LATTE: LSTM Self-Att ention based Anomaly Detection
in Embedded Automotive Platforms

VIPIN KUMAR KUKKALA, SOORYAA VIGNESH THIRULOGA, and
SUDEEP PASRICHA, Department of Electrical and Computer Engineering,
Colorado State University, USA

Modern vehicles can be thought of as complex distributed embedded systems that run a variety of auto-
motive applications with real-time constraints. Recent advances in the automotive industry towards greater
autonomy are driving vehicles to be increasingly connected with various external systems (e.g., roadside
beacons, other vehicles), which makes emerging vehicles highly vulnerable to cyber-attacks. Additionally,
the increased complexity of automotive applications and the in-vehicle networks results in poor attack visi-
bility, which makes detecting such attacks particularly challenging in automotive systems. In this work, we
present a novel anomaly detection framework called LATTE to detect cyber-attacks in Controller Area Net-
work (CAN) based networks within automotive platforms. Our proposed LATTE framework uses a stacked
Long Short Term Memory (LSTM) predictor network with novel attention mechanisms to learn the normal
operating behavior at design time. Subsequently, a novel detection scheme (also trained at design time) is
used to detect various cyber-attacks (as anomalies) at runtime. We evaluate our proposed LATTE framework
under different automotive attack scenarios and present a detailed comparison with the best-known prior
works in this area, to demonstrate the potential of our approach.

CCS Concepts: « Security and privacy — Network security; - Networks — Cyber-physical networks;
« Computer systems organization — Embedded systems;

Additional Key Words and Phrases: Anomaly detection, automotive networks, machine learning, recurrent
neural networks, cyber-physical systems

ACM Reference format:
Vipin Kumar Kukkala, Sooryaa Vignesh Thiruloga, and Sudeep Pasricha. 2021. LATTE: LSTM Self-Att en-

tion based Anomaly Detection in Embedded Automotive Platforms. ACM Trans. Embed. Comput. Syst. 20, 5s,
Article 67 (September 2021), 23 pages.

https://doi.org/10.1145/3476998

1 INTRODUCTION

Modern vehicles are experiencing a rapid increase in the complexity of embedded systems
integrated into various vehicle subsystems, due to the increased interest in autonomous driving.

This article appears as part of the ESWEEK-TECS special issue and was presented in the International Conference on
Hardware/Software Codesign and System Synthesis (CODES+ISSS), 2021.

Authors’ addresses: V. K. Kukkala (corresponding author), S. V. Thiruloga, and S. Pasricha, Department of Electrical
and Computer Engineering, Colorado State University, Fort Collins, CO 80523-1373; emails: {vipin.kukkala, sooryaa,
sudeep}@colostate.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Association for Computing Machinery.

1539-9087/2021/09-ART67 $15.00

https://doi.org/10.1145/3476998

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 67. Publication date: September 2021.

https://doi.org/10.1145/3476998
mailto:permissions@acm.org
https://doi.org/10.1145/3476998

67:2 V. K. Kukkala et al.

The aggressive competition between automakers to reach autonomy goals is further driving
the complexity of Electronic Control Units (ECUs) and the communication network that con-
nects them [1]. Additionally, recent solutions for Advanced Driver Assistance Systems (ADAS)
require interactions with various external systems using a variety of communication standards
such as 5G, Wi-Fi, and Vehicle-to-X (V2X) protocols [2]. The V2X communication facilitates a
spectrum of connections such as vehicle-to-vehicle (V2V), vehicle-to-pedestrian (V2P), vehicle-
to-infrastructure (V2I), and vehicle-to-cloud (V2C) [3]. These new solutions are transforming
modern vehicles by making them more connected to the external environment. To support the
increasingly sophisticated ADAS functionality and connectivity to the outside world, highly
complex software is required to run on the ECUs in such vehicles, to handle highly safety-critical
and time-sensitive automotive applications, e.g., pedestrian and traffic sign detection, lane chang-
ing, automatic parking, path planning, etc. This increased software and hardware complexity of
the automotive electrical/electronic (E/E) architecture and increased connectivity with external
systems has an important implication: it provides a large attack surface and thus gives rise to more
opportunities for attackers to gain unauthorized access to the in-vehicle network and execute
cyber-attacks. The complexity in emerging vehicles also leads to poor attack visibility over the
network, making it hard to detect attacks that can be easily hidden within normal operational
activities. Such cyber-attacks on vehicles can induce various anomalies in the network, altering
the normal behavior of the network as well as the compute system (ECU) behavior. Due to the
time-sensitive and safety-critical nature of automotive applications, any minor instability in
the system due to these induced anomalies could lead to a major catastrophe, e.g., delaying the
perception of a pedestrian, preventing an airbag from deploying in the case of a collision, or
erroneously changing lanes into oncoming traffic, due to maliciously corrupted sensor readings.

An attack via an externally-linked component or compromised ECU can manifest in several
forms over the in-vehicle network. One of the most commonly observed attacks is flooding the in-
vehicle network with random or specific messages which increases the overall network load and
results in halting any useful activity over the network. An advanced remote attack on an ECU could
involve sending a kill command to the engine during normal driving. More sophisticated attacks
could involve installing malware on the ECU and using it to achieve malicious goals. Some of the
recent state-of-the-art attacks have used a vehicle’s infotainment system as an attack vector to
launch buffer overflow and denial of service attacks [5], performed reverse engineering of keyless
entry automotive systems to wirelessly lock pick the vehicle immobilizer [6], etc. Researchers in [4]
foresee a much more severe attack involving potentially targeting the U. S. electric power grid by
using public electric vehicle charging stations as an attack vector to infect vehicles that use these
stations with malware. Many other attacks on real-world vehicles are presented in [7-10]. The
common aspect of these attacks is that they involve gaining unauthorized access to the in-vehicle
network and modifying certain fields in the message frames, thereby tricking the receiving ECU
into thinking that the malicious message is legitimate. All of these attacks can have catastrophic
effects and need to be detected before they are executed. This problem will get exacerbated with
the onset of connected and autonomous vehicles. Hence, restricting external attackers via early
detection of their attacks is vital to realizing secure automotive systems.

Conventional computer networks utilize protective mechanisms such as firewalls (software)
and isolation units such as gateways and switches (hardware) to protect from external attacks
[11]. However, persistent attackers have been coming up with advanced attacks that leverage the
increased compute and communication capabilities in modern ECUs, causing the traditional pro-
tection systems to become obsolete. This raises a need for a system-level solution that can contin-
uously monitor the vehicle network, to detect cyber-attacks. One promising solution is to deploy
a software framework for anomaly detection, which involves monitoring the network for unusual

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 67. Publication date: September 2021.

LSTM Self-Att ention based Anomaly Detection in Embedded Automotive Platforms 67:3

Deviation |-- Expected —Observed |

L= .

WW;\;/i
| VOV,

A ﬁf\/\ﬁ\j\/\/&

sagessaw NY)

Fig. 1. An example of an anomaly detection framework that monitors the network traffic and detects devi-
ations from expected normal behavior during the attack intervals shown in red.

activities and raising an alarm when suspicious activity is detected. This approach can be extended
to detect and classify various types of attacks on the in-vehicle network. Such a framework can
learn the normal system behavior at design time and monitor the network for anomalies at runtime.
A traditional approach for anomaly detection uses rule-based approaches such as monitoring mes-
sage frequency [12], memory heat map [13], etc., to detect known attack signatures. However, due
to the increased complexity of cyber-attacks, such traditional rule-based systems fail to recognize
new and complex patterns, rendering these approaches ineffective. Fortunately, recent advances
in deep learning and the availability of in-vehicle network data have brought forth the possibility
of using sophisticated deep learning models for anomaly detection.

In this work, we present a novel anomaly detection framework called LATTE to detect cyber-
attacks in the Controller Area Network (CAN) based automotive networks. Our proposed LATTE
framework uses sequence models in deep learning in an unsupervised setting to learn the normal
system behavior. LATTE leverages that information at runtime to detect anomalies by observing
for any deviations from the learned normal behavior. This is illustrated in Figure 1. The plot on the
top right shows the expected deviation (computed using the model that was trained at design time)
vs the observed deviation. The divergence in signal values during the attack intervals (shown in red
area) can be used as a metric to detect cyber-attacks as anomalies. Our proposed LATTE framework
aims to maximize the anomaly detection accuracy, precision, and recall, while minimizing the
false-positive rate. Our novel contributions in this work can be summarized as follows:

e We propose a stacked Long-Short Term Memory (LSTM) based predictor model that inte-
grates a novel self-attention mechanism to learn the normal automotive system behavior at
design time;

e We design a one class support vector machine (OCSVM) based detector that works with the
LSTM self-attention predictor model to detect different cyber-attacks at runtime;

e We present modifications to existing vehicle communication controllers that can help in
realizing the proposed anomaly detection system on a real-world ECU;

e We perform a comprehensive analysis on the selection of deviation measures that quantify
the deviation from the normal system behavior;

e We explore several variants of our proposed LATTE framework and selected the best
performing one, which is then compared with the best-known prior works in the area
(statistical-based, proximity-based, and ML-based works), to show LATTE’s effectiveness.

2 RELATED WORK

Several automotive attacks have been studied by researchers to discover vulnerabilities in auto-
motive systems. Recent attacks such as [15] exploit the vulnerability in security access algorithms

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 67. Publication date: September 2021.

67:4 V. K. Kukkala et al.

to deploy airbags without any actual impact. The attackers in [16] reverse engineered a telematics
control unit to exploit a memory vulnerability in the firmware to circumvent the existing firewall
and remotely send diagnostic messages to control an ECU. Other attacks that compromised the
ADAS camera sensor were studied in [17]. All of these attacks create anomalous behavior during
vehicle operation, which a good anomaly detection framework must detect.

Anomaly detection has been a popular research topic in the domain of computer networks, and
several solutions have been proposed to detect cyber-attacks in large-scale computer networks
[18]. Although some of these solutions are highly successful in defending computer networks
against various attacks, they require high compute power. The resource-constrained nature of au-
tomotive systems makes many of these solutions hard to adapt for detecting cyber-attacks in the
in-vehicle networks. In the past decade, several solutions were developed to tackle the problem of
anomaly detection in automotive systems [19-34]. These works can be broadly divided into two
categories (i) heuristic-based, and (ii) machine learning based. Heuristic-based anomaly detection
approaches typically observe for traces of known attack patterns, whereas a machine-learning-
based approach can learn the normal behavior during an offline phase and observes for any de-
viation from the learned normal behavior at run-time, to detect anomalies. The heuristic-based
techniques can be simple and have fast detection times when compared to machine learning based
techniques. However, machine learning based techniques can detect both known and unknown
attacks, which is not possible with heuristic based techniques. Some of the key prior works in
these categories are discussed in the rest of this section.

2.1 Heuristic Based Anomaly Detection

The authors in [19] used a language theory-based model to obtain signatures of known attacks
from the vehicle’s CAN bus. However, their approach fails to detect anomalous sequences when
the model misses the packets transmitted during the early stages of an attack. In [20], the authors
used transition matrices to detect anomalous sequences in a CAN bus-based system. This approach
was able to achieve low false-positive rates for simple attacks but failed to detect realistic replay
attacks. The authors in [21] proposed a Hamming-distance based model which monitors the CAN
network to detect attacks. However, the model had very limited attack coverage. In [22], the
authors proposed a specification-based approach and compared it with predefined attack patterns
to detect anomalies. In [23], a time-frequency analysis model is used to continuously monitor
CAN message frequency to detect anomalies. In [24], a heuristic-based approach is used to build a
normal operating region by analyzing the messages at design time and using a message-frequency-
based in-vehicle network monitoring system to detect anomalies at runtime. The authors in [25]
use a clock-skew based fingerprint to detect anomalies by observing the variations in clock-skew
of sender ECUs at runtime. In [26], the authors propose an anomaly detection system that mon-
itors the entire system for change in entropy to detect anomalies. However, their approach fails
to detect smaller anomalous sequences that result in minimal change in the entropy. In a nutshell,
heuristic-based anomaly detection systems provide low-cost and high-speed detection techniques but
fail to detect complex and new attacks. Additionally, modeling every possible attack signature is
practically impossible, and hence these anomaly detection approaches have a limited scope.

2.2 Machine Learning Based Anomaly Detection

Recent works leverage advances in machine learning to build highly efficient anomaly detection
systems. A deep neural network (DNN) based approach was introduced in [27], that continu-
ously monitors the network and observes for change in communication patterns. However, this
approach is only designed and tested for a low priority system (a tire pressure monitoring system),
which limits us from directly adapting this technique to safety-critical systems. In [28], the authors

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 67. Publication date: September 2021.

LSTM Self-Att ention based Anomaly Detection in Embedded Automotive Platforms 67:5

Table 1. Comparison between our Proposed LATTE Framework and the State-of-the-Art Works

Network Attention Detection Requires
Technique Task architecture type technique labeled data?
BWMP [30] Bit level prediction LSTM network - Static threshold Yes
RepNet [28] Input recreation Replicator network - Static threshold No
HADAD [34] | Input recreation Autoencoder Hierarchical KDE and KNN Yes
LATTE Next message value | Encoder-decoder Self-attention | OCSVM No
prediction

proposed a recurrent neural network (RNN) based intrusion detection system that attempts to learn
the normal behavior of CAN messages in the in-vehicle network. A hybrid approach was proposed
in [29], which utilizes both specification and RNN based systems in two stages to detect anom-
alies. In [30] the authors propose an LSTM based predictor model that predicts the next time step
message value at a bit level and detects intrusions by observing for large deviations in prediction
errors. A long short-term memory (LSTM) based multi message-id detection model was proposed
in [31]. However, the model is highly complex and has a high implementation overhead when de-
ployed on an ECU. In [32], the authors proposed a GRU-based lightweight recurrent autoencoder
and a static threshold-based detection scheme to detect various attacks in the in-vehicle network.
The use of static threshold values for detection limits the scheme to detecting only very simple
attacks. In [33], the authors propose a deep convolutional neural network (CNN) model to detect
anomalies in the vehicle’s CAN network. However, the model does not consider the temporal rela-
tionships between messages, which can better predict certain attacks. The authors in [34] proposed
an LSTM framework with a hierarchical attention mechanism to reconstruct the input messages.
A non-parametric kernel density estimator along with a k-nearest neighbors classifier is used to
reconstruct the messages and the reconstruction error is used to detect anomalies. Although most
of these techniques attempt to increase the detection accuracy and attack coverage, none of them offers
the ability to process very long sequences with relatively low memory and runtime overhead and still
achieve reasonably high performance.

In this paper, we propose a robust deep learning model that integrates a stacked LSTM based
encoder-decoder model with a self-attention mechanism, to learn normal system behavior by
learning to predict the next message instance. Table 1 summarizes some of the state-of-the-art
anomaly detection works and their key features, and highlights the unique characteristics of our
proposed LATTE framework. At runtime, we continuously monitor in-vehicle network messages
and provide a reliable detection mechanism using a non-linear classifier. Sections 4 and 5 provide
a detailed explanation of the proposed model and overall framework. In Section 6 we show how
our model is capable of efficiently identifying a variety of attack scenarios.

3 BACKGROUND

Solving complex problems using deep learning was made possible due to advances in computing
hardware and the availability of high-quality datasets. Anomaly detection is one such problem that
can leverage the power of deep learning. In an automotive system, ECUs exchange safety-critical
messages periodically over the in-vehicle network. This time series exchange of data results in
temporal relationships between messages, which can be exploited to detect anomalies. However,
this requires a special type of neural network, called Recurrent Neural Network (RNN) to capture
the temporal dependencies between messages. Unlike traditional feed-forward neural networks
where the output is independent of any previous inputs, RNNs use previous sequence state infor-
mation in computing the output, which makes them an ideal choice to handle time-series data.

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 67. Publication date: September 2021.

67:6 V. K. Kukkala et al.

3.1 Recurrent Neural Network (RNN)

AnRNN [35] is the most basic sequence model that takes sequential data such as time-series data as
the input and learns the underlying temporal relationships between data samples. An RNN block
consists of an input, an output, and a hidden state that allows it to remember the learned temporal
information. The input, output, and hidden state all correspond to a particular time step in the
sequence. The hidden-state information can be thought of as a data point in the latent space that
contains important temporal information about the inputs from previous time steps. The current
stage output of an RNN is computed by taking the previous hidden-state information along with
the current input. Moreover, since the backpropagation in RNNs occurs through time, the error
value shrinks or grows rapidly leading to vanishing or exploding gradients. This severely restricts
RNNs from learning patterns in the input data that have long-term dependencies [36]. To overcome
this problem, long short-term memory (LSTM) networks [37] with additional gates and states were
introduced.

3.2 Long Short-Term Memory (LSTM) Network

LSTMs are enhanced RNNs that consist of a cell state, hidden state, and multiple additional
gates that help in learning long-term dependencies. The cell state carries the relevant long-term
dependencies throughout the processing of an input sequence, whereas the hidden state contains
relevant information from the recent time steps accommodating short-term dependencies. The
gates in LSTM regulate the flow of the information from the hidden state to the cell state. These
combinations of gates and states give LSTM an edge over the simple RNN in remembering
long-term dependencies in sequences. LSTMs have therefore replaced simple RNNs in the areas
of natural language processing, time-series forecasting, and machine translation [36].

In general, LSTMs overcome many of the limitations of RNNs and provide a more than accept-
able solution for the vanishing and exploding gradient descent problems. However, their perfor-
mance drops significantly when handling very long sequences (e.g., with 100 or more time steps).
This is mainly because the predictions of an LSTM unit at the current time step t, are heavily in-
fluenced by its previous hidden state and cell state at time step #-1 as compared to the past time
steps. Therefore, for a very long input sequence, the representation of the input at the first time
step tends to diminish as the LSTM processes inputs at the future time steps. To overcome this
limitation, we need a mechanism that can look back and identify the information that can in-
fluence future sequences. One such look-back mechanism is neural attention, which is discussed
next.

3.3 Attention

Attention, or neural attention is a mechanism in neural networks that can mimic the visual
attention mechanism in humans [38]. A human eye can focus on certain objects or regions with
higher resolution compared to their surroundings. Similarly, the attention mechanism in neural
networks can allow focusing on the relevant parts of the input sequence and selectively output
only the most relevant information. While sequence models such as LSTMs typically take the
previous hidden state information and the input at the current time step to compute the current
output, they suffer in performance when processing very long input sequences as the information
from the first time step is less representative in the hidden states compared to the information
from the very recent time steps. Incorporating attention mechanisms with LSTMs can overcome
this problem by allowing the sequence models to capture the crucial information from any past
time steps of the input sequence.

Attention mechanisms are frequently used in encoder-decoder architectures [36]. An encoder-
decoder architecture mainly consists of three major components (i) encoder, (ii) latent vector, and

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 67. Publication date: September 2021.

LSTM Self-Att ention based Anomaly Detection in Embedded Automotive Platforms 67:7

X1
o)

hy hy

N
T
T
=
'
Nl
t=1 x; X3 ™ ;‘;
|2 [| Decoder
g input
t=2 x H 'i' 2
3 X3 o |E
1 1 S
becod . ! Attention
_ ecoder il weights
=5 xeofomg) [ol ff
=, —
No attention With attention
(@ (b)

Fig. 2. Comparison of input to the decoder in case of (a) no attention, (b) with attention in sequence models
using LSTMs.

(iii) decoder. The encoder converts the input sequence to a fixed-size latent representation called
a latent vector. The latent vector contains all the information representing the input sequence in
a latent space. The decoder takes the latent vector as input and converts it to the desired out-
put. However, due to the latent vector’s fixed-length representation of the input sequence, it fails
to encapsulate all the information from a very long input sequence, thereby resulting in poor
performance. To address this problem, the authors in [39] introduced an attention mechanism in
sequence models that enabled encoders to build a context vector by creating customized shortcuts
to parts of the inputs. This ensures that the context vector represents the crucial parts and learns
the very long-term dependencies in the input sequence leading to improved decoder outputs. In
[40], the authors propose a self-attention mechanism for an LSTM encoder-decoder model that
consumes all the encoder hidden states to compute the attention weights.

An illustration of generating the input to the decoder in an LSTM-based encoder-decoder model
rolled out in time for 4 time steps is shown in Figure 2. The input to the LSTM at each time
step is represented as (x;) and the initial hidden vector is hy. The colored rectangle next to each
LSTM unit for every time step represents the hidden state information and the height of each
color signifies the amount of information from each time step. Inside the LSTM cell at each time
step, a square filled with a different color is used to represent the hidden state information of that
time step. Moreover, for this example, we consider a scenario where the output at the last time
step (t = 4) has a high dependency on the input at the second time step (xz). We can see that in
Figure 2(a), the LSTM hidden state at ¢ = 4 largely comprises of information from the third (blue)
and fourth (orange) time steps. This results in sending the decoder an incorrect representation
of current time step dependency, which leads to poor results at the output of the decoder. On
the contrary, in Figure 2(b), the self-attention block consumes all hidden state representations at
each time step as well as the current time step (¢t = 4) and generates the context vector (decoder
input). It can be observed that the self-attention mechanism clearly captures the high dependency
of output at ¢t = 4 on the output at t = 2 (shown in the hidden state information at the output
of self-attention). This can also be seen in the attention weights computed by the self-attention
where the information from the second (green) time step is given high weightage compared to
others. Therefore, by better representing the important parts of the input sequence in the decoder
input, the self-attention mechanism is able to facilitate better decoder outputs. Also, unlike other
attention mechanisms such as [41], the attention vector in self-attention aligns encoder outputs
to encoder hidden states, thereby removing the need for any feedback from previous decoder
predictions. Moreover, due to the lack of a decoder feedback loop, the self-attention mechanism

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 67. Publication date: September 2021.

67:8 V. K. Kukkala et al.

"""""" 1 e =] T B rmcens 1
1 Processor ! ' Processor ! 1 Processor ! tTo processor
! 1 { 1 ! 1 ’
E Core 0| |Core 1 ' E Core 0 |Core 1| ' E Core 0| [Core 1 : o . NAesSRee e ~our Anomaly | Anomaly
R T I } R W . Detection System
IC i 1 |[C ication]| [ication| g ¥
controller controller controller m'“:;‘ Detector
| Transceiver | | Transceiver | | Transceiver | N .
\ Message _1 Filters
\ a
ﬁ @ ﬁ \ : counters 0
\ o—
7 O
r N N
Malicious t \ Tx Rx
node) v

Fig. 3. Overview of the system model with our proposed modifications to the communication controller.

can quickly learn the temporal dependencies in the long input sequences. In this work, for the first
time, we adapt the self-attention mechanism to a stacked LSTM based encoder-decoder network
to learn the temporal relationships between messages in a CAN based automotive network.

4 PROBLEM FORMULATION
4.1 System Overview

In this work, we consider an automotive system that consists of multiple ECUs connected using
a CAN based in-vehicle network, as shown in Figure 3. Each ECU consists of three major com-
ponents: (a) processor, (b) communication controller, and (c) transceiver. A processor can have
single or multiple cores that are used to execute real-time automotive applications. Most of these
automotive applications are hard real-time and have strict timing and deadline constraints. Each
application can be modeled as a set of data dependent and independent tasks mapped to different
ECUs. The dependent tasks communicate by exchanging messages over the CAN network. A com-
munication controller acts as the interface between the computation and communication realms.
It facilitates the data movement from the processor to the network fabric and vice versa. Some of
the important functions of a communication controller include packing of data from the proces-
sor into CAN frames, managing the transmission and reception of CAN frames, and filtering CAN
messages based on the pre-programmed CAN filters (done by the original equipment manufacturer
(OEM) when programming the communication controller). Lastly, a transceiver acts as an interface
between the physical CAN network and the ECU, and facilitates the transmission and reception
of CAN frames to and from the network respectively. In this work, we do not consider monitoring
the execution within the CAN hardware IPs as it would require access to proprietary information
that is only available to OEMs. We therefore assume that the proprietary CAN hardware IPs are
“black boxes” and design an anomaly detection solution that does not require the complexity that
comes with monitoring the internals of these IP blocks. This assumption is also consistent with all
prior works on in-vehicle network anomaly detection work. However, if we were able to get access
to this hardware stack and the program execution on the CAN hardware IP, our framework can be
extended to analyze CAN IPs and detect the attacks before they appear on the in-vehicle network.

To accommodate anomaly detection, we require modifications to existing CAN communication
controllers. A traditional CAN communication controller consists of message filters that are used
to filter out unwanted CAN messages and message buffers to temporarily store the messages
before they are sent to the processor. This can be observed in the right region of Figure 3. We
introduce message counters to this controller, which take the output of the message filters and
keep a track of message frequencies. This bookkeeping helps in the observation of any abnormal
message rates that may occur during a distributed denial of service (DDoS) attack (see Section 4.3).

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 67. Publication date: September 2021.

LSTM Self-Att ention based Anomaly Detection in Embedded Automotive Platforms 67:9

<«—— Header ——<«—— Payload —><«—— Trailer ———

S ‘ D|A|D
0 | Identifier |Control| CRC |E|cC|E|EOF
F i il Llk|L
<1><11 or 29-><—6 64 15—><l><l><l>< 7>

Fig. 4. Controller Area Network (CAN) 2.0B communication frame.

After confirming the message rate, the message is sent to the deployed anomaly detection system
where it goes through a two-step process to determine whether the message is anomalous or not.

In the first step, our trained LSTM based attention model is used to predict the next message
instance, which is then used to compute the deviation from the true message. This deviation
measure is given as the input to a detector unit that uses a non-linear classifier to determine if a
given deviation measure represents a normal or an anomalous message. The details related to the
models and the deviation metrics used in our framework are discussed in detail in Sections 5.2 and
5.3 respectively. Messages are temporarily stored in the message buffer before they are validated
and sent to the processor. If the anomaly detection system determines a particular message to be
anomalous, it is discarded from the buffer and will not be sent to the processor, thereby avoiding
the execution of attacker messages.

Note: Our anomaly detection system is implemented in the communication controller instead
of a centralized ECU to (i) avoid single-point failures, (ii) prevent scenarios where the in-vehicle
network load increases significantly due to high message injection (e.g., due to a DDoS attack,
explained in Section 4.3), where the centralized ECU will not be able to communicate with a target
ECU, and (iii) enable independent and immediate detection without delay compared to relying
on a message from a centralized ECU. Lastly, we chose the communication controller instead of
the processor to avoid jitter in real-time application execution.

4.2 Communication Overview

In this work, we consider Controller Area Network (CAN) as the in-vehicle network protocol
that is used for exchanging time-critical messages between ECUs. CAN is a lightweight, low-cost,
event-triggered in-vehicle network protocol, and is the defacto industry standard. Several variants
of CAN have been proposed over time, but the CAN standard 2.0B remains the most popular and
widely used in-vehicle network protocol till today.

A CAN message consists of one or multiple signal values. Each signal contains independent
information corresponding to a sensor value, actuator control, or computation output of a task on
an ECU. Signals are grouped with additional information to form CAN frames. Each CAN frame
mainly consist of a header, payload, and trailer segments (Figure 4). The header consists of an
11-bit (CAN standard) or 29-bit (CAN extended) unique message identifier and a 6-bit control
field. This is followed by a 64-bit payload segment and a 15-bit cyclic redundancy check (CRC)
field in the trailer segment. The payload segment consists of multiple signals that are arranged
in a predetermined order as per the definitions in the CAN database (.dbc) files. In addition, the
CAN frame also has a 1-bit start of the frame (SOF) field at the beginning of the header, two 1-bit
delimiters separating the 1-bit acknowledgment (ACK) field, and a 7-bit end of frame (EOF) field
in the trailer segment.

In this work, our proposed anomaly detection framework operates on the payload segment of
the CAN frame i.e., signals within each message. The main motivation for monitoring the payload
field is because the attacker needs to modify the bits in the payload to launch any attack (a modifi-
cation in the header or trailer segments would simply result in the frame getting invalidated at the
receiving ECU). Our proposed LATTE framework learns the temporal dependencies between the

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 67. Publication date: September 2021.

67:10 V. K. Kukkala et al.

message instances at design time by learning to predict the next message instances and observe
for deviations at runtime to detect cyber-attacks. Moreover, as our framework mainly focuses on
monitoring of the payload field, our technique is agnostic to the in-vehicle network protocol and
can be extended to other in-vehicle network protocols such as CAN-FD, FlexRay, etc., with min-
imal changes. The details related to the detection of cyber-attacks using our proposed anomaly
detection system are presented in Sections 5.2 and 5.3.

4.3 Threat Model

We assume that the attacker can gain access to the in-vehicle network using the most common
threat vectors such as connecting to the vehicle OBD-II port, probing into the in-vehicle network,
and via advanced threat vectors such as connected V2X ADAS systems, insecure infotainment sys-
tems, or by replacing a trusted ECU with a malicious ECU. We also assume that the attacker has
access to the in-vehicle network parameters such as flow control, BAUD rate, parity, channel in-
formation, etc. that can be obtained by a simple CAN data logger, and can help in the transmission
of malicious messages. We further assume a pessimistic situation where the attacker can access
the in-vehicle network at any instance and try to send malicious messages.

Given the above assumptions, our proposed anomaly detection system tries to protect the in-
vehicle network from the multiple types of cyber-attacks listed below. These attacks are modeled
based on the most common and hard-to-detect attacks in the automotive domain.

1. Constant attack: In this attack, the attacker overwrites the signal value to a constant value
for the entire duration of the attack interval. The complexity of detection of this attack
depends on the change in magnitude of signal value. Intuitively, a small change in the
magnitude of the signal value is harder to detect than larger changes.

2. Continuous attack: In this attack, the attacker tries to trick the anomaly detection system
by continuously overwriting the signal value in small increments until a target value is
achieved. The complexity of detecting this attack depends on the rate of change of the
signal value. Larger change rates are easier to detect than smaller rates.

3. Replay attack: In this attack, the attacker plays back a valid message transmission from the
past, tricking the anomaly detector into believing it to be a valid message. The complexity
for detecting this attack depends mainly on the frequency and sometimes on the duration
of the playbacks. High-frequency replays are easier to detect compared to low-frequency
replays.

4. Dropping attack: In this attack, the attacker disables the transmission of a message or group
of messages resulting in missing or dropping of communication frames. The complexity of
detecting this attack depends on the duration for which the messages are disabled. Longer
durations are easier to detect due to missing message frames for a prolonged time compared
to shorter durations.

5. Distributed Denial of Service (DDoS) attack: In this attack, the attacker floods the in-vehicle
network with an arbitrary or specific message with the goal of increasing the overall bus
load and rendering the bus unusable for other ECUs. This is the most common and easy to
launch attack as it requires no information about the nature of the message. These attacks
are fairly simple to detect even using a rule-based approach as the message frequencies
are fixed and known at design time for automotive systems. Any deviation in this message
rate can be used as an indicator for detecting this attack.

Problem objective: The main objective of our work is to develop a real-time anomaly detection
framework that can detect various cyber-attacks in CAN-based automotive networks, that has
(i) high detection accuracy, (ii) low false-positive rate, (iii) high precision and recall, (iv) large

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 67. Publication date: September 2021.

LSTM Self-Att ention based Anomaly Detection in Embedded Automotive Platforms 67:11

Data acquisition Model development Model testing
s N (A S ()
4 N
Attack-free Model
08D-1I training data hyperparameters
L) -

w2k

Hidt

o\

Trusted in-vehicle
network data

Anomaly alert
~N~—

r

Predictor model Detector model
S >

/
Fig. 5. Overview of proposed LATTE framework.

attack coverage, and (v) minimal implementation overhead (low memory footprint, fast runtime)
for practical anomaly detection in resource-constrained ECUs.

5 PROPOSED FRAMEWORK

An overview of our proposed LATTE framework is shown in Figure 5. Our framework consists of
a novel self-attention based LSTM deep learning model that is trained with data obtained from a
data acquisition step. The data acquisition step collects trusted in-vehicle network data under a
controlled environment. We then post-process and use this data to train the stacked LSTM self-
attention predictor model in an unsupervised setting to learn the normal operating behavior of the
system. We also developed a one class support vector machine (OCSVM) based detector model that
utilizes the predictions from the LSTM predictor to detect cyber-attacks as anomalies at run-time.
After training, the framework is tested by being subjected to various attacks. The details of this
framework are presented in the subsequent subsections.

5.1 Data Acquisition

This is the first step of the LATTE framework and involves collecting the in-vehicle network data
from a trusted vehicle. It is important to ensure that the in-vehicle network and the ECUs in the
vehicle are free from the attackers. This is because the presence of an attacker can result in logging
corrupt in-vehicle network data that falsely represents the normal operating conditions, leading to
learning an inaccurate representation of the normal system behavior with our proposed models.
Moreover, it is also crucial to cover a wide range of normal operating conditions and have the data
collected over multiple intervals, to ensure high confidence in the collected data. The performance
of the anomaly detection system is highly dependent on the quality of the collected data, and
thus this is a crucial step. Additionally, the type of data collected depends on the functionalities
or ECUs that are subjected to monitoring by the anomaly detection system. The most common
access point to collect the in-vehicle network data is the OBD-II port, which gives access to the
diagnostic and most commonly used messages. However, we recommend probing into the CAN
network and logging the messages, as it gives unrestricted access to the in-vehicle network, unlike
the OBD-II port.

After collecting the message data from the in-vehicle network, the data is prepared for pre-
processing to make it easier for the training models to learn the temporal relationships between
messages. The full dataset is split into groups based on the unique CAN message identifier and
each group is processed independently. The data entries in the dataset are arranged as rows and
columns with each row representing a single data sample corresponding to a particular timestamp
and each column representing a unique feature of the message. The columns consist of the follow-
ing features: (i) timestamp at which the message was logged, (ii) message identifier, (iii) number of

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 67. Publication date: September 2021.

67:12 V. K. Kukkala et al.

Encoder Self-attention Decoder

...............................

: : 8
X1—>| 3| LsT STM [——+ —> %,
1 : [
: 1 : | [o]
5 X2 [=>LSTM [>f LSTM [H— >z, £
° 1 °
s Sl Vo 8| |= 5 £
@ 2 [FARES B °
£ xmofislisv — g g % 8
[= = =
H S |1 . = & 5 2| |2 s g
8 = . . [o | |3 = o
i e * o " : I > % g 3 2
VohGer Riea) ' T
: : i B
Xp—> 1 [N —):{"
Lt o
\

" Prediction of
time step t+1 (x,,4)

Fig. 6. Our proposed predictor model for the LATTE anomaly detection framework showing the stacked
LSTM encoder —decoder rolled out in time for t time steps along with the self-attention mechanism gener-
ating context vector for time step t. The output at time step ¢ (x¢) is the prediction of the input at time step
1 (x41)-

signals in the message, (iv) individual signal values (one per column), and (v) a single bit represent-
ing the label of the message. The label column is 0 for non-anomalous samples and 1 for anomalous
samples. The label column is set to 0 for all samples in the training and validation dataset as all
the data samples are non-anomalous and collected in a trusted environment. The label column
will have a value of 1 for the samples in the test dataset during the attack interval and 0 for the
other cases. However, it is important to highlight that we do not use this label information while
training our predictor and detector models. Moreover, for each signal type, the signal values are
scaled between 0 to 1 as there can be a high variance in the signal magnitudes. Such high vari-
ance in the input data can result in very slow or unstable training. Additionally, in this work, we
do not consider timestamp as a unique feature. We use the concept of time in a relative manner
when training (to learn patterns in sequences) and during deployment. We are not dependent on
absolute time during training and deployment. We use the dataset presented in [31] to train and
evaluate our proposed LATTE framework. The dataset consists of both normal and attack CAN
message data. Details related to the models and the training procedure are discussed in the next
subsections, while the dataset is discussed in Section 6.1.

5.2 Predictor Model

We designed predictor and detector models that work in tandem to detect cyber-attacks as anom-
alies in the in-vehicle network. The predictor model attempts to learn the normal system behavior
via an unsupervised learning approach to predict the next message instance with high accuracy
at design time using the normal (non-anomalous) data. During this process, the predictor model
learns the underlying distribution of the normal data and relates it to the normal system behavior.
This knowledge of the learned distribution is used to make accurate predictions of the next mes-
sage instances at runtime for normal messages. In the event of a cyber-attack, the message values
no longer represent the learned distribution or maintain the same temporal relationships between
messages, leading to large deviations between the predictions and the true (observed) messages. In
this work, we employ a non-linear classifier based detector model to learn the deviation patterns
that correspond to the normal messages, which is then used to detect anomalies (i.e., attacks that
cause anomalous deviations) at runtime. The details related to the detector model are discussed in
detail in Section 5.3.

Our proposed predictor model consists of a stacked LSTM based encoder-decoder architecture
with the self-attention mechanism. This is illustrated in Figure 6. The first linear layer in the

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 67. Publication date: September 2021.

LSTM Self-Att ention based Anomaly Detection in Embedded Automotive Platforms 67:13

predictor model takes the time series CAN message data as the input and generates a 128 di-
mensional embedding for each input. Each input sample consists of k features where each feature
represents a particular signal value within that message. The output embedding from the linear
layer is passed to the stacked two-layer LSTM encoder to produce a 64-dimension encoder output
(h{, hs ... h7). The encoder output is the latent representation of the input time-series signal values
that encompass the temporal relationships between messages. The self-attention block generates
the context vector (¢;) by applying the self-attention mechanism to the encoder outputs. The self-
attention mechanism begins by applying a linear transformation on the encoder’s current hidden
state (h{) and multiplies the result with the encoder output. The output from the multiplication is
passed through a softmax activation to compute the attention weights. The attention weights rep-
resent the importance of each hidden state information from the earlier time steps, at the current
time step. The attention weights are scalars multiplied with the encoder outputs to compute the
attention applied vector (a,) which is then combined with the encoder output to compute the input
to the decoder (context vector (¢;)). The context vector along with the previous decoder’s hidden
state (hf_l) is given as input to the stacked two-layer decoder, which produces a 64-dimension
output that is passed to the last linear layer to obtain a k dimensional output. This k dimension
output represents the signal values of the next message instance. Thus, given an input sequence X
={xy, X2, ... X}, our predictor model predicts the sequence X =&y, %, ..., %}, where the output
at time step ¢ (%;) is the prediction of the input at time step #+1 (x;;). The last prediction (x;) is
generated by consuming the complete input sequence (X).

This predictor model is trained using non-anomalous (normal) data without any labels in an
unsupervised manner. To train the model with sequences, we employ a rolling window approach.
We consider a window of fixed size length (known as subsequence length) consisting of signal val-
ues over time. The window with signal values is called a subsequence and has subsequence length
number of samples of signal values. Our predictor model learns the temporal dependencies that
exist between the signal values within the subsequence and uses them to predict the signal values
in the next subsequence (i.e., window shifted to the right by one-time step). The signal values cor-
responding to the last time step in the output subsequence represent the final prediction, as the
model consumes the entire input subsequence to generate them. We compare this last time step
in the output subsequence with the actual signal values and compute the prediction error using
the mean square error (MSE) loss function. This process is repeated until the end of the training
dataset. The subsequence length is a hyperparameter related to the LSTM network and is inde-
pendent of the vehicle and the message data, and need to be selected before training the model.
We conducted multiple experiments with different model parameters, and selected the hyperpa-
rameters that gave us the best performance results. The predictor model is trained by splitting the
dataset into training (80%) and validation (20%) data without shuffling, as shuffling would destroy
the existing temporal relationships between messages. During the training process, the model tries
to minimize the prediction error in each iteration (a forward and backward pass) by adjusting the
weights of the neurons in each layer using backpropagation through time. At the end of each train-
ing epoch, the model is validated (forward pass only) using the validation dataset to evaluate the
model performance. We employ mini-batches to speed up the training process and use an early
stopping mechanism to avoid overfitting. The details related to the non-anomalous dataset and
the hyperparameters selected for the model are presented in Section 6.1.

5.3 Detector Model

After training the predictor model, we train a separate classifier (detector model) that utilizes the
information from the predictor to detects attacks. The anomaly detection problem can be treated as
a binary classification problem as we are mainly interested in distinguishing between normal and

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 67. Publication date: September 2021.

67:14 V. K. Kukkala et al.

Hypersphere Normal test data
Normal train data Anomalous test data

Signal 2 deviations

Fig. 7. OCSVM decision boundary shown in the blue sphere with the green dots showing the normal samples
from training data, and yellow and red dots showing the normal and anomalous samples respectively from
test data.

anomalous messages. In general, as the in-vehicle network data recordings can grow in size very
rapidly, labeling this data can get very expensive. Additionally, due to the nature of the frequency
of attack scenarios, the number of attack samples would be quite small compared to normal sam-
ples even when the dataset is labeled. This results in having a highly imbalanced dataset that would
result in poor performance when trained with a traditional binary classifier in a supervised learn-
ing setting. However, a popular non-linear classifier known as a support vector machine (SVM) can
be altered to make it work with unbalanced datasets where there is only one class. Hence, in this
work, we use a one class support vector machine (OCSVM) to classify the messages as anomalous
or normal. The OCSVM learns the distribution of the training dataset by constructing the smallest
hypersphere that contains the training data at design time and identifies any sample outside the
hypersphere as an anomaly at runtime. We train an OCSVM by using the output from the previ-
ously trained predictor model. We begin by giving the previously used normal training dataset as
the input to the predictor to generate the predictions. We then compute the deviations (prediction
errors) for all the training data and pass it as input to the OCSVM. The OCSVM tries to generate
the smallest hypersphere that can fit most of the deviation points and uses it at runtime to detect
anomalies. Figure 7 shows an example of a hypersphere generated by training an OCSVM for a
message with three signals. Each axis in the figure represents the relevant signal deviation and the
dark blue sphere represents the decision boundary. It can be observed that almost the entirety of
training data (shown via green dots) is confined to within the blue sphere.

In our work, the deviation of a message is represented as a vector where each element of the
vector corresponds to the difference between the true and predicted signal value. Therefore, for a
message m with k,, number of signals, the deviation vector (A, ;) computed at time step tis given
by Equation (1).

Amt = (gi,t _Si,t+1) € Rz’ Vie[lkn] (1)

where S; ; represent the prediction of the next true i?" signal value (S; ;) made at time step t. We
also experimented with other deviation measures that are given by Equations (2), (3), and (4).

km
A = 3 Al Vi€ [1 k])
i=1

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 67. Publication date: September 2021.

LSTM Self-Att ention based Anomaly Detection in Embedded Automotive Platforms 67:15

km
1)
At = 1 D Bl V1€ D1,k (3)
i=1
AR = max (|Ap]), Vi € [1,kp] (4)

Moreover, there can be situations where some of the signal deviations in a message can be positive
while others are negative. This could potentially result in making the sum or mean of signal devi-
ations zero or near zero, falsely representing no deviation or very small deviation. To avoid these
situations, we use the absolute signal deviations to compute the deviations for the variants. Note:
Unlike Equation (1) that uses a vector of k dimensions to represent the message deviation, Equa-
tions (2), (3), and (4) reduce the vector to a single value using different reduction operations. We
explored these reduced deviation scores (shown in Equations (2), (3), and (4)) that utilize absolute
deviation values to determine the best one, as discussed in Section 6.2.

In summary, our predictor model predicts the normal samples with very small deviations and
anomalous samples with high deviations. The OCSVM takes this predictor property into account
when constructing the hypersphere. In Figure 7, the yellow dots and red dots represent the normal
and anomalous samples respectively in the test dataset. It can be observed that when the test
data with anomalies is given as input to the OCSVM, it generally correctly classifies the yellow
samples within the hypersphere and red samples outside the hypersphere. Thus, both predictor
and detector models work collectively to detect attacks as anomalies. The details related to the
testing process are described in the next subsection.

5.4 Model Testing

In the deployment/testing step, we present a test dataset consisting of anomalous samples rep-
resenting multiple attacks (outlined in Section 4.3) along with the normal samples to the LATTE
framework. The normal messages have a label value of 0 and the attack messages have a label
value of 1. During this step, each sample (signal values in a message) is first sent to the predictor
model to predict the signal values of the next message instance, and the deviation is computed
based on the true message data. This deviation vector is passed to the OCSVM detector model,
to compute the position of the deviation vector in the k-dimensional space, where k represents
the number of signals in the message. The message is marked as non-anomalous when the point
corresponding to the deviation vector falls completely inside the learned hypersphere. Otherwise,
the message is marked as anomalous and an anomaly alert is raised. This can be used to invoke an
appropriate remedial action to suppress further actions from the attacker. However, the design of
remedial actions and response mechanisms falls outside the scope of our paper. The performance
evaluation of our proposed LATTE framework under various attack scenarios is presented in detail
in Sections 6.2 and 6.3.

5.5 Anomaly Detection System Deployment

Our proposed anomaly detection system can be deployed in a real-world vehicle in two different
approaches. The first is a global monitoring or centralized approach, where a powerful centralized
ECU monitors the messages on the CAN bus and detects anomalies. The second approach involves
distributing the anomaly detection task to across ECUs and only monitoring the messages that are
relevant to that particular ECU (distributed monitoring). Both choices have pros and cons, but
we believe that the distributed monitoring has multiple advantages over the centralized approach
because of the following reasons.

e A centralized approach is prone to single-point failures, which can completely open up the
system to the attacker;

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 67. Publication date: September 2021.

67:16 V. K. Kukkala et al.

e In extreme scenarios such as during a DDoS attack (explained in Section 4.3), the in-vehicle
network can get highly congested and the centralized system might not be able to commu-
nicate with the victim ECUs;

e Ifan attacker succeeds in fooling the centralized ECU, attacks can go undetected by the other
ECUs, resulting in compromising the entire system; whereas with a distributed detection
scheme, fooling multiple ECUs is required which is much harder, and even if an ECU is
compromised, this can still be detected by the decentralized intelligence in a distributed
detection;

e In a distributed detection, ECUs can stop accepting messages as soon as an anomaly is
detected without waiting for a centralized system to notify them, leading to faster response;

e The computation load of detection is split among the ECUs with a distributed approach,
and the monitoring can be limited to only the required messages. Thus, multiple ECUs can
monitor a subset of messages independently, with lower overhead;

Many prior works, e.g., in [19] and [24], consider a distributed local detection approach for
these reasons. Moreover, with automotive ECUs becoming increasingly powerful, the collocation
of detection tasks with real-time automotive applications in a distributed manner should not be a
problem, provided the overhead from the detection is minimal. The light weight nature and anom-
aly detection performance of our proposed LATTE framework are discussed further in Section 6.
Moreover, as the detector looks at the payload segment individually, it needs to keeps a track of the
previous messages to detect anomalous patterns. We can cache the previous normal samples and
predictions (in the case of anomalies) and use them to preserve the dependencies within the data,
which can be later used in determining whether the next sample is normal or anomalous. To mini-
mize the storage overhead, we can employ a circular buffer of size equal to the subsequence length
(configured at design time). Using this approach, we can still look into the message dependencies
in the past.

6 EXPERIMENTS
6.1 Experimental Setup

To evaluate the effectiveness of our proposed LATTE framework, we first explored five variants of
the same framework with different deviation criteria: LATTE-ST, LATTE-Diff, LATTE-Sum, LATTE-
Avg, and LATTE-Max. LATTE-ST uses our proposed predictor model with a static threshold (ST)
value to determine whether a given message is anomalous or normal based on the deviation. The
other four variants use the same predictor model but different detection criteria for computing the
deviations for OCSVM. LATTE-Diff uses the difference in signal values (Equation (1)); LATTE-Sum
and LATTE-Avg use a sum and mean of absolute signal deviations respectively (Equations (2) and
(3)); and LATTE-Max uses the maximum absolute signal deviation (Equation (4)), as the input to
the detector model.

Subsequently, we compare the best variant of our framework with four prior works: Bitwise
Message Predictor (BWMP [30]), Hierarchical Attention-based Anomaly Detection (HAbAD [34]),
a variant of [34] called Stacked HAbAD (S-HAbAD [34]), and RepNet [28]. BWMP [30] trains an
LSTM based neural network that aims to predict the next 64 bits of a CAN message by minimizing
the bitwise prediction error using a binary cross-entropy loss function. At runtime, BWMP uses
the prediction loss as a measure to detect anomalies. HAbAD [34] uses an LSTM based autoen-
coder model with hierarchical attention. The HAbAD model attempts to recreate the input message
sequences at the output and aims to minimize reconstruction loss. Additionally, HAbAD uses su-
pervised learning in the second step to model a detector using the combination of a non-parametric
kernel density estimator (KDE) and k-nearest neighbors (KNN) algorithm to detect cyber-attacks

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 67. Publication date: September 2021.

LSTM Self-Att ention based Anomaly Detection in Embedded Automotive Platforms 67:17

at runtime. Lastly, S-SHAbAD is a variant of HAbAD that uses stacked LSTMs as autoencoders and
uses the same detection logic used by the HAbAD. The S-HAbAD variant is compared against to
show the effectiveness of using stacked LSTM layers. Lastly, RepNet [28] uses simple RNNs to
increase the dimensionality of input signal values and attempts to reconstruct the signal values at
the output by minimizing the reconstruction error using mean squared error. At runtime, RepNet
monitors for large reconstruction errors to detect anomalies. The results of all experiments are
discussed in detail in Subsections 6.2-6.4.

We conducted all experiments using an open-source CAN message dataset developed by ETAS
and Robert Bosch GmbH [31]. The dataset consists of CAN message data for different message IDs
consisting of various fields such as timestamps, message ID, and individual signal values. Addi-
tionally, the dataset consists of a training dataset with only normal data and a labeled test dataset
with multiple attacks (as discussed in Section 4.3). The attack data in the dataset is modeled from
the real world attacks that are commonly seen in automotive systems. It is important to note that
we do not use any labeled data during the training or validation of our models and learn the nor-
mal system behavior in an unsupervised manner. The labeled data is given to the models only
during the testing phase and used to compute performance metrics. Moreover, the dataset consists
of multiple message frequencies {15, 30, 45} ms. Since the high frequency messages pose a signif-
icant challenge to the anomaly detection system, and could result in high overhead, in this work
we consider the message frequency of 15 ms for all of our experiments.

We used PyTorch 1.5 to implement all of the machine learning models including LATTE and its
variants, and the models from the comparison works. Our proposed predictor model is trained with
80% of the available normal data and the remaining 20% is used for validation. We conducted mul-
tiple experiments with different model parameters, and selected the hyperparameters that gave us
the best performance results. The training phase is repeated for 500 epochs with an early stopping
mechanism that monitors the validation loss after the end of each epoch and stops if there is no
improvement after 10 (patience) epochs. We used the ADAM optimizer with mean squared error
(MSE) as the loss function. Additionally, we employed a rolling window approach (discussed in
Section 5.2) with a subsequence length of 32 time steps, a batch size of 256, and a starting learning
rate of 0.0001. We used the scikit-learn package to implement the OCSVM in the detector model
(Section 5.3). We used a radial basis function (RBF) kernel with a kernel coefficient (gamma) equal
to the reciprocal of the number of features (i.e., number of signals in the message). Moreover, to
speed up OCSVM training, we set the kernel cache size to 400 MB and enabled the shrinking tech-
nique to avoid solving redundant optimizations. All the simulations are run on an AMD Ryzen 9
3900X server with an Nvidia GeForce RTX 2080Ti GPU.

Before looking at the experimental results for various performance metrics, it is important to
understand some key definitions in the context of anomaly detection. We define a true positive
as the scenario when an actual attack is detected as an anomaly by the anomaly detection sys-
tem and a true negative as the situation where an actual normal message is detected as normal.
Additionally, a false positive would be a false alarm where a normal message is incorrectly clas-
sified as an anomaly and a false negative would occur when an anomalous message is incorrectly
classified as normal. Using the above definitions, we evaluate our proposed framework using four
different metrics: (i) Detection accuracy: a measure of the anomaly detection system’s ability to
detect anomalies correctly, (ii) False positive rate: i.e., false alarm rate, (iii) F1 score: a harmonic
mean of precision and recall; we use the F1-score instead of individual precision and recall values
as it captures the combined effect of both precision and recall metrics, and (iv) receiver operating
characteristic (ROC) curve with area under the curve (AUC): a popular measure of classifier per-
formance. A highly efficient anomaly detection system has high detection accuracy, F1 score, and
ROC-AUC while having a very low false-positive rate.

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 67. Publication date: September 2021.

67:18 V. K. Kukkala et al.

B LATTE-ST W LATTE-Sum M LATTE-Avg M LATTE-Max W LATTE-Diff W LATTE-ST W LATTE-Sum M LATTE-Avg M LATTE-Max W LATTE-Diff
1.0
0.5
0.8
Soa
T
-3
> o
0 0.6 >
g S 03
0.4 @
0.2
o
w
0.2 0.1
0.0 0.0
No attack Constant Continuous Replay Dropping DDoS Constant Continuous Replay Dropping DDoS
(a) (®)
W LATTE-ST Wi LATTE-Sum W LATTE-Avg M LATTE-Max W LATTE-Diff Receiver Operating Curve (ROC) Comparisons - C
1.0
0.8
@
-
]
N 0.6
o 0.
g 2
o =
% 3
I : 0.4
3
-
F —— LATTE-ST (area= 0.68)
0.2 e ~—— LATTE-Sum (area= 0.79)
e —— LATTE-Avg (area= 0.79)
—— LATTE-Max (area= 0.69)
0.0 —— LATTE-Diff (area= 0.88)
0.0 0.2 0.4 0.6 0.8 1.0
Constant Continuous Replay Dropping DDoS False Positive Rate
© @

Fig. 8. Comparison of (a) detection accuracy, (b) false-positive rates, (c) F1 score of LATTE variants under
different attack scenarios, and (d) ROC curve with AUC for continuous attack.

6.2 Comparison of LATTE Variants

In this subsection, we present the comparison results of the five variants LATTE-ST, LATTE-Sum,
LATTE-Avg, LATTE-Max and LATTE-Diff. All the variants of LATTE use the trained predictor
model (discussed in Section 5.2) to make the predictions and use OCSVM as a detector except
in the case of LATTE-ST, which uses a fixed threshold scheme introduced in [32] to predict the
given message as normal or anomalous. The main purpose of this experiment is to analyze the
impact of using a non-linear classifier such as OCSVM on the model performance instead of a sim-
ple static threshold scheme (LATTE-ST). Additionally, with the last four variants, we aim to study
the effect of different deviation criteria on the OCSVM detection performance. The deviations for
any given message in LATTE-Diff (A, ;), LATTE-Sum (A3¢7"), LATTE-Avg (A;,'}) and LATTE-Max
(ALS") are computed using the Equations (1), (2), (3), and (4) respectively.

Figure 8(a)-(c) shows the detection accuracy, false-positive rate, and F1 score respectively for
the five different variants of LATTE under five different attack scenarios discussed in Section 4.3.
The ‘No attack’ case involves testing the model with new non-anomalous data that the model
has not seen before. Firstly, from Figure 8(a)—(c) it is clear that the OCSVM based detection mod-
els clearly outperform the static threshold models (LATTE-ST). This is mainly because of their
ability to process complex attack patterns and generate non-linear decision boundaries that can
distinguish better between normal and anomalous data. Moreover, it can be seen that LATTE-Diff
outperforms all the OCSVM based models in detection accuracy, false-positive rate, and F1 score.

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 67. Publication date: September 2021.

LSTM Self-Att ention based Anomaly Detection in Embedded Automotive Platforms 67:19

msm BWMP wmsm RepNet == HADAD w=mm S-HADAD wsm LATTE === BWMP wmsm RepNet msm HADAD mmm S-HAbDAD wsm LATTE
0.5
1.0
0.4
0.8
2
©
-3
T o6 g 03
4 =
g 3
g 4
0.2
0.4 9
©
w
0.2 0.1
0.0 0.0
No attack Constant Continuous Replay Dropping DDoS Constant Continuous Replay Dropping DDoS
(@) ()
s BWMP wes RepNet mmm HADAD mmm S-HADAD mem LATTE Receiver Operating Curve (ROC) Comparisons - C:
1.0 1.0
08 0.8
’ b
©
o©
g 0.6
g 0.6 s
M]
) o
- 2 0.4
w 0.4 g
T
L —— BWMP (area= 0.50)
0.2 ~—— RepNet (area= 0.68)
0.2 —— HADAD (area= 0.68)
—— S-HADbAD (area= 0.76)
0.0 ~—— LATTE (area= 0.88)
0.0 0.0 0.2 0.4 0.6 0.8 1.0
Constant Continuous Replay Dropping DDoS False Positive Rate
© (d)

Fig. 9. Comparison of (a) accuracy, (b) false-positive rates, (c) F1 score of LATTE and the comparison works
under different attack scenarios, and (c) ROC curve with AUC for continuous attack.

Lastly, in Figure 8(d), we present the ROC curves and the corresponding AUC values in the brack-
ets next to each legend. Out of the various attacks, we show results for continuous attacks, as it is
the most challenging attack to detect. This is because during this attack, the attacker constantly
tries to fool the anomaly detection system into thinking that the signal values in the messages are
legitimate. This requires careful monitoring and the ability to learn complex patterns to differenti-
ate between normal and anomalous samples. On average, across all attacks, LATTE-Diff was able
to achieve an average of 13.36% improvement in accuracy, 11.34% improvement in F1 score, 17.86
% improvement in AUC and 47.9% reduction in false positive rate, and up to 42% improvement
in accuracy, 32.6% improvement in F1 score, 29.4% improvement in AUC and 95% decrement in
false positive rate, compared to the other variants. Therefore, we selected LATTE-Diff as our can-
didate model for subsequent experiments where we present comparisons with the state-of-the-art
anomaly detectors. Henceforth, we refer to LATTE-Diff as LATTE.

6.3 Comparison with Prior Works

We compared our LATTE framework with BWMP [30], HAbAD [34], a variant of HAbAD called
S-HADAD ([34], and RepNet [28]. Figure 9(a)-(c) show the detection accuracy, false-positive rate,
and F1 score respectively for these frameworks under different attack scenarios. It can be ob-
served that LATTE outperforms all the prior works in terms of detection accuracy, false-positive
rate, and F1 score. This is due to three factors. Firstly, the stacked LSTM encoder-decoder structure

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 67. Publication date: September 2021.

67:20 V. K. Kukkala et al.

== SMA-BB wss EWMA-BB === LOF == LATTE

1.0

0.8

F1 score
°
o

14
S

0.2

0.0
Constant Continuous Replay Dropping DDoS

Fig. 10. Comparison of F1 score for SMA-BB [42], EWMA-BB [42], LOF [43], and LATTE under different
attack scenarios.

provides adequate depth to the model to learn complex time-series patterns. This can be seen when
comparing HAbAD with S-HADbAD, as the latter differs only in terms of stacked LSTM layers in
comparison to the former. Second, the self-attention mechanism helps LATTE in learning message
sequences that have very long-term dependencies. Lastly, the use of powerful OCSVMs as non-
linear classifiers helps in constructing a highly efficient classifier. These factors together resulted
in the superior performance of LATTE compared to all the comparison works. On average, across
all attacks, LATTE was able to achieve an average of 18.94% improvement in accuracy, 19.5% im-
provement in F1 score, 37% improvement in AUC and 79% reduction in false positive rate, and up
to 47.8% improvement in accuracy, 37.5% improvement in F1 score, 76% improvement in AUC and
95% reduction in false positive rate.

To highlight the effectiveness of our proposed LATTE framework, we further compared LATTE
with statistical and proximity based techniques. We selected Bollinger bands (a popular statistical
technique used in the finance domain) as the candidate for a statistical technique to detect anom-
alies in time series data. Bollinger bands generate envelopes that are two standard deviation levels
above and below the moving average. In this work, we considered two different moving average
based variants of the approach: (i) simple moving average (SMA), and (ii) exponential weighted
moving average (EWMA) similar to [42]. We also compared LATTE against a local outlier factor
(LOF) [43] based anomaly detection technique, which is a popular proximity-based anomaly de-
tection technique. The LOF algorithm measures the local deviation of each point in the dataset
with respect to the neighbors (given by KNN) to detect anomalies. The F1 score results for SMA
based Bollinger bands (SMA-BB), EWMA based Bollinger bands (EWMA-BB), LOF, and LATTE
under different attack scenarios are shown in Figure 10. It can be seen that LATTE outperforms
both statistical and proximity-based anomaly detection techniques under different attack scenar-
ios. This is mainly because the complex patterns in CAN message data are hard to capture using
statistical and proximity-based techniques. On the other hand, the LSTM based predictor model in
our proposed LATTE framework learns these complex patterns and is thus able to more efficiently
detect complex attacks.

6.4 Overhead Analysis

In this subsection, we present an overhead analysis of our LATTE framework. We quantify the
overhead of our LATTE framework and the comparison works using memory footprint, the num-
ber of model parameters, and the inference time metrics. We profiled each framework on a dual

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 67. Publication date: September 2021.

LSTM Self-Att ention based Anomaly Detection in Embedded Automotive Platforms

Fig. 11. Nvidia Jetson TX2 development board.

Table 2. Overhead of LATTE, BWMP [30], HAbAD [34], S-HAbAD [34], RepNet [28]

67:21

Framework Memory footprint (KB) #Mode})f 12:)1;:;meters Aver;%fl ;I(l}f;(:;ence
BWMP [30] 13,147 3435 644.76
HADbAD [34] 4558 64 685.05
S-HADAD [34] 5600 325 976.65
LATTE 1439 331 193.90
RepNet [28] 5 0.8 68.75

core ARM Cortex- A57 CPU on an NVidia Jetson TX2 board (shown in Figure 11), which has simi-
lar specifications to that of a real-world ECU. We repeated the inference time experiment 10 times
and computed the average inference time. Moreover, in this work, we consider a total buffer size of
2.25 KB. This accounts for the storage of 32 CAN message payloads (0.25 KB assuming a worst case
max payload of 8 Bytes) that represent the subsequence length number of past messages, and stor-
age of 16 CAN message frames (2 KB assuming the CAN extended protocol and a worst case max
payload of 8 Bytes) that is used by the transceiver. In this work, we only introduce the additional
0.25 KB storage as the 2 KB transceiver buffer space is already available in the traditional CAN
communication controller interfaces. We consider a 2 KB transceiver buffer, as it is the most com-
monly used size in many real-world automotive ECUs such as Woodward SECM 112, and dSpace
MicroAutoBox. Additionally, we computed the area overhead of the 0.25 KB buffer using CACTI
tool [44] by modeling the buffer as a scratchpad cache using 32 nm technology node. Our addi-
tional 0.25 KB buffer resulted in a minimal area overhead of around 581.25 ym?. From Table 2, we
can observe that our LATTE framework has minimal overhead compared to both attention-based
prior works (HAbAD and S-HAbAD) and the non-attention based work (BWMP except RepNet).
The high runtime and memory overhead in HAbAD and S-HADbAD is associated with the use of
KNNs. KNN does not generalize the data in advance, but rather scans through each training data
sample to make a prediction. This makes it very slow and consume high memory overhead (due
to the requirement of having training data available at runtime). It needs to be noted that, even
though RepNet has the lowest memory and runtime overhead, it fails to capture the complex attack
patterns due to the smaller model size and the lack of ability of simple RNNs to learn long-term
dependencies, leading to poor performance (as shown in Figure 9).

Assuming a distributed anomaly detection implementation, we factor in this additional latency
into our real-time constraints for message transmission (i.e., a constant time overhead). But since
the latency overhead (shown in Table 2) is very minimal, we envision that our proposed LATTE
framework will have a minimal change in the timing constraints when compared to the prior
works. Moreover, the deadline constraints for some of the fastest (i.e., most stringent) safety-critical
applications are around 10 ms, which is much higher than our overhead that is around 193 ps.

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 67. Publication date: September 2021.

67:22 V. K. Kukkala et al.

Hence, the additional latency due to our anomaly detection should not violate any safety-critical
deadlines. In summary, from Figure 9 and the results in Table 2, we can clearly observe that LATTE
achieves superior performance compared to all of the comparison works across diverse attack
scenarios, while maintaining relatively low memory and runtime overhead.

7 CONCLUSION

In this paper, we proposed a novel stacked LSTM with self-attention framework called LATTE that
learns the normal system behavior by learning to predict the next message instance under nor-
mal operating conditions. We presented a one class support vector (OCSVM) based detector model
to detect cyber-attacks by monitoring the message deviations from the normal behavior. We pre-
sented a detailed analysis by comparing our proposed model with multiple variants of our model
and the best-known prior works in this area. Our LATTE framework surpasses all the variants and
the best-known prior works under different attack scenarios while having a relatively low mem-
ory and runtime overhead. As a part of future work, we will explore extending our framework
to detect malfunctions such as blockages, deadlocks, and faults in addition to detecting malicious
behavior on the in-vehicle network.

REFERENCES

[1] Renub Research. 2018. Self driving car market global forecast by levels, hardware, software, and companies. In Re-
search and Markets - Market Research Reports 2018.
[2] V. K. Kukkala, J. Tunnell, S. Pasricha, and T. Bradley. 2018. Advanced driver-assistance systems: A path toward au-
tonomous vehicles. Proc. IEEE CEM 2018.
[3] M. Hasan, S. Mohan, T. Shimizu, and H. Lu. 2020. Securing vehicle-to-everything (V2X) communication platforms.
In IEEE Transactions on Intelligent Vehicles 2020.
[4] S.Acharya, Y. Dvorkin and R. Karri. 2020. Public plug-in Electric Vehicles + Grid Data: Is a new cyberattack vector
viable?. In IEEE Transactions on Smart Grid, vol. 11, no. 6, 5099-5113, 2020.
[5] P.Braeckel. Feeling bluetooth: From a security perspective. In Advances in Computers 2011.
[6] R.Verdult, F. D. Garcia, and B. Ege. 2013. Dismantling megamos crypto: wirelessly lockpicking a vehicle immobilizer.
Proc. USENIX 2013.
[7] K.Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham,
and S. Savage. 2010. Experimental security analysis of a modern automobile. Proc. IEEE SP 2010.
[8] C. Valasek, and C. Miller. 2015. Remote exploitation of an unaltered passenger vehicle. In Black Hat USA, 2015.
[9] V.Izosimov, A. Asvestopoulos, O. Blomkvist and M. Térngren. 2016. Security-aware development of cyber-physical
systems illustrated with automotive case study. Proc. IEEE/ACM DATE, 2016.
[10] A. Francillon, B. Danev, and S. Capkun. 2011. Relay attacks on passive keyless entry and start systems in modern
cars. Proc. NDSS 2011.
[11] R.Dastres, and M. Soori. 2021. A review in recent development of network threats and security measures. International
Journal of Information Sciences and Computer Engineering 2021.
[12] A.Taylor, N. Japkowicz, and S. Leblanc. 2015. Frequency-based anomaly detection for the automotive CAN bus. Proc.
WCICSS 2015.
[13] M. Yoon, S. Mohan, J. Choi and L. Sha. 2015. Memory heat map: Anomaly detection in real-time embedded systems
using memory behavior. In IEEE/ACM/EDAC DAC 2015.
[14] V.K. Kukkala, S. Pasricha and T. Bradley. 2020. SEDAN: Security-aware design of time-critical automotive networks.
In IEEE TVT 2020.
[15] J. Durrwang, J. Braun, M. Rumez, R. Kriesten, and A. Pretschner. 2018. Enhancement of automotive penetration
testing with threat analyses results. SAE 2018.
[16] “Keen Lab. Experimental Security Assessment of BMW Cars: A Summary Report. 2017, [online]. Available: https:
//keenlab.tencent.com/en/whitepapers/Experimental_Security_Assessment_of BMW_Cars_by_KeenLab.pdf.
[17] J. Petit, B. Stottelaar and M. Feiri. 2015. Remote attacks on automated vehicles sensors: Experiments on camera and
LiDAR. In Black Hat Europe 2015.
[18] J. Raiyn. 2014. A survey of cyber attack detection strategies. In International Journal of Security and Its Applications
2014.
[19] I Studnia, E. Alata, V. Nicomette, M. Ka4niche, and Y. Laarouchi. 2015. A language-based intrusion detection approach
for automotive embedded network. Proc. IEEE PRISDC 2015.

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 67. Publication date: September 2021.

https://keenlab.tencent.com/en/whitepapers/Experimental_Security_Assessment_of_BMW_Cars_by_KeenLab.pdf
https://keenlab.tencent.com/en/whitepapers/Experimental_Security_Assessment_of_BMW_Cars_by_KeenLab.pdf

LSTM Self-Att ention based Anomaly Detection in Embedded Automotive Platforms 67:23

[20]
[21]
[22]
(23]
[24]

[25]

M. Marchetti and D. Stabili. 2017. Anomaly detection of CAN bus messages through analysis of ID sequences. Proc.
IEEE IV 2017.

D. Stabili, M. Marchetti, and M. Colajanni. 2017. Detecting attacks to internal vehicle networks through hamming
distance. Proc. AEIT 2017.

U. E. Larson, D. K. Nilsson, and E. Jonsson. 2008. An approach to specification-based attack detection for in-vehicle
networks. Proc. IEEE IV 2008.

T. Hoppe, S. Kiltz, and J. Dittmann. 2009. Applying intrusion detection to automotive IT-early insights and remaining
challenges. In JIAS 2009.

P. Waszecki, P. Mundhenk, S. Steinhorst, M. Lukasiewycz, R. Karri and S. Chakraborty. Automotive electrical and
electronic architecture security via distributed in-vehicle traffic monitoring. In IEEE TCAD 2017.

K. T Cho, and K. G. Shin. 2016. Fingerprinting electronic control units for vehicle intrusion detection. Proc. USENIX,
2016.

M. Miiter and N. Asaj. 2011. Entropy-based anomaly detection for in-vehicle networks. Proc. IEEE IV 2011.

M. Kang and J. Kang. 2016. A novel intrusion detection method using deep neural network for in-vehicle network
security. Proc. IEEE VTC Spring 2016.

M. Weber, G. Wolf, B. Zimmer, and E. Sax. 2018. Online detection of anomalies in vehicle signals using replicator
neural networks. Proc. ESCAR 2018.

M. Weber, S. Klug, E. Sax, and B. Zimmer. 2018. Embedded hybrid anomaly detection for automotive can communi-
cation. Proc. ERTS 2018.

A. Taylor, S. Leblanc, and N. Japkowicz. 2016. Anomaly detection in automobile control network data with long
short-term memory networks. In IEEE DSAA 2016.

M. Hanselmann, T. Strauss, K. Dormann, and H. Ulmer. 2020. CANet: An unsupervised intrusion detection system
for high dimensional CAN bus data. Proc. IEEE Access 2020.

V. K. Kukkala, S. V. Thiruloga, and S. Pasricha. 2020. INDRA: Intrusion detection using recurrent autoencoders in
automotive embedded systems. In IEEE TCAD 2020.

H. M. Song, J. Woo, and H. K. Kim. 2020. In-vehicle network intrusion detection using deep convolutional neural
network. Proc. Veh. Com. 2020.

M. O.Ezeme, Q. H. Mahmoud and A. Azim. 2018. Hierarchical attention-based anomaly detection model for embedded
operating systems. Proc. IEEE RTCSA 2018.

Y. Bengio, P. Simard and P. Frasconi. 1994. Learning long-term dependencies with gradient descent is difficult. Proc.
IEEE Transactions on Neural Networks 1994.

S. Elsworth and S. Giittel. 2020. Time series forecasting using LSTM networks: A symbolic approach. [online]. Avail-
able: https://arxiv.org/abs/2003.05672, 2020.

S. Hochreiter and J. Schmidhuber. 1997. Long short-term memory. Proc. Neural Computation 1997.

E. Sood, S. Tannert, D. Frassinelli, A. Bulling, and N. T. Vu. 2020. Interpreting attention models with human visual
attention in machine reading comprehension. [online]. Available: https://arxiv.org/abs/2010.06396, 2020.

D. Bahdanau, K. Cho, and Y. Bengio. 2016. Neural machine translation by jointly learning to align and translate.
[online]. Available: https://arxiv.org/abs/1409.0473, 2016.

R. Jing. 2019. A self-attention based LSTM network for text classification. Proc. [EEE CCEAI 2019.

M. T. Luong, H. Pham, and C. D. Manning. 2015. Effective approaches to attention-based neural machine translation.
[online]. Available: https://arxiv.org/abs/1508.04025, 2015.

S. Vergura. 2020. Bollinger bands based on exponential moving average for statistical monitoring of multi-array
photovoltaic systems. In Energies, 2020.

M. M. Breunig, H. P. Kriegel, R. T. Ng, and J. Sander. 2000. LOF: identifying density-based local outliers. Proc. ACM
MOD 2000.

N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi. 2014. CACTI 6.0: A tool to model large caches. HP Labora-
tories [online]. Available: https://github.com/HewlettPackard/cacti, 2014.

Received April 2021; revised June 2021; accepted July 2021

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 67. Publication date: September 2021.

https://arxiv.org/abs/2003.05672
https://arxiv.org/abs/2010.06396
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1508.04025
https://github.com/HewlettPackard/cacti

