PLOS GENETICS

Check for
updates

G OPEN ACCESS

Citation: Shen Y, Endale M, Wang W, Morris AR,
Francey LJ, Harold RL, et al. (2021) NF-kB modifies
the mammalian circadian clock through interaction
with the core clock protein BMAL1. PLoS Genet
17(11): 1009933. https:/doi.org/10.1371/journal.
pgen.1009933

Editor: Achim Kramer, Charité -
Universitdtsmedizin Berlin, GERMANY

Received: November 19, 2020
Accepted: November 7, 2021
Published: November 22, 2021

Copyright: © 2021 Shen et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which
permits unrestricted use, distribution, and
reproduction in any medium, provided the original
author and source are credited.

Data Availability Statement: All relevant data are
within the manuscript and its Supporting
Information files.

Funding: This work was supported by the National
Institutes of Health (NINDS R01 NS054794 to ACL
and JBH), the National Science Foundation (10S
1656647 to ACL), the National Cancer Institute
(R01 CA149251 to ZW), and American Cancer
Society (RSG-13-186-01-CSM to ZW). The funders
had no role in study design, data collection and

RESEARCH ARTICLE

NF-kB modifies the mammalian circadian
clock through interaction with the core clock
protein BMAL1

Yang Shen', Mehari Endale®', Wei Wang?, Andrew R. Morris®", Lauren J. Francey®,
Rachel L. Harold®?, David W. Hammers®°®, Zhiguang Huo®, Carrie L. Partch*, John
B. Hogenesch?®, Zhao-Hui Wu?, Andrew C. Liu®'*

1 Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville,
Florida, United States of America, 2 Department of Radiation Oncology and Center for Cancer Research,
University of Tennessee Health Science Center, Memphis, Tennessee, United States of America, 3 Division
of Human Genetics and Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,
United States of America, 4 Department of Chemistry and Biochemistry, University of California Santa Cruz,
Santa Cruz, California, United States of America, 5 Department of Pharmacology and Therapeutics,
University of Florida College of Medicine, Gainesville, Florida, United States of America, 6 Department of
Biostatistics, College of Public Health & Health Professions, University of Florida College of Medicine,
Gainesville, Florida, United States of America

* andrew.liu@ufl.edu

Abstract

In mammals, the circadian clock coordinates cell physiological processes including inflam-
mation. Recent studies suggested a crosstalk between these two pathways. However, the
mechanism of how inflammation affects the clock is not well understood. Here, we investi-
gated the role of the proinflammatory transcription factor NF-kB in regulating clock function.
Using a combination of genetic and pharmacological approaches, we show that perturbation
of the canonical NF-kB subunit RELA in the human U20S cellular model altered core clock
gene expression. While RELA activation shortened period length and dampened amplitude,
its inhibition lengthened period length and caused amplitude phenotypes. NF-«kB perturba-
tion also altered circadian rhythms in the master suprachiasmatic nucleus (SCN) clock and
locomotor activity behavior under different light/dark conditions. We show that RELA, like
the clock repressor CRY1, repressed the transcriptional activity of BMAL1/CLOCK at the cir-
cadian E-box cis-element. Biochemical and biophysical analysis showed that RELA binds to
the transactivation domain of BMAL1. These data support a model in which NF-kB com-
petes with CRY1 and coactivator CBP/p300 for BMAL1 binding to affect circadian transcrip-
tion. This is further supported by chromatin immunoprecipitation analysis showing that
binding of RELA, BMAL1 and CLOCK converges on the E-boxes of clock genes. Taken
together, these data support a significant role for NF-kB in directly regulating the circadian
clock and highlight mutual regulation between the circadian and inflammatory pathways.
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Author summary

The circadian clock coordinates daily cell physiology. There has been considerable interest
in identifying mechanisms that link cell physiology to circadian time-keeping. NF-xB is a
major network hub controlling innate immunity and inflammation. Chronic constitutive
activation of NF-«B is one of the primary causes of a number of human diseases and con-
ditions such as immune diseases, metabolic disorders, neurodegenerative diseases, cancer
and aging. Here we investigated the role of NF-kB in regulating the central and peripheral
circadian clocks. Using a combination of genetic and pharmacological approaches we
show that NF-xB perturbation alters clock oscillations in cells and tissues, as well as in
mice. Further, using biochemical and biophysical methods, we show that NF-kB directly
binds to the transactivation domain of BMALI where clock coregulators CBP/p300 and
CRY bind; and as a result, like CRY, NF-kB represses E-box transcription. Together, these
results support a significant role for NF-kB in linking inflammation to circadian
timekeeping.

Introduction

Endogenous circadian clocks allow organisms to coordinate behavior, physiology and metabo-
lism to align with the external light-dark cycle [1]. Circadian clocks are present in virtually all
cells of the body and are coordinated by the master clock in the suprachiasmatic nucleus
(SCN) of the hypothalamus [2,3]. The SCN receives photic inputs and relays the light/dark
information to peripheral tissues via neural and endocrine signals. In this manner, the SCN
coordinates the peripheral oscillators into a coherent timing system [3]. The circadian clock
regulates physiological functions in various tissues in mammals, including the immune and
inflammatory responses [4-6]. Given the physiological importance of circadian timing, it is
not surprising that its disruption is associated with a variety of pathological conditions and dis-
ease states, including neurodegenerative disorders, metabolic disorders, cardiovascular dis-
eases, cancer, and aging [7-9].

In individual cells, the molecular clock is based on a transcriptional/translational negative
feedback mechanism, in which activators drive the expression of their own repressors [10].
More specifically in mammals, the bHLH-PAS domain-containing transcriptional activators
BMAL1 and CLOCK form a heterodimeric complex, which binds to the circadian E-box cis-
elements to activate transcription of target genes, including Period (PERI, 2, 3) and Crypto-
chrome (CRY1, 2). The PER/CRY proteins form their own complexes, and upon translocation
to the nucleus, suppress BMAL1/CLOCK activity. This core loop interacts with at least two
other feedback loops mediated by the circadian D-box and RORE cis-elements. These loops
serve to stabilize the core loop and increase system robustness. The molecular clock regulates
thousands of output genes that govern cell physiology, largely in a tissue-specific manner
[10,11].

While the core clock mechanism is well understood and significant progress has been made
in characterizing clock outputs, there exist additional clock components and modifiers that
provide inputs to regulate the clock function. In an earlier effort to identify additional clock
factors, we carried out a genome-wide RNAI screen in a human U20S cell model and identi-
fied hundreds of genes whose knockdown impacted clock function [12]. These genes represent
many cellular processes and signaling pathways that serve as inputs and link cellular functions
to the clock [12,13]. These input pathways reflect the extensive interplay between the clock
and cell physiology. Several emerging examples include nutrient/energy levels and redox stress
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[13,14]. In this study, we focused on how the pro-inflammatory nuclear factor-kappa B (NF-
kB) pathway impacts clock function. NF-«B transcription factors play critical roles in immu-
nity, inflammation, cell proliferation, differentiation, and survival [15,16]. NF-xB consists of a
family of five related transcription factors: RELA (p65), RELB, c-Rel, NFKBI (p105/p50), and
NFKB2 (p100/p52). RELA and RELB each contain a transactivation domain and form dimers
with p50 and p52, respectively, with the RELA/p50 complex representing the canonical
pathway.

Proinflammatory stimuli such as tumor necrosis factor alpha (TNFa.), interleukin 1 (IL-1)
and bacterial lipopolysaccharides (LPS) induce the canonical NF-kB pathway. Upon stimula-
tion, the cytosolic RELA/p50 complex translocates to the nucleus to mount a rapid response
through transcriptional induction of target genes [15-17]. As a gatekeeper, inhibitor of NF-xB
(IxBa, encoded by NFKBIA) serves as a repressor of NF-kB by virtue of masking its nuclear
localization signal and preventing its nuclear entry. IxBo is regulated by the IxB kinase com-
plex (IKK1, IKK2, and NEMO) that phosphorylates and targets IxBa for proteasomal degrada-
tion, thereby freeing RELA/p50 to enter the nucleus. In the non-canonical RELB/p52 pathway,
p100 is phosphorylated by IKK1 and then converted to p52; the RELB/p52 dimer subsequently
translocates to the nucleus [15,16]. In this manner, RELA and RELB use different mechanisms
to regulate distinct physiological functions.

Here, we characterized the effect of the canonical RELA pathway on the circadian clock.
Using genetic and pharmacological approaches, we show that RELA activation altered the
expression patterns of core clock genes, resulting in altered circadian rhythms in cellular mod-
els and the SCN clock, as well as circadian locomotor behavior. RELA repressed E-box-medi-
ated BMAL1/CLOCK transcriptional activity at a steady-state level. Biochemical and
biophysical assays revealed a direct interaction between the REL homology domain (RHD) of
RELA and the C-terminal regulatory domain (CRD) of BMALI, centering on the transactiva-
tion domain (TAD). Our data suggest that NF-kB competes with CRY1 and coactivator CBP/
p300 for binding to the BMALI TAD. Together, these results support a significant role for NF-
kB in modulating circadian clock function. Given that inflammation and innate immunity are
under the control of the circadian clock [5,18], our findings highlight the mutual regulation
between these two pathways.

Results
NF-xB alters circadian rhythms in a cellular clock model

In an earlier functional genomic screen, we identified the NF-«B pathway as a clock modifier
in U20S cells expressing a Per2-dLuc reporter, in which a rapidly degradable Luciferase gene
(dLuc) is under the control of the mouse Per2 promoter [12]. For example, knockdown of
IxBor and IKK2 (to activate and inhibit the NF-xB pathway, respectively) in these cells caused
short and long periods, respectively (S1A Fig). Consistent with the effect of IxBa knockdown
and resultant NF-xB pathway activation, overexpression of a constitutively active IKK2 mutant
IKK2-S177/181E (or IKK2“*) to activate the pathway [19], resulted in an even shorter period
length, compared to WT IKK2 (S1B Fig). We then used several commonly used NF-«B path-
way inhibitors to complement the genetic approach. TPCA-1 is a selective ATP-competitive
inhibitor of IKK2 [20,21]. Withaferin A (WA) directly interacts with IKK2 to inhibit its cata-
Iytic activity, resulting in stabilized IxBo and reduced nuclear NF-kB and transcriptional activ-
ity [22,23]. CAT-1041, a conjugate of a polyunsaturated fatty acid and salicylic acid, inhibits
NF-kB at least in part through IxBa stabilization [24]. Consistent with the IKK2 knockdown
effect, continuous exposure to TPCA-1 (Fig 1A), WA (S1C Fig), or CAT-1041 (S1D Fig) also
caused longer periods in these cells, compared to DMSO control. Interestingly, while these
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Fig 1. NF-kB affects clock gene expression and circadian rhythms in U20S cells. (A-B) Bioluminescence rhythms
in U20S cells harboring the Per2-dLuc reporter were recorded in a Lumicycle luminometer. In (A), cells were treated
with IKK2-specific inhibitor TPCA-1 (5 uM). IKK2 inhibition caused long period length compared to DMSO control.
Traces are representative bioluminescence recordings. Period lengths are mean + standard deviation (SD) of n = 6
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independent samples for each condition. ** p<0.01. In (B), cells were transduced with an adenoviral Rela expression
vector. Ad, adenoviral vector control; Ad-Rela, RELA adenoviral expression vector. Traces are representative
bioluminescence recordings. Western blots (insert) were from protein extracts prepared one day after synchronization.
Rhythm amplitudes in the bar graph are mean + SD of n = 6 independent samples for each condition. ** p<0.01. (C)
RELA overexpression alters clock gene expression in U20S cells as in (B). (C) Ad or Ad-Rela transduced U20S cells
were synchronized by dexamethasone (Circadian time or CT0), and after 36 h, cell samples were harvested at 4 h
intervals between CT36-CT56. Transcript levels for NF-«B target genes (Tnfer and II-6) and core clock genes (Dbp,
Per3, Cry2, Nr1d1, Rorc and Bmall) were determined by Q-PCR and normalized to GAPDH. Error bars represent
mean + SD of 3 independent samples.

https://doi.org/10.1371/journal.pgen.1009933.9001

inhibitors at high doses reduced the rhythm amplitude, CAT-1041 at lower doses increased
the amplitude in these cells (S1D Fig).

To more directly assess the effect of NF-kB on the clock function, we tested whether overex-
pression of the canonical NF-xB subunit RELA affects circadian oscillations. For this, we used
the adenoviral system to overexpress the mouse Rela gene in U20S cells. Compared to cells
transduced with the empty vector (Ad), cells expressing Ad-Rela displayed significantly
decreased amplitude and a shorter period length (Fig 1B), without adversely impacting cell via-
bility (S1E Fig). These results suggest that NF-«B affects clock function. Taken together, our
genetic and pharmacological data support a role for NF-xB in regulating cell-autonomous cir-
cadian clocks.

NEF-xB alters core clock gene expression in U20S cells

To determine how RELA affected circadian oscillations, we measured the expression patterns
of core clock genes by quantitative PCR. We focused on the time window of 1.5-2.5 days (or
36-56 h) post synchronization when the clock phenotype was apparent but still maintained
rhythmicity. As expected, IL-6 and TNFa, the two classic NF-«B targets, were significantly
upregulated in Ad-Rela cells, compared to Ad control (Fig 1C), suggesting that the exogenous
RELA is functional in these cells. While the core clock genes in control cells displayed normal
circadian expression patterns particularly their distinct phases, these patterns were altered in
Ad-Rela cells (Figs 1C and S1F). RELA drastically reduced DBP and PER3 expression at all cir-
cadian times. This result is consistent with previous reports showing that LPS and TNFa,
known to induce NF-«B activation, caused low levels of DBP in the liver and lung [25-27].
DBP and PER3 are known to be regulated by the E-box [10,28-30]. Further, PER3 is also regu-
lated by the D-box and the blunted DBP (D-box activator) likely contributed to the low PER3
expression. Surprisingly, PER2 expression was not drastically altered (S1F Fig), which is con-
sistent with the robust rhythm at the time of sample collection. This data also suggests that the
endogenous PER2 and the Per2-dLuc reporter are regulated differently. In contrast, BMALI
was dramatically elevated at all circadian times (Fig 1C). BMALI is known to be controlled by
the RORE cis-element and its expression in Ad-Rela cells may be explained by high levels of
the RORE activator RORC and low levels of the RORE repressor NR1DI: while NRID1I was
down-regulated during peak hours (36-40 h), its expression was abnormally high during
trough hours (52-56 h); in contrast, RORC and RORA levels were abnormally high throughout
the circadian cycle (Figs 1C and S1F). These expression patterns are consistent with previously
reported cytokine effects [25-27].

NF-xB alters circadian rhythms in the SCN clock and locomotor behavior

The NF-kB effect on cell-autonomous clocks raised the possibility that it also affects the master
SCN clock. Indeed, we show that treatment with TPCA-1 in SCN explants derived from
PER2:LUC fusion (Per2"““) knockin mice [31] lengthened rhythm period length compared to
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Fig 2. NF-kB affects circadian rhythms in the SCN. (A) Circadian bioluminescence rhythms of SCN explants from
Per2"““ reporter mice treated with IKK2 specific inhibitor TPCA-1 (5 uM) or DMSO as control. Period lengths are
mean + standard deviation (SD): 23.93 h + 0.22 before treatment; 24.58 h + 0.29 after treatment (n = 4 SCN slices of 4
different mice). The ‘before’ and ‘after’ treatment traces were plotted together for direct comparison (insert). (B)
Circadian bioluminescence rhythms of Per2"“° SCN explants expressing RELA. Ad, adenoviral vector control; Ad-
Rela, adenoviral RELA expression vector. Compared to vector control, RELA overexpression reduced rhythm
amplitude and shortened period length. Amplitude and period length data are mean + SD (n = 5 SCN slices dissected
from 5 different mice). * p<0.05, ** p<0.01, *** p<0.001. Data from additional SCN explants are included in S2 Fig.

https://doi.org/10.1371/journal.pgen.1009933.9002

DMSO control (Fig 2A). To further test this, we infected SCN slices cultured ex vivo with Ad-
Rela. Compared to controls that showed slightly reduced amplitude, SCN slices transduced
with Ad-Rela displayed significantly lower amplitude and some displayed rapid loss of rhyth-
micity (Figs 2B and S2). Transient infection did not adversely impact neuronal viability as
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Fig 3. NF-kB affects circadian locomotor activity behavior. (A) Representative double-plotted actograms of wheel-
running activity in vehicle control (corn oil) and Ikk2“* male mice. X axis: zeitgeber time (ZT) of the 12 h/12 h light/
dark cycle (LD) indicated by the bar (top). Y axis: number of days during the experiment. Mice were first entrained to
aregular LD cycle and then released to constant darkness (DD) or constant light (LL). For phase shifting, mice were
first entrained to LD and then the LD cycle was advanced for 6 h. (B) Circadian free-running period length in DD. (C)
Periodogram amplitude of wheel-running behavior in mice under DD (left) and LL (right). (D) Line graphs showing
the daily phase advance of wheel-running activity following a 6 h advancing LD cycle shift. Values are mean + standard
error (SE) (n = 7-8 mice for each group). * p<0.05. ** p<0.01. *** p<0.001 Ikk2“* mice vs. vehicle by ANOVA.

https://doi.org/10.1371/journal.pgen.1009933.9003

overall bioluminescence from the firefly luciferase reporter maintained during recording and
medium change restarted bioluminescence oscillations. The period length was significantly
shorter during the first few cycles of transient rhythms (Fig 2B).

Circadian animal behavior is an overt output of the SCN clock [3,32,33]. The NF-«B effect
on the SCN clock raises the possibility that NF-xB affects the circadian locomotor activity. To
test this, we obtained the Camk2a-Cre™;LSL-Tkk2“* mouse line. In the LSL-Tkk2“* line, the
LoxP-Stop-LoxP (LSL) cassette prevents expression of the constitutively active Flag-tagged
Ikk2-S177E/S181E (Ikk2“*) and IRES-mediated GEP [34]. In the Camk2a-Cre™® line, Cre™® is
conditionally expressed in neural tissues including forebrain and the hypothalamus [35,36].
Tamoxifen treatment induced deletion of the floxed LSL stop cassette and consequently condi-
tional expression of IKK2“ and GFP activation [34], which was confirmed by Western blot,
FACS and immunofluorescence analyses (S3A-S3C Fig). We performed the wheel-running
locomotor activity assay to assess circadian behavioral phenotypes. Corn oil vehicle control
and tamoxifen-induced Ikk2“* mice were entrained to the standard 12h/12h light/dark (LD)
cycle for 2 weeks, followed by release to constant darkness (DD) to monitor their endogenous
locomotor activity. Like the control mice, Ikk2“* mice were able to entrain to the LD cycle and
displayed robust free-running rhythms of locomotor activity in DD (Figs 3A and S3D). Under
the DD condition, the circadian period in Ikk2“* sex matched mice was longer than in the
controls (Fig 3B; control: 23.60 h £ 0.03,n = 8; Tkk24:23.81 h +0.02,n = §; p < 0.0001), indic-
ative of an altered SCN clock function. We also observed sex-dependent differences, in which
the period length changes in males were more prominent than in females (S3E Fig).
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After DD, mice were re-entrained to LD followed by release to LL. Mice under DD had more
robust periodogram amplitudes than in LL, with control mice exhibiting higer amplitudes than
mutant mice (Figs 3A and 3C and S3F, left panels), demonstrating stronger rhythmicity in the
controls in LL. While weakly rhythmic under LL, control mice had a lengthened period length
(25.15h +0.22, n = 8). However, Ikk2“* mice were largely arrhythmic under LL, with significantly
lower periodogram amplitude relative to controls (Figs 3A and 3C and S3F, right panels).

To further characterize the circadian behavior of Ikk2“* mice, we used an experimental “jet
lag” regimen to study the phase shift response. For this, mice were kept in LD, followed by an
abrupt 6 h phase advance. All mice were gradually re-entrained to the new LD cycle after 6
days. Notably, Ikk2“* mice re-entrained more slowly than the controls. Following LD phase
advance, Tkk2“* mice exhibited a smaller phase shift than the controls (Fig 3A and 3D). These
data suggest that NF-kB activation also altered light resetting and re-entrainment behavior.

NF-kB represses BMAL1/CLOCK transcriptional activity

The dramatic reduction of E-box genes such as DBP in cells overexpressing RELA raises the
possibility that NF-xB more directly affects E-box transcription. To determine the RELA effect
on E-box transcription, we performed steady-state reporter assays in transiently transfected
HEK 293T cells. We used the Per2::Luc and 3xE-box::Luc reporters, in which Luciferase (Luc)
expression is driven either by the mouse Per2 promoter that contains the E-boxes or by three
tandem E-box repeats, respectively [37-39]. As expected, BMAL1 and CLOCK activated E-
box transcription and CRY1 effectively repressed it in both reporters (Figs 4A and S4A). RELA
and RELB, known as transcriptional activators, did not activate E-box transcription (S4A Fig).
Both RELA and RELB effectively repressed BMALI/CLOCK activity (Fig 4A, left panel), with-
out adversely impacting cell viability (S4B Fig). RELB was previously shown to repress E-

box expression [40] and our results show that RELA displayed higher E-box repression than
RELB. Further, while both RELA and CRY1 exhibited dose-dependent repression of the 3xE-
box::Luc reporter, CRY1 displayed a more potent repression activity than RELA (Fig 4A, right
panel). In this assay, RelA and Cry1 are under the control of the same promoter and were
expressed to similar levels, suggesting that their repression activity was not due to differential
expression (Fig 4A, western blot inset).

There is a considerable level of endogenous NF-«xB in 293T cells. We reason that this basal
activity would repress E-box transcription. In support of this notion, we show that shRNA
knockdown of endogenous RELA relieved this repression, leading to significantly higher levels
of reporter activity (Fig 4B). Similar to RNAi knockdown, inhibition of endogenous IKK2
with TPCA-1 also relieved its repression of BMALI/CLOCK activity (Fig 4C). Other inhibitors
of the NF-«kB pathway such as GSK143, Bay11-7082 and CAT-1041 had similar effects (S4C
Fig). This is consistent with the observation that low-dose NF-kB inhibitor CAT-1041
increased the rhythm amplitude (S1D Fig).

CRY1 and CRY?2 are the canonical repressors of BMAL1/CLOCK. It is possible that NF-
kB’s E-box repression is dependent on CRY1 or CRY2. To test this, we performed the reporter
assay in Cryl~~;Cry2”"mouse fibroblasts [37]. In these Cry-deficient cells, the endogenous
BMALLI and CLOCK activated the 3xE-box::Luc reporter, which was further upregulated by
cotransfected BMAL1 and CLOCK and suppressed by RELA (Fig 4D). These results indicate
that NF-«B represses E-box transcription in a CRY-independent manner.

NF-xB regulates clock genes at the BMAL1/CLOCK-E-box loci

Our data support a model that NF-«B is recruited to the E-boxes of clock genes to repress
BMAL1/CLOCK transcription. To test this prediction, we performed chromatin
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Fig 4. NF-kB represses E-box mediated transcriptional activity of BMAL1/CLOCK. (A) Steady-state luciferase
reporter assay in transiently transfected 293T cells. In the 3xE-box::Luc reporters, Luc expression is controlled by
tandem E-box repeats. RELA and RELB repressed the transcriptional activity of BMAL1/CLOCK at the 3xE-box::Luc
reporter (left). While both RELA and CRY1 dose dependently repressed the reporter, CRY1 repression is more potent.
Flag-tagged RELA and CRY1 were expressed to similar levels (Western blot inset). (B-C) RNAi knockdown of
endogenous RELA (Western blot inset in B) or inhibition of IKK2 by TPCA-1 (20 uM) (C) relieved the repression of
BMAL1/CLOCK by RELA. (D) Steady-state luciferase reporter assay in transiently transfected Cry1™~Cry2”
“fibroblasts using the 3xE-box::Luc reporter. RELA was able to repress E-box transcription in the absence of the
endogenous CRY. (E) RELA associates with the E-box cis-element of clock genes PER2 and DBP in U20S cells.
Chromatin immunoprecipitation (ChIP) and Q-PCR to detect binding of endogenous RELA to the promoters of PER2
and DBP at the E-box. ChIP was performed with an anti-RELA or normal IgG antibody. Representative data from
three independent experiments are shown. Data are mean * standard deviation (n = 3). (F) Representative UCSC
genome browser images of RELA, BMALI, and CLOCK ChIP-seq tracks at the Dbp and Per3 genes. Normalized tag
counts are indicated on the Y-axis. Green square, E-box. ChIP-seq analysis revealed overlapping binding of BMALI,
CLOCK and RELA at the E-boxes of Dbp and Per3. Motif analysis did not find NF-kB-RE in these binding peaks,
suggesting indirect binding of NF-kB to the E-box. ** p<0.01. *** p<0.001.

https://doi.org/10.1371/journal.pgen.1009933.9004
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immunoprecipitation (ChIP) and quantitative PCR to determine the action of the endogenous
RELA on clock genes PER2 and DBP that have validated E-boxes [30,41]. We show that, com-
pared to IgG control, RELA displayed enriched binding to the E-boxes in the promoters of
DBP and PER?2 (Fig 4E).

Our data are consistent with a recent study showing that NF-kB targeted Per2 and Dbp in
the mouse liver upon LPS treatment [25]. Given the rich ChIP-seq data in that study, we
mined the publicly accessible datasets to further define how NF-xB coordinates with BMAL1/
CLOCK to regulate the E-box genes. ChIP-seq analysis revealed different gene cohorts targeted
exclusively by RELA or by BMAL1/CLOCK, but not both. For example, the canonical NF-xB
targets such as Nfkb1, Nfkb2, Nfkbia, and Rela, displayed significant RELA binding (S5A and
S5B Fig and S1 Table). Importantly, these genes were not targeted by BMALI or CLOCK and
no consensus E-boxes were found in the regulatory regions. Similarly, other genes such as
Ccnel, Gmfb, Atxn3 and Aven, contain E-boxes but not NF-kB-RE, and these sites were bound
by BMALI1 and CLOCK, not by RELA.

Among the peaks bound by BMALL1 (6,114), CLOCK (22,247) and RELA (13,740), 1647
showed binding by all three factors, representing triple overlapping binding. All the core clock
genes that are known to be regulated by BMALI and CLOCK via the E-box are represented in
this list, including Per1, Per2, Per3, Cryl, Cry2, Dbp, Nr1d1/Rev-erbo, Nr1d2/Rev-erbf, Rorc/
Rory, and Ciart/Chrono (Figs 4F and S5C and S5D and S1 Table), as well as Tef, Nfil3/E4bp4,
Bhlhe40/Decl and Bhlhe41/Dec2 (S1 Table). Among these genes, Perl and Per2 peaks harbor
both E-box and NF-kB-RE (S5C Fig and S1 Table), suggesting that their transcription may be
regulated by RELA either directly through binding to NF-kB-RE or indirectly through binding
to the BMAL1/CLOCK complex. Importantly, however, the triple binding peaks in other clock
genes contain E-boxes only, but no consensus NF-kB-REs, indicative of indirect RELA bind-
ing on these chromatin sites. These data strongly support our model that NF-xB indirectly
represses E-box transcription through complex formation with BMAL1/CLOCK at the E-box.

NF-kB interacts with BMALLI in the BMAL1/CLOCK complex

Given that many genes (e.g. TNFa, IL-6, BMALI) are upregulated by RELA (Fig 1C), NF-kB’s
repression on the E-box is unlikely caused by general transcriptional repression. Although
known as an activator in the inflammatory response, RELA can repress transcription of some
target genes in an HDAC-dependent manner [42]. However, inhibition of HDACs with chem-
ical inhibitors such as nicotinamide and valproic acid did not attenuate RELA repression of E-
box transcription (S4D Fig), arguing against an HDAC-dependent mechanism. Previous stud-
ies detected interactions between RELA and CLOCK at NF-«B target genes [43], and between
RELB and the BMAL1/CLOCK complex [40]. Our data also show that RELA associated with
the E-boxes of clock genes (Fig 4E). As the 3xE-box::Luc reporter does not contain NF-xB cis-
response elements and alone is not responsive to NF-kB, it is likely that NF-xB affects E-

box transcription via an indirect mechanism. In light of these observations, we hypothesize
that RELA repression occurs through direct interactions with BMAL1 and/or CLOCK.

We show that Myc-RELA interacts with Flag-BMALI by co-immunoprecipitation (co-IP)
and Western Blot analysis (Fig 5A). The RELA and CLOCK interaction was weak but appeared
stronger in the presence of BMALI1 (S6A-S6C Fig). Co-IP detected an endogenous interaction
between BMALI and RELA in WT and Clock™cells, but not in Bmall ™" cells (Figs 5B and
S6D). These results suggest that the complex formation is dependent on BMALI, but not
CLOCK, and the RELA and CLOCK interaction occurred indirectly through BMALIL.

Using electrophoretic gel mobility shift assay (EMSA), we show that both endogenous and
ectopically expressed BMAL1 and CLOCK formed a complex with a radio-labeled 14 bp E-
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Fig 5. The RELA RHD interacts with the C-terminal transactivation domain of BMALL. (A-B) Co-
immunoprecipitation assays detect the interaction between RELA and BMALLI in co-transfected 293T cells (A) and
between the endogenous proteins in fibroblasts (B). The intrinsic interaction between RELA and BMALLI is
independent on CLOCK. (C) RELA associates with the BMAL1/CLOCK:E-box complex, indicative of a larger
complex formation which caused a supershift. Oct1 oligonucleotide was used as control. The complex was reduced by
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the anti-Myc antibody, likely caused by a supershift that was not revealed in the gel. (D-E) Co-immunoprecipitation
and Western blot analysis to detect the interaction between the RELA RHD and the BMAL1 CRD. 293T cells were co-
transfected with tagged BMALI and RELA proteins as indicated. (F) Co-immunoprecipitation and Western blot
analysis to show competition for interaction with BMALI between CBP and RELA. (G) Backbone chemical shift
perturbations (AS,,) of ’N-BMALI C-terminal TAD with stoichiometric RELA RHD. Top panel: Schematic diagram
of domain structure of BMALI1. The N-terminal core domain (NCD) contains the bHLH, PAS-A and PAS-B domains.
The C-terminal regulatory domain (CRD) contains a transactivation domain (TAD) near the C-terminus featuring the
highly conserved IxxLL helical motif. Residues within the IxxLL helical motif showed chemical shifts, indicative of
interaction with RELA. Middle: Central region of '>N-'"H HSQC spectra showing titration of 100 uM >N-BMALI
TAD in the presence of increasing concentrations of the RELA RHD (light to dark blue; solid arrow). Peak
assignments are indicated for residues in the BMAL1 TAD that undergo chemical shift perturbation upon the addition
of RELA RHD. Bottom: Quantification of backbone chemical shift perturbations (A8yor) of >’N-BMALI TAD from
the titration point with 200 uM RELA RHD. Dashed line, Adtor significance cutoff of 0.04 p.p.m. (parts per million).

https://doi.org/10.1371/journal.pgen.1009933.g005

box duplex probe (Figs 5C and S6E). As shown, this ternary complex at the E-box required
both BMALI1 and CLOCK, as the complex was absent in mouse fibroblasts deficient in Bmall
or Clock (S6E Fig). This binding was effectively competed out with 100-fold excess of unlabeled
(or cold) wild type E-box oligomer, but not with cold mutated E-box, confirming the specific-
ity of the E-box complex formation (S6E Fig). The complex in the EMSA did not show a
noticeable difference with or without Myc-RELA, suggesting that RELA itself does not disrupt
the BMAL1/CLOCK:E-box complex (Fig 5C, lanes 1-2). An anti-Myc antibody, but not nor-
mal IgG, significantly decreased the complex signal, suggesting that Myc-RELA is part of the
BMAL1/CLOCK:E-box complex (Fig 5C, compare lane 4 with lane 6). The complex was
reduced by the anti-Myc antibody, likely caused by a supershift that was not revealed in the
gel. Indeed, anti-RELA antibody caused similar changes for both endogenous and exogenous
RELA (Fig 5C, compare lanes 4 and 8, and lanes 3 and 7). Taken together, these data support a
model in which NF-«B binds directly to the BMAL1/CLOCK:E-box complex to repress E-
box transcription rather than inducing disassembly of the complex.

The RELA RHD domain interacts with the BMAL1 C-terminal regulatory
domain

NF-«B functions primarily as a transcriptional activator [42]. We asked whether the NF-xB
effect on the E-box is dependent on its transcriptional activity. NF-xB contains an N-terminal
Rel homology domain (RHD) and C-terminal transactivation domain (TAD) [15,16] (S7A
Fig). Mutation of Serine 281 within the RHD to glutamate (S281E) abolishes NF-kB transcrip-
tional activity [44]. Using the steady-state reporter assay, we show that RELA-S281E lost its
transcriptional activity to induce the NF-xB-RE::dLuc reporter, but was still able to repress the
3xE-box::Luc reporter, despite weaker repression than WT RELA (S7B and S7C Fig). To deter-
mine which RELA domain underlies its repression, we generated two truncation constructs,
RELA-RHD and RELA-TAD. We found that RELA-RHD, but not RELA-TAD, retains E-
box repression activity in the 3xE-box::Luc reporter assay (S7C Fig). Taken together, these
results suggest that the classic NF-kB transcriptional activator activity is not required for its
repression of the E-box.

Since RELA and BMAL1/CLOCK form a complex on the E-box, we next determined the
specific domains that underlie the interaction. Co-IP detected an interaction between BMALL1
and the RELA RHD, but not the TAD (Fig 5D). Conversely, we asked which BMALLI region
associates with RELA. The N-terminal core domain (NCD) of BMALI contains the bHLH and
PAS domains, responsible for dimerization and DNA binding [45]. Our recent studies found
that part of the C-terminal regulatory domain (CRD) coordinates binding to CRY1 and coacti-
vator CBP/p300, and their dynamic interactions plays a critical role in enabling circadian
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oscillations [46,47]. Intriguingly, we show that, like CRY1, RELA also interacted with the BMALLI
CRD (Fig 5E). These data suggest that RELA impacts clock function likely through competitive
binding with CBP/p300. To test this hypothesis, we performed co-IP and Western blot analysis
and showed that V5-BMALLI interacts with both Myc-RELA and CBP. Importantly, Myc-RELA
was able to effectively compete with CBP for BMALI binding, with increasing amounts of Myc-
RELA correlating with decreased amounts of CBP (Fig 5F). These results further support the
mechanism in which RELA competes with CBP for binding to the BMAL1 CRD.

NF-xB binds to the BMAL1 C-terminal transactivation domain

In our previous study, we showed that CRY1 and CBP compete for binding to the transactiva-
tion domain (TAD) within the BMAL1 CRD and the shared binding sites center on the IxxLL
helical motif within the a-helix of the TAD and on a second cluster of residues in the distal C
terminus (Fig 5G) [46,47]. Our results showing that NF-«B binds to the BMAL1 TAD raised
the possibility that the same IxxLL motif is involved. To determine the precise binding site of
NF-kB on the BMAL1 TAD, we collected >N HSQC NMR spectra of '*N-labeled TAD in the
presence or absence of the RELA RHD and showed that titration of the RELA RHD led to
dose-dependent chemical-shift perturbations at residues within the helical motif of the TAD
and the distal C terminus, overlapping directly with regions that bind CRY1 and CBP (Fig
5G). These results confirm the direct interaction between BMALI and NF-xB and demon-
strate that CBP, CRY1 and NF-«B binding all converge on overlapping binding sites on the
BMALI1 TAD.

Discussion
NF-kB is a circadian clock modifier

Our genome-wide RNAIi screen uncovered many genes, representing many cellular pathways
and functions, that provide input to and modify the clock [12]. The past decade has seen sev-
eral examples of the integration of circadian clocks directly with cell physiology: AMP-acti-
vated protein kinase (AMPK) [48], mTOR and autophagy in response to nutrient and growth
signals [49-53], NAD"-dependent deacetylase sirtuin-1 (SIRT1) [54-57], oxidative stress
inducible transcription factor NRF2 [58,59], and hypoxia inducible factor HIF1o [60-62]. In
the present study, we identified NF-«xB as a clock modifier and characterized the mechanism
of how NF-«B regulates circadian clock function. NF-kB appears to bind to the regulatory
sequences of core clock genes to affect their expression even under non-stress conditions. We
show that it represses E-box transcription through direct binding to the BMAL1 TAD. In the
U20S cellular clock model, NF-xB activation and inhibition shortened and lengthened circa-
dian rhythm period lengths, respectively, whereas hyperactivation of NF-kB correlated with
low amplitude phenotypes (Figs 1 and 2 and S1).

NF-«B perturbation also altered the SCN clock and circadian behavioral rhythms, as seen
in Ikk2“* (Figs 2 and 3 and $3) and Ikk2” mice [25]. The behavioral period phenotype of
Tkk2“* mice is modest but significant as observed in other mutant mouse models such as
Clock™=, Nr1d1™~, Chrono™~, Mtor~and Tsc2*/ mice [49,50,63-65], as well as in Ikk2™” mice
[25]. Behavioral phenotypes are usually less dramatic than those in cells and this robustness is
attributable to SCN neural networking and intercellular coupling [3,32]. Findings from a pre-
vious study also suggested a role of NF-kB in the regulation of circadian rhythms [25]. The
long period phenotype in Ikk2“* mice (NF-xB constitutive activation) is mechanistically con-
sistent with the short period phenotype observed in Ikk2” "mice [25]. Taken together, basal
NF-«B activity under normal conditions is important for maintenance of circadian homeosta-
sis and increased NF-«kB activity impacts the clock function. However, these behavioral
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phenotypes (e.g. long period in Ikk2“* mice) are intriguing, as cells and SCN explants showed
opposite period phenotype. This phenotypic difference between animal behavior and cell and
tissue clocks (as in U20S and SCN) suggest possible involvement of systemic signals such as
those in the neuroendocrine and autonomic neural systems. Of relevance, there exists a recip-
rocal regulation between innate immunity and sleep disturbance [66], and constitutive NF-kB
activation or inactivation may alter neuroimmunology at the organismal level, contributing to
cell/tissue non-autonomous behavioral phenotypes.

Mechanisms of E-box repression by NF-kB

NF-«B could affect clock function by several mechanisms: binding to NF-kB-REs present in
clock genes to directly upregulate gene expression, recruiting HDACs to modify chromatin
and repress transcription [42], and interacting with BMAL1/CLOCK bound at the E-box to
indirectly repress gene expression. While upregulation of canonical NF-xB targets via the NF-
KkB-RE correlated with increased RNA Pol II binding and increased H3K27 acetylation, NF-xB
repression of BMALI/CLOCK activity at the E-box was correlated with decreased Pol II bind-
ing and decreased H3K27 acetylation [25]. It was suggested in that study that LPS affected the
clock repressors such as Per, Cry, E4bp4 and NrldI, not the Bmall, Clock, Dbp and Ror activa-
tors. Importantly, however, the high-resolution ChIP-seq data revealed that most of the
BMAL1/CLOCK/RELA triple binding peaks, including not only the clock repressors but also
the activators such as Dbp, Tef and Rorc, contain only E-boxes, suggesting indirect binding of
NF-kB at the E-box (Figs 4 and S5 and S1 Table). This is evident in the 3xE-box::Luc reporter
assay, in which the promoter sequence, unlike the endogenous genes, does not contain NF-
kB-REs or other confounding factors (Fig 4). Further, genes such as Bmall and Clock that are
not regulated via the E-box did not show RELA binding. Intriguingly, RELA displayed binding
peaks at the E-boxes in saline controls, independent of LPS treatment. Some of these peaks
were slightly shifted by LPS and even displayed decreased binding for all three factors (Figs 4
and S5) [25]. These observations suggest that LPS-induced NF-kB has some remodeling effect
on the BMAL1/CLOCK-E-box complex. Future studies are needed to investigate how BMALLI,
CLOCK and NF-kB coordinate to regulate E-box transcription.

Compared to NF-«B transcriptional activation, its repression mechanism is much less
understood [15,67]. Of relevance, acetylation of RELA by CBP/p300 at specific sites can have
both positive and negative effects on DNA binding and transcription, and so do phosphoryla-
tion and dephosphorylation. Interestingly, RELA can also recruit HDACs that modify chro-
matin to repress transcription [42]. However, HDAC inhibitors did not affect RELA
repression of BMAL1/CLOCK (54D Fig), suggesting that HDAC activity is not required for E-
box repression. Our work showed that the BMAL1 CRD coordinates interactions with CRY1
and CBP/p300 which plays a key role in enabling circadian oscillations [46,47]. In this study,
we show that, like CRY1, RELA also interacts with the BMAL1 CRD. Thus, RELA impacts
clock function likely through competitive binding with CRY repressors. Our data suggest that
CRY1 is more potent than NF-kB in repressing E-box transcription. Recent studies have made
important progresses in our mechanistic understanding of CRY repression which involves
dynamic interactions with the BMALI CRD and CLOCK PAS domains [46,47,68,69]. As
repressors of BMAL1/CLOCK at the E-box, RELA and CRY may share some aspects of the
repression mechanism which warrant future studies.

NF-kB underlies mutual regulation between circadian clocks and inflammation

Both the innate and adaptive immunological functions have prominent circadian rhythms,
including gene expression, synthesis and secretion of cytokines and chemokines, and immune
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cell functions [5,18]. Within innate immunity, recent studies have documented prominent cir-
cadian rhythms in monocytes and macrophages [5]. Toll-like receptors and cytokine and che-
mokine display circadian oscillations. Several lines of evidence support circadian regulation of
NEF-«B activity. First, key players in the NF-kB pathway (e.g., IkBat) are rhythmically expressed
in several peripheral tissues including the liver and lung, exhibiting a circadian phase similar
to Perl [11,41]. Second, CLOCK was shown to be recruited by RELA at the NF-kB-RE to influ-
ence NF-kB target genes [43], adding another layer of circadian regulation of NF-«B activity.
NF-«B signaling was altered in Clock mutant mice and in Cry-deficient mice [43,70]. In a dif-
ferent twist, RELA activation was shown to be regulated through CRY repression of adenylyl
cyclase and consequently inhibition of PKA-mediated RELA phosphorylation [71]. RORa, a
key activator of the RORE loop, upregulates IxBa: expression, thereby hindering NF-xB
nuclear translocation and activity [72]. Third, the NF-xB-RE::dLuc reporter assay showed that
NF-kB displays circadian activities in the liver [43]. These studies support mutual regulation
between the circadian and the inflammatory pathways.

Several studies in recent years have demonstrated the effects of inflammation on clock func-
tion. Inflammation induced by endotoxin treatment with LPS, IL-1 or TNFa altered clock
gene expression in the SCN [26,73], the lung [27,74], liver [25,26,73], and fibroblasts [26], as
well as locomotor activity [25,75-78]. LPS-induced lung and liver inflammation caused a
reprograming of core clock genes and outputs and led to a short period length phenotype
[25,27], consistent with our data. In a mouse model of chronic obstructive pulmonary disease
(COPD), cigarette smoke exposure combined with viral infection disrupts clock function and
leads to enhanced inflammatory responses in the lung and reduced locomotor activity [79].
Further, endotoxin was shown to suppress clock gene expression in human peripheral blood
leukocytes [80]. At the molecular level, both RELA and RELB can directly interact with
BMALI and repress BMAL1/CLOCK activity, thus providing a mechanistic basis for the
inflammatory effect on circadian clock function. Our data suggest that, under normal condi-
tions of immune and inflammatory homeostasis, basal NF-xB activity contributes to circadian
homeostasis. Under endotoxin-induced inflammation, hyperactivated NF-kB competes with
CRY1 to a certain degree to interfere with E-box function. Importantly, chronic constitutive
activation of NF-kB is considered one of the primary causes of a number of human diseases
including immune diseases, metabolic disorders, neurodegenerative diseases, cancer, and
aging. Under these pathological conditions, heightened NF-kB activity would compete with
CRY]1, thereby impacting circadian timekeeping and likely sleep/wake homeostasis [66,81].

Experimental procedures
Ethics statement

Mice were housed in the animal facility at the University of Florida. All animal experiments
were conducted according to the National Institutes of Health Guide for the Care and Use of
Laboratory Animals and approved by the Institutional Animal Care and Use Committee at the
University of Florida (No. 202110057).

Plasmids

The expression constructs pLV7-CAG-1xFlag-Bmall (full length), 1xFlag-Bmall-NCD con-
taining the bHLH, PAS-A and PAS-B domains, 1xFlag-Bmall-CRD containing the G and H
domains, Bmall-V5, and 3xFlag-Clock were cloned as described previously [46,50]. The plas-
mids encoding Flag-Rela (plasmid #20012), Flag-Relb (#20017), Flag-p50(#20018) and Flag-
P52 (#20019) were obtained from Addgene. Rela-S281E mutant was generated with primers
5’-tctgat cgcgagctcgaggageccatggagttc-3” and 5°-gaactccat gggetectcgag ctegegatcaga-3’. The
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PCR product was inserted into p3xFlag-CMV-10 vector at HindIII and EcoRI sites. Rela-RHD
was generated with primers 5’-agctaagcttatggacgatctgtttcc-3’ and 5’-agctgegge cgcttacatga-
tactcttgaaggtctc-3’, Rela-TAD with 5’-agctaagcttgagacctt caagagtatcatg-3’ and 5’-agctgeggecgct-
taggagctgatctgactcaa-3’. The amplified products were cloned into p3xFlag-CMV-10 vector at
HindIIT and NotI sites. pLV7-CAG-Ikk2 WT and Ikk2-S177/181E were generated as previ-
ously described [19,50]. The pGL3-Per2::Luc and pGL3-3xE-box::Luc reporters used in 293T
transient transfection reporter assay were described previously [37,46,82].

For adenoviral gene expression, pShuttle-CMV (Addgene #16403) and AdEasier-1 cells
(#16399) were purchased from Addgene. Full length Rela gene was inserted into pShuttle-
CMYV with Sall and NotI to obtain pShuttle-CMV-Rela. pShuttle-CMV and pShuttle-CMV-
Rela were linearized with Pmel, and transformed into competent AdEasier-1 bacterial cells for
recombination. The recombinants are named Ad for vector control and Ad-Rela for Rela.
Recombinant adenoviruses were prepared and used as described previously [83].

Animal and wheel-running locomotor activity assay

Mouse SCN organotypic slices were dissected and cultured in explant medium as previously
described [32,50]. Mice conditionally expressing constitutively active IKK2 (Ikk2“*) in neural
tissues including the forebrain and SCN (Camk2a-Cre™;LSL-Tkk2“* mice, abbreviated as
Ikk2“* mice) were generated by crossing the LSL-Ikk2“* mice (in which a LoxP-flanked STOP
cassette prevents transcription of the transgenes, Flag-tagged Ikk2“* and IRES-mediated
EGFP) [34] with the Camk2a-CreER mice [35] (gift of Dr. Sylvain Dore, Department of Anes-
thesiology). Both lines were obtained from the Jackson Laboratory. Mice of ~3 months old
were treated with either corn oil (control) or tamoxifen (75 mg per kilogram of body weight)
via i.p. injection for 5 consecutive days. Mice were used for experiments 2 weeks after tamoxi-
fen treatment. Western blot and FACS analyses were performed to confirm transgene expres-
sion. Mice were individually housed in cages equipped with running wheels and locomotor
activities were recorded as previously described [32,50]. Briefly, mice were entrained to a stan-
dard 12hr/12hr light/dark cycle for 2 weeks days and then released to constant darkness (DD)
for 2-3 weeks. Wheel-running activities were recorded and analyzed using the ClockLab pro-
gram (Actimetrics).

Immunofluorescence staining and flow cytometry

Mice were anaesthetized with isoflurane and euthanized. The brain was perfused with PBS and
4% paraformaldehyde and dehydrated in 10%, 15% and 30% sucrose in PBS. Following dehy-
dration, brains were frozen in OCT (Thermo Scientific) on dry ice and stored at —80°C. Brains
were cut using a cryostat and 30 um sections were mounted on Superfrost Plus microscope
slides (Fisher Scientific). Slides were stored at —80°C. For staining, slides were washed with
PBS, permeabilized with PBS+0.2% Triton X-100 (PBST) and blocked with 2% normal donkey
serum (Abcam ab7475) in PBST for 1 h at room temperature. Slides were incubated with pri-
mary antibodies in 2% normal donkey serum in PBST overnight at 4°C. Primary antibodies
used include 1:500 anti-NeuN (ab177487) and 1:2000 anti-GFP (ab13970). Slides were then
washed and incubated with Alexa Fluor-conjugated secondary antibodies at 1:500 in 2% nor-
mal donkey serum in PBST for 1 h at room temperature. Secondary antibodies include Alexa
Fluor 594 donkey anti-rabbit IgG H&L (ab150076) and Alexa Fluor 488-goat anti-chicken IgY
H&L (ab150173). Slides were washed and cover-slipped using Prolong Gold anti-fade with
DAPI (Invitrogen) and dried overnight. Imaging was performed on a SP8 Confocal Micro-
scope (Leica).
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For brain cell dissociation and flow cytometry, mice were anesthetized and brain tissues
dissociated with the Adult Brain Dissociation Kit (Miltenyi Biotec, cat. # 130-107-677). The
CNS tissue of each mouse was transferred to a gentle MACS C Tube (Miltenyi Biotec) contain-
ing both enzyme mixes from the kit for enzymatic digestion. Mechanical enzymatic tissue dis-
sociation was performed using program 37C_ABDK_01 of the gentle MACS Octo Dissociator
with Heaters (Miltenyi Biotec). After dissociation, each CNS homogenate was applied to one
70 um cell strainer (Corning), followed by debris removal and red blood cell lysis following the
kit. Flow cytometry was performed on total brain cells and GFP expression was analyzed on
live single cell gated populations.

Cell culture, transfection and steady-state reporter assays

Cell culture and growth conditions for HEK 293T and U20S cells were performed as previ-
ously described [12,46,84]. Briefly, 293T and U20S cells were maintained in Dulbecco’s Modi-
fied Eagle Medium (DMEM) (HyClone) supplemented with 10% fetal bovine serum, as
previously described [84,85]. For the reporter assay, 293T cells were cultured and seeded in
96-well plates, and transfected with desired plasmids using Lipofectamine 2000 (Invitrogen).
Cells were harvested 24 h later and assayed with the Dual-Glo Luciferase Assay System (Pro-
mega). Firefly luciferase activity was normalized to Renilla luciferase as an internal control for
transfection efficiency, as detailed in our previous studies [37,46,86]. The luminescent CellTi-
ter-Glo ATP assay (Promega) was used to assess cell viability. For the Lumicycle assay, samples
were collected at day 6 at the end of the run when the clock phenotype was at the strongest.
For the transient transfection assay, samples were collected 24 h post transfection when the
Dual-Glo Luciferase Assay was performed.

Bioluminescence recording and data analysis

We used a LumiCycle luminometer (Actimetrics) for luminescence recording as previously
described [39,50,59]. Briefly, cells were grown to confluence in 35-mm dishes and synchro-
nized with 200 nM dexamethasone. After synchronization, the cells were washed with PBS and
then replaced with luciferin-containing bioluminescence recording medium. For adenoviral
infection, the cells were infected with adenovirus for 4 h and then changed to regular growth
medium. One day later, the infected cells were synchronized with dexamethasome, washed
thoroughly with PBS, and then replaced with recording medium, followed by the biolumines-
cence rhythm assay. The recording medium contained 1x DMEM, 10 mM HEPES, 144 mM
NaHCO3, 1% fetal bovine serum, 1x B-27 and 0.5 mM luciferin, buffered to pH 7.4. Three
independent dishes/samples were used for each condition. Raw luminescence data (counts/s)
as a function of time (days) were analyzed with the LumiCycle Analysis program (version 2.53,
Actimetrics) to determine circadian parameters. Normally, the first 12 h data are excluded in
parameter analysis. Briefly, raw data were fitted to a linear baseline, and the baseline-sub-
tracted data were fitted to a sine wave (damped), from which period length, goodness-of-fit,
and damping constant were determined. For samples that showed persistent rhythms, good-
ness-of-fit of 90% was usually achieved. For amplitude analysis, raw data from last 3 days were
fitted to a linear baseline, and the baseline-subtracted (polynomial number = 1) data were fit-
ted to a sine wave, from which amplitude values were obtained.

Quantitative PCR analysis

For quantitative PCR (qPCR) analysis, U20S cells were synchronized using 200 nM dexa-
methasone for 2 h and infected with adenovirus expressing Ad vector control or Ad-Rela. 4 h
later, cells were changed to regular DMEM culture medium. After 36 h, cells were harvested at
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4 h intervals for a complete circadian cycle. RNA extraction, reverse transcription, and quanti-
tative real-time PCR were performed as previously described [50,59,84]. SYBR Green PCR
master mix (Thermo Scientific) was used in qPCR. The primers used in gPCR analysis are
listed in S2 Table. Transcript levels for each gene were normalized to GAPDH and values were
expressed as percentage of expression in control cells.

Electrophoretic mobility shift assay

Electrophoretic mobility super-shift assay (EMSA) was performed as done previously [87]. In
brief, 20 ug of total cell extract was incubated with **P-labeled double-stranded oligonucleo-
tides containing an E-box (CGCGCAAAGCCATGTGCTTCCCCCT) at room temperature
for 20 min. The samples were resolved on acrylamide gel electrophoresis and quantified with a
Cyclone phosphoimager (Perkin Elmer). For supershift assay, cell extracts were incubated
with 1 pg of antibody in 10 ul of EMSA reaction buffer on ice for 30 min, followed by proce-
dures for EMSA. Octl oligonucleotide (Promega) was used as control. Wild type and mutant
E-box sequences used as cold competition probes are listed in S3 Table.

Immunoprecipitation and immunoblotting

Cell lysate preparation and immunoblotting were performed as previously described [50,87-
89] with minor modifications. Briefly, cells were harvested by trypsinization and immediately
lysed in RIPA lysis buffer containing cocktails of proteases inhibitors (Roche) and phosphatase
inhibitors (Sigma). The primary antibodies used in this experiment are as following: guinea
pig antibodies against BMAL1 and CLOCK from Choogon Lee’s lab; rabbit antibodies against
RELA (Cell Signaling), Myc (Cell Signaling), Flag (Sigma), HA (Sigma); and Actin and Tubu-
lin were from Santa Cruz Biotech.

Immunoprecipitation was performed as previously described [90] with minor modifica-
tions. In brief, cells were lysed in 10% PBS and 90% IP lysis buffer (20 mM Tris, pH 7.0, 250
mM NaCl, 3 mM EDTA, 3 mM EGTA, 0.5% Nonidet P-40, 2 mM DTT, 0.5 mM PMSF, 20
mM B-glycerol phosphate, 1 mM sodium orthovanadate, 1 pg/ml leupeptin, 1 ug/ml aprotinin,
10 mM p-nitrophenyl phosphate, and 10 mM sodium fluoride). 5% of total lysate was used as
input control samples. The rest of the lysate was incubated with 1 ug of primary antibody on a
rotator at 4°C overnight. Next day, protein G-sepharose was added to the mixture and incu-
bated at 4°C for 4 hr. Finally, protein G-sepharose enriched complexes were resolved on
SDS-PAGE and analyzed by Western blot analysis.

Chromatin immunoprecipitation (ChIP) was performed as previously described [87,90]
with minor modifications. U20S cells were synchronized using 200 nM dexamethasone for 2
hours and then infected by adenovirus of Ad vector control or Ad-Rela. 4 hours later, cells
were changed to regular DMEM culture medium. After 36 hours, cells were fixed for 10 min at
room temperature in 1x PBS containing 0.5% formaldehyde and quenched with 0.125 M gly-
cine for 15 min. After washing with cold PBS, the cells were scraped into 1x PBSin a 15 mL
conical tube and pelleted at 1,500 rpm for 10 min at 4°C. The pellet was suspended and lysed
in lysis buffer (5 mM PIPES, pH 8.0, 85 mM KCl, 0.5% Nonidet P-40) for 10 min on ice. Cell
lysates were sonicated with eight 20-second pulses with 20-second pauses. Cell nuclei were pel-
leted at 1,300 rpm for 10 min at 4°C and resuspended in 1 mL nuclei lysis buffer (50 mM Tris-
Cl, pH 8.0, 10 mM EDTA, 1% SDS, supplemented with protease inhibitors), followed by incu-
bation on ice for 10 min and then sonication with six 15-second pulses with 45-second pauses.
The samples were centrifuged at 15,000 rpm at 4°C for 5 min and supernatants were used for
ChIP. Primers used in qPCR to amplify the E-box region of PER2 and DBP genes were
designed based on previous studies [30] and are listed in S4 Table.
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NMR spectroscopy

All proteins were expressed in Escherichia coli Rosetta2 (DE3) cells from a pET22b vector
backbone. Recombinant proteins for RELA-RHD (1-318) and BMALI TAD (579-626) were
cloned from the mouse Rela or Bmall genes, and each had an N-terminal TEV-cleavable His-
GST tag. Cells were grown in Luria Broth media (for natural abundance RELA-RHD) or M9
minimal media with '>N-ammonium chloride for uniform incorporation of the stable isotope
for NMR of BMAL1 TAD. All cultures were grown at 37°C until an O.D.¢, of ~0.8 was
reached, after which expression was induced with addition of 0.5mM IPTG. Cultures were
grown at 18°C for an additional 16-20 hours. Cell pellets for the BMAL1 TAD were lysed in
buffer containing 50 mM Tris, pH 7.5, 300 mM NaCl and 20 mM imidazole for affinity purifi-
cation using Ni-NTA resin (Qiagen) as we have done previously [46]. Imidazole-eluted protein
was buffer exchanged to a low-imidazole buffer by desalting column or diafiltration with an
Amicon stirred-cell concentrator under nitrogen pressure. The His-GST tag was removed via
TEV protease overnight at 4°C. Cleaved protein was separated from TEV and the His-GST tag
with a Ni-NTA column and proteins were further purified by size-exclusion chromatography
on Superdex 75 16/600 (GE Life Sciences) in NMR buffer (10 mM MES, pH 6.5, and 50 mM
NaCl). For RELA-RHD, cells were lysed using a high-pressure extruder (Avestin) in buffer
containing 50 mM Tris, pH 7.5, 300 mM NaCl, ImM EDTA, 5 mM BME. Affinity purification
was carried out with Glutathione Sepharose 4B resin (GE Healthcare). The His-GST tag was
removed via TEV protease overnight at 4°C and cleaved protein was separated from the TEV
and the His-GST tag with a Ni-NTA column. Protein was further purified with size-exclusion
chromatography on HiLoad 16/600 Superdex 75 prep grade column (GE Healthcare) in NMR
buffer. Proteins were aliquoted and frozen in liquid nitrogen for long-term storage at -80°C.

NMR experiments were conducted on a Varian INOVA 600-MHz spectrometer at 25°C
equipped with 'H, '*C, °N triple-resonance, z-axis pulsed-field-gradient probes. All NMR
data were processed with NMRPipe/NMRDraw [91]. Chemical-shift assignments were
obtained from previous work in the lab [46]. Concentrated RELA-RHD protein was added
stepwise to 100 uM '°N-TAD protein for the '’N HSQC titration. Each sample was concen-
trated to 300 uL final volume and adjusted to a final concentration of 10% (v/v) D,0. 15N
HSQC titration data were analyzed with CCPNMR [92] with chemical-shift perturbations
defined by the equation A,y = [(AS'H)? + (x(ASISN)Z]VZ and normalized with the scaling fac-
tor 3 = 0.15, established from estimates of atom-specific chemical-shift ranges in a protein
environment [93].

ChIP-sequencing analysis

We obtained previously reported ChIP-seq data with antibodies targeting on the RELA/p65
subunit of NF-xB, CLOCK, BMALLI, and their input sample (no specific antibody) of mouse
liver treated with LPS from GEO (GSE117488) [25]. For comparison, we also obtained NF-xB
antibody ChIP-seq data and its input sample from mice treated with saline. Each condition
contained two biological replicates. The raw fastq reads were aligned to Mus musculus genome
assembly (mm10) using Bowtie 2 with sensitive-local option [94], which can automatically
trim the mismatched nucleotide bases (low quality or adaptors) from the end of a read. The
biological replicates of the aligned reads were merged together before further analyses. Find-
Peaks function in the Homer software [95] was deployed to perform peak calling for the NF-
kB, CLOCK, and BMALLI samples with their respective input sample as background control.
Significant peaks were declared using the default false discovery rate threshold 0.1%. The com-
parison of the peaks from NF-xB, CLOCK, and BMALI1 samples were conducted using the
mergePeaks function in Homer. Selected peaks were visualized using UCSC genome browser
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[96]. The peak sequences of ~200 bp were used for transcription factor binding motif search
using the JASPAR program with a relative profile score threshold of 85% or above [97].

Supporting information

S1 Fig. Perturbation of the NF-kB pathway components altered circadian rhythms in
U20S cells harboring the Per2-dLuc reporter. (A) siRNA-mediated knockdown of IxBa and
IKK2 in U20S cells caused short and long period lengths, respectively. (B) Exogenous expres-
sion of IKK2-S177/181E (IKK2“*) that leads to constitutive acitivation of NF-kB caused short
period lengths in U20S cells. (C-D) IKK2 inhibition with chemical inhibitors withaferin A
(WA, 1 uM) in (C) or different doses of CAT-1041 in (D) caused long period lengths in U20S
cells. In (B-D), n = 3 independent wells. ** p < 0.01 relative to control. (E) ATP assay to assess
cell viability. Cell samples were collected at day 5-6 at the end of the Lumicycle run when the
clock phenotype was the strongest. Adenoviral RELA expression in U20S cells did not cause
toxicity or cell death. (F) NF-«B affected clock gene expression in U20S cells. Cells were trans-
duced with either adenoviral vector control (Ad) or NF-xB subunit RELA (Ad-Rela). The
expression patterns of core clock genes were determined by Q-PCR. See Fig 1C for detail.
(TIF)

S2 Fig. NF-kB affects circadian rhythms in the SCN. Circadian bioluminescence rhythms of
Per2"*“ SCN explants expressing either adenoviral vector control (Ad) or adenoviral RELA
expression vector (Ad-Rela). Shown are additional SCN explants for Fig 2B.

(TIF)

S3 Fig. NF-kB affects circadian locomotor activity behavior in mice. (A-B) Characterization
of Camk2a-Cre®;LSL-Ikk2“* mice. Mice treated with corn oil serve as vehicle controls.
Tamoxifen injection leads to Cre-mediated deletion of the LSL stop cassette and allows expres-
sion of the Flag tagged Ikk2“* transgene and the IRES-mediated GFP. Flag-TKK2“* and IL12B
(an NF-kB target) expression was detected by Western blotting (A) and GFP by FACS analysis
(B). (C) Immunohistochemical staining to show neuronal expression of the transgene upon
tamoxifen injection. Blue, DAPI; green, GFP; red, NeuN. SCN: suprachiasmatic neuclei. 3V,
the third ventricle. Scale bars: 200 um and 100 um. (D) Representative double-plotted acto-
grams of wheel-running activity rhythms in control and Ikk2“* female mice. See Fig 3 for
detail. (E) Circadian period length by sex. n = 4 mice for each group. *** p < 0.001. (F) Repre-
sentative plots of periodogram amplitude of mice under constant darkness (DD, left panel)
and constant light (LL, right panel). In control mice in LL, a main peak is seen at ~25 h, indi-
cating lengthened period length. Compared to controls, Ikk2“* mice more readily became
arrhythmic and had lower periodogram amplitude.

(TIF)

S4 Fig. NF-kB affects E-box-mediated transcription. Steady-state luciferase reporter assay in
transiently transfected 293T cells. (A) NF-«B itself, in the absence of BMAL1/CLOCK (B/C),
did not activate the E-box transcription from the 3xE-box::Luc or Per2-dLuc reporters (left,
middle), but repressed BMAL1/CLOCK activation of the Per2::Luc reporter (right). RELA,
RELB, p50 and p52 are NF-«B subunits. (B) ATP assay to assess cell viability. Transfection of
the NF-kB subunits in 293T cells did not cause toxicity or cell death. Cell samples were col-
lected 24 h post transfection and used for the Dual-Glo Luciferase Assay. (C) Inhibition of the
endogenous NF-«xB by chemical inhibitors (10 uM GSK143, 20 nM Bay 11-7082, or CAT-
1041 as the indicated doses) relieved its repression on the E-box-mediated transcription of the
luciferase reporter. (D) HDAC inhibitors nicotinamide (1 mM) and valproic acid (10 mM)
did not affect NF-xB repression of E-box transcription. n = 6 independent wells for each assay.
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**p < 0.01.
(TTF)

S5 Fig. Representative UCSC genome browser images of RELA, BMALI1, and CLOCK
ChIP-seq tracks at the genes. ChIP-seq analysis revealed overlapping binding of BMALL,
CLOCK and RELA at the E-boxes of the indicated clock genes. (A) Examples of NF-kB targets
via NF-kB-RE. (B) BMAL1/CLOCK targets via E-box. (C) Examples of core clock genes regu-
lated by BMAL1/CLOCK via E-box and by NF-kB via NF-kB-RE. (D) Examples of core clock
genes regulated by coordinated actions of BMAL1/CLOCK and RELA via E-box only. Nor-
malized tag counts are indicated on the Y-axis. The genomic DNA for the region (chromo-
some # and sequence start and end position) is shown on the top. The predicted motif are
shown on the bottom. Green square, E-box. Red square, NF-kB-RE. Motif prediction is in S1
Table. Note that although motif search for Nr1d1 predicted an NF-kB-RE site at the second
peak, the sequence is located at the peak periphery, not at the peak center (S1 Table), and the
peak was not LPS inducible, suggesting that NF-kB binding at the second peak is mediated by
the two E-boxes at the peak center.

(TIF)

S6 Fig. RELA associates with BMALLI on the E-box. (A) Reciprocal co-IP and Western blot
to detect the interaction between RELA and CLOCK. Their interaction was not consistently
detected in cotransfected 293T cells even after long exposure, indicative of weak interactions.
(B) Interaction between RELA and CLOCK was readily detected in co-transfected 293T cells
in the presence of coexpressed BMALIL. (C) The RELA and CLOCK interaction was drastically
reduced in Bmall-deficient mouse fibroblasts. (D) Co-IP and Western blot detected BMALI1
and RELA interaction in Clock-deficient mouse fibroblasts. (E) Electrophoretic mobility shift
assay (EMSA). The BMAL1/CLOCK (B/C) heterodimer formed a complex with 32p_Jabeled E-
box duplex probe (B/C:E-box) in WT cells (left), but not in cells deficient in Bmall or Clock,
indicating that the BMAL1/CLOCK dimer is required for the BMAL1/CLOCK:E-box ternary
complex formation. The specificity of complex formation was confirmed by completion with a
100-fold excess of unlabeled (cold) wild type probe (WT1, 2), but not with mutated duplex
(mutant).

(TIF)

S7 Fig. RELA interacts with the BMALI C-terminal transactivation domain. (A) Schematic
diagram of domain structure of RELA. RHD: Rel homology domain. TAD: transactivation
domain. Shown are the point mutation and truncation constructs used in the study. (B-C)
Steady state luciferase reporter assay in transiently transfected 293T cells using the NF-xB-RE::
dLuc (B) or 3xE-box::Luc reporter (C). The RELA-S281E mutant failed to activate the NF-
kB-RE::dLuc reporter, but effectively repressed the 3xE-box::Luc reporter. The RELA RHD
retains the E-box repression activity. n = 6 independent wells. *** p < 0.001.

(TIF)

S1 Table. The E-box and NF-kB-RE motifs within the binding peaks of BMAL1, CLOCK
and RELA in ChIP-seq data.
(PDF)

S2 Table. Q-PCR primers for human genes.
(PDF)

$3 Table. Q-PCR primers for ChIP-PCR.
(PDF)
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$4 Table. Probe sequences for gel shift.
(PDF)
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