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Abstract-WiFi fingerprinting-based indoor localization on
smartphones is an emerging application domain for enhanced
positioning and tracking of people and assets within indoor lo-
cales. Unfortunately, the transmitted signal characteristics from
independently maintained WiFi access points (APs) vary greatly
over time. Moreover, some of the WiFi APs visible at the initial
deployment phase may be replaced or removed over time. These
factors are often ignored and cause gradual and catastrophic
degradation of indoor localization accuracy post-deployment,
over weeks and months. We propose a Siamese neural encoder-
based framework that offers up to 40% reduction in degrada-
tion of localization accuracy over time compared to the state-of-
the-art in the area, without requiring any re-training.

[. INTRODUCTION

Owing to the localization technologies of today, our phys-
ical outdoor reality is now augmented by an additional layer
of virtual map-based reality. Such a revolutionary shift has
dramatically changed many aspects of human experience:
geo-location data is now used for urban planning and devel-
opment (roads, location of hospitals, telecom network design,
etc.), augmented reality video games (e.g., Pokémon Go, In-
gress Prime) and has even helped realize entirely new socio-
cultural collaborations (e.g., Facebook marketplace) [1].

Unfortunately, due to the limited permeability of GPS
signals within indoor environments, such services cannot be
casily extended into buildings such as malls, hospitals,
schools, airports, etc. Indoor localization services can provide
immense value, e.g., during emergency evacuations or when
locating people indoors in need of critical medical attention.
Driven by such goals, indoor localization is experiencing a
recent upsurge in interest [2], including from industry (e.g.,
Google [3], Apple [4]). Recent works suggest fingerprinting-
based indoor localization as the most favorable solution com-
pared to alternatives [2], [5]-[10]. While any form of radio
fingerprinting works, the ubiquitous deployment of WiFi
Access Points (APs), and the superior localization accuracies
achieved through it make WiFi the clear choice of radio in-
frastructure for indoor fingerprinting.

Conventionally, fingerprinting-based indoor localization
consists of two phases. The first phase (offline phase), com-
prises of capturing WiFi signal characteristics, such as RSSI
(Received Signal Strength Indicator) at various indoor
locations or Reference Points (RPs) in a building. The RSSI
values from all APs observable at an indoor RP can be cap-
tured as a vector and represents a fingerprint associated with
that RP. Such fingerprints collected across all RPs form a
dataset, where each row in the dataset consists of an RSSI
fingerprint along with its associated RP location. The collec-
tion of fingerprints to form the dataset is known to be a very
time-consuming endeavor [11]. Consequently, publicly avail-
able datasets only contain a few fingerprints per RP (FPR).
Using such datasets, a machine learning (ML) model can be
trained and deployed on mobile devices equipped with WiFi
transceivers. In the second phase (online phase), WiFi RSSI

captured by a user is sent to the ML model running on the
user-carried device, and used to compute the user’s location
on a map on the user’s device display, in real time. Deploying
such models on the user device instead of the cloud enables
better data privacy, security, and faster response times [2].

Recent works report improved indoor localization
accuracy through the use of deep learning-based classifiers
[5]-[6]. This is attributed to their superior ability at discerning
underlying patterns within fingerprints. Despite these im-
provements, factors such as human activity, signal interfer-
ences, changes to furniture and materials in the environment,
and also removal or replacement of WiFi APs (in the online
phase) introduce changes in the observed RSSI fingerprints
over time that can degrade accuracy [8]-[10]. For instance,
our experiments suggest that in frameworks designed to de-
liver mean indoor localization error of 0.25 meters, these fac-
tors degrade error to as much as 6 meters (see Section V.C)
over a short period of 8 months. Most prior efforts in the in-
door localization domain often overlook the impact of such
temporal variations during the design and deployment stages,
leading to significant degradation of accuracy over time.

In this paper, we introduce STONE, a framework that de-
livers stable and long-term indoor localization, without any
re-training. The main contributions of this work are:

e Performing an in-depth analysis on how indoor localiza-
tion accuracy can vary across different levels of temporal
granularity (hours, days, months, year);

e Adapting the Siamese triplet-loss centric neural encoders
and proposing variation-aware fingerprint augmentation
for robust fingerprinting-based indoor localization;

e Developing a floorplan-aware triplet selection algorithm
that is crucial to the fast convergence and efficacy of our
Siamese encoder-based approach;

e Exploring design tradeofts and comparing STONE with
state-of-the-art indoor localization frameworks.

II. BACKGROUND AND RELATED WORK

Broadly, indoor localization methodologies can be classi-
fied into three categories: (i) static propagation model-based,
(ii) triangulation/trilateration-based, and (i7i) fingerprinting-
based. Static propagation modeling approaches depend on the
correlation between distance and WiFi RSSI gain, e.g., [12].
They are functionally limited to open indoor areas, and also
require the cumbersome creation of a gain model for each in-
dividual AP. Triangulation/Trilateration-based methods use
geometric properties such as the distance between multiple
APs and the mobile device [13] (trilateration) or the angles at
which signals from two or more APs are received [14] (trian-
gulation). While such methodologies may be resistant to mo-
bile device specific variability (device heterogeneity), they
are not resilient to multipath and shadowing effects [6]. WiFi
fingerprinting-based approaches associate sampled locations
(RPs) with the RSSI captured across several APs [5]-[10],
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[23]-[25]. These techniques are known to be resilient to multi-
path reflections and shadowing as the RP fingerprint captures
the characteristics of these eftects leading to more accurate
localization than with the other two approaches.

Recent work on improving Wili fingerprinting exploits
the increasing computational capabilities of smartphones. For
instance, Convolutional Neural Networks (CNNs) have been
proposed to improve indoor localization accuracy on
smartphones [5]-[6], [15]-[17]. One major concern with fin-
gerprinting is the enormous effort required to manually col-
lect fingerprints for training. Open-source fingerprint datasets
often have low FPR [10]. This motivates the critical need for
frameworks that require fewer fingerprints to be deployed.

An emerging challenge for fingerprinting-based indoor lo-
calization (especially WiFi-based) arises from the fluctua-
tions that occur over time in the RSSI values of APs [8]-[9],
[18], [23]-[25]. Such temporal-variations in RSSI arise from
the combination of many environmental factors, such as hu-
man movement, radio interference, changes in furniture or
equipment placement, etc. This issue is further intensified
when WikFi APs are removed or replaced by network admin-
istrators, changing the underlying fingerprint considerably
[10]. This leads to a catastrophic loss in localization accuracy
over time (discussed in Section V.B).

An intuitive approach to overcome temporal variation is
to capture a large number of fingerprints over a long period
of time in the offline phase. An ML model trained using such
a dataset would demonstrate resilience to degradation in lo-
calization accuracy as it witnesses (learns) the temporal fluc-
tuations of RSSI values at various RPs. The work in [8] pro-
poses such an approach by training an ensemble of models
with fingerprints collected over several hours. The authors
then take a semi-supervised approach, where the models are
refit over weeks using a mix of originally collected labeled
fingerprints and pseudo-labeled fingerprints generated by the
models. However, the collection of fingerprints at a high
granularity of RPs (small distance between RPs) over a long
period of time in the offline phase is not scalable in practice.

To overcome the challenge of insufficient available tem-
porally diverse fingerprints per RP, the authors in [18] pro-
pose a few-shot learning approach that delivers reliable accu-
racy using a few FPRs. The contrastive loss-based approach
prevents overfitting to the training fingerprints in the offline
phase. Unfortunately, their approach is highly susceptible to
temporal variations and removal of APs in the online phase,
requiring re-training using new fingerprints every month.

Attempting to achieve calibration-free indoor localization,
some researchers propose the standardization of fingerprints
into a temporal-variation resilient format. GIFT [9], utilizes
the difference between individual AP RSSI values to form a
new fingerprint vector. However, instead of being associated
with a specific RP, each GIFT fingerprint is associated with a
specific user movement vector from one RP to another. How-
ever, GIFT degrades in accuracy over the long-term and is
also highly susceptible to the removal of APs.

Considering the general stability of simple non-parametric
approaches over the long term, such as K-Nearest-Neighbor
(KNN), [21] proposes Long-Term KNN (LT-KNN), which
improves the performance of KNN in situations where several
APs are removed. However, LT-KNN fails to deliver the su-
perior accuracies promised by deep-learning approaches and
needs to be re-trained on a regular basis.

In summary, most indoor localization solutions are unable
to deliver stable localization accuracies over time. The few
prior efforts that aim to achieve stable long-term localization
either require large FPRs captured over time, or frequent re-
training (refitting) of the model using newly collected finger-
prints. Our proposed STONE framework provides a long-term
fingerprinting-based indoor localization solution with lower
overhead and superior accuracy than achieved by prior efforts
in the domain, without requiring any re-training.

III. SIAMESE NETWORK AND TRIPLET LOSS: OVERVIEW

A Siamese network is a few-shot learning (requiring few
labeled samples to train) neural architecture containing two
or more identical networks [19]-[20]. The objective is to learn
the similarity between two or more inputs. This prevents the
model from overfitting to the sample-label relationship. The
loss function for a Siamese network is often a Euclidean-
based loss that is either contrastive [19] or triplet [20].
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Figure 1: An example architecture of a Siamese encoder with triplet loss. A
single CNN network is used, i.e., all the models share the same weights.

A Siamese network encoder using contrastive loss was
proposed in DeepFace [19] for facial recognition. DeepFace
focuses on encoding the input faces such that they are either
pushed together or pulled apart in the embedded space based
on whether they belong to the same person or not. The work
in FaceNet [20] further improved on this idea using triplet
loss that simultaneously pushes together and pulls apart faces
of the same person and different persons, respectively.

An architectural representation of the Siamese model used
in STONE (inspired by FaceNet) is presented in Fig. 1. The
Siamese network consists of a single deep neural architecture.
Note that given the specific model details (covered in Section
IV.D), the model itself can be treated as a black-box system.

The model in Fig. 1 can be represented as f(x) € R% that
embeds an image x into a d-dimensional Euclidean embed-
ding space. Therefore, the images x/*(anchor), xip (positive)
and x['(negative) are embedded to form encodings
F(x®), f(xF) and f(x!") respectively, such that they belong
in the same d-dimensional embedded hyperspace, i.c.,
[1f (x)]|z = 1. The anchor in a triplet is the reference label’s
sample with respect to which other label’s samples are se-
lected for the triplet. The triplet-based approach enables few-
shot learning, as a single input to the training process is a
combination of three different samples. Given a training set
of k-classes and n-samples, the conventional classification ap-
proach [5]-[6], [15] has a total of kxn samples to learn from.
In contrast, the triplet loss approach has 3 samples per input,
where each sample can be selected in kxn ways, i.e., a total of
(kxn)’ inputs generated from the same dataset.
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Figure 2: An overview of the STONE indoor localization framework depicting the offline (red arrows) and online (green arrows) phases.

The goal of the Siamese encoder is to ensure that the an-
chor image is closer to all other images of the same label (pos-
itives), than it is to any image of other labels (negatives).
Based on this discussion, the embeddings should satisty equa-
tion (1)

IF G = FEDIE < IFGD - FEDIE (1)

However, note that equation (1) can be trivially solved if
f(x) = 0. Therefore, the margin « is introduced to enforce
the stability of equation (1). Finally, the triplet loss function
L(xf,xF,x!) that is to be minimized is given as:

L= fe® = FEDIE - IF® - FaPIE+a<0 (2)

The authors in [20] remark that to achieve rapid conver-
gence, select triplets that violate the constraint in eq. (1).
Thus, for each triplet, we need to select a hard-positive xf
that poses great dissimilarity with the anchor, and a hard-neg-
ative x{* that poses great similarity with the anchor x{. This

may require the selection of triplets that satisfy both:
2
argmas £ - F(D)I

argmingllf(x) — fFGIE  (3)

Evaluating argmin and argmax across the whole dataset
is practically infeasible. To overcome this challenge, we pre-
sent a novel and low-complexity indoor localization domain-
specific approach for triplet selection in Section IV.

Once the embeddings for the training dataset have been
produced, the embeddings and associated labels can be used
to formulate a non-parametric model such as KNN. Later, this
KNN model combined with the encoder can be used to clas-
sify an unlabeled sample as a known label.

Based on our discussion above, there are three salient fea-
tures of Siamese networks that fit well to the challenges of
long-term fingerprinting-based indoor localization: (i) In-
stead of associating a sample to its label, it learns the relation-
ship between the samples of labels, (i) Learning relationships
between samples promotes generalization and suppresses the
model’s tendency to overfit the label-sample relationship, and
(iii) It requires fewer samples per class/label to achieve good
performance (few-shot leaning). Siamese networks will tend
to avoid overtitting the training fingerprints and can minimize
the offline fingerprint collection effort. The next section de-
scribes our framework that takes this approach for learning
and classifying fingerprints.

IV. STONE FRAMEWORK

A. Overview

An overview of the proposed framework is presented in
Fig. 2. We begin in the oftline phase (annotated by red ar-
rows), where we capture RSSI fingerprints for various RPs
across the floorplan. Each row in the fingerprint dataset con-
sists of the RSSI values for each AP visible across the floor-
plan and its associated RP. These fingerprints are used to train
the Siamese encoder depicted in Fig. 1. Once the Siamese en-
coder is trained, the encoder network itself'is then used to em-
bed the RSSI fingerprints in a d-dimensional hyperspace. The
encoding of each RSSI vector and its associated RP, from the
offline phase, form a new dataset. This new dataset is then
used to train a non-parametric model. For our work, we chose
the KNN classifier. At the end of the offline phase, the Sia-
mese encoder and KNN model are deployed on a smartphone.

In the online phase (green arrows), the user captures an
RSSI fingerprint vector at an RP that is unknown. For any
WiFi AP that is not observed in this phase, its RSSI value is
assumed to be -100, ensuring consistent RSSI vector lengths
across the phases. This fingerprint is pre-processed (see Sec-
tion IV.B) and sent to the Siamese model. The encoding pro-
duced is then passed on to the KNN model, which finally pre-
dicts the user’s location. In the following subsections, we
elaborate on the main components of the STONE framework.

B.  RSSI Fingerprint Preprocessing

The RSSI for various WiFi APs along with their corre-
sponding RPs are captured within a database as shown in Fig.
2. The RSSI values vary in the range of -100 to 0 dB, where
-100 indicates no signal and O indicates a full (strongest) sig-
nal. The RSSI values captured are then normalized to a range
of 0 (weakest) to 1 (strongest) signal. Finally, each RSSI vec-
tor is padded with zeros such that the length of the vector
reaches its closest square. Each vector is then reshaped as a
square image. At this stage, in the offline phase, we have a
database of fingerprint images and their associated RPs (sim-
ilar to [6]), as shown in Fig. 2.

C. Long-Term Fingerprint Augmentation

A major challenge to maintaining long-term stability for
fingerprinting-based indoor localization is the removal of
WiFi APs post-deployment (i.e., in the online phase) [10]. In
the offline phase, it would be impossible to foretell which spe-
cific APs may be removed or replaced in the future. In the
STONE framework, once an AP is removed or replaced, its
RSSI value is set to -100. This translates into a pixel turning
off in the input fingerprint image. STONE enables long-term
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support for such situations by emulating the removal of APs
(turning off pixels of input images). When generating batches
to train the Siamese encoder, we randomly set the value of a
percentage of observable APs (p_turn_off) to 0. The value of
p_turn_offis picked from a uniform distribution given by:

p_turn_off = U(0.0,p_upper) (4)

where, p_upper is the highest percentage of visible APs that
can be removed from a given fingerprint image. For our ex-
periments, we chose an aggressive value of p_upper=0.90.

D. Convolutional Neural Encoder

An architectural overview of the CNN-based encoder is
shown in Fig. 1. We use 2 convolutional layers (conv) with
filter size of 2x2 with the stride set to 1 and consisting of 64
and 128 filters, respectively. They are followed by a fully
connected (FC) layer of 100 units. The length of the embed-
ding (encoder output or last layer) was empirically evaluated
for each floorplan independently. Based on our analysis, we
chose a value for this hyperparameter in the range of 3 to 10.
To enhance the resilience of STONE to short-term RSSI fluc-
tuations, Gaussian noise (g = 0.10) is added to the model in-
put (see Fig. 1). Dropout layers are also interleaved between
convolution layers to improve generalizability of the encoder.
Note that while the presented convolutional architecture
works well for our experiments, it may need modifications
when porting to other datasets with a different feature space.

E.  Floorplan-aware Triplet Selection Algorithm

As discussed in Section 11, the choice of samples selected
to form the triplets is critical. For a limited set of available
FPRs (6-9 in our experiments), there are very few options in
selecting a hard-positive. However, given an anchor finger-
print, selecting a hard-negative is a greater challenge due to
the large number of candidate RPs across the floorplan. The
motivation for our proposed triplet selection strategy is that
RPs that are physically close to each other on the floorplan
would have RSSI fingerprints that are the hardest to discern.
This strategy is specific to the domain of fingerprinting-based
indoor localization as the additional information of the rela-
tionship between different labels (location of labels with re-
spect to each other) may not be available in other domains
(such as when comparing faces).

To implement our hard-negative selection strategy, we
first pick an RSSI fingerprint from an anchor RP, chosen at
random. For the given anchor RP,, we then select the negative
RP, using a probability density function. Given the set of all
K RPs, {RP,,RP,, ...RP,}, the probability of selecting the /™
RP as the hard-negative candidate is given by a bivariate
Gaussian distribution around the anchor RP as described by
the expression:

P(RP)~N;(uq,0), s.t.P(RE) =0 )

where P(RP;) is the probability of selecting it as the hard-
negative and N, represents a bivariate Gaussian probability
distribution that is centered around the mean at the anchor
(Ug). However, another anchor fingerprint should never be
chosen as the hard-negative, and therefore we set the proba-
bility of selecting an anchor to zero. The expression in (5)
ensures that the RPs closest to the anchor RP have the highest
probability of being sampled. This probability then drops out
as we move away from the anchor. The bivariate distribution
is chosen based on the assumption that the indoor environ-
ment under test is two-dimensional (a single floor). Once the

anchor and the negative RPs are identified for a given triplet,
the specific RSSI fingerprint for each is randomly chosen.
This is because we have only a few fingerprints per RP, and
so it is easy to cover every combination.

The proposed triplet selection strategy is subsequently
used to train the Siamese model (Section [V.A), whose output
is then used to train the KNN model in the offline phase.

In the online phase, the encoder and the KNN model are
deployed on the mobile device and used to locate the user on
the floorplan, as illustrated in Fig. 2 (lower half).

V. EXPERIMENTS

A.  Experimental Setup
1) Fingerprinting Test Suite: UJI

STONE was evaluated on the public dataset UJI [10]. This
dataset covers two floors within a library. However, due to
high floorplan similarity across the two floors, we present the
results for floor 3, for brevity. The dataset consists of finger-
prints that are collected for the RPs along paths, with multiple
fingerprints per RP that are collected at different instances of
time. We utilize RPs from the dataset for which the finger-
prints (up to 9) were collected on the same day for training
the models we compared. The data from the following 15
months is used for testing. The UJI floorplan is presented in
Fig. 3 (bottom left of the figure). The RPs on the floorplan
form a grid like structure over a wide-open area, which is dif-
ferent from the corridors evaluated for the Basement and Of-
fice indoor paths, discussed next.
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Figure 3: Indoor floorplans for long-term indoor localization evaluation, an-
notated with number of visible WiFi APs along the paths and RPs along the
paths. Vertical scales show temporal granularities across months (left-UJT)
and collection instances (right-Basement and Office).

2) Fingerprinting Test Suite: Office and Basement

We also evaluated STONE at finer and broader granularity
levels of hours, days, and months. Details of the floorplans,
captured from real buildings are presented in Fig. 3. The fin-
gerprints were captured from two separate indoor spaces:
Basement (61 meters in length) and Office (48 meters in
length). An LG V20 mobile device was used to capture fin-
gerprints along paths. The Office and Basement paths are
unique with respect to each other (and also the UJI path) in
terms of environmental noise and multipath conditions asso-
ciated with the paths. Each measured fingerprint location is
annotated by an orange dot (Fig. 3) and measurements are
made 1 meter apart. A total of 6 fingerprints were captured
per RP at each collection instance (CI), under a span of 30
seconds. The first three CIs (0-2), for both paths were on the
same day, with each CI being 6 hours apart. The intention was
to capture the effect of varying human activity across differ-
ent times in the day; thus, the first CI is early in the morning
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(8 A.M), the second at mid-day (3 P.M), and the third is late
at night (9 P.M). The following 6 CIs (3—8) were performed
across 6 consecutive days. The remaining CIs (9-15) were
performed on the following months (i.e., 30 days apart).

Fig. 4 depicts the ephemerality of WiFi APs on the Base-
ment and Office paths across the 16 CIs (CIs:0-15 over a total
span of 8 months). A black mark indicates that the specific
WiFi AP (x-axis) was not observed on the indicated CI (y-
axis). While capturing fingerprints across a duration of
months, we did not observe a notable change in AP visibility
up to CI:11. Beyond that, =20% of WiFi APs become una-
vailable. Note that the UJI dataset shows an even more sig-
nificant change in visible WiFi APs of =50% around month
11; however, this change occurs much sooner in our paths, at
C1:11, which corresponds to month 4 after the first finger-
print collection in CL:0. For the Office and Basement paths,
we utilized a subset of CI:0 (fingerprints captured early in the
morning) for the offline phase, i.e., training occurs only on
this subset of data from CI:0. The rest of the data from CI:0
and CIs:1-15 was used for testing.

0

Collection
Instances

Collection
Instances

0 50 100 150 200 250
Office WiFi APs

Figure 4: Ephemerality of WiFi APs across various collection instances for
the Basement and the Office indoor paths.

3) Comparison with Prior Work

We identified four state-of-the-art prior works to compare
against our proposed STONE framework. The first work,
LearnL.oc or KNN [11] is a lightweight non-parametric ap-
proach that employs a Euclidean distance-based metric to
match fingerprints. The technique in the work is incognizant
of temporal-variation. The second work, LT-KNN [21], is
similar to [11] but has enhancements to maintain localization
performance as APs are removed or replaced over time. LT-
KNN achieves this by imputing the RSSI values of APs that
have been removed (are no longer observable on the floor-
plan) using regression. The KNN model is re-trained using
the imputed data. The third work, GIFT [9], achieves tem-
poral-variation resilience by matching the change in the gra-
dient of WiFi RSSI values as the user moves along a path on
the floorplan. Fingerprint vectors are used to represent the dif-
ference (gradient) between two consecutive WiFi scans and
are associated with a movement vector in the floorplan.
Lastly, the fourth work, SCNN [6], is a deep learning-based
approach that has been designed to sustain stable localization
accuracy in the presence of malicious AP spoofing.

B. Experimental Results: UJI

Fig. 5 presents the mean localization error in meters
(lower is better) for the proposed STONE framework and the
four other prior fingerprinting-based indoor localization tech-
niques across 15 months of the UJI dataset. Between months
1-2, we observe that most previous works (KNN, SCNN, LT-
KNN) experience a sharp increase in localization error. Given
that there is no temporal-variation in the training and testing
fingerprints for month 1, previous works tend to overfit the

training fingerprints, leading to poor generalization over time.
In contrast, STONE remains stable and delivers =1 meter ac-
curacy by not overfitting to the training fingerprints in month
1. We can also observe that GIFT provides the least temporal-
resilience and has the highest localization error over time. The
localization errors of STONE, SCNN, KNN and LT-KNN are
around 2 meters (or less) up to month 10, followed by a severe
degradation for KNN and SCNN. In general, STONE outper-
forms all frameworks from months 2—11 with up to 30% im-
provement over the best performing prior work, LT-KNN, in
month 9. Owing to the long-term fingerprint augmentation
used in STONE, it remains stable and performs very similar
to LT-KNN beyond month 11. Over the entire 15-month
span, STONE achieves =0.3-meter better accuracy on average
than LT-KNN. Most importantly, LT-KNN requires re-train-
ing every month with newly collected (anonymous) finger-
print samples, whereas no re-training is required with
STONE over the 15-month span.
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Figure 5: Comparison of localization error of various fingerprinting-based
indoor localization frameworks over 15 months for the UJI indoor path.

C. Experimental Results: Office and Basement

Fig. 6 depicts the contrast in mean indoor localization er-
rors across localization frameworks for the Office and Base-
ment indoor paths. Similar to the previous results, most
frameworks (especially SCNN and GIFT) tend to overtit the
training fingerprints in CL:0 followed by a sharp increase in
localization error for CL:1. It is worth noting that there is
merely a difference of 6 hours between CI:0 and CI:1. In con-
trast to previous works, STONE undergoes the least increase
in localization error initially (CI:0-1), followed by a fairly
slow increase in localization error. We observe that across
both indoor paths, GIFT and SCNN tend to perform the worst
overall. While both these techniques show some resilience to
temporal variation at the hourly (CIs:0-2) and the daily scale
(CIs:3-8), they both tend to greatly lose their efficacy at the
scale of months (Cls:9-15). GIFT’s resilience to very short-
term temporal variation is in consensus with the analysis con-
ducted by its authors, as it is only evaluated over a period of
few hours [9]. Both KNN and LT-KNN perform well (1-2
meters of localization error) on the Basement path. However,
the localization error of KNN tends to increase in later Cls,
particularly on the Office path. STONE outperforms LT-KNN
across most collection instances, including up to and beyond
CL:11. STONE delivers sub-meter of accuracies over a period
of weeks and months and performs up to 40% better than the
best-known prior work (L T-KNN) over a span of 24 hours
(CI:1-3 in Fig. 5(b)), with superior localization performance
even after 8 months. On average, over the 16 CI span, STONE
achieves better accuracy than LT-KNN by =0.15 meter (Base-
ment) and =0.25 meter (Office). STONE achieves this supe-
rior performance without requiring re-training, unlike LT-
KNN which must be re-trained at every CI.

Overall, we attribute the superior temporal-variation resil-
ience of STONE to our floorplan-aware triplet selection, long-
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term AP augmentation, and also the nature of Siamese encod-
ers that leamn to differentiate between inputs instead of learn-
ing to classify a specific pattern as a label is also credited.

s KNN = LT-KNN === GIFT === SCNN == STONE
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Figure 6: Localization errors of various frameworks over Cls for the Base-
ment and Office indoor paths. Results for CL:0 are enlarged in the inset.
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Figure 7: Sensitivity analysis on STONEs performance across varying num-
ber of fingerprints per RP (FPR) on UJI, Basement, and Office paths. Num-

bers in the heatmap cells show the obtained mean localization error.
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D. Results: Sensitivity to Fingerprints Per RP (FPR)

Considering that STONE is explicitly designed to deliver
the best temporal-resilience using minimal fingerprints, we
performed a sensitivity analysis by varying FPR across all in-
door paths considered, to study its impact on localization er-
ror. Fig. 7 depicts the mean localization error as a heatmap
(x-axis: timescale, y-axis: FPR) for different variants of
STONE, each trained using a different number of FPRs. The
final column in Fig. 7 represents the mean localization error
across the timeline. The experiment is repeated 10 times with
shuffled fingerprints to avoid any form of fingerprint selec-
tion bias. From the figure, we observe that for all three indoor
paths, the STONE framework when trained using 1 FPR per-
forms the worst; conversely increasing FPR beyond 4 does
not produce notable improvements. Overall, these results
show that STONE produces competitive indoor localization
accuracy in the presence of temporal-variations using as few
as 4 FPR. To contrast this with a conventional classification-
based approach, SCNN [6] is deployed using as many as 8
FPR (2x) and is unable to deliver competitive localization er-
rors over time. Moreover, mobile devices can take several
seconds to capture a single fingerprint (WiFi scan), thus re-
ducing the number of FPRs in the training phase can save sev-
eral hours of manual effort.

VI. CONCLUSION

In this paper, we presented an effective temporal-variation
resilient fingerprinting-based indoor localization framework
called STONE. Our approach was evaluated against four
state-of-the-art indoor localization frameworks across three
distinct indoor paths. The experimental results indicate that
STONE often delivers sub-meter localization accuracy and
when compared to the best performing prior work, delivers
up to 40% better accuracy over time, without requiring any
re-training or model updating after the initial deployment.
The ideas highlighted in this work, culminating in the STONE
framework, represent promising directions for achieving low-
overhead stable and long-term indoor localization with high-
accuracy, while requiring the use of only a handful of finger-
prints per reference point.
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