

1 **Fluid-rich subducting topography generates anomalous forearc porosity**

2 Christine Chesley¹, Samer Naif², Kerry Key¹, and Dan Bassett³

3 ¹Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York, USA

4 ²School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA

5 ³GNS Science, Lower Hutt, New Zealand

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28 Corresponding author: Christine Chesley, chesley@ldeo.columbia.edu

29 The role of subducting topography on the mode of fault slip, particularly whether it hinders or facilitates large
30 megathrust earthquakes, remains a controversial topic in subduction dynamics^{1–5}. Models illustrate the potential for
31 subducting topography to severely alter the structure, stress-state and mechanics of subduction zones^{4,6}, however, direct
32 geophysical imaging of the complex fracture networks proposed and the hydrology of both the subducting topography
33 and associated upper plate damage zones remains elusive. Here we use passive and controlled-source seafloor
34 electromagnetic data collected at the northern Hikurangi Margin, New Zealand, to constrain electrical resistivity in a
35 region of active seamount subduction. We show that a seamount on the incoming plate contains a thin, low porosity
36 basaltic cap that traps a conductive matrix of porous volcaniclastics and altered material over a resistive core, which
37 allows 3.2–4.7x more water than normal, unfaulted oceanic lithosphere to subduct. In the forearc, we image a
38 sediment-starved plate interface above a subducting seamount with similar electrical structure to the incoming plate
39 seamount. A sharp resistive peak within the subducting seamount lies directly beneath a prominent upper plate
40 conductive anomaly. The coincidence of this upper plate anomaly with the location of burst-type repeating earthquakes
41 and seismicity associated with a recent slow slip event⁷, directly links subducting topography to the creation of fluid-
42 rich damage zones in the forearc that alter the effective normal stress at the plate interface by modulating fluid
43 overpressure. In addition to severely modifying the structure and physical conditions of the upper plate, subducting
44 seamounts represent an underappreciated mechanism for transporting a considerable flux of water to the forearc and
45 deeper mantle.

46 Observations of aseismic creep, microseismicity, and slow earthquakes at subduction zones with substantial seafloor
47 roughness on the incoming plate^{3,7} contradict the notion that subducting topography should promote strong interseismic
48 coupling and large megathrust earthquakes^{1,2}. Indeed, integrated geophysical observations reveal subducted topography in
49 areas with weak interseismic coupling and slow slip^{5,7,8}. Analogue models show that the geometric incompatibility of
50 subducting topographic relief is accommodated by the generation of complex fracture networks in the overriding plate. These
51 fault networks are unlikely to be conducive to earthquakes rupturing over large areas and are more likely to slip through a
52 combination of small-earthquakes and creep^{4,6}. Although the surficial scars of these damage zones have been imaged in multi-
53 beam bathymetric data⁹, the inherent structural complexity of subduction forearcs makes the extent of these fracture networks
54 and their impact on hydrology difficult to resolve with traditional geophysical techniques. Additionally, few have speculated
55 about how the internal composition of the subducting topography may impact subduction dynamics.

56 We collected magnetotelluric (MT) and controlled-source electromagnetic (CSEM) data at 29 stations along a 90-km-
57 long trench-perpendicular profile offshore the northern Hikurangi Margin, New Zealand to study the electrical resistivity

58 structure of the incoming plate and forearc in a region of well-documented seamount subduction^{8–11} (Fig. 1). Electromagnetic
59 data are particularly sensitive to the presence of conductive phases, especially fluids in pore spaces and fractures of otherwise
60 low porosity material, making them a powerful tool for imaging fluid saturated sediment and damaged lithospheric rock in
61 addition to crystalline basement^{12–16}. The co-location of our EM profile with previously collected seismic reflection data¹⁷,
62 IODP coring sites¹⁸ and ocean bottom seismometers¹⁹ provides an unprecedented opportunity to test the predictions of
63 numerical models to improve our understanding of how subducting topography influences subduction processes.

64 At the Hikurangi Margin, the Pacific Plate that subducts beneath the Australian Plate (Fig. 1a) is thickened relative to
65 normal oceanic lithosphere by the Hikurangi Plateau, an Early Cretaceous Large Igneous Province thought to have been
66 emplaced concurrently with the Ontong Java and Manihiki Plateaus²⁰. The thickness of sediments that cover the plateau
67 decreases from ~6 km in south Hikurangi to ~1 km in the north and this reduction coincides with an increased density of
68 seamounts expressed on the seafloor to the north¹⁰ (Fig. 1a). Along-strike variations in interseismic coupling and the depth,
69 duration, and frequency of slow slip events (SSEs) at the margin have been identified in previous works¹⁰, but their cause
70 remains poorly understood.

71 **Electrical resistivity of a seamount**

72 We jointly modeled the 1-D and 2-D compatible MT and CSEM responses using a 2-D nonlinear, regularized
73 inversion that solved for the vertically transverse isotropic resistivity tensor²¹ (see METHODS). The resistivity structure of the
74 incoming plate (Fig. 2a & d and Extended Data Fig. 1) is dominated by Tūranganui Knoll, one of many guyot-like features
75 interpreted to have formed during intraplate volcanism 89–99 Ma²². Tūranganui Knoll is characterized by a resistive core (\geq
76 300 $\Omega\text{-m}$; R1p) overlain by a more conductive matrix (C1p), which is in turn topped by a resistive cap (30–300 $\Omega\text{-m}$; R2p)
77 and a veneer of highly conductive marine sediments and volcaniclastics²³. The resistivity of R2p is consistent with lower
78 porosity extrusive basalts and dikes¹³ or sills, while the existence of R1p suggests the preservation of low porosity gabbros.
79 Coralline algae and bivalve shell fragments at IODP Site U1526 along with the steep-sided morphology of Tūranganui Knoll
80 indicate a shallow-water history for the Knoll and its erosion to sea level²³. We therefore posit that R2p formed subaerially
81 from slowly cooled massive flows, making it relatively less porous and less permeable than typical extrusive basalts. C1p is a
82 more porous amalgam likely containing volcaniclastics, pre-eruptive marine sediments, and conductive mineral assemblages
83 from hydrothermal alteration²⁴.

84 A prominent, sub-vertical conductor (C2p) that cuts through the flank of Tūranganui Knoll corresponds to a normal
85 fault that has been interpreted from seismic reflection data¹¹ (Fig. 2). This conductor is similar to anomalies seen for outer rise
86 bending faults at the Middle America Trench^{13,14}, with low resistivity indicating the fault is likely a porous conduit for fluid

87 flow. The lack of sediments above Tūranganui Knoll likely permits a more direct pathway for fluid infiltration and thus leads
88 to higher conductivity within the fault. Heat flow data²⁵ show a sharp decrease below average background values over the fault
89 and elevated values above one of Tūranganui Knoll's central cones (Fig. 2a & b), further suggesting that Tūranganui Knoll is a
90 site of active hydrothermal recharge and discharge^{25,26}.

91 Because the resistivity of oceanic crust is primarily controlled by its porosity, we use the empirical Archie's law²⁷ to
92 convert our resistivity model to porosity (Fig. 2b; Extended Data Fig. 2; and METHODS). Tūranganui Knoll feature C1p is
93 significantly more conductive than normal oceanic crust^{13,16} and correspondingly has a higher porosity than typical crust^{12,13,28}.
94 Given the spatial extent of Tūranganui Knoll (~447 km²), our average porosity estimates for the upper 3 km of Tūranganui
95 Knoll (9.2%—13.2%) suggest it will carry roughly 123—177 km³ of water into the subduction zone. By comparison, an
96 equivalent volume of normal, unfaulted oceanic crust transports only about 38 km³ of water to the trench¹³. This calculation
97 shows that subducting topography is an important and as yet unrecognized vessel for delivering at least 3.2—4.7x more water
98 to the forearc and mantle wedge, where it may impact fault slip behavior and contribute to wedge serpentinization, or be
99 carried deeper to promote hydrous melting.

100 Northwest of Tūranganui Knoll, the Hikurangi Trough is filled with 1.5 km of conductive sediments that correspond
101 to siliciclastic and pelagic sequences drilled at IODP Site U1520²⁹. The underlying sequence of volcanics and volcaniclastics is
102 characterised by high conductivity within 150—550 m of the base of Seismic Unit 8 (SU8; Fig. 2) and 530 m of resistive
103 material (R2.5p), which may be a continuation of R2p from basalt flows off the flank of Tūranganui Knoll. Beneath R2.5p is a
104 600 m thick conductive package (C3p) that we interpret as porous sediments buried beneath the basalt flow. The deeper
105 resistive layer corresponds to the top of the Hikurangi Plateau. Both R2.5p and C3p are truncated where volcanic cones are
106 imaged beneath Hikurangi Trough, possibly indicating that these features have been overprinted by late-stage volcanism on the
107 Hikurangi Plateau.

108 **An electrically heterogeneous forearc**

109 In the forearc (Fig. 2), high conductivity within 1 km of the seafloor is consistent with shipboard logging while
110 drilling measurements at IODP Site U1519³⁰. Below the frontal wedge, a small conductive anomaly (C4f) near the décollement
111 is correlated with high-amplitude reflectivity (Fig. 2c). This may indicate subduction of conductive volcaniclastics analogous
112 to those imaged at the base of SU8 in the Hikurangi Trough or the sediments associated with conductor C3p, assuming this
113 layer extends northwest of the volcanic cones imaged beneath the Hikurangi Trough. Interestingly, C4f and the associated
114 reflectivity do not extend down-dip of the second active thrust.

115 Landward of the frontal wedge, forearc resistivity becomes highly heterogeneous as three main conductors (C1f, C2f,
116 and C3f) appear embedded in a more resistive background. These conductors occur in locations devoid of clear stratigraphic
117 layering in the seismic reflection data (Fig. 2c). However, in the case of C2f and C3f, the conductors correlate with higher-
118 amplitude, albeit chaotic, reflectivity within the forearc wedge. Seismically imaged thrust faults^{11,31} bound the landward side of
119 C2f and the base of C3f while other thrust faults appear to coincide with narrow conductors that extend from C3f to ridges on
120 the seafloor (Extended Data Fig. 1), suggesting that these faults separate zones of distinct porosity and may in some cases act
121 as pathways for fluid release that manifest as seeps on the seafloor³². Interestingly, numerous seeps are found on the seafloor
122 above C1f and C3f, whereas few appear above C2f (Fig. 2a & c). This may be due to the contrast in material properties around
123 each conductor. While C1f and C3f are both overlain by conductive material, C2f is surrounded by a resistive, low-porosity
124 halo that may inhibit fluid drainage to the seafloor (Fig. 2a & b).

125 At depth, the subducting slab is apparent as a sudden, rapid increase in resistivity ($\geq 25 \Omega\text{-m}$) that dips below the
126 seismically determined décollement (Fig. 2a & c). The smooth surface of the slab is interrupted by a cone-like feature (R1f) 33
127 km landward of the trench that juts 3 km above its surroundings. R1f occurs within the seismically defined envelope of a
128 subducting seamount^{11,31}, however the resistor is peaked and occupies the downdip half of the seamount geometry inferred
129 from seismic reflection and magnetic anomaly observations⁸. High wavespeeds ($V_p > 5 \text{ km/sec}$) from a high-resolution 3D
130 tomographic inversion are well correlated with the dimensions of R1f, and were interpreted as indicating that the seamount is
131 either 1) smaller and located further down-dip than previously thought or 2) characterised by low velocities³³. Our observations
132 from Tūranganui Knoll present a third alternative, which is that the internal structure of the subducting seamount may be
133 similarly heterogeneous. Specifically, we interpret R1f to be the core of a subducting seamount, comparable in structure to R1p
134 of Tūranganui Knoll. This resistive core (R1f) is blanketed by a swath of more conductive material analogous to C1p of
135 Tūranganui Knoll. The presence of a broad, resistive cap similar to R2p at Tūranganui Knoll is consistent with magnetic
136 anomaly observations⁸. However our synthetic inversion of a subducted seamount whose electric structure is equivalent to that
137 of Tūranganui Knoll shows that our data cannot resolve such a thin feature at depth (Extended Data Fig. 3).

138 From our porosity estimates we find that, in addition to being conspicuously conductive, C1f, C2f, and C3f also
139 correspond to fluid-rich anomalies (Fig. 2b). The porosity of these conductors is generally greater than the neighboring forearc
140 and may indicate zones of elevated pore fluid pressure. The locations of these conductors coincide with a region of widespread
141 underconsolidation and elevated porosity that geodynamic models predict to be generated above and in the wake of subducting
142 seamounts³⁴.

143 **Seamount structure influences slow slip**

144 Intriguingly, a number of burst-type repeating earthquakes and microseismicity associated with the September—
145 October 2014 SSE offshore Gisborne, North Island, New Zealand⁷ cluster in and around C2f in the upper plate (Fig. 2a & b).
146 These burst-type repeaters have been linked to aseismic slip and fluid migration, and our model reveals their association with a
147 region of anomalously high porosity directly above the subducting seamount. Our observation provides in-situ evidence that
148 not only links subducting topography to the creation of interconnected fluidized networks in the forearc, but also demonstrates
149 that such fracture networks can host microseismicity and fluid transfer through damage associated with the interaction between
150 the downgoing seamount and overriding plate (Fig. 3).

151 Intraplate seamount formation involves a build-up of effusive flows that become overlain by higher porosity,
152 volcaniclastics and vesicular basalts, imparting seamounts with both a strong core and highly porous component. Therefore, it
153 is not unreasonable to assume that the resistivity structure of the subducting seamount is similar to Tūranganui Knoll. In
154 particular, we suggest that the subducting seamount also contains a resistive core (R1f) embedded within an overlying matrix
155 of porous, conductive material. The presence of a low permeability, basaltic cap (R2p) at the top of the subducting seamount is
156 supported by magnetic anomaly data⁸. Upon subduction, we propose that this cap would have initiated fracturing in the upper
157 plate that persisted through a structurally competent core. Observations of increased shear wave splitting delay times preceding
158 the September—October 2014 SSE³⁵ suggest that fluid overpressure accumulated within the subducting plate³⁶ before slip.
159 This stress change, along with dehydration reactions within the seamount that would further have contributed to elevated pore
160 fluid pressure, may have induced hydrofracturing³⁷ and brittle deformation of the low permeability basaltic cap. Focal
161 mechanisms reveal that extensional and strike-slip faulting within the subducting plate preceded the 2014 SSE³⁶, and we posit
162 that some of these events may have been associated with fracturing of the cap. Once the cap ruptured, fluids in the underlying
163 conductive porous matrix (C1p) could escape and vertically migrate across the subduction interface and into the topography-
164 induced fracture networks of the overthrusting forearc. The transfer of fluids and overpressure from the subducting slab to the
165 overriding plate is consistent with changes in the stress tensor and Vp/Vs ratios before and during the September—October
166 2014 SSE^{35,36} (Fig. 3).

167 Because lithostatic pressure increases with depth, fractures in the subducting seamount and upper plate should not
168 remain open indefinitely even though microporosity resulting from damage may persist (Fig. 3c). Rather such fracturing might
169 occur episodically as the subducting topography experiences changes in the stress regime that lead to fluctuations in pore fluid
170 pressure³⁶. Episodic rupturing and closing of these fractures, especially in the basaltic cap, may promote cyclic fluid drainage³⁸
171 from the subducting seamount into the overriding plate. Retention of high conductivity in C2f suggests the persistence of
172 weakened zones within the forearc and may indicate the inability of fluids to completely escape the damaged upper plate,

173 which could be related to the resistive, low-porosity halo surrounding C2f and a conspicuous deficiency in surface seeps³² (Fig.
174 2a & b). Cementation through hydrothermal activity is also a mechanism capable of sealing off pathways to the seafloor after
175 fluid injection³⁹.

176 The natures of C1f and C3f are more enigmatic. Both may be related to damage incurred by the presently imaged
177 subducting seamount or by the passage of previous seamounts now located farther downdip. The proximity of C1f to the
178 seismic high reflectivity zone (HRZ), which is purported to be a package of water-rich sediments at the toe of the subducting
179 seamount³¹ and is correspondingly more conductive than R1f, may alternatively indicate a hydrologic connection between
180 these features whereby water released from the HRZ preferentially flows into C1f. This connection may be locally enhanced by
181 higher structural permeability associated with this section of the forearc being in an extensional stress regime in contrast to the
182 region nearer the trench, which is in compression^{33,35} (Fig. 2a). The location and conductivity of C3f are consistent with
183 sediments underplated beneath the outer forearc in a manner similar to that observed in Nankai⁴⁰. It has been speculated that
184 low rigidity material within an accretionary wedge may contribute to tsunami generation during earthquakes⁴⁰, and we note that
185 the 1947 Offshore Poverty Bay tsunami earthquake⁴¹ occurred near C3f (Fig. 2a & b). Whether C3f is the result of sediment
186 underplating or seamount damage, active deformation is required to explain its inferred high porosity.

187 Noticeably absent from our resistivity model (Fig. 2) is an elongated, conductive channel along the décollement
188 associated with porous subducting sediments, which has been observed at other erosive margins^{14,42}. While the resistivity and
189 porosity of the HRZ³¹ are consistent with compacting sediments, and there is evidence of subducting sediment near the trench
190 (C4f; Fig. 2a—c), the top of the seamount appears to lack a high conductivity channel, which indicates that the plate interface
191 is locally starved of water-rich sediments. This deficiency permits a more direct contact between the competent subducting
192 seamount and upper plate, and contributes to geometric and lithologic heterogeneity in megathrust properties¹¹.

193 The absence of porous sediments at the plate interface in this area suggests that the primary source of fluids
194 responsible for the observed variations in effective stress³⁶ and Vp/Vs³⁵ comes from water trapped within the subducting
195 seamount in addition to water from subducted sediments downdip within the HRZ. The higher permeability of the subducting
196 seamount relative to any surrounding sediments²⁶ might also support concentrated fluid flow through the seamount. Our results
197 imply that the interaction of subducting seamounts with the overriding plate serves to create randomly oriented fracture planes
198 that lead to a heterogeneous stress distribution in the seismogenic zone^{4,43}, and also to pore pressure transfer from the seamount
199 to the forearc through episodic fluid release³⁸ (Fig. 3). We hypothesize that these dual effects of subducting topography are
200 partly responsible for along-strike variations in interseismic coupling at the Hikurangi Margin^{10,44} and may be occurring
201 globally in regions that experience slow slip where subducting topography is present. Furthermore, our data demonstrate that

202 seamounts can hold a previously unrecognized and substantial volume of water. Based on approximations of the global
203 abundance of intraplate volcanism⁴⁵ and the porosity structure of Tūranganui Knoll, we estimate that subducting topography
204 contributes at least $5.5\text{--}9.4 \times 10^6$ Tg/Myr of water to the deep Earth, providing localized fluid enhancement from particularly
205 rough slabs.

206

207 References

1. Cloos, M. Thrust-type subduction-zone earthquakes and seamount asperities: a physical model for seismic rupture. *Geology* **20**, 601–604 (1992).
2. Scholz, C. H. & Small, C. The effect of seamount subduction on seismic coupling. *Geology* **25**, 487–490 (1997).
3. Singh, S. C. *et al.* Aseismic zone and earthquake segmentation associated with a deep subducted seamount in Sumatra. *Nat. Geosci.* **4**, 308–311 (2011).
4. Wang, K. & Bilek, S. L. Do subducting seamounts generate or stop large earthquakes? *Geology* **39**, 819–822 (2011).
5. Bassett, D. & Watts, A. B. Gravity anomalies, crustal structure, and seismicity at subduction zones: 1. Seafloor roughness and subducting relief. *Geochemistry, Geophys. Geosystems* **16**, 1508–1540 (2015).
6. Dominguez, S., Lallemand, S. E., Malavieille, J. & Von Huene, R. Upper plate deformation associated with seamount subduction. *Tectonophysics* **293**, 207–224 (1998).
7. Shaddox, H. R. & Schwartz, S. Y. Subducted seamount diverts shallow slow slip to the forearc of the northern Hikurangi subduction zone, New Zealand. *Geology* **47**, 415–418 (2019).
8. Barker, D. H. N. *et al.* Geophysical constraints on the relationship between seamount subduction, slow slip, and tremor at the North Hikurangi subduction zone, New Zealand. *Geophys. Res. Lett.* **45**, 804–813 (2018).
9. Davidson, S. R. *et al.* Conjugate strike-slip faulting across a subduction front driven by incipient seamount subduction. *Geology* **48**, 493–498 (2020).
10. Wallace, L. M. *et al.* Characterizing the seismogenic zone of a major plate boundary subduction thrust: Hikurangi Margin, New Zealand. *Geochemistry, Geophys. Geosystems* **10**, (2009).
11. Barnes, P. M. *et al.* Slow slip source characterized by lithological and geometric heterogeneity. *Sci. Adv.* **6**, 1–11 (2020).
12. Evans, R. L. Constraints on the large-scale porosity and permeability structure of young oceanic crust from velocity and resistivity data. *Geophys. J. Int.* **119**, 869–879 (1994).
13. Naif, S., Key, K., Constable, S. & Evans, R. L. Water-rich bending faults at the Middle America Trench. *Geochemistry*

231 *Geophys. Geosystems* **16**, 2582–2597 (2015).

232 14. Naif, S., Key, K., Constable, S. & Evans, R. L. Porosity and fluid budget of a water-rich megathrust revealed with
233 electromagnetic data at the Middle America Trench. *Geochemistry Geophys. Geosystems* **17**, 2825–2834 (2016).

234 15. Johansen, S. E. *et al.* Deep electrical imaging of the ultraslow-spreading Mohns Ridge. *Nature* (2019).

235 16. Chesley, C., Key, K., Constable, S., Behrens, J. & Macgregor, L. Crustal cracks and frozen flow in oceanic lithosphere
236 inferred from electrical anisotropy. *Geochemistry, Geophys. Geosystems* **1**–21 (2019).

237 17. Barker, D. H. N., Sutherland, R., Henrys, S. & Bannister, S. Geometry of the Hikurangi subduction thrust and upper
238 plate, North Island, New Zealand. *Geochemistry Geophys. Geosystems* (2009).

239 18. Wallace, L. M. *et al.* Hikurangi subduction margin coring, logging, and observatories. *Proc. Int. Ocean Discov. Progr.*
240 *372B/375 Coll. Station. TX (International Ocean Discov. Program)*. 5–10 (2019).

241 19. Wallace, L. M. *et al.* Slow slip near the trench at the Hikurangi subduction zone, New Zealand. *Science (80-.)* **352**,
242 701–704 (2016).

243 20. Taylor, B. The single largest oceanic plateau : Ontong Java – Manihiki – Hikurangi. *Earth Planet. Sci. Lett.* **241**, 372–
244 380 (2006).

245 21. Key, K. MARE2DEM: A 2-D inversion code for controlled-source electromagnetic and magnetotelluric data. *Geophys.*
246 *J. Int.* **207**, 571–588 (2016).

247 22. Davy, B., Hoernle, K. & Werner, R. Hikurangi Plateau: Crustal structure, rifted formation, and Gondwana subduction
248 history. *Geochemistry, Geophys. Geosystems* **9**, (2008).

249 23. Wallace, L. M. *et al.* Site U1526. *Wallace, L.M., Saffer, D.M., Barnes, P.M., Pech. I.A., Petronotis, K.E., LeVay, L.J.,*
250 *Exped. 372/375 Sci. Hikurangi Subduction Margin Coring, Logging, Obs. Proc. Int. Ocean Discov. Program, 372* **372**,
251 (2019).

252 24. Pezard, P. A. Electrical properties of mid-ocean ridge basalt and implications for the structure of the upper oceanic
253 crust in Hole 504B. *J. Geophys. Res.* **95**, 9237–9264 (1990).

254 25. Antriasian, A. *et al.* Thermal regime of the Northern Hikurangi Margin, New Zealand. *Geophys. J. Int.* 1177–1190
255 (2018).

256 26. Fisher, A. T. & Wheat, C. G. Seamounts as conduits for massive fluid, heat, and solute fluxes on ridge flanks.
257 *Oceanography* **23**, 74–87 (2010).

258 27. Archie, G. E. The electrical resistivity log as an aid in determining some reservoir characteristics. *Trans. AIME* **146**,
259 54–62 (1942).

260 28. Becker, K. Large-scale electrical resistivity and bulk porosity of the upper oceanic crust at Hole 395A. *Proc., Sci.*
261 *results, ODP, Legs 106/109, Mid-Atlantic Ridge* **106**, 205–212 (1990).

262 29. Barnes, P. M. *et al.* Site U1520. *Wallace, L.M., Saffer, D.M., Barnes, P.M., Pech. I.A., Petronotis, K.E., LeVay, L.J.,*
263 *Exped. 372/375 Sci. Hikurangi Subduction Margin Coring, Logging, Obs. Proc. Int. Ocean Discov. Program*, 372
264 (2019).

265 30. Barnes, P. M. *et al.* Site U1519. *Wallace, L.M., Saffer, D.M., Barnes, P.M., Pech. I.A., Petronotis, K.E., LeVay, L.J.,*
266 *Exped. 372/375 Sci. Hikurangi Subduction Margin Coring, Logging, Obs. Proc. Int. Ocean Discov. Program*, 372
267 (2019).

268 31. Bell, R. *et al.* Seismic reflection character of the Hikurangi subduction interface, New Zealand, in the region of
269 repeated Gisborne slow slip events. *Geophys. J. Int.* **180**, 34–48 (2010).

270 32. Watson, S. J. *et al.* Focused fluid seepage related to variations in accretionary wedge structure, hikurangi margin, New
271 Zealand. *Geology* **48**, 56–61 (2020).

272 33. Arai, R. *et al.* Three-dimensional P-wave velocity structure of the northern Hikurangi margin from the NZ3D
273 experiment: Evidence for fault-bound anisotropy. *J. Geophys. Res. Solid Earth* (2020).

274 34. Sun, T., Saffer, D. & Ellis, S. Mechanical and hydrological effects of seamount subduction on megathrust stress and
275 slip. *Nat. Geosci.* **13**, (2020).

276 35. Zal, H. J. *et al.* Temporal and spatial variations in seismic anisotropy and Vp/Vs ratios in a region of slow slip. *Earth*
277 *Planet. Sci. Lett.* **532**, 115970 (2020).

278 36. Warren-Smith, E. *et al.* Episodic stress and fluid pressure cycling in subducting oceanic crust during slow slip. *Nat.*
279 *Geosci.* **12**, 475–481 (2019).

280 37. Bonnet, G., Agard, P., Angiboust, S., Fournier, M. & Omrani, J. No large earthquakes in fully exposed subducted
281 seamount. *Geology* **47**, 407–410 (2019).

282 38. Nakajima, J. & Uchida, N. Repeated drainage from megathrusts during episodic slow slip. *Nat. Geosci.* **11**, 351–356
283 (2018).

284 39. Sibson, R. H. Stress switching in subduction forearcs: Implications for overpressure containment and strength cycling
285 on megathrusts. *Tectonophysics* **600**, 142–152 (2013).

286 40. Park, J. O. *et al.* A low-velocity zone with weak reflectivity along the Nankai subduction zone. *Geology* **38**, 283–286
287 (2010).

288 41. Bell, R., Holden, C., Power, W., Wang, X. & Downes, G. Hikurangi margin tsunami earthquake generated by slow

289 seismic rupture over a subducted seamount. *Earth Planet. Sci. Lett.* **397**, 1–9 (2014).

290 42. Li, J. *et al.* Connections between subducted sediment, pore-fluid pressure, and earthquake behavior along the Alaska
291 megathrust. *Geology* **46**, 299–302 (2018).

292 43. van Rijsingen, E., Funiciello, F., Corbi, F. & Lallemand, S. Rough subducting seafloor reduces interseismic coupling
293 and mega-earthquake occurrence : Insights from analogue models. *Geophys. Res. Lett.* 3124–3132 (2019).

294 44. Wallace, L. M. Slow Slip Events in New Zealand. *Annu. Rev. Earth Planet. Sci.* **48**, 175–203 (2020).

295 45. Conrad, C. P., Selway, K., Hirschmann, M. M., Ballmer, M. D. & Wessel, P. Constraints on volumes and patterns of
296 asthenospheric melt from the space-time distribution of seamounts. *Geophys. Res. Lett.* **44**, 7203–7210 (2017).

297

298 **Main Figure Legends**

299 **Figure 1.** Tectonic setting and HT-RESIST survey area. a) Regional tectonic map of Hikurangi Margin. White arrows indicate
300 convergence rate and direction of the Pacific Plate relative to the Australian Plate in mm/yr. Shaded contours are cumulative
301 slip patches in 100 mm (red and blue) or 20 mm (green) contour intervals: Red - SSEs from 2002-2014; Green - deep slip
302 associated with 2006 and 2008 SSE; Blue - afterslip from 2016 Kaikoura earthquake (see ref. [44] and refs therein). Taupo VZ
303 = Taupo Volcanic Zone. b) Close up map of survey region (purple square shown in panel a). High resolution bathymetry data
304 in b) were provided courtesy of the National Institute of Water and Atmospheric Research (<https://niwa.co.nz/>). Gray squares
305 show EM receivers used in this survey. Red circles are the locations of IODP drilling sites¹⁸ in the region. Red contours are slip
306 from the September-October 2014 SSE. Each contour is 50 mm of slip¹⁹. White line is the 6.75 km depth contour of the
307 subducting seamount inferred from magnetic data⁸. Cyan squares are areas with evidence of fluid seeps³². White stars are
308 repeating earthquakes associated with the 2014 SSE⁷, and blue star shows the epicenter of the 1947 Offshore Poverty Bay
309 tsunami earthquake⁴¹.

310 **Figure 2.** Preferred resistivity model and porosity with key features labeled and seismic interpretations overlain. a) Vertical
311 resistivity model, b) porosity estimated using Archie's Law²⁷, and c) & d) available co-located seismic reflection data from
312 profile 05CM-04⁸ overlain on resistivity. See text for discussion of prominent conductors (C1p, C2p, C3p, C1f, C2f, C3f, and
313 C4f) and resistors (R1p, R2p, R2.5p, and R1f). Black inverted triangles are receivers where MT and CSEM data were used in
314 the inversion; green circles are receivers where only CSEM data were inverted. Available along-profile heat flow data on the
315 incoming plate from ref. [25] are plotted as red circles in a) & b). $58\pm8 \text{ mW/m}^2$ is the average background heat flow, denoted
316 by the dashed red line. HRZ is the seismic high reflectivity zone discussed in ref. [31]. Relocated burst-type repeating
317 earthquakes (white stars) and general seismicity (white circles) associated with the September-October 2014 slow slip event

318 within 10 km of the profile⁷ are shown in a) & b). The average error in the horizontal and vertical locations of the relocated
319 events is 790 m and 720 m, respectively⁷. Blue star is the projected location of the 1947 Offshore Poverty Bay tsunami
320 earthquake^{11,41} (same as Fig.1). Active fluid seeps within 10 km of the profile from ref. [32] are also shown as cyan squares.
321 The 5 km/s Vp contour³³ near R1f is shown as a purple dashed line. The areas of extension and compression in the forearc from
322 ref. [33] are denoted at the top of a). Seismically interpreted structures^{11,17} and magnetic basement⁸ are coded in the legend in
323 b).

324 **Figure 3.** Schematic representation of fluid transfer from subducting topography to the overthrusting forearc during a slow slip
325 cycle. The topography has a hypothetical structure that would exhibit a resistivity similar to Tūranganui Knoll—a resistive core
326 of intrusives; a porous amalgam of volcaniclastics, pre-eruptive sediments, and hydrothermal minerals; a resistive cap of basalt;
327 and a veneer of marine sediments. a) Subducting topography transports water to the subduction zone and damages the upper
328 plate as it subducts. Pore fluid pressure builds in the slab and subducting topography and decreases in the upper plate^{35,36}. b)
329 Stress builds up in the subducting topography and causes it to deform. Dehydration reactions may release mineral-bound fluids
330 and promote hydrofracturing. Just before the SSE, the relatively low permeability, resistive cap breaks and fluids escape into
331 the upper plate damage zone, which decreases pore pressure in the topography while increasing it in the overriding plate^{35,36}. c)
332 After the SSE, much of the fluid will escape, decreasing pore pressure in the upper plate³⁵. Structural barriers and cementation
333 in the overriding plate do not permit complete fluid escape. Fractures in the subducting topography close and the cycle begins
334 again as pressure builds in the subducting topography. d)—f) Schematic trends in pore fluid pressure evolution for the upper
335 plate (orange) and subducting slab (blue) during a)—c). These trends are based on the work of ref. [36] and ref. [35], that
336 examine stress ratio and Vp/Vs time series, respectively, for the September—October 2014 SSE. Locations where these
337 changes would be observed are shown as similarly colored dots in a)—c).

338

339 1 METHODS

340 1.1 EM Data Collection

341 We collected CSEM and MT data on 29 ocean-bottom electromagnetic (OBEM) receivers during December 2018—
342 January 2019 for the Hikurangi Trench Regional Electromagnetic Survey to Image the Subduction Thrust (HT-RESIST). The
343 Mk III broadband OBEM receivers use 10 m long electric dipoles and induction coil magnetometers capable of measuring
344 orthogonal, horizontal electric and magnetic field components in the 0.0001-500 Hz frequency band⁴⁶. This broadband
345 recording capacity allows for the simultaneous collection of high frequency CSEM and longer-period MT data. The OBEMs
346 recorded with a 125 Hz sampling rate. OBEMs were deployed along a 90 km transect that crosses the Hikurangi deformation

347 front (Fig. 1) and is co-located with seismic reflection line 05CM-04¹⁷ and IODP Sites U1518, U1519, U1520, and U1526¹⁸.
348 The ~3 km station spacing helps to ensure that features in the resistivity model are constrained by data from more than one
349 receiver.

350 To collect CSEM data, we deep-towed the Scripps Undersea Electromagnetic Source Instrument (SUESI) close to the
351 seabed at an altitude of approximately 100 m to minimize signal attenuation through seawater⁴⁶. During the tow, SUESI output
352 a 250–300 A alternating current across a 293 m horizontal electric dipole terminated by copper electrodes. We used the
353 complex binary Waveform D of ref. [47] with a fundamental transmission period of 4 s while towing over 26 of the 29
354 OBEMs. Waveform D is a doubly symmetric waveform designed to spread the high power harmonics over about a decade of
355 frequency, thus allowing for constraints on the resistivity structure at different length scales⁴⁷. Due to a recording issue during
356 the first deployment, three OBEMs (stations 16-18) were redeployed and recorded data from an additional tow using a source
357 waveform with a 6 s fundamental period. We determined SUESI's position using an inverted long-baseline acoustic navigation
358 system⁴⁸.

359 **1.2 CSEM and MT Data Processing**

360 Overall, the OBEMs recorded good quality data but we discarded data from two OBEMs (stations 4 and 25) due to
361 poor electrode connections. CSEM amplitude and phase responses at the strongest harmonics of waveform D were computed
362 using a robust stacking method to reduce bias and increase the signal-to-noise ratio⁴⁷. The time series were divided into
363 windows whose length is the fundamental period of the transmitted waveform (either 4 s or 6 s). These sections were then pre-
364 whitened, Fourier transformed, and post-darkened to produce Fourier coefficients. The Fourier coefficients were normalized by
365 the complex source dipole moment and corrected for the individual sensor responses of each OBEM. The Fourier coefficients
366 were then stacked into 120 s segments using an algorithm that iteratively removes outliers. The variance of each stack, and
367 hence the data error, was assigned based on the stack residuals.

368 Inline CSEM data are primarily sensitive to resistivity variations within the vertical plane between the source dipole
369 and the OBEM, making 2-D modelling of these data appropriate (see ref. [21] and references therein). In our inversions, we
370 used CSEM data at the three strongest harmonics of waveform D (1st, 3rd, and 7th) from all OBEMs. We also used higher
371 frequencies (up to 8.25 Hz) where good quality, long-offset data were present, which was particularly the case for OBEMs
372 located on the Tūranganui Knoll. We omitted all data at transmitter-receiver offsets ≤ 2 km as these data are most susceptible
373 to error based on navigational uncertainty⁴⁹. We also removed any obvious outliers that remained after stacking and we
374 discarded data with signal-to-noise ratios ≥ 2 . We applied a 2% error floor to data collected when the source was transmitting
375 at the 4 s fundamental period and a slightly larger error floor of 3% to data from the three receivers that collected data at the 6 s

376 fundamental period. This was done to avoid overfitting data variations due to small bathymetric differences between the two
377 towpaths. Example CSEM responses at 0.75 Hz for a station on the forearc and another station on the incoming plate are
378 shown in Extended Data Fig. 4.

379 To estimate impedance tensors from the MT data, we used the robust multiple-station approach of ref. [50]. This
380 yielded high quality MT responses at about 20—3000 s period, with the short period limit reaching 11 s for the shallowest
381 OBEMs and 26 s for the deep-water OBEMs. Impedance polar diagrams (Extended Data Fig. 5) show 1-D to 2-D compatible
382 MT responses at shorter periods for the forearc stations whereas the longer period data and incoming plate stations have polar
383 diagrams exhibiting 3-D induction effects, which cannot be accurately modelled using MARE2DEM²¹. Therefore, we limited
384 the inverted MT data to only the shorter period, 1-D and 2-D compatible data from 14 forearc stations. We determined the
385 strike direction (Extended Data Fig. 5) by fitting a line to the transmitter and OBEM positions so that the strike is the average
386 profile direction. We note that this definition of the strike is necessary when modeling inline CSEM data and is also reasonable
387 for the MT data we inverted given their impedance polar diagrams. We assigned a 10% error floor to the inverted MT data.

388 1.3 CSEM and MT Joint Inversion

389 We performed joint, nonlinear, regularized inversion of the CSEM and MT data using MARE2DEM²¹. We inverted
390 the CSEM data as \log_{10} amplitude and phase and the MT data as \log_{10} apparent resistivity and phase because these data
391 scalings have been shown to lead to more robust and efficient convergence to a low RMS⁵¹. Initial isotropic inversion revealed
392 characteristic anisotropy artefacts, so we inverted for transverse vertical isotropy in which the horizontal components of
393 resistivity comprise the plane of isotropy and the resistivity tensor has the form:

$$394 \rho = \begin{pmatrix} \rho_h & & \\ & \rho_h & \\ & & \rho_v \end{pmatrix} \quad (1)$$

395 where ρ_h and ρ_v are the horizontal and vertical resistivity, respectively. The inversion scheme solved for these components
396 in 56,666 cells. To avoid biasing our inversion by structure in the input starting model, we used a 1 $\Omega\text{-m}$ uniform halfspace as
397 the starting model for the inversion. Our preferred model converged with an RMS misfit of 0.998 and has only a small amount
398 of anisotropy (average absolute ratio is 1.2x from the seafloor to a depth of 6.5 km; Extended Data Fig. 6b). The misfit
399 breakdown is shown in Extended Data Fig. 7. Because there are more CSEM data than MT, and because CSEM data are most
400 sensitive to the vertical resistivity component, we show the vertical resistivity in Fig. 2 and Extended Data Fig. 1 and the
401 horizontal resistivity and anisotropy ratio in Extended Data Fig. 6. Model fits for the CSEM data at the three highest power
402 harmonics are shown in Extended Data Fig. 8. MT data and model responses are shown in Extended Data Fig. 9. Most of the

403 data are fit to RMS 1.0 or better (Extended Data Fig. 7). The largest misfit is for CSEM data around the trench axis (0 km
404 position) where a small fraction of the normalized residuals reach as high as RMS 2.5. This is most likely a result of slight
405 inconsistencies between the two tows as data from the second tow spans from -9 km to 4 km.

406 **1.4 Sensitivity to Forearc Conductors and Subducting Topography**

407 To determine whether or not forearc conductors C1f, C2f, and C3f are required by our data, we forward modeled the
408 response of our preferred model with each conductor reassigned to a more resistive value. These conductors have resistivity
409 around 1—3 $\Omega\text{-m}$ and in our sensitivity tests we increased them to 5 and 10 $\Omega\text{-m}$. These tests increased the overall RMS misfit
410 from 0.998 to 0.999 (C1, 5 $\Omega\text{-m}$), 1.001 (C1, 10 $\Omega\text{-m}$), 1.011 (C2, 5 $\Omega\text{-m}$), 1.038 (C2, 10 $\Omega\text{-m}$), 1.212 (C3, 5 $\Omega\text{-m}$), and 1.958
411 (C3, 10 $\Omega\text{-m}$). Extended Data Fig. 10 shows more detailed local RMS changes as a function of CSEM transmitter position and
412 MT receiver location. These tests confirm that our data are sensitive to C1f, C2f, and C3f as perturbing these features
413 significantly increased the local data misfits. As expected, the data are more sensitive to C2f and C3f because they are
414 shallower and more conductive than C1f. Nevertheless, these tests demonstrate that each forearc conductor is required to fit the
415 data.

416 We also tested the sensitivity to resistor R1f by decreasing its resistivity to 20, 10 and 7 $\Omega\text{-m}$, which increased the data
417 misfit; Extended Data Fig. 11 shows that the MT data fits for stations above this feature become significantly worse as its
418 resistivity is decreased. Thus R1f is required to fit the data. The CSEM data are insensitive to structure at this depth, and
419 therefore the change in misfit was negligible.

420 **1.5 Forearc Resolution Test**

421 To assess the ability of these data to resolve features in a subducting seamount, we constructed a synthetic model with
422 the approximate resistivity of the preferred model and a subducting Tūranganui Knoll in place of R1f. Using the same data
423 density from our preferred model inversion, we generated synthetic data by adding 2% Gaussian noise to the forward response
424 of Extended Data Fig. 3a. Inversion of these synthetic data (Extended Data Fig. 3b) from a 1 $\Omega\text{-m}$ uniform halfspace starting
425 model converged to an RMS misfit of 1.004 with a 2% error floor. While the overall shape of the subducting seamount is
426 resolved by the data, finer-scale features, such as the resistive cap (R2p), are smoothed through. This synthetic inversion also
427 demonstrates the recoverability of more detailed structures in the Tūranganui Knoll on the incoming plate.

428 **1.6 Porosity Estimation**

429 We used the empirical Archie's Law²⁷ to convert our preferred resistivity model into porosity:

$$430 \phi = \left(\frac{\rho_f}{\rho} \right)^{\frac{1}{m}} \quad (2)$$

431 where ϕ is porosity, ρ is the bulk resistivity for which we have inverted, ρ_f is the pore fluid resistivity, and m is the
432 cementation exponent. We assume the pore fluid has seawater salinity and computed its temperature-dependent resistivity
433 using⁵²

$$434 \quad \rho_f^{-1} = 2.903916 \left(1 + 0.0297175T + 1.5551 \times 10^{-4}T^2 - 6.7 \times 10^{-7}T^3 \right) \quad (3)$$

435 For the temperature in each model cell, we used a linear geothermal profile:

$$436 \quad T = T_0 + H\Delta z \quad (4)$$

437 where T_0 is temperature at the seafloor, which we extrapolated from temperature recorded by SUESI, H is the geothermal
438 gradient based on records from IODP Sites U1518⁵³ (35°C/km; forearc) and U1520²⁹ (38°C/km; incoming plate), and Δz is
439 depth below seafloor.

440 In Fig. 2b, we use $m=2.4$ based on resistivity studies in the southern Hikurangi Margin⁵⁴. A smaller value for the
441 cementation exponent has been used when considering fractured oceanic crust^{13,28}, so we include porosity calculated with $m=2$
442 in Extended Data Fig. 2b. Additionally, to show how varying the cementation exponent will affect the absolute porosity
443 estimated from Archie's law, we offer several porosity conversions using a range of cementation exponents in Extended Data
444 Fig. 2. We note that Archie's law might underestimate the porosity of intensely fractured rock and it will overestimate porosity
445 where conductive mineral phases are present. Nevertheless, it provides a reasonable approximation of the relative porosity
446 between features in the model.

447 1.7 Water Flux from Subducting Topography

448 To estimate the total contribution of water from subducting topography, we first approximate the volume flux of
449 seamount material that undergoes subduction by computing the product of the global thickness of intraplate volcanism (24.1
450 m)⁴⁵ with the total length of subduction zones (3.8485×10^7 m) from ref. [55] and the weighted average of subducting plate
451 velocities (6.237×10^{-2} m/yr)⁵⁵. We convert this to a mass flux of water using the density of seawater at 0°C (1027 kg/m³), and
452 our average porosity estimates for the Tūranganui Knoll (9.2%—13.2%). We also compute a slightly larger flux by assuming
453 the volume of smaller seamounts in ref. [45] is constant (10.9 m) as a function of age but that their surface expressions are
454 concealed by sediment over time. This would imply that the global thickness of intraplate volcanism is 28.8 m. The resulting
455 flux ($5.5—9.4 \times 10^6$ Tg/Myr) is likely an underestimate because it assumes all conductivity variations are due to pore fluid
456 rather than mineral-bound water. Additionally, this estimate does not take into account the contribution of deeper hydration⁵⁶
457 that generates resistive alteration products (i.e. magnetite-poor serpentinite).

458

459 **Data Availability**

460 All EM data that were inverted and analysed in this study are available at <https://doi.org/10.5281/zenodo.4721384> and as
461 Source Data provided with this paper. The seismic reflection data overlain on the resistivity models are available at
462 <https://doi.org/10.21420/62C1-GS40>.

463

464 **Code Availability**

465 A version of the MARE2DEM code used to invert the data is available at: <http://mare2dem.bitbucket.io>

466

467 **Additional References**

468 46. Constable, S. Review paper: Instrumentation for marine magnetotelluric and controlled source electromagnetic
469 sounding. *Geophys. Prospect.* **61**, 505–532 (2013).

470 47. Myer, D., Constable, S. & Key, K. Broad-band waveforms and robust processing for marine CSEM surveys. *Geophys.*
471 *J. Int.* **184**, 689–698 (2011).

472 48. Key, K. & Constable, S. Inverted long-baseline acoustic navigation of deep-towed CSEM transmitters and receivers.
473 *Mar. Geophys. Res.* **42**, (2021).

474 49. Myer, D., Constable, S., Key, K., Glinsky, M. E. & Liu, G. Marine CSEM of the Scarborough gas field, Part 1:
475 Experimental design and data uncertainty. *Geophysics* **77**, (2012).

476 50. Egbert, G. D. Robust multiple-station magnetotelluric data processing. *Geophys. J. Int.* **130**, 475–496 (1997).

477 51. Wheelock, B., Constable, S. & Key, K. The advantages of logarithmically scaled data for electromagnetic inversion.
478 *Geophys. J. Int.* **201**, 1765–1780 (2015).

479 52. Constable, S., Key, K. & Lewis, L. Mapping offshore sedimentary structure using electromagnetic methods and terrain
480 effects in marine magnetotelluric data. *Geophys. J. Int.* **176**, 431–442 (2009).

481 53. Saffer, D. M. *et al.* Site U1518. *Wallace, L.M., Saffer, D.M., Barnes, P.M., Pech. I.A., Petronotis, K.E., LeVay, L.J.,*
482 *Exped. 372/375 Sci. Hikurangi Subduction Margin Coring, Logging, Obs. Proc. Int. Ocean Discov. Program*, 372,
483 (2019).

484 54. Schwalenberg, K., Rippe, D., Koch, S. & Scholl, C. Marine-controlled source electromagnetic study of methane seeps
485 and gas hydrates at Opouawe Bank, Hikurangi Margin, New Zealand. *J. Geophys. Res. Solid Earth* **122**, 3334–3350
486 (2017).

487 55. van Keken, P. E., Hacker, B. R., Syracuse, E. M. & Abers, G. A. Subduction factory: 4. Depth-dependent flux of H₂O

488 from subducting slabs worldwide. *J. Geophys. Res. Solid Earth* **116**, (2011).

489 56. Park, J. & Rye, D. M. Broader impacts of the metasomatic underplating hypothesis. *Geochemistry, Geophys.*
490 *Geosystems* **20**, 4810–4829 (2019).

491

492 Acknowledgements

493 We acknowledge that this work was partially carried out on the lands of the Te Āti Awa. We thank Scripps Institution
494 of Oceanography for providing the instrumentation necessary to collect the EM data used in this study, the New Zealand
495 government for permission to work in their exclusive economic zone, and the captains (W. Hill and D. Murline) and crew of
496 the R/V Revelle Expeditions RR1817 and RR1903. Many thanks to S. Constable and the Scripps Marine EM Lab (C.
497 Armerding, J. Lemire, J. Perez, J. Souders) and the HT-RESIST science party (A. Adams, J. Alvarez-Aramberri, C.
498 Armerding, E. Attias, E.A. Bertrand, D. Blatter, G. Boren, G. Franz, C. Gustafson, W. Heise, Y. Li, B. Oryan, N. Palmer, J.
499 Perez, J. Sherman, K. Woods, and A. Yates). We thank C. Rychert and M. Unsworth for their thorough and constructive
500 comments as reviewers. We thank the National Institute of Water and Atmospheric Research (NIWA; <https://niwa.co.nz/>) for
501 providing high-resolution bathymetry data. NIWA makes no representations or warranties regarding the accuracy or
502 completeness of the data, the use to which data may be put, or the results that may be obtained from using the data, and NIWA
503 accepts no liability for any loss or damage incurred by any person through the use of or reliance on the data. We acknowledge
504 computing resources from Columbia University's Shared Research Computing Facility project, which is supported by NIH
505 Research Facility Improvement Grant 1G20RR030893-01, and associated funds from the New York State Empire State
506 Development, Division of Science Technology and Innovation (NYSTAR) Contract C090171, both awarded April 15, 2010.
507 This work was supported by the National Science Foundation grant OCE-1737328. C.C. acknowledges funding support by the
508 Department of Defense (DoD) through the National Defense Science and Engineering Graduate Fellowship (NDSEG)
509 Program.

510

511 Author Contributions

512 S.N. and K.K. designed the experiment. S.N. and C.C. collected the data. C.C. and S.N. processed the data. C.C. modelled the
513 data. All authors contributed to writing the manuscript.

514

515 Competing Interests Declaration

516 The authors declare no competing interests.

517 **Extended Data Figure Legends**

518 **Extended Data Figure 1. Preferred inversion model (vertical resistivity component ρ_v) with high-resolution**
519 **bathymetry.** Seafloor receivers used in the inversion are gray cubes with station numbers. See Extended Data Fig. 6 for the
520 horizontal resistivity and anisotropy. a) Northeast and b) southwest facing views of the bathymetry. High-resolution
521 bathymetry were provided courtesy of the National Institute of Water and Atmospheric Research (<https://niwa.co.nz/>).

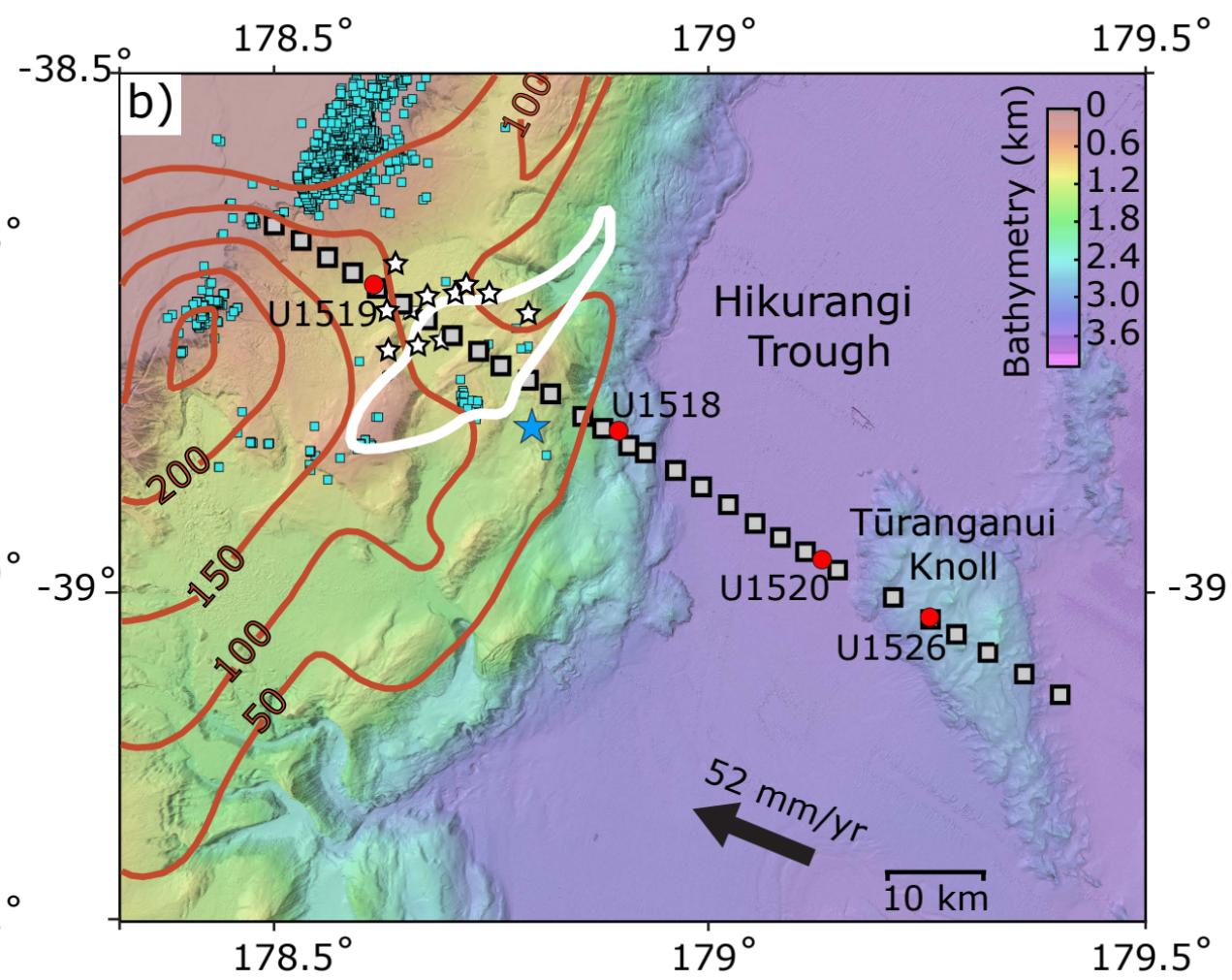
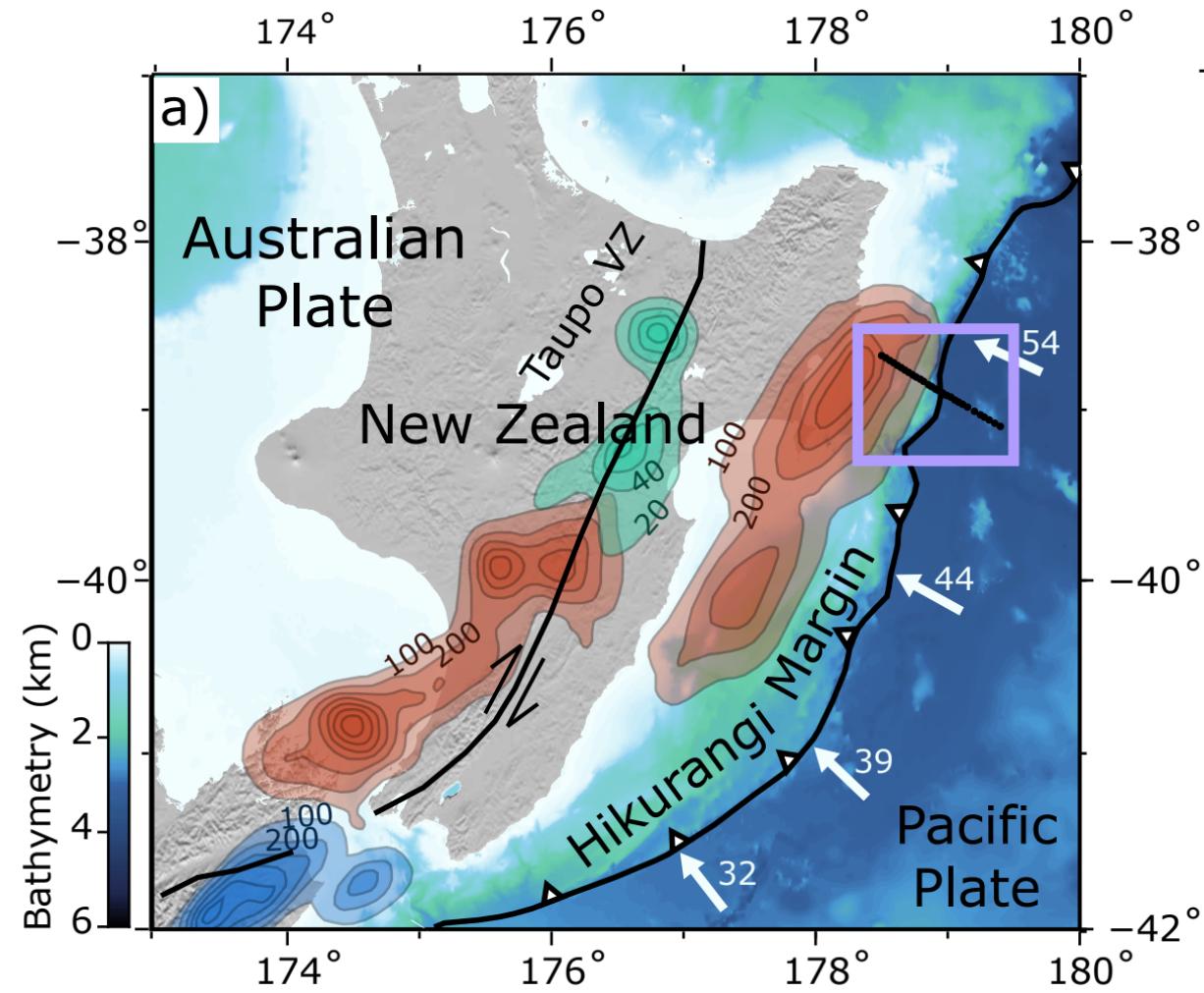
522 **Extended Data Figure 2. Porosity conversion of the preferred resistivity model using a range of Archie's law**
523 **cementation exponents.** a) $m = 1.6$; b) $m = 2$; c) $m = 2.4$ (same as Fig. 2b); d) $m = 2.8$

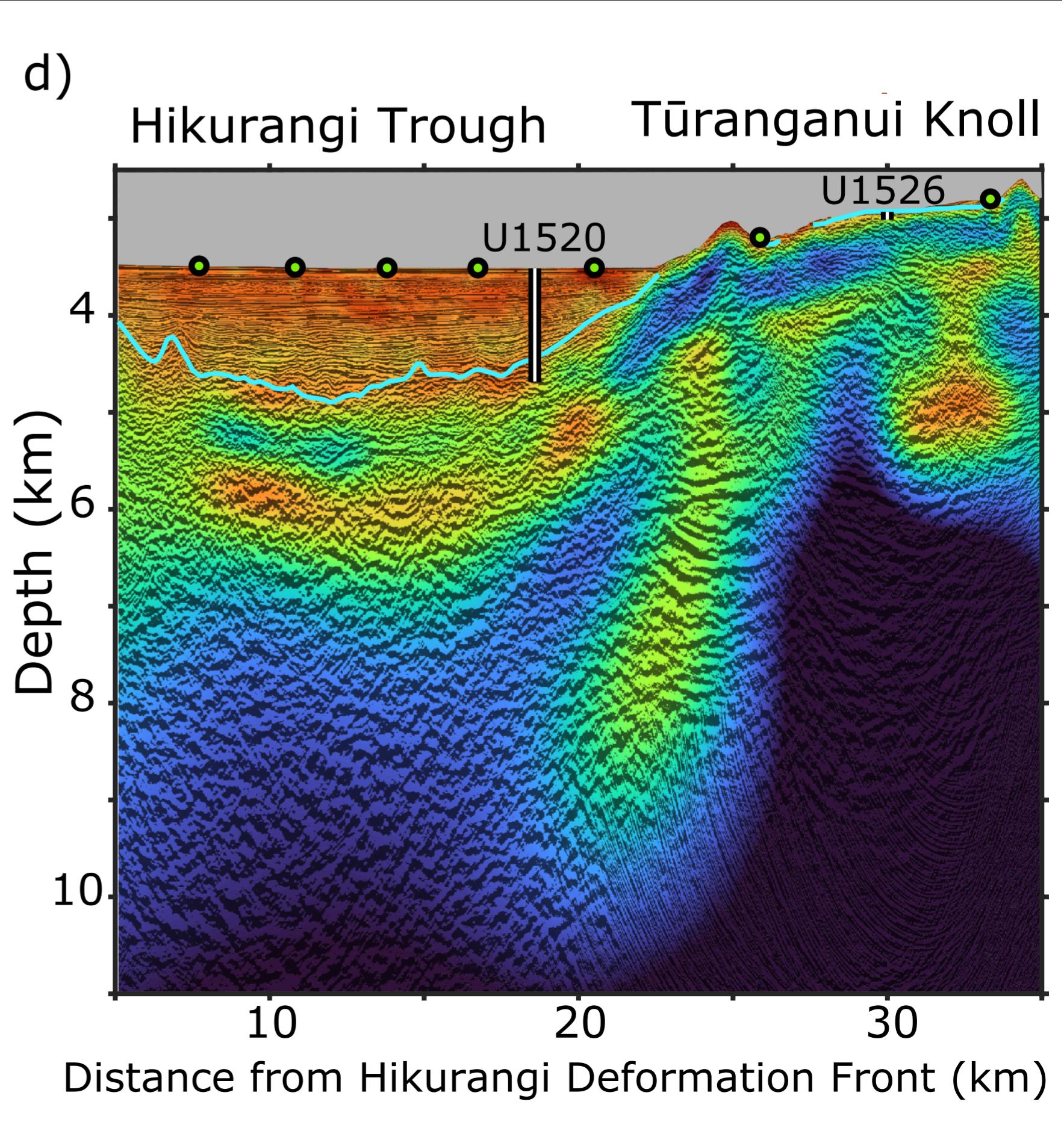
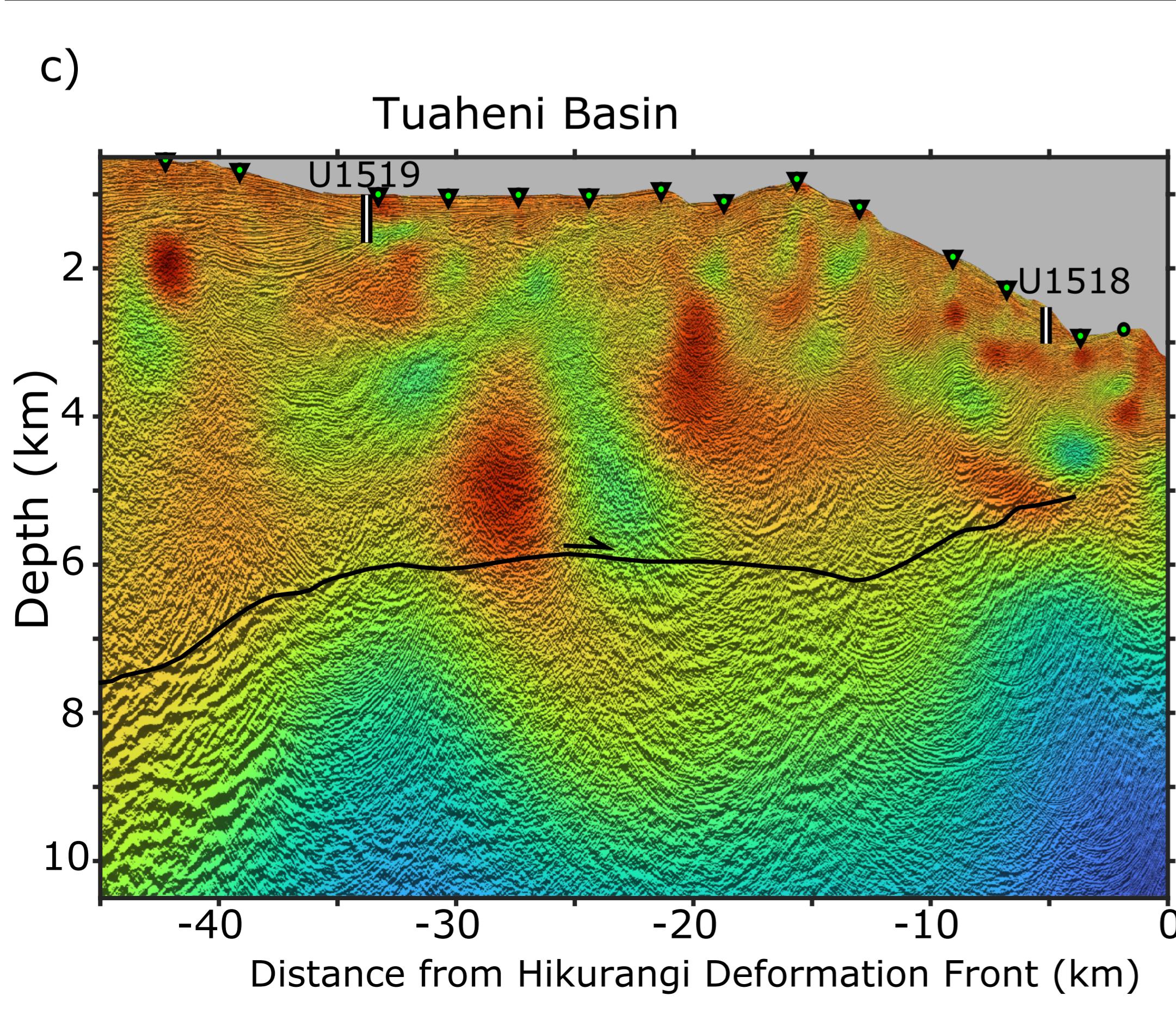
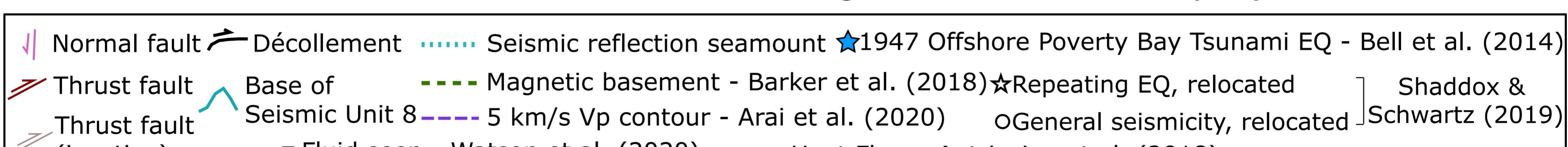
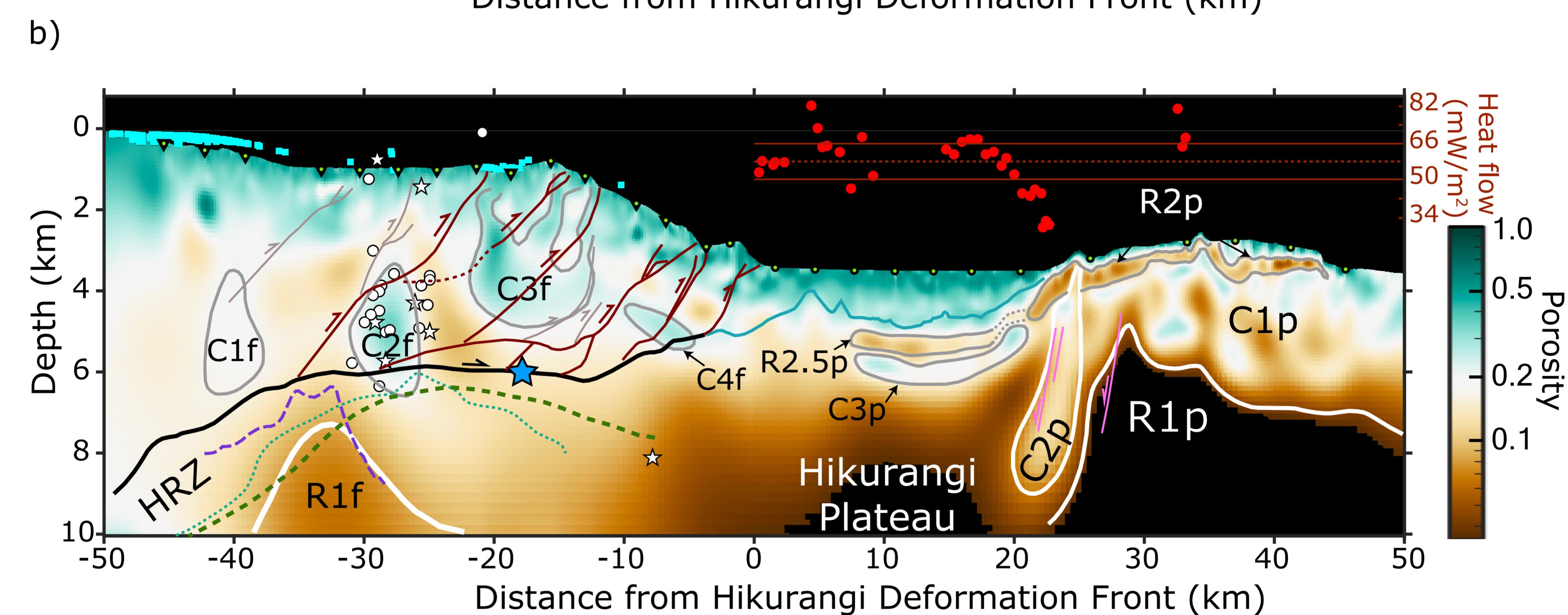
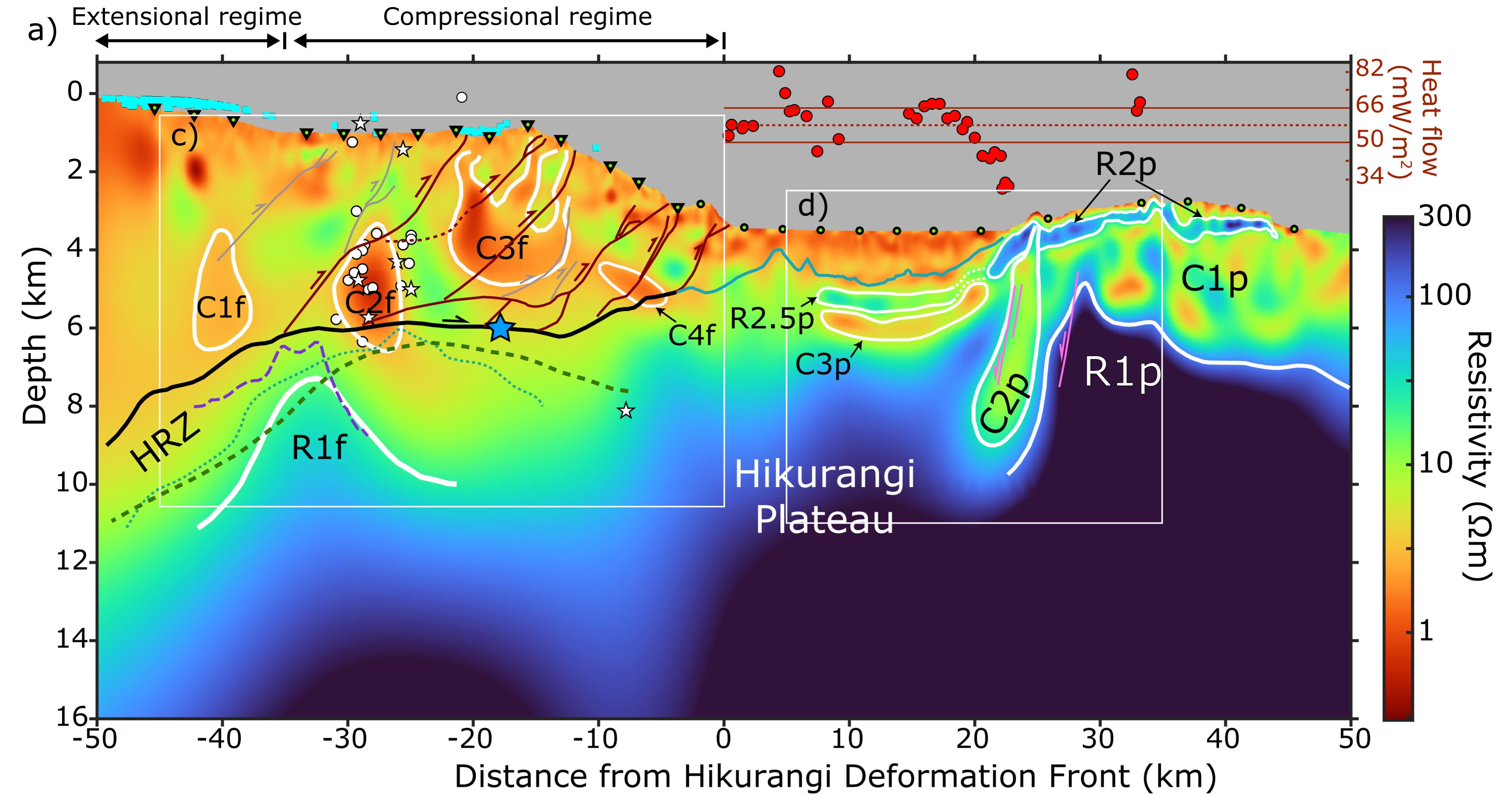
524 **Extended Data Figure 3. Resolution test of key model features.** a) Model used to generate synthetic data. b) Model
525 recovered from inversion of the synthetic data.

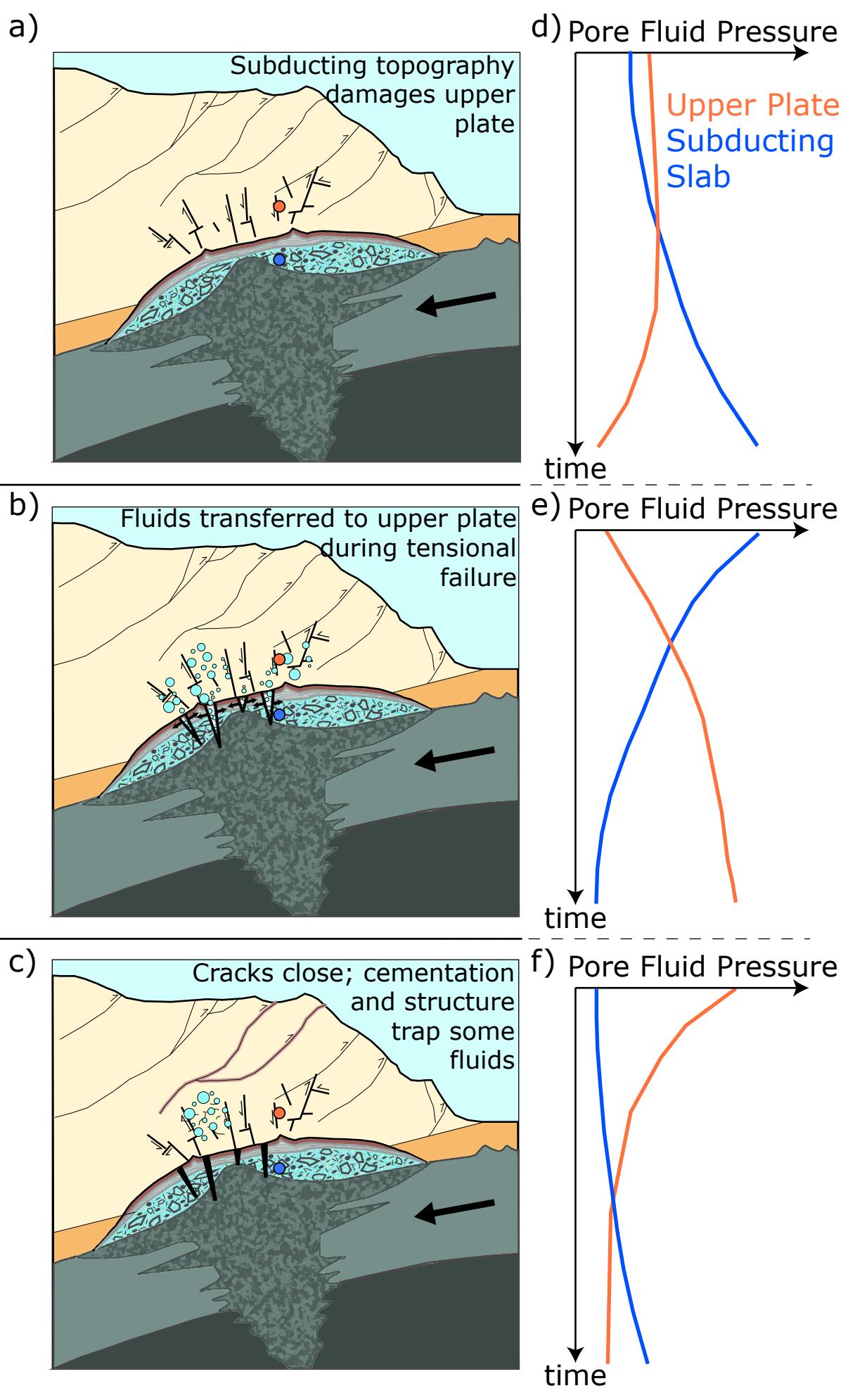
526 **Extended Data Figure 4. Example of CSEM data and model responses from this survey.** Amplitude and phase data
527 (circles) and preferred model response (line) at 0.75 Hz for stations 7 (green) and 26 (blue) are shown. The rapid attenuation
528 seen at station 7 and the much slower decay at station 26 are due to their respective locations on the conductive forearc and
529 resistive Tūranganui Knoll.

530 **Extended Data Figure 5. MT impedance polar diagrams shown as a function of period and station ID.** Red and blue lines
531 show $|Z_{xx}|$ and $|Z_{xy}|$, respectively, as a function of geographic rotation, with North pointing up. The black arrow in the white
532 circle is the strike direction for this survey. Gray shading masks the periods and stations where data are omitted from our 2D
533 analysis due to 3D effects in the polar diagram shapes.

534 **Extended Data Figure 6. Vertical anisotropy of the preferred resistivity model.** a) Horizontal resistivity (ρ_h) and b)
535 anisotropy ratio (ρ_v/ρ_h). The model has minimal anisotropy.



536 **Extended Data Figure 7. Preferred model root mean square (RMS) misfit breakdown.** Normalized RMS for a) CSEM and
537 b) MT data. Blue and red dots in a) are normalized residuals for all inline electric field amplitude and phase, respectively, at a
538 given transmitter position. Bars in b) are RMS misfit for impedance tensor components of each MT receiver: blue-TE apparent
539 resistivity; green-TE phase; orange-TM apparent resistivity; purple-TM phase.






540 **Extended Data Figure 8. CSEM data (top), model fits (middle), and residuals (bottom) for the highest power harmonics**
541 **as a function of distance from the Hikurangi Margin and transmitter-receiver offset.** Dashed box indicates data collected
542 at 1/6 Hz. All other data were collected at 1/4 Hz. a) Fundamental frequency, b) 3rd harmonic, and c) 7th harmonic.


543 **Extended Data Figure 9. MT data and model responses.** Fit of the preferred resistivity model (lines) to all MT data (circles)
544 used in this study. TE mode is blue and TM mode is red.

545 **Extended Data Figure 10. Sensitivity to forearc conductors C1f, C2f, and C3f.** Change in model fit between the preferred
546 model and forward models testing the sensitivity to the forearc conductors for the a) CSEM and b) MT data. To generate the
547 top row of each panel, the resistivity of each conductor was individually increased to 5 $\Omega\text{-m}$. The resistivity was increased to
548 10 $\Omega\text{-m}$ in the bottom panel. Blue and red dots in a) are the change in RMS for all inline electric field amplitudes and phases,
549 respectively, at a given transmitter position. In b) bars are change in RMS misfit for impedance tensor components of each MT
550 receiver: blue-TE apparent resistivity; green-TE phase; orange-TM apparent resistivity; purple-TM phase.

551 **Extended Data Figure 11. Sensitivity to subducting seamount, R1f.** Change in model fit between the preferred model and
552 forward models testing the sensitivity to the subducting seamount for the MT data (CSEM data are insensitive to R1f). To
553 generate the top, middle, and bottom panels, the resistivity of the subducting seamount was decreased to 20 $\Omega\text{-m}$, 10 $\Omega\text{-m}$, and
554 7 $\Omega\text{-m}$, respectively. Bars are change in RMS misfit for impedance tensor components of each MT receiver: blue-TE apparent
555 resistivity; green-TE phase; orange-TM apparent resistivity; purple-TM phase.

