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Abstract— Modern vehicles have multiple electronic control units
(ECUs) that are connected together as part of a complex distributed
cyber-physical system (CPS). The ever-increasing communication
between ECUs and external electronic systems has made these vehicles
particularly susceptible to a variety of cyber-attacks. In this work, we
present a novel anomaly detection framework called TENET to detect
anomalies induced by cyber-attacks on vehicles. TENET uses temporal
convolutional neural networks with an integrated attention mechanism to
learn the dependency between messages traversing the in-vehicle
network. Post deployment in a vehicle, TENET employs a robust
quantitative metric and classifier, together with the learned dependencies,
to detect anomalous patterns. TENET is able to achieve an improvement
of 32.70% in False Negative Rate, 19.14% in the Mathews Correlation
Coefficient, and 17.25% in the ROC-AUC metric, with 94.62% fewer
model parameters, and 48.14% lower inference time compared to the best
performing prior works on automotive anomaly detection.

I. Introduction

Today’s vehicles are becoming increasingly autonomous and
connected, to achieve improved safety and fuel efficiency goals. To
support this evolution, new technologies such as advanced driver
assistance systems (4DAS [1]), vehicle-to-vehicle (V2V), 5G vehicle-to-
infrastructure (5G V21I), etc. have emerged [2]. These advances have led
to an increase in the complexity of electronic control units (ECUs) and the
in-vehicle network that connects them. As a result, vehicles today
represent distributed cyber-physical systems (CPS) of immense
complexity. The ever-growing connectivity to external systems in such
vehicles is introducing new challenges, related to the increasing
vulnerability of these vehicles to a variety of cyber-attacks [3].

Attackers can use various access points (known as an attack surface)
in a vehicle, e.g., Bluetooth, telematic systems, and OBD-II ports, to gain
unauthorized access to the in-vehicle network. After gaining access to the
network, an attacker can inject malicious messages to try and take control
of the vehicle. Recent automotive attacks on the in-vehicle network
include manipulating speedometer and indicator signals [4], unlocking
doors [5], manipulating the fuel level indicator [5], etc. These types of
attacks confuse the driver but are not fatal. More complex machine
leaming-based attacks can cause incorrect traffic sign recognition in a
vehicle's camera-connected ECU [6]. In [7], researchers analyzed
vulnerabilities in airbag systems and remotely deployed the airbags in a
vehicle. These types of attacks can be catastrophic and potentially fatal.

With the increasing complexity of vehicular CPS, the attack surface is
only going to increase, paving the way for more complex and novel
attacks in the future. Thus, there is an urgent need for an advanced attack
detection solution that can actively monitor the in-vehicle network and
detect complex cyber-attacks. One of the many approaches to achieve this
goal is by using an anomaly detection solution (ADS). An ADS can be a
hardware or software-based system that continuously monitors the in-
vehicle network to detect attacks without any human supervision. Many
state-of-the-art ADS use machine learning algorithms to detect cyber-
attacks due to large availability of vehicle network data and more
computationally capable ECUs today. At a very high level, the machine
leaming model in an ADS tries to learmn the normal operating behavior of
the vehicle system during design and test time. This leamed knowledge of
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the normal system behavior is then used at runtime to continuously
monitor for any anomalous behavior, to detect attacks. The major
advantage of this approach is that it can detect both known and unknown
attacks. Due to its high attack coverage and ability to detect complex
attack patterns, we focus on (and make new contributions to) machine
leaming based ADS for cyber-attack detection in vehicles.

In this work, we propose a novel ADS framework called TENET to
actively monitor the in-vehicle network and observe for any deviation
from the normal behavior to detect cyber-attacks. TENET attempts to
increase the detection accuracy, receiver operating characteristic (ROC)
curve with area under the curve (AUC), Mathews correlation coefficient
(MCC) metrics, and minimize false negative rate (FNR) with minimal
overhead. Our novel contributions can be summarized as follows:

e We present a temporal convolutional neural attention (TCNA)
architecture to leam very-long term temporal dependencies between
messages in the in-vehicle network;

e We introduce a metric called divergence score to quantify the
deviation from expected behavior;

e Weadapt a decision tree-based classifier to detect a variety of attacks
at runtime using the proposed metric;

e We compare our 7ENET framework with multiple state-of-the-art
ADS frameworks to demonstrate its effectiveness.

II. Related Work

Several researchers have proposed solutions to detect in-vehicle
network attacks. These solutions can be classified as either signature-
based or anomaly-based. In this section, we discuss these solutions in
detail and present a distinction between the existing works and our
proposed TENET framework.

The authors in [8] proposed a language-theory based model to derive
attack signatures. However, their technique fails to detect attack packets at
the initial stages of the attack. In [9], [10] message frequency-based
techniques were proposed to detect attacks. A transition matrix-based
ADS was proposed in [11] to detect attacks on the controller area network
(CAN). However, the approach could not detect complex attacks, such as
replay attacks. An entropy-based ADS was presented in [12], [13] to detect
in-vehicle network attacks. However, these techniques fail to detect small
variations in the entropy and modifications in CAN message data. In [14],
the Hamming distance between messages was used to detect attacks.
However, this approach incurs a high computational overhead. In [15],
ECUs were fingerprinted using their voltage measurements during
message transmission and reception. However, this method cannot detect
attacks at the application layer. In general, signature-based ADS
approaches can detect attacks in the network with high accuracy and low
false-positive rate. However, obtaining all possible attack signatures and
Sfrequently updating them is impractical. Moreover, none of these works
provide a holistic solution to detect unknown and complex attack patterns.

In contrast, anomaly-based solutions attempt to leam the normal
system behavior and observe for any abnormal behavior in the network to
detect both known and unknown attacks. In [16], the authors used deep
neural networks (DNNs) to extract the low dimensional features of
transmitted packets and differentiate between normal and attack-injected
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packets. The authors in [17] used a recurrent neural network (RNN) to
leam the normal behavior of the network and used that information to
detect attacks at runtime. Several other works, such as [18]-[21], have
proposed long short-term memory (LSTM) based ADS to leam the
relationship between messages traversing the in-vehicle networks.
However, these models were not tested on complex attack patterns and
impose high overheads on the ECU. The authors in [22] proposed an
LSTM based encoder-decoder architecture with an attention mechanism
as an ADS for in-vehicle netwrok. The attention was used to enhance the
encoder’s context vector to provide the decoder with quality inputs. A
gated recurrent unit (GRU) based autoencoder ADS was proposed to
leamn the normal system behavior in [23]. However, a static threshold
approach was used to classify messages, which is unable to capture non-
linear behaviors. In [24], an LSTM based encoder-decoder ADS was
proposed with attention to reconstruct input messages. A kermnel density
estimator (KDE) and k-nearest neighbors (KNN) were further used to
detect anomalies. But the approach incurs a high overhead on the ECU.
An approach that combined an LSTM with a convolutional neural
network (CNN) was proposed in [25] to leam the dependencies between
messages in a CAN network. However, the model was trained on a
labeled dataset in a supervised manner; due to the large volume of in-
vehicle CAN message data, labeling the data is impractical.

All these works suggest that sequence models with LSTMs and
GRUs are popular for detecting attacks on vehicles. However, the
increased vehicular CPS complexity today has resulted in very long-term
dependencies between messages exchanged between ECUs that cannot
be effectively captured using LSTMs and GRUs. This is because the
current time step output of LSTMs and GRUS is heavily influenced by
recent time steps compared to time steps in the distant past, which makes
it hard to capture very long-term dependencies. Processing very long
sequences also exacerbates the computational and memory overhead of
LSTMs and GRUs.

In summary, none of the existing ADS provides a holistic approach
that can efficiently learn very long-term dependencies between in-vehicle
network messages with a low memory and computational overhead, and
also accurately detect a multitude of simple and complex attacks on the
vehicle. Our proposed TENET ADS uses a novel TCNA (temporal CNN
with attention) model to overcome these shortcomings of state-of-the-art
ADS. The next section describes TENET in detail. The comparative
performance analysis results are presented in section IV.
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Fig. 1. Overview of the different phases of the TENET framework

III. TENET Framework: Overview

The TENET framework consists of three phases: (i) data collection
and preprocessing, (i) leaming, and (iii) evaluation. The first phase
involves collecting in-vehicle network data from a trusted vehicle and
preprocessing the collected data. In the learning phase (offline), the
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preprocessed data is used to train a Temporal Convolutional Neural
attention (TCNA) network in an unsupervised manner to leam the
normal behavior of the system. In the evaluation phase (online), the
trained TCNA network is deployed and used to calculate a divergence
score (DS), which is then used by a decision tree-based classifier to
detect attacks. The overview of our proposed TENET framework is
shown in Fig.1.

A. Data Collection and Preprocessing

This first phase of the TENET framework involves collecting in-
vehicle network data from a trusted vehicle and over a variety of
normal operating conditions. Otherwise, the model may learn an
incorrect representation of the normal operation of the vehicle. In this
work, we recommended splicing into the vehicle network and directly
logging the messages using a standard logger such as Vector GL 1000
[26], as this allows one to record any message traversing the network.

After data collection, the data is prepared for pre-processing to
facilitate easy and efficient training of the machine leaming models.
Every vehicle message in typical vehicle network protocols (CAN,
FlexRay [27], etc) has a unique identifier (ID) and each message in the
dataset is grouped by this unique ID and processed independently. Each
message has the following attributes (columns): (i) unique timestamp
corresponding to the log time of the message (used for relative ordering
of messages), (ii) message ID, (iii) number of signals in the message,
(iv) individual signal values in the message (which together constitute
the message payload), and (v) label of the message (‘0” for no-attack and
‘1” for attack). Due to the possibility of high variance in message signal
values, all signal values of each signal type are scaled between 0 and 1.
The learning phase and evaluation phases in 7ENET use training and
testing data, respectively. The label values of all samples in the training
dataset are set to 0 to represent no-attack data. The test data has a label
value of 1 for attack samples and a label value of 0 for no-attack
samples. Furthermore, the original training data is split into training
(85%) and validation (15%) sets. Details of the training procedure and
the model architecture are discussed in the next subsections.

B.  Model Learning

In this subsection, we describe our proposed TCNA network
architecture and the training procedure we employed for it. TENET uses
this TCNA network to leam the normal system behavior of the in-
vehicle network in an unsupervised manner. The proposed TCNA
model takes the sequence of signal values in a message as the input and
uses CNNss to predict the signal values of the next message instance, by
trying to learn the underlying probability distribution of the normal data.

An early adaptation of CNNs for sequence modeling tasks was
presented in [28], where a convolution-based time-delay neural network
(TDNN) was proposed for phoneme recognition. To capture very-long
term dependencies, traditional CNNs need to employ a very deep
network of CNN layers with large filters. Consequently, this increases
the number of convolutional operations incurring a high computational
overhead. Thus, adapting CNNss directly to sequence modeling tasks in
resource constrained automotive systems is not a feasible solution.
However, recent advances have enabled the use of CNNs to capture
very-long term dependencies with the help of dilated causal convolution
(DCC) layers [29]. The dilation factor of each DCC layer dictates the
number of input samples to be skipped by that layer. The total number
of samples influencing the output at a particular time step is called the
receptive field. Using a larger dilation factor enables an output to
represent a wider range of inputs, which helps to leam very-long term
dependencies. Unlike RNNs/LSTMs/GRUs, CNNs do not have to wait
for the previous time step output to process the input at the current time
step. Thus, CNNs can process input sequences in parallel, making them
more computationally efficient during both training and testing. Due to
these promising properties, we adapt dilated CNNs for learning
dependencies between in-vehicle messages in our TCNA model. We
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custom designed our TCNA network to consist of three TCNA blocks.
A TCNA block consists of an attention block and a TCN residual block
(TRB), as shown in Fig. 2(a). The input to the first TCNA block is a
time series of message data with 7 signal values as features. This partial
sequence from the complete time-series dataset, that is given as the input
to the model every time, is called a subsequence. The TRB is inspired
by [29] and employs two DCC layers, two weight normalization layers,
and two ReLU layers stacked together, as shown in Fig. 2(b). This
residual architecture helps to efficiently backpropagate gradients and
encourages the reuse of learned features. We enhanced this TRB from
[29] by: (i) adding an attention layer (discussed later); (i) removing
dropout layers to avoid thinning the network and provide our attention
block with non-sparse inputs; and (7ii) avoiding zero-padding the input
time-series by computing the length of the subsequence as follows:

R=(k—1)+2! )

where R is the subsequence length, k is the kernel size, and / is the
number of DCC layers in the network. This was done because we
found that padding zeros to an input sequence distorts the sequential
nature of in-vehicle time series data.

The first TCNA block does not contain an attention block, and the
inputs are directly fed to the TRB as shown in Fig. 2(a), where, {f}, />,
..., fm} represent multiple channels of the first TRB block, m is equal
to the number of features of the inputs, {c;, c» ..., ci} represent
multiple channels of the remaining TRBs, and £ is the number of
channels of TRB inputs. The first DCC layer inside the TRB processes
each feature of the input sequence as a separate channel as shown in
Fig. 2(a). A 1-D dilated causal convolution operation is performed
using a kernel of size two and the number of filters is three times the
input features (m) in each DCC layer. The input and normalized
outputs are passed through a ReLU activation function. This process
is repeated one more time inside the TRB. A convolution layer with a
filter size of 1x1 is added to make the dimensions of the outputs from
the last ReLU activation and the input of the TRB consistent with each
other. Each DCC layer in the TRB learns temporal relationships
between messages by applying filters to its inputs and output
dimensions are the same except for the first TRB. The output from the
DCC layer is weight normalized for fast convergence and to avoid
explosion of weight values. The weight updating filter weight values.

Our TCNA block also contains an attention block. Attention
mechanisms enable deep neural networks to focus on the important
aspects of the input sequences when producing outputs [30]. We
devised a scaled dot product attention mechanism and modeled the
attention as a mapping of three vectors, namely query (Q), key (K),
and value (7). A weight vector is computed by comparing the
similarities between the Q and K vectors, and a dot product between
the weight vector and the J vector generates the output attention
weights. As this attention mechanism does not use the previous output
information when generating the attention weights, it is a self-
attention mechanism. In the context of our proposed TCNA network,
self-attention mechanisms can help in identifying important feature
maps and enhance the quality of intermediate inputs received by the
DCC layers. This further assists with efficient learning of the very-
long term dependencies between messages in an in-vehicle network.

The output feature maps of the TRB are given as the input to this
attention block, shown in Fig. 2(c). The attention block repeats its
inputs to obtain the O, K, and, V vectors. A scalar-dot product is
performed between Q and the transpose of key (K”) to calculate the
similarities between each Q and K vectors. The resultant dot product

is scaled by a factor of 1/,/d; and passed through a sofimax layer to
calculate attention weights as follows:

4D-1

Output

Q KV
Attention mechanism

TCN Residual block (TRB)

(b) (©
Fig. 2. (a) TCNA network architecture with the internal structure of
the TCNA block, (b) TCN residual block showing the various layers of
transformation and, (c) the attention mechanism.

where the term dj represents the dimension of the K vector. The
attention weights represent the importance of each feature map of the
previous DCC layer. The attention weights are then scalar multiplied
with V/to produce the output of the attention block. Thus, the attention
block uses a self-attention mechanism to improve the quality of
feature maps that will be received by the subsequent TRBs.
Ultimately, as shown in Fig. 2(a), an input sequence flows through the
entire TCNA network and is fed to the final linear layer which
produces an output of m dimensions. The m-dimensional output
represents the predicted signal values.

The TCNA network is trained using a rolling window approach.
Each window consists of signal values corresponding to the current
subsequence. Our TCNA network learns the temporal dependencies
between messages inside a subsequence and tries to predict the signal
values of the subsequence that are shifted by one time step to the right.
We employ a mean squared error (MSE) loss function to compute the
prediction error between signal values of the last time step in the
predicted subsequence and the last time step of the input subsequence.
The error is backpropagated to update the weights for the filters. This
process is repeated for each subsequence until the end of the training
data, which constitutes one epoch. We train the model for multiple
epochs and employ a mini-batch training approach to speed up the
training. At the end of each epoch, the model is evaluated using the
unseen validation data. An early stopping mechanism is used to
prevent model overfitting. The details of the model hyperparameters
are discussed later, in Section IV-A.

C. Model Testing
C.1. Attack model

Here we present details of the various attack scenarios considered in
this work. Our TENET framework attempts to detect the following
complex and most widely seen attack scenarios in the in-vehicle
network:

1) Plateau attack: This is an attack scenario where the attacker sets
a constant value for a signal or multiple signals over the attack interval.
It is hard to detect this attack especially when the set constant value is

0KT close to the true signal value.
Attention(Q,K, V) = softmax < / \/d—> 4 ()] 2) Suppress attack: In this attack, the attacker tries to suppress a
y signal value by either disabling the ECU or deactivating the
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communication controller, effectively resulting in no message being
transmitted. It is hard to detect short bursts of these attacks as they could
be confused for a missing or delayed message.

3) Continuous attack: This attack represents a scenario where the
attacker gradually overwrites the true signal value. The attacker then
eventually will achieve the target value without triggering most ADS
frameworks. These attacks are hard to detect and require an advanced
ADS.

4) Playback attack: This attack involves the attacker using the
previously observed sequences of signal values and trying to replay
them again at a later time to trick the ADS. If the ADS is not trained to
understand patterns in the sequence of transmitted messages, it will fail
to detect these types of advanced attacks.

C.2. Evaluation phase

We use the trained TCNA network in conjunction with a detection
classifier to detect attacks on vehicles at runtime. The high frequency
of messages in the in-vehicle network requires a detection classifier
that is lightweight and can classify messages quickly with high
detection accuracy and minimal overhead. Hence, we use the well-
studied categorical variable decision tree-based classifier to detect
between normal and attack samples (binary classification) due to their
simpler nature, speed, and precise classification capabilities.

A decision tree starts with a single node (roof node), which
branches into possible outcomes. Each of those outcomes leads to
additional nodes called branch nodes. Each branch node branches off
into other possibilities and ends in a leaf node giving it a treelike
structure. During training, the decision creates the tree structure by
determining the set of rules in each branch node based on its input.
During testing, the decision tree takes the input and traverses the tree
structure until it reaches a leaf node. The evaluation phase begins by
splitting the test data with attacks into two parts: (i) calibration data,
and (ii) evaluation data. In the first part, only the calibration data is fed
to the trained TCNA network to generate the predicted sequences. We
then compute a divergence score (DS) for each signal in every
message:

DS™(t) = (S;”(t) —SM(t+ 1)) vie[LN,]lme [1M] 3)

where m represents the m" message sample and M represents the total
number of message samples, i represents the i signal of the m"”
message sample and N, represents the total number of signals in the
m" message, ¢ represents the current time step, ST (t) represents the
i" predicted signal value of the m" message at time step £, and S/™(t +
1) represents the true i signal value of the 7" message sample at time
step £ + 1.

The DS is higher during an attack as the TCNA model is trained
on the no-attack data and fails to predict the signal values correctly in
the event of an attack. This sensitive nature of the DS to attacks makes
it a good candidate for the input to our detection classifier. Moreover,
the group of signal level DS for each message sample is stacked
together to obtain a DS vector. We train the decision tree classifier
using this DS vector as input to learn the distribution of both no-attack
samples and attack samples. We use the unseen evaluation data (that
has both attack and no-attack samples) to evaluate the performance of
TENET.

IV. Experimental Setup

To evaluate the effectiveness of the TENET framework, we
conducted various experiments. We compared 7ENET against three
state-of-the-art prior works on ADS: RN [17], INDRA [23], and
HADBAD [24]. Together, these approaches reflect a wide range of
sequence modeling architectures. RN [17] uses RNNs to increase the
dimensionality of input signal values and reconstruct the input signal
at the output by minimizing MSE. The trained RN model scans
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continuously for large reconstruction errors at runtime to detect
anomalies over in-vehicle networks. INDRA [23] uses a GRU-based
autoencoder that reconstructs input sequences at the output by
reducing the MSE reconstruction loss. At runtime, INDRA utilizes a
pre-computed static threshold to flag anomalous messages. HAbAD
[24] uses an LSTM based autoencoder model with attention to detect
anomalies in real-time embedded systems. HAbAD uses a supervised
learning detector that combines a kernel density estimator (KDE) and
k-nearest neighbors (KNN) algorithm to detect anomalies. The
comparisons of 7TENET with the above-mentioned ADS are presented
in subsections IV-B and IV-C.

We adopted an open-source CAN message dataset developed by
ETAS and Robert Bosch GmbH [18] to train our model, and the
comparison works. The dataset consists of multiple CAN messages
with different number of signals that were modeled after real-world
vehicular network information. Moreover, the dataset has a distinct
training set that has normal CAN messages and a labeled testing
dataset for different types of attacks. For training and validation, we
used the training dataset from [18] without any attack scenarios in an
unsupervised manner. We tested our proposed TENET framework,
and all comparison works by modeling various real-world attacks
(discussed in section III-C.1) using the test dataset in [18]. Note that
TENET can be easily adapted to other in-vehicle network protocols
such as Flexray [27] and Ethernet, as it relies only on the message
payload information. However, the lack of any openly available
datasets for these protocols prevents us from showing results on them.

Weused PyTorch 1.8 to model and train various machine learning
models including TENET, and the comparison works. Our framework
uses 85% of data for training and the remaining 15% for validation.
We trained TENET for 200 epochs with an early stopping mechanism
that constantly monitors the validation loss after each epoch. If no
improvement in validation loss is observed in the past 10 (patience)
epochs, training is terminated. We used MSE to compute the
prediction error and the ADAM optimizer with a learning rate of le-
4. We employed a rolling window approach (discussed in Section II1-
B) with a batch size of 256, and a subsequence length of 64. We used
scikit-learn to implement the decision tree classifier, with the gini
criterion, and best splitter to detect anomalies based on the divergence
score. Before discussing the results, we define performance metrics
that we used in the context of ADS. We classify a message as a true
positive (7P) only if the model detects a true attack as an anomaly,
and a true negative (7N) is when a normal message is detected as a
no-attack message. When the model detects a normal message as an
anomalous message it is defined as a false positive (FP), whereas an
actual anomalous message which is not detected is a false negative
(FN). Using these definitions, we evaluate the ADS based on four
different performance metrics:

(i) Detection Accuracy: quantifies the ability of the ADS to detect
an anomaly correctly, as defined below:

TP+TN 4
TP+FP+TN+FN ( )
(ii) Receiver Operating Characteristic (ROC) curve with area

under the curve (AUC): which measures the ADS performance as
the area under the curve in a plot between the true positive rate
(TPR) and false positive rate (FPR):

TP FpR = P ©)
TP+FN FP+TN

(iii) False Negative Rate (FNR): which quantifies the
probability that a 7P will be missed by the ADS (lower is better):
FN (6)

FN+TP
(iv) Mathews Correlation Coefficient (MCC): which provides

an accurate evaluation of the ADS performance while working
with imbalanced datasets, as defined below:

Detection accuracy =

TPR =

FNR =
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(TP+TN) — (FP+FN)
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

MCC = ©]

Another metric that is sometimes used is the F-1 score, which is
the harmonic mean of precision and recall. As both precision and
recall do not include the true negatives in their computation, the F-1
score metric fails to represent the true performance of the classifier.
Unlike the F-1 score metric, the MCC metric that we consider includes
all the cells of the confusion matrix, thus providing a much more
accurate evaluation of the frameworks.

A. Receptive Field Length Sensitivity Analysis

In the first experiment, we compare the performance of our TCNA
architecture with four different receptive field lengths while the
remaining hyperparameters are unchanged. We conduct this analysis
to evaluate whether very long receptive lengths can help with a better
understanding of normal system behavior. All the variants are
evaluated based on their performance on two training metrics: average
training loss and average validation loss, and the best model is selected
for further comparisons. The average training loss value represents the
average loss between the predicted behavior and observed behavior of
each iteration in the training data. In contrast, the average validation
loss represents the average loss between the predicted behavior and
the observed behavior of each iteration in the validation data.

Table I: TCNA variants with different receptive field lengths

Receptive field lengths
16 32 64 128
Average training loss 4.1e-4 3e-4 2.5e-4 6.8e-4
Average validation loss 5.5¢-4 4.3e-4 2.9¢-4 9.3e-4

Table I shows the average training and validation loss of the four
variants of TCNA. We can observe that a receptive length of 64 has
the lowest average training and validation loss. Therefore, we select
64 as our receptive field value, which is twice the maximum receptive
field length presented in one of the comparison works (sequence
length of 32 in [24]). This long receptive field length enables us to
more effectively learn very long-term dependencies in the input time
series data and allows us to better understand the normal vehicle
operating behavior.

B.  Prior Work Comparison

In this subsection, we compare our TENET framework with the
state-of-the-art ADS works RN [17], INDRA [23], and HAbAD [24].
The results of the comparison on the metrics discussed in the previous
section are as shown in Fig. 3. From Fig. 3(a)-(d), TENET outperforms
all comparison works for all four metrics under various attack
scenarios. Table II summarizes the average relative percentage
improvement of TENET over the comparison works for all attack
scenarios. Compared to the best performing prior work (INDRA
[23]), TENET achieves an improvement of 3.32% in detection
accuracy, 17.25% in ROC-AUC for playback attacks (we only show
a playback attack for representing the ROC-AUC as it is the most
difficult attack to detect), 19.14% in MCC, and 32.70% in FNR.

Table II: Relative % improvement of TENET vs. other ADS

Prior ADS Detection ROC-AUC MCC FNR
Works accuracy
INDRA [23] 3.32 17.25 19.14 32.70
HABAD [24] 9.07 26.50 49.26 44.05
RN [17] 9.48 37.25 64.3 69.47

In summary, our TENET framework with a customized TCNA
network outperforms all prior recurrent architectures with and without
attention, due to its ability to capture very-long term dependencies in
time-series data. Moreover, the attention mechanism within the
TCNA improves the quality of the outputs of the TRB, which enables
efficient learning of very-long term dependencies. Thus, our TCNA
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network with the decision tree classifier represents a formidable
anomaly detection framework.
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Fig. 3. Comparison of (a) detection accuracy, (b) ROC-AUC for playback
attack, (c) MCC, and (d) FNR for TENET and ADS from prior work.

C. Memory Overhead and Latency Analysis

Lastly, we compare the number of trainable parameters, the
memory footprint, and inference time of the TENET framework, and
the comparison ADS works to evaluate their memory and
computational overheads. Table III shows the memory footprint,
model parameters, and average inference latency of TENET and the
other ADS. It is important to consider the memory and latency
overhead of ADS models because automotive ECUs are resource
constrained and it is crucial to have an ADS that does not interfere
with the normal operation of safety-critical automotive applications.
All results are obtained for deployment on an NVIDIA Jetson TX2
with dual-core ARM Cortex-A57 CPUs, which has specifications
similar to real-world ECUs.
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Table III: Memory, model size, and inference latency analysis

Memor Model Inference

ADS Framework footprint (Iy(B) parameters time (us)
TENET 59.62 6064 250.24
RN [17] 7.2 1300 412.50
INDRA [23] 453.8 112900 482.10
HADBAD [24] 261.63 64484 1370.10

It can be observed that TENET has the second lowest number of
model parameters and memory footprint over all the other comparison
works except RN [17]. Even though RN has the least number of model
parameters and memory footprint, it fails to effectively capture the
temporal dependencies between messages, resulting in very poor
performance, as can be seen in Fig. 3(a)-(d). Compared to INDRA and
HAbAD, TENET achieves a reduction of 86.86% and 77.21% in
memory footprint, and a reduction of 94.62% and 90.59% in the
number of trainable model parameters. TENET is able to achieve high
performance with significantly fewer trainable parameters because of
the fewer filters used by each DCC layer in the TCNA network. This
is achieved using the attention block in TCNA which improves the
quality of the outputs of each TRB thus eliminating the need for more
filters. Moreover, TENET also has the lowest inference time with an
average of 56.43% reduction against all comparison works. TENET is
able to achieve faster inferencing because, unlike recurrent
architectures, 7ENET employs CNNs to process multiple
subsequences in parallel, which helps reduce the inference time. Thus,
TENET is able to achieve superior performance across various attack
scenarios in automotive platforms with minimal memory and
computational overhead.

VI. Conclusion

In this paper, we have proposed a novel anomaly detection
framework called TENET for automotive cyber-physical systems
based on Temporal Convolutional Neural Attention (TCNA)
networks. We also proposed a metric called the divergence score
(DS), which measures the deviation of the predicted signal value from
the actual signal value. We compared our framework with the best-
known prior works that employ a variety of sequence model
architectures for anomaly detection. Compared to the best performing
prior work, TENET achieves an improvement of 3.32% in detection
accuracy, 17.25% in ROC-AUC, 19.14% in MCC, and 32.70% in
FNR metric with 94.62% fewer model parameters, 86.95% decrease
in memory footprint, and 48.14% lower inference time. Given the
proliferation of connected vehicles with large attack surfaces on the
roads today, the promising results in this work highlight a compelling
potential for deploying TENET to achieve fast, low-footprint, and
accurate anomaly detection in emerging automotive platforms.
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