17)
can be interpreted as a “soft” version of the classical poli-
cy iteration algorithm (Bertsekas 2017) (as it employs a
softmax function to approximate the max operator) w.r.t.
the soft Q-function and is often dubbed as soft policy itera-
tion (SPI) (see Section 4.1 in Haarnoja et al. 2018).

To simplify notation, we shall use V%, Q¥ and d!)

throughout to denote V7, Q™ and d"” respectlvely
The complete procedure is summarlzed in Algorithm 1.
Algorithm 1 (Entropy-Regularized NPG With Exact
Policy Evaluation)

1. Inputs: learning rate 7, initialization 7,
2.Fort=0,1,2, ---do

3.| Compute the regularized Q-function Q%).
(defined in (11a)) of policy n*).
4. | Update the policy:
V(s,a) e Sx A:  n"*V(als)
1 QW (s,a)
- ® N
=700 (n (als)) exp( = )
(18)
where
1]7 f)
Z(t)(s) = Z ( (t)(a |s)) exp(nQ (s,a ))
a’eA -y

2.3. A Warm-Up Example: The Bandit Case
Inspired by Schulman et al. (2017a) and Mei et al. (2020),
we look at a toy example — the bandit case — before
proceeding to general MDPs. To be more precise, this is
concerned with an MDP with only a single state and dis-
count factor y = 0. Despite its simplicity, the exposition
of this example sheds light upon the convergence behav-
ior of the regularized NPG methods of interest.

In this single-state example with y = 0, the aim re-
duces to computing a policy 7g : A — A(A) that solves
the following optimization problem

max%mizeaEE [r(a) — tlogme(a)], (19)

where r(a) is the instantaneous reward of taking action
a (ie., pulling arm a in the bandit language). As dem-
onstrated in Proposition 1 in Mei et al. (2020), this toy
case is already nonconcave and hence, nontrivial to
solve. As it turns out, direct calculation reveals that
the optimal policy of (19) is given by

7y = softmax(r/1), (20)
which is in general a randomized policy. When ap-
plied to this example, the entropy-regularized NPG

with 71 the learning rate. The following proposition,
whose proof is fairly elementary and can be found in
the suppmental material reveals that the above proce-
dure converges (at least) linearly to the optimal policy
).

Proposition 1 (The Bandit Case). The algorithm (21)
converges linearly to 7} (cf. (20)) in an entrywise fash-
ion, namely,

llogn® —logrz||., <2(1 - m1)|[logn'® - logr]|...
Although this result concentrates only on a toy
example, it hints at the potential capability of entropy-
regularized NPG methods in achieving rapid conver-
gence. In particular, by setting the learning rate to be
n=1/7, the algorithm converges in a single iteration.
This special choice corresponds to the SPI update (17),
which will be singled out in our general theory due to
its appealing convergence properties.

3. Main Results

Given its appealing convergence behavior when ap-
plied to the preceding warm-up example (the bandit
case), it is natural to ask whether the entropy-
regularized NPG method is fast-convergent for gener-
al MDPs. This section answers this question in the
affirmative.

3.1. Exact Entropy-Regularized NPG Methods

We first study the convergence behavior of entropy-
regularized NPG methods (18) assuming access to ex-
act policy evaluation in every iteration (namely, we
assume that the soft Q-function Q¥ can be evaluated
accurately in all ). Remarkably, this algorithm con-
verges linearly—in terms of computing both the opti-
mal soft Q-function Qr and the associated log policy
logrii—as asserted by the following theorem. The
proof of this result is provided in Section 4.2.

Theorem 1 (Linear Convergence of Exact Entropy-
Regularized NPG). For any learning rate 0 <n < (1 —y)/
T, the entropy-regularized NPG updates (18) satisfy

1Q: — Q¥ < Cry(1—n1)f (22a)

llogr* —log V|, <2C; 771 (1 - 1)’ (22b)

forall t >0, where
Cr:=11Q; - QP + 21(1 - %)ulogn; ~ logn”]|.

(23)
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It is worth emphasizing that Theorem 1 is stated in
a completely nonasymptotic form containing no hid-
den constants and that our result covers any learning
rate 7 in the range (0, (1 —y)/7]. A few implications of
this theorem are in order.

¢ Linear convergence of soft Q-functions. To reach
1Q: — QW||, <€, the entropy-regularized NPG method

needs at most %log(%) iterations. Remarkably, the it-

eration complexity almost does not depend on the di-
mensions of the MDP (except for some very weak
dependency embedded in logCi); this inherits a
dimension-free feature of NPG methods that has been
highlighted in Agarwal et al. (2020b) for the unregular-
ized case. When the learning rate 7 is fixed in the ad-
missible range, the iteration complexity scales inverse
proportionally with 7, suggesting that a higher level of
entropy regularization might accelerate convergence,
albeit to the solution of a regularized problem that is
further away from the original MDP.

¢ Linear convergence of log policies. In contrast to
the unregularized case, entropy regularization ensures
uniqueness of the optimal policy and, therefore, makes
it possible to study the convergence of the policy direct-
ly. Our theorem reveals that the entropy-regularized

2C1Y 5 . .
NPG method needs at most % log(%) iterations to yield

logr: —logr*V||, <e.

e Linear convergence of soft value functions. As a
byproduct, Theorem 1 implies that the iterates of soft
value functions also converge linearly, namely,

|V: = V||, <3Cip(1 - o). (24)
To see this, we make note of the following relation
previously established in Nachum et al. (2017):
V(s,a) e Sx A: Vi(s) = =7 log mi(als) + Qi(s,a),
= Vi(s) = (]E)(| )[—T log 13 (als) + Qx(s, a)].

a~ntt+ (s

Consequently, combining this with the definition
(11b) yields

Vi(s) - VI(s)| = E. |(—rlog; (als) + Qi (s,a))

a~mtt+D (s

~ (~rlog ! V(als) + QU (s,a))|
< lllog i} — log {* VI, + Q5 = Q¥ Vlleos
which together with (22) immediately establishes (24).
e Convergence rate of SPI. The best convergence
guarantee is achieved when 1= (1-7v)/t (i.e., the SPI

case), where the iteration complexity to reach
195 — QY|l., < € reduces to

1 ﬂ@%QWw
1- ylog( € ’

which is proportional to the effective horizon %

modulo some log factor. This means that the iteration

complexity of SPI recovers that of policy iteration
(Puterman 2014). Interestingly, the contraction rate in
this case (which is y) is independent of the choice of
the regularization parameter 7. Similarly, the iteration
complexity of SPI to reach |[logr —logn™*V||, <e

21Q:-Q s

- ), and the contraction rate

becomes ﬁlog(

is again independent of .

3.1.1. Comparison With Entropy-Regularized Policy
Gradient Methods. Theorem 6 in Mei et al. (2020)
proved that the entropy-regularized policy gradient
method achieves®

Vi(p) = Vi(p) < (Vi(p) - VI%p))

dp
P

-1
-yt

(8/7 +4 + 8log|A])|S|

; ; i ® (als)
- exp| - ngmp(S)(US}{r;fffl minm (als)) ,

o0

and they further showed that infis min, ,77%(als) is
nonvanishing in f. It remains unclear, however, how
inf;»o ming ,, 71" (als) scales with other potentially large
salient parameters like (|S|, |Al, 1%},, 1). In truth, existing
theory does not rule out the possibility of exponential
dependency on these salient parameters. It would thus
be of great interest to establish algorithm-dependent
lower bounds to uncover the right scaling with these
important parameters. In contrast, our convergence
guarantees for entropy-regularized NPG methods un-
veil concrete dependencies on all problem parameters.

3.1.2. Computing an e-Optimal Policy for the Original
MDP. Thus far, we have established an intriguing con-
vergence behavior of the entropy-regularized NPG
method. However, caution needs to be exercised
when interpreting the efficacy of this method; the pre-
ceding results are concerned with convergence to the
optimal regularized value function V7, as opposed to
finding the optimal value function V* of the original
MDP. Fortunately, by choosing the regularization pa-
rameter 7 to be sufficiently small (in accordance with
the target accuracy level €), we can guarantee that
Vi~ V* (cf. (12)), thus ensuring the relevance and ap-
plicability of our results for solving the original MDP.
To be specific, let us adopt the following choice of 7:

= 1-ye
4log|A|’

and assume the error of the regularized value function
satisfies ||V — V||, <e/2. By virtue of Theorem 1,
this optimization accuracy can be achieved via no

dloglAl 1 . _2C
more than (1f§|)nlelog( 1)

(25)

iterations of entropy-
regularized NPG updates with a general learning rate’

OO
or no more than 1%ybg(M) iterations with the
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specific choice 17 = =L, It then follows that

V*(s) - VO(s) =
<(VH(s) = Vi) + V5 -
+(V0(s) - VI(s))

21 2tlog|A| IAI
o 1-y 2

V*(s) = Vi(s) + Vi(s) = VO(s) + VI (s) = V(s)
VOl

for any s € S, where we have used our choice of 7 in
(25). Here, the second inequality arises from (12) as
well as the fact that, for any policy 7,
1
IVE V7l = rmax (s, o) < OB,
given the elementary entropy bound 0<H(s,m) <
1/1-yloglAl

3.1.3. Convergence Guarantee for Conservative Policy
Iteration. Our analysis framework also leads to a simi-
lar convergence guarantee for a type of policy update
adopted in conservative policy iteration (CPL; see Kakade
and Langford 2002), where the policy is updated as a
convex combination of the previous policy and an im-
proved one. We refer the interested reader to the supp-
mental material for details.

3.2. Approximate Entropy-Regularized
NPG Methods

There is no shortage of scenarios where the soft
Q-function QV(s,a) is available only in an approxi-
mate fashion, e.g., the cases when the value function
has to be evaluated using finite samples. To account
for inexactness of policy evaluation, we extend our
theory to accommodate the following approximate
update rule: for any s € Sand any t > 0,

nQ/Gs,")
o (O (Js))' T exp( 1=y

where ||@§”—Q<;>|| <o.

7_[(t‘+1) (|S)

)’ (26)

Here, 6 is some quantity that captures the size of ap-
proximation errors. We do not specify the estimator for
the soft Q-function (as long as it satisfies the entrywise
estimation bound), thus allowing one to plug in both
model-based and model-free value function estimators
designed for a variety of sampling mechanisms (see,
e.g., Azar et al. (2013), Li et al. (2020b)). Encouragingly,
the algorithm (26) is robust vis-a-vis inexactness of
value function estimates, as it still converges linearly
until an error floor is hit. This is formalized in
the following theorem, with the proof postponed to
Section 4.3.

Theorem 2 (Linear Convergence of Approximate
Entropy-Regularized NPG). When 0<n<(1-7y)/t,

the inexact

satisfy

logm; —logm

entropy-reqularized NPG updates (26)

el <y|a-myci+cl

(e8]

(27a)

(t+1)

<20'(1-m)fCi+ G| @7b)

00

forall t > 0, where Cy is the same as defined in (23) and C; is
given by

=20 (1,720 1-y_
Cz'_l—y(lJrnT) (1—7/)2[1+y( pe 1)] (28)

Apparently, Theorem 2 reduces to Theorem 1 when
0 = 0. As implied by this theorem, if the {. error of
the soft-Q function estimates does not exceed

(1-y)e
et
then the algorithm (26) achieves 2e-accuracy (ie.,
10 — QW]|,, < 2€) within q%log(cw) iterations. In particu-

0<

lar, in the case of soft policy iteration (i.., 1 = =), the tol-
erance level 6 can be up to & 27;) <, which matches the theo-

ry of approximate policy iteration in Agarwal et al. (2019).

Remark 1. It is straightforward to combine Theorem 2
with known sample complexities for approximate pol-
icy evaluation to obtain a crude sample complexity
bound. For instance, assuming access to a generative
model, Li et al. (2020a) asserts that for any fixed policy

1, model-based policy evaluation achieves ||@Z -
Q7| < 6 with high probability, as long as the number
of samples per state-action pair exceeds the order of

_
(1-y)°s
up to some logarithmic factor. By employing fresh

. . 5=(1-y)’
samples for each policy evaluation, we can set %

and invoke the union bound over O(I%y) iterations to
demonstrate that SPI with model-based policy evalua-

tion needs at most
o ISIAL
(1-y)%e

samples to find an e-optimal policy. Here, O(-) hides
any logarithmic factor. We note, however, that the
above sample analysis is extremely crude and might
be improvable by, say, allowing sample reuses across
iterations. It remains an interesting open question as
to whether NPG with entropy regularization is mini-
max optimal with a generative model, where the mini-

ISIIAI

max lower bound is on the order of 1y Le? (Azar et al.
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2013) and achievable by model-based plug-in estima-
tors (Agarwal et al. 2020a, Li et al. 2020a) but not by
vanilla Q-learning (Li et al. 2021a).

3.3. Quadratic Convergence in the Small-e Regime
Somewhat remarkably, the regularized NPG method
with = 1_77’ achieves superlinear convergence in com-
puting V once the algorithm enters a sufficiently
small local neighborhood surrounding the optimizer.

Before presenting the result, we need to introduce
the stationary distribution over S of the MDP M un-
der policy 1%, denoted by ui € A(S). It is straightfor-
ward to verify the following basic property

a =y, 29)

given that the state visitation distribution remains un-
changed if the initial state is already in a steady state.
Throughout this paper, we assume that mingu’(s) > 0.
Our finding is stated in the following theorem, with
the proof deferred to Section 4.4.

Theorem 3 (Quadratic Convergence of Exact Regular-
ized NPG). Suppose that the algorithm (17) with

n= 1_7)’ (or SPI) satisfies

Hlogﬂ”—lognﬁ <1 (30)
forall t >0, then one has
Vi(p)-V¥(p)
<|[~ <1—V>T|i-1( ClEY
Tl 4y g lleo (1)l prfleo

zt

(Vi -vou)
Remark 2. In view of the convergence guarantees in
Theorem 2, a suitable initialization of 7(® and V©

(such that % i SVE) = VO(ur) <1) can be

obtained by running SPI for sufficiently many itera-
tions; furthermore, all subsequent iterations are then
guaranteed to satisfy (30) according to Theorem 2.
Under the assumptions of Theorem 3, our result
indicates that when € is sufficiently small, the iteration
complexity for SPI to yield an € optimization accuracy—

thatis, VX(p) — V(Tt)( p) < e—is at most on the order of

1=y 1™ 1
loglog(( 4)/72/) = % E) (31)

(o8]

This uncovers the faster-than-linear convergence behav-
ior of regularized NPG methods in the high-accuracy
regime, accommodating a range of optimization accu-
racy and all possible choices of the regularization
parameter 7. It is worth noting, however, that our qua-
dratic convergence result is stated in terms of the

optimization accuracy (namely, convergence to the soft
value function V7(p)) as opposed to the accuracy
w.r.t. the original unregularized MDP. Thus, inter-
preting Theorem 3 in practice requires caution, since
the approximation error V:(p)—V*(p) might some-
times dominate the optimization error in this regime.

4. Analysis

4.1. Main Pillars for the Convergence Analysis
Before proceeding, we isolate a few ingredients that pro-
vide the main pillars for our theoretical development.

4.1.1. Performance Improvement and Monotonicity.
This lemma is a sort of ascent lemma, which quantifies
the progress made over each iteration—measured in
terms of the soft value function.

Lemma 1 (Performance Improvement). Suppose that
0 <n<(1-y)/t. Forany distribution p, one has

Vg”l)(p) _ Vg)(p)

[ T e sl

(t+1)
s~d,

+%KL(nm(~|s)||(n<””(-|s>)]. 32)

Proof. See the supplemental material. O

In a nutshell, Lemma 1 asserts that each iteration of
the entropy-regularized NPG method is guaranteed to
improve the estimates of the soft value function, with
the improvement depending on the KL divergence be-
tween the current policy n*) and the updated one
D In fact, the arbitrary choice of p readily reveals a
sort of pointwise monotonicity for the above range of
learning rates in the sense that V{*1(s) > V{!(s) for all
s € S. Indeed, this lemma can be viewed as the counter-
part of the performance difference lemma in Kakade and
Langford (2002) for the unregularized form. Lemma 1
also implies the monotonicity of the soft Q-function in ¢,
since for any (s,a) € S X A, one has

QU (s,a)=r(s,a)+y E [VED(s)]
5~P(ls,a)

[V =Q06s,),
(33)

where the equalities follow from the definition (11a),
and the inequality follows since V*(s) > V{¥(s) for
all s € S—a consequence of Lemma 1 and the nonne-
gativity of the KL divergence.

>r(s,a)+ 75/~p%s )

4.1.2. A Key Contraction Operator: The Soft Bellman
Optimality Operator. An operator that plays a pivotal
role in the theory of dynamic programming (Bellman
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1952) is the renowned Bellman optimality operator
T : RS RISIAI defined as follows

V(s,a)eSxXA: T(Q)(s,a)
=r(s,a)+y E [maxQ(s’,a’)]. (34)

§'~P(|s,a)| @

In order to facilitate analysis for entropy-
regularized MDPs, we find it particularly fruitful to
introduce a “soft” Bellman optimality operator 7 :
RISMI — RISMI a5 follows:

V(s,a)e Sx A: T(Q)(s,a):=r(s,a)+y E

s'~P(-|s,a)

max E )[Q(s’,a’)—Tlogﬂ(a'IS')], (35)

n(ls")ea) @’ ~Te(:[s’

which reduces to 7 when 7 = 0. To see this, observe
that
To(Q)(s,a)=r(s,a)+y E [ max K [Q(S’,a’)]]

§'~P("[s,a) | n(ls")ea) a’~1i("[s’)

=ris,a)+y E [n}zng(s',a’)] =T7(Q)(s,a),

s'~P(ls,a)

where the last line follows since the optimal policy is
exactly the greedy policy w.r.t. Q (Puterman 2014). The
operator 7; plays a similar role, as does the Bellman op-
timality operator for the unregularized case, whose key
properties are summarized below. Similar results have
been derived in Section 3.1 in Dai et al. (2018).

Lemma 2 (Soft Bellman Optimality Operator). The opera-
tor T, defined in (35) satisfies the properties below.
o T admits the following closed-form expression:

TQs) =rsa) +y | E  [log(lexp(Qls’)/ 0l

(36)

o The optimal soft Q-function QF is a fixed point of T,
namely,

T.(Q) = Q- (37)

o 1. is a y-contraction in the (o norm, namely, for any
Q1,0 € RS one has

172(Q1) = Te(Q2)lleo < 7lIQ1 = Qalleo- (38)

Proof. See the supplemental material. O

For those familiar with dynamic programming, it
should become evident that 7; inherits many appeal-
ing features of the original Bellman optimality opera-
tor 7. For example, as an immediate application of the
y-contraction property (38) and the fixed-point prop-
erty (37), the following soft Q-value iteration

(t+1) _ (t)

sti - TT(sti)/ t>0

is guaranteed to converge linearly to the optimal Q;
with a contraction rate ), a simple observation

consistent with the behavior of value iteration de-
signed for unregularized MDPs.

4.2. Analysis of Exact Entropy-Regularized

NPG Methods
4.2.1. The SPI Case (i.e. n=(1—7)/7). With the help of
the soft Bellman optimality operator, we have

Q*V(s,a)

o rs,a)+y E [Vg*l)(s’)]
s'~P(-|s,a)
@ rs,a)+y E [—T logn*V(a’ls") + Q¥ V(s’, a’)]
s'~P([s,a),
a’~n““)(-|s’)

gi)( )+ E
> r(s,a
Y s'~P(ls,a),

ﬂ/Nﬂ(Hl)(_lsl)
=rs,a)+y E

ol @i/

ET(QY)Gs ). (39)

Here, (i) comes from the definition (11a) of the soft
Q-function, (ii) follows from the relation (11b), (iii) relies
on the monotonicity of the soft Q-function (see (33)), and
(iv) uses the form of 7+ in (17), whereas (v) makes use
of the expression (36). The inequality (39) further leads to
0<Qr - QY < Qr - To(Q!*Y), and hence,

195 = QM <1107 = To(Q)llew

= 17:(Q5) = To(Qlleo < ¥I1Q; = Q¥lleo

<7IQs = Q. (40)
where the first equality follows from the fixed-point
property (37), and the second inequality is due to the
contraction property (38). We have thus established

linear convergence of Q(Tt) in||- || for this case.
Turning to the log policies, recall that

() cexp (QP(s,-)/71)  and 7} (Is) o exp (Q}(s,)/7),

|-tlog ! V(@ls') + QO )|

(iv)

where the second relation comes from Equation (12)
in Nachum et al. (2017). It then follows from an ele-
mentary property of the softmax function that

* 2 *
log **Y —log 71|l < ;HQ(J) - Qilleo

2 *
<107 - QP
thus concluding the proof for this case.

4.2.2. The Case With General Learning Rates. We now
move to the case with a general learning rate. For the
sake of brevity, we shall denote

nt
=1~ . 41
a=1-712 (41)
Additionally, it is helpful to introduce an auxiliary
sequence {£) € RMI} constructed recursively by
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£0(s,a) = llexp(Q(s) /Dl - 7 (als), (42a)

yﬂ@ﬂy=k@@wﬁwda—m92?ﬂl (42b)

V(s,a) e Sx A, t=0.
It is easily seen from the construction (42b) that

Qr —tlog &™) = QF — talog &Y — (1 - a)QY
= a(Qt —tlog &) +(1-a)(Q; - Q)
(43)
and consequently,

1Q: — tlog &MVl < allQt — tlog &9,
+(1-a)lQ; - Q. (44)

Step 1: A Linear System that Describes the Error
Recursions. In the case with general learning rates,
the estimation error ||Qf - Q(Tf)||oo does not contract in
the same form as that of soft policy iteration; instead,
it is more succinctly controlled with the aid of an aux-
iliary quantity [|Q — tlog &Y. In what follows, we
leverage a simple yet powerful technique by describ-
ing the dynamics concerning [Q%—QY|, and
|Qx — tlog &Y\, via a linear system, whose spectral
properties dictate the convergence rate. Toward this,
we start with the following key observation, whose
proof is deferred to the supplemental material.

Lemma 3. For any learning rate 0 <n<(1-7y)/t, the
entropy-reqularized NPG updates (18) satisfy

195 = Q¥ V]lo < ¥IIQ; — Tlog V]I,
+y7a* QY - tlog Ve, (45)
where a is defined in (41).

If we substitute (43) into (45), it is straightforwardly
seen that Lemma 3 is a generalization of the contraction
property (40) of soft policy iteration (the case corre-
sponding to a = 0). Given that Lemma 3 involves the in-
teraction of more than one quantity, it is convenient to
combine (44) and (45) into the following linear system

X1 < Axp +yatly, (46)
where
1- *— QU
g |ra-a yal L IQi- QN
1-«a a IQr — tlog 5(t)||00
0) _ (0)
and y = ||Q’[ Tlog5 ||oo

0 ' (47)
We shall make note of the following appealing fea-
tures of the rank-1 system matrix A:

Az[jl/][l—a,a], and A'=(1-n0)'A vVt >0,

(48)

which relies on the identity (1-a)y+a=1-n7 (ac-
cording to the definition (41) of a).

Remark 3. By left multiplying both sides of (46) by
[1—a,a], we obtain

L") <1 -no)L® + y(1 - @)a' Q¥ - tlog £V,
where LY :=(1-a)Q; — QP +allQ; — tlog &Vl
can be viewed as a sort of Lyapunov function. This

hints at the intimate connection between our proof and
the Lyapunov-type analysis used in system theory.

Step 2: Characterizing the Contraction Rate from the
Linear System. In view of the recursion Equation (46)
and the nonnegativity of (A,x:,y), it is immediate to
deduce that
X1 < A(Axiq + yaly) +yaltly

<APxg + p(af U + ol A+ - +aAl)y

= Alttlx, + 7/(At+1 _ at+11)(a—1A _ I)_ly. (49)

Here, the last line follows from the elementary relation
(@ + At - +aAD (@ TA - 1) = A — o]

and the invertibility of a™'A —I (since &~ 'A is a rank-1
matrix whose nonzero singular value is larger than 1).
In addition, the Woodbury matrix inversion formula
together with the decomposition (48) yields

1 4
_ l1-«
YalfA-Dly=o{l1 L, |-1
y (I-a)y

0o v

v=| e |v= "
1 7’0‘;& I - tlog £l | (50)
-a
which is a nonnegative vector. Consequently, this tak-
en together with (49) gives

X1 < AT [xo +y(atA- I)_ly] - at“{y(a‘lA - I)_ly}

< At [xo +y(a A - I)fly]

=(1 —nr)t( 71/][1 —a,a])

[ Q- Q| l

1Q; - log £V, + Q) - tlog &V,
= (1-no'{a-aliQ; - QU

7

+a(llQ; - Tlog £ + Q0 - Tlog £ )} 7

(51)

where the third line follows from (48), (50), and the
definition of x;. Furthermore, observe that

Q7 = tlog £V, +IQ© - 710g £Vl - 1QF = QI
<2||Qx - tlog &V, = 27llog % — log ¥l
(52)
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where the inequality comes from the triangle inequali-
ty, and the last identity follows from (42a). Substitut-
ing this back into (51), we obtain

X1 < (1= T]T)t{‘

LT Za’[Hlognﬁ - logn(o)“m}[){].
(53)

To finish up, recall that n® is related to £ as follows

vseS: nl(|s)= EW(s, ), (54)

IIE(”( h
which can be seen by comparing (42) with (18). There-
fore, invoking the elementary property of the softmax
function, we arrive at

llog 7t —log V|, < 2/|Q%/7 —log EED|L.

This combined with (53) as well as the definition (47)
of x¢11 immediately establishes Theorem 1.

4.3. Analysis of Approximate Entropy-
Regularized NPG Methods

We now turn to the convergence properties of approx-

imate entropy-regularized NPG methods—as claimed

in Theorem 2—when only inexact policy evaluation

Q( ) is available (in the sense of (26)).

Step 1: Performance Difference Accounting for
Inexact Policy Evaluation. We first bound the quality
of the policy updates (26) by examining the difference
between VU*D and V% and how it is impacted by the
imperfectness of policy evaluation. This is made pre-
cise by the following lemma.

Lemma 4 (Performance Difference of Approximate
Entropy-Regularized NPG). Suppose that 0<n<
(1—-y)/z. For any state sy € S, one has

VO(s0) < VI (s0) + HQ“) (55)

Proof. See the supplemental material. O

The careful reader might already realize that the
above lemma is a relaxation of Lemma 1; in particular,
the last term of (55) quantifies the effect of the approx-
imation error (i.e., the difference between Q(Tt) and
QW) upon performance improvement. Under the as-
sumption H@(Tt) - Q@H < 0, repeating the argument of
(33) reveals that the sogft Q-function estimates are not

far from being monotone in ¢ in the sense that

V(s,a)eSx A: QY(s,a)— QHY(s,a)
2y6
_ B (e _ 17+ (o Y
Vs'~PI(E-|s,a)[VT (s) =Vt < -y (56)

Step 2: A Linear System Accounting for Inexact
Policy Evaluation. With the assistance of (56), it is

possible to construct a linear system—similar to the
one built in Section 4.2—that takes into account in-
exact policy evaluation. Toward this end, we adopt
a similar approach as in (42) by introducing the

following auxiliary sequence &Y defined recursive-

ly using @(Tt):

&%, a) := llexp(Q2(s-) /Il - (s, ), (57a)
(t)
Es,0) = [£9s)| exp (1 - a)ﬁ),
V(s,a) e Sx A, t>0,
(57b)

where @ :=1— % as before.

We claim that the following linear system tracks the
error dynamics of the policy updates:

Zi+1 < Bz + b, (58)
where
yl-a) ya ya
B:= 1-«a o 0|,
0 0 o
195 — QVlles
7 1= 1Q: — log &)l ,
—ming,(QY(s,a) — log £ (s, )
2y
V(z ' n—T)
=(1-a) 1
L (59)
T]T

Here, the system matrix B (in particular its eigenval-
ues) governs the contraction rate, whereas the term b
captures the error introduced by inexact policy evalu-
ation. Theorem 2 then follows by carrying out a simi-
lar analysis argument as in Section 4.2 to characterize
the error dynamics. Details are postponed to the sup-
plemental material.

4.4. Analysis of Local Quadratic Convergence
We now sketch the proof of Theorem 3, which estab-
lishes local quadratic convergence of SP1.

Step 1: Characterization of the Suboptimality Gap.
Lemma 1 bounds the performance improvement
of SPI by the KL divergence between the current
policy 7 and the updated policy n*1. Interest-
ingly, the type of KL divergence can be further
employed to bound the suboptimality gap for each
iteration.

Lemma 5 (Suboptimality Gap). Suppose that
n=(1-1y)/t. For any distribution p, one has
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Vip) - V() < E [KUrCs)|(nt V)|

ns~d?
Proof. This result has appeared in Eqn. (486) of Mei
et al. (2020). For completeness, we include a proof in
the supplemental material. O

In words, Lemma 5 formalizes the connection be-
tween the suboptimality gap (w.r.t. the optimal soft
value function) and the proximity of the two consecu-
tive policy iterates. As reflected by this lemma, if the
current and the updated policies do not differ by
much (which indicates that the algorithm might be
close to convergence), then the current estimate of the
soft value function is close to optimal.

Step 2: A Contraction Property. The importance of
the above two lemmas is made apparent by the fol-
lowing contraction property when n = (1-y)/t:

Vi(p) = V¥ (p)
= Vilp) = VI(p) + (V) = Vi (p)

2Vi(p) - V() ‘% s [ cx el
5~dp

Vi) - vi(p) - %H—jﬁ}

,D

-1
- 5 |KL(= )|V 1s))]

& V) - VO p) - ”% :(Vi(P) - VO(p)
- (1= I v o) 0

Here, (i) arises from Lemma 1, and (ii) employs the
prefactor ||d5*/ dg*””;l to accommodate the change of
distributions, whereas (iii) follows from Lemma 5.

Step 3: Superlinear Convergence in the Small-e
Regime. The contraction property (60) implies that

V{H+D(p) converges superlinearly to V> once nl") gets
sufficiently close to 7. In fact, once the ratio d(p”l) / dg:
becomes sufficiently close to 1, the contraction factor
1-||d5° /dg”)”;l in (60) is approaching 0, thereby ac-
celerating convergence. This observation underlies

Theorem 3, whose complete analysis is postponed un-
til the supplemental material.

5. Discussions
This paper establishes nonasymptotic convergence of
entropy-regularized natural policy gradient methods,
providing theoretical footings for the role of entropy
regularization in guaranteeing fast convergence. Our
analysis opens up several directions for future re-
search; we close the paper by sampling a few of them.
o Extended analysis of policy gradient methods with inex-
act gradients. It would be of interest to see whether our

analysis framework can be applied to improve the the-
ory of policy gradient methods (Mei et al. 2020) to ac-
commodate the case with inexact policy gradients.

o Finite-sample analysis in the presence of sample-based
policy evaluation. Another natural extension is toward
understanding the sample complexity of entropy-
regularized NPG methods when the value functions are
estimated using rollout trajectories (see, e.g., Kakade
and Langford 2002, Shani et al. 2019, and Agarwal et al.
2020b) or bootstrapping (see, e.g., Haarnoja et al. 2018,
Whu et al. 2020, and Xu et al. 2020).

o Function approximation. The current work has been
limited to the tabular setting. It would certainly be inter-
esting and fundamentally important to understand
entropy-regularized NPG methods in conjunction with
function approximation; see Agarwal et al. 2019, 2020b,
and Sutton et al. 2000) for a few representative scenarios.

o Beyond softmax parameterization. The current paper
has been devoted to softmax parameterization, which
enables a concise and NPG update rule. A couple of
other parameterization schemes have been proposed
for (vanilla) PG methods as well (Agarwal et al. 2019,
2020b; Bhandari and Russo 2019, 2020), e.g. vanilla pa-
rameterization (paired with proper projection onto the
probability simplex in each iteration), log-linear parame-
terization, and neural softmax parameterization. Unfor-
tunately, the analysis in our paper relies heavily on the
softmax NPG update rule and does not immediately
extend to other parameterization. It would be of great
importance to establish convergence guarantees that ac-
commodate other parameterizations of practical interest.

Endnotes

1 For the sake of simplicity, we assume throughout that the reward
resides within [0,1]. Our results can be generalized in a straightfor-
ward manner to other ranges of bounded rewards.

2 In this paper, we use the terms “regularized” value (resp. Q) func-
tions and “soft” value (resp. Q) functions interchangeably.

3 To see this, invoke the optimality of 7 and the elementary entro-
py bound 0 < H(p, ) < 1L-1og|A4| to obtain

I-y

T
1-y
“ Here, we have assumed that the exact policy gradient is computed
with respect to V{(p).

VT (p) +

loglA| = V™ (p) + TH(p, 1) = Vi(p) = Vi*(p) = V™ (p).

° This result is in fact better than the iteration complexity ﬁ of the
unregularized NPG method established in Agarwal et al. (2020b) as

2Cy

€

). Consequently, our finding hints at

soonas n>2(1- )/)loglAllog(
the potential advantage of entropy-regularized NPG methods over
the unregularized counterpart even when solving the original MDP.
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