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Abstract

Distribution inference, sometimes called property inference, infers statistical properties about a training set from
access to a model trained on that data. Distribution inference attacks can pose serious risks when models are trained
on private data, but are difficult to distinguish from the intrinsic purpose of statistical machine learning—namely, to
produce models that capture statistical properties about a distribution. Motivated by Yeom et al.’s membership inference
framework, we propose a formal definition of distribution inference attacks that is general enough to describe a broad
class of attacks distinguishing between possible training distributions. We show how our definition captures previous
ratio-based property inference attacks as well as new kinds of attack including revealing the average node degree
or clustering coefficient of a training graph. To understand distribution inference risks, we introduce a metric that
quantifies observed leakage by relating it to the leakage that would occur if samples from the training distribution were
provided directly to the adversary. We report on a series of experiments across a range of different distributions using
both novel black-box attacks and improved versions of the state-of-the-art white-box attacks. Our results show that
inexpensive attacks are often as effective as expensive meta-classifier attacks, and that there are surprising asymmetries
in the effectiveness of attacks.

1 Introduction
Inference attacks aim to infer sensitive information about inputs to a process from its revealed outputs. In machine
learning, such attacks usually focus on learning sensitive information about training data from a released model. For
example, in a membership inference attack [1], the adversary aims to infer whether a particular record was part of the
training data. In a distribution inference attack, an adversary aims to infer some statistical property of the training
dataset, such as the proportion of women in a dataset used to train a smile-detection model [2]. In the research literature,
such attacks have previously been called property inference and attribute inference (confusingly, since this is also used
to refer to a type of dataset inference where the adversary infers an unknown sensitive feature of records in the training
dataset [3]), and various other terms.

The privacy threat posed by membership inference attacks is well recognized—if an adversary can infer the presence
of a particular user record in a training dataset of diabetes patients, it would violate privacy laws limiting medical
disclosure. Distribution inference attacks pose a less obvious threat but can also be dangerous. As one example,
consider a financial organization that trains a loan scoring model on some of its historical data. An adversary may use
a distribution inference attack to infer the proportion of the training data having a specific value for some protected
attribute (e.g., race), which might be a sensitive property of the training dataset. Distribution inference attacks can also
pose a threat to distributed training: curious users wanting to learn sensitive information about training distributions
of fellow participants, which are competitors in settings like cross-silo federated learning [4], thus leaking sensitive
information. Other examples include inferring the sentiment of emails in a company from a spam classifier, or inferring
the volume of transactions from fraud detection systems [5]. We also demonstrate examples where adversaries learn
properties of graphs used in training, such as accurately estimating their average clustering coefficient. Inferring
statistical properties of a training distribution can also be used to enhance membership inference attacks or to reveal
that a model was trained on a biased dataset [6].

Previous works have used several different informal notions of property inference attacks (e.g., [7, 8, 9]), but
there is no established general formal definition of distribution inference. In this work, we formalize distribution
inference attacks based on a critical insight: the key difference between these attacks and other inference attacks is
that the adversary’s goal in the former is to learn about the training distribution, not about the specific training dataset.
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Dataset inference attacks, such as membership inference [1], attribute inference [3], and ownership-resolution [10]
operate on the level of training records. Attacks like membership inference are directly connected to differential privacy
which bounds the ability to distinguish neighboring datasets. By contrast, distribution inference attacks attempt to
learn statistical properties of the underlying distribution from which the training dataset is sampled. Having a formal
definition and a clear threat model can be useful in several ways—quantifying information leakage, assessing and
comparing the practicality of different threat models, and drawing possible links between distribution inference risk and
other distribution-level properties such as robustness and fairness.

Contributions. We provide a general and straightforward formalization of distribution inference attacks as a crypto-
graphic game (Section 3), inspired by Yeom et al.’s membership inference definition [11]. Our definition is generic
enough to capture a variety of statistical properties of the underlying distribution including, but not limited to, the
attribute ratios that have been the focus of previous property inference attacks. Using our definition, we define an
intuitive metric for measuring the amount of leakage observed in a simulated attack, along with theorems that compute
this metric for the case of ratios of binary functions, regressions that estimate the proportion of training data having a
given attribute, and degree distributions (for graphs) as properties (Section 4).

We report on experiments evaluating distribution inference as a risk across several datasets and properties, providing
the first systematic evaluation of how inference risks vary as the distributions diverge. Studying patterns in distribution
inference risk and how they correlate with underlying properties helps compare trends across experiments and properties,
helping identify datasets and models that are highly sensitive to such inference attacks. To conduct our experiments
we introduce two simple black-box distribution inference attacks, and extend the white-box permutation-invariant
network [12] architecture, the current state-of-the-art property inference method, to add support for convolutional layers
(Section 5). This enables us to conduct distribution inference attacks on deep neural networks, even when target models
are trained from scratch. Section 6 reports results from our experiments with these attacks on a variety of datasets,
tasks, and inference goals, revealing that simple black-box attacks often perform surprisingly well, and in some settings
white-box meta-classifier attacks can reveal information comparable to sampling dozens of records from the training
distribution. We analyze the information gleaned up by meta-classifiers across layers, finding that most information can
be find in just one or a few layers, enabling less expensive meta-classifier attacks (Appendix A.6).

2 Previous Work
Here we summarize prior work on formal definitions of privacy, distribution inference attacks and proposed defenses.

Privacy definitions. Most formal privacy definitions, including numerous variations on differential privacy [13], focus
on bounding inferences about specific data elements, not the statistical properties of a dataset. The key privacy notion of
traditional differential privacy is intuitively connected to the risk to an individual in contributing their data to a dataset —
this corresponds well to dataset privacy risks, but does not capture distribution inference risks; indeed, the main goal of
most differentially private mechanisms is to satisfy the inference bound for individual data while providing the most
accurate aggregate statistics possible. One notable exception is the Pufferfish framework [14], which introduces notions
that allow capturing aggregates of records via explicit specifications of potential secrets (e.g., distribution of vehicle
routes in a shipping company) and their relations. Zhang et al. extend the Pufferfish framework to define the concept
of “attribute privacy” [15], including a notion of distributional attribute privacy that takes a hierarchical approach for
parameterizing distributions and could be instantiated to capture notions of distribution inference such as the fraction of
records with some attribute. Although these definitions are promising and valuable, none of them are able to satisfy
the simple goal we have to define distribution inference attacks in a way that is general and powerful, while clearly
distinguishing inferences that are considered attacks from allowable statistical inferences.

A recent attempt to formalize property inference [5] consists of a framework that reduces property inference to
Boolean functions of individual members, posing the ratio of members satisfying the given function in a dataset as the
property. These ratio-based formulations limit the kinds of distribution inferences considered since they cannot capture
many other kinds of statistical properties of the training distribution that may be sensitive, like the degree distribution of
a graph [16]. Ratio-based formulations assume the property function is applicable over individual data points (with the
ratio as the property), while for graphs it is an aggregation over interconnected nodes.

Distribution inference attacks. All previous distribution inference attacks in the literature take a meta-classifier
approach—the adversary trains models on datasets with different properties, then trains a meta-classifier using rep-
resentations of those models. The adversary then uses the meta-classifier to look at the victim’s model and predict a
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property of the model’s training data, which is usually related to the ratio of members satisfying some Boolean property.
Ateniese et al. [2] were the first to identify the threat of distribution inference (which they called property inference) and
proposed a meta-classifier attack targeting Support Vector Machines and Hidden Markov Models. The proposed attacks
can successfully infer the accent of speakers in speech-to-text systems, or the presence of traffic from particular sources
in network traffic classification systems. Model representations for training the meta-classifier can take several forms:
using model weights themselves [12], or model activations or logits for a generated set of query points [17]. These
methods show promise, achieving better-than-random results for several properties, various tasks, and models across
different domains. For instance, predicting a doctor’s specialty based on rating-prediction systems on text reviews [9],
identifying accents of speakers in voice-recognition models [2], and even predicting if a model has been trained to have
a backdoor Trojan [17]. Although these approaches achieve high accuracy rates on “toy-like” classifiers like decision
trees and shallow neural networks, and with distributions that are highly disparate, successful property inference attacks
have not been demonstrated on realistic (or even semi-realistic) deep neural networks or complex datasets. Our work is
the first to demonstrate the capability of such attacks to work on large convolutional networks and different datasets
across domains.

Zhou et al. [6] extend distribution inference attacks to directly infer property ratios for Generative Adversarial
Networks (GANs). Their approach involves the adversary training shadow GANs and then launching a black-box attack
on the victim model using generated samples. Although their attack setting includes targeting large GAN models on
complex datasets like CelebA [18], the adversary does not use the victim model’s model parameters directly as is done
by our extension to convolutional models (Section 5.2.2). Similarly, Pasquini et al. [19] extend distribution inference
attacks to a split-learning setting and only target parts of the victim model. Zhang et al. extended this approach to
graphs and their properties [20], distinguishing training graphs according to properties such as the number of nodes and
edges using attacks that assume access to graph embeddings. Recent attacks on hyper-parameter stealing [21] along
with practical attacks on large language models [22] provide further evidence that deep neural networks leak many
kinds of information about their training data and process.

Defences against distribution inference. Unlike other notions of privacy like membership privacy, there are no known
defenses against distribution inference. Differential privacy does not mitigate distribution inference risks since it
obfuscates the contribution of individual records, while the adversary in our setting cares about statistical properties of
the underlying distribution. Attempts in previous works to evaluate differential privacy as a potential defense [2] show
that it fails to mitigate distribution inference. Removing sensitive attributes from datasets is not an effective defense
either [9], since correlations between attributes still leak information. Using node multiplicative transformations [12]
has been proposed as a defense for neural networks with ReLU activations, but provides no protection against black-box
attacks.

3 Distribution Inference

Threat model. We model the adversary’s knowledge of the underlying distribution through data sampled from that
distribution. For complex, high-dimensional non-synthetic data, this is usually the only way to capture knowledge of
a data distribution. While the threat model focuses on distributions, we use actual non-overlapping sampled data to
empirically model those distributions.

A natural extension of our threat model incorporates a poisoning opportunity where the adversary can participate
in the training process itself. Such an adversary may poison the training dataset by injecting adversarially crafted
datapoints (explored by Chase et al. [5]) or control the training procedure itself to introduce some Trojan in the model.
Recent works look at a similar scenario where the adversary participates in the learning process via a federated-learning
setup, launching attribute-reconstruction attacks using epoch-averaged model gradients [23]. In this paper, we only
consider adversaries with no ability to observe or influence the training process.

Setup. Let D = (X,Y) be a public distribution between data, X, and its corresponding labels, Y. We assume both
the model trainer T and adversary A have access to D. Both parties also have access to two functions, G0 and G1,
that transform distributions. Inferring properties of the distribution can reveal sensitive information in many scenarios,
which can be captured by suitable choices of G0 and G1. Using such functions along with the underlying distribution
D makes the setup less restrictive than defining two arbitrary distributions—since the functions G0, G1, and D are
considered public knowledge, anyone can recreate these distributions. Using functions on the same distribution D
emphasizes the fact that these two distributions stem from the same underlying distributionD, enabling the definition
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to capture a wide class of possible attack goals and scenarios by selecting appropriate functions for G0 and G1.
To illustrate these definitions, we present a concrete example inspired by Chase et al. [5]. LetD be a distribution of

emails with labels for spam/ham. G0 is applied overD to yield a modified distribution G0(D) with 0.8 probability of
sampling an email that has negative sentiment, i.e. a dataset sampled uniformly at random from this distribution would
have approximately 80% of the emails in it with negative sentiment. Similarly, G1(D) could be another distribution
with this probability as 0.5 (equally likely to be positive or negative). The adversary thus wants to know if the training
distribution is biased, which, if inferred near the financial quarter, can be used to predict if the company is performing
below expectations. Alternatively, an ambitious adversary could even consider directly inferring this proportion (which
was not considered in Chase et al. [5], but we explore in Theorem 4.3 and our regression experiments on other datasets).

We propose a general and straightforward experiment to formalize property inference attacks, inspired by Yeom et
al.’s cryptographic game definition of membership inference [11]. In our cryptographic game definition, T picks one of
the G{0,1} distribution transformers at random and samples a dataset S from the resulting distribution. Given access to a
model M trained on S , the adversary aims to infer which of the two distribution mappers was used:

Trainer T AdversaryA

1 : b←$ {0, 1}

2 : S ∼ Gb(D)

3 : M
train
←−−− S

4 : M

5 : b̂ = H(M)

In this work, we assume the adversary has no control over the training process (Step 3). For cases where the
adversary has access to the training data, it can trivially infer desired properties by inspecting it. Our definition could
be adapted to other scenarios such as federated learning [24] by providing additional information to the adversary or
allowing the adversary to have some control over S or other aspects of the training process, but we do not consider such
settings in this paper.

If A can successfully predict b via b̂, then it can determine which of the training distributions was used. The
advantage of the adversaryA using algorithmH is defined as:

AdvH =
∣∣∣∣Pr

[
b̂

∣∣∣ b ]
− Pr

[
b̂

∣∣∣¬ b
]∣∣∣∣.

This advantage is negligible when the adversary does no better than random guessing. We do not assume the adversary
knows how training data is collected, or has any access to it: just that it knows the underlying common distributionD,
and has a goal of distinguishing between sub-distributions G0(D), G1(D) of that distribution. The adversary does not
need to know the actual training distribution—indeed, learning about this is the goal of the attack. They just need to
have hypotheses worth testing, and thus G0 and G1 are defined by the adversary based on what they want to test.

Limitations of the Definition. This definition is simple and general, but does not capture all kinds of distribution
inference attacks. It assumes a setting where the adversary attempts to distinguish between two particular distributions,
both of which are defined by the adversary. Multiple experiments could extend the definition to a set of possible
distributions, but the definition does not directly capture the regression attacks we demonstrate where the adversary is
estimating what proportion of a training dataset has a given property directly. Our definition also assumes the adversary
has prior knowledge of the two sub-distributions to distinguish. Some knowledge of the statistical property the adversary
wants to learn about the victim’s training distribution is inherent in the nature of a distribution inference attack, but this
may not always be in the form of knowledge of possible distributions. In our experiments, we model an adversaries
knowledge of the underlying distribution through a sampled, non-overlapping dataset, which the adversary may then
use to construct approximations of different sub-distributions.

Applying the Definition. Seminal works on property inference [2, 12] involve a model trained either on the original
dataset or a version modified to be biased towards some chosen attribute. Our definition can be used to describe these
attacks by setting G0 to the identity function (so G0(D) is original distribution D) and G1 to a filter that adjusts the
distribution to have a specified ratio over the desired attribute. With respect to a binary property function, f : X −→ {0, 1},
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D can be characterized using a generative probability density function:

ρD(x) =
∑

c∈{0,1}

p(c) · p(x | c), (1)

where p(c) is a multinomial distribution representing the probabilities over the desired (binary) property function f
and its possible values c, and p(x | c) is the generative conditional probability density function. Then, G1(D) can be
expressed using the following probability density function, with a prior p̂:

ρG1(D)(x) =
∑

c∈{0,1}

p̂(c) · p(x | c), p̂(1) = α, p̂(0) = 1 − α (2)

where α is the probability of a randomly sampled point satisfying the property function f . Thus, a uniformly randomly
sampled dataset from G1(D) would have an expected ratio of α of its members satisfying f . Additionally, we can
modify G0 with a similarly adjusted prior, enabling the adversary to distinguish between any two arbitrary ratios [9]. In
fact, our definition subsumes the one proposed by Chase et al. [5] for the case of ratios over Boolean functions via the
following instantiation:

D−, D+ = G0(D), G1(D)
t0, t1 = α0, α1, (3)

along with setting c = f (x) in Equation 2.
Our definition, however, is not limited to describing proportional properties. For example, it can also be used to

define the distributions over degrees for graph-based datasets, and infer properties of the underlying degree distributions.
For this case, we represent graphs as samples from degree distributions: data with different degrees is sampled and then
combined together in one graph. Since the adversary only cares about properties pertaining to the degrees of nodes (and
not their attributes or other characteristics), it is safe to represent these samples purely in terms of degree distributions.
This can then be used to target properties such as the mean-node degree of graphs, as we show in Section 6.3.

4 Quantifying Leakage
Assessing the power of an attack is important for understanding it scientifically, and can also be of practical importance
for both the victim and the adversary. Consider the most explored case in the literature—ratios of members satisfying a
Boolean function. Intuition suggests that distributions with more different ratios (e.g., 0.2 and 0.9) would be easier to
distinguish than more similar ones (e.g., 0.2 and 0.3), and most previous distributions inference results have focused on
highly disparate distributions (often only showing meaningful distinguishing power when one of the ratios is at a 0.0 or
1.0 extreme).

Our framework enables us to quantify the amount of leakage observed in an attack by relating what an adversary
is able to learn from a disclosed model to what they would learn from directly sampling examples from the training
distribution. As a setup, we provide the following lemma, proven in Appendix A.1, that gives an upper bound on the
distinguishing accuracy (which we define as the probability of an adversary correctly inferring the underlying training
distribution of a model) of any statistical test distinguishing between two distributions that differ in the proportion of
records satisfying some Boolean property, using n samples:

Lemma 4.1. Given two Boolean-property proportional distributions G0(D), G1(D) with proportion values α0, α1
derived from the same underlying distributionD, the distinguishing accuracy between models trained on datasets of
size n from these distributions is at most

1
2

+

min
{√

1 −
(

min(α0,α1)
max(α0,α1)

)n
,
√

1 −
(

1−max(α0,α1)
1−min(α0,α1)

)n
}

2
.

First, we consider the most powerful possible adversary as one that can perfectly reconstruct training records from
the model. The most that could be leaked to such an adversary is a perfect reconstruction of all the training records.
Of course, we do not expect an adversary to reconstruct the training dataset fully, and an adversary can succeed in a
high confidence distribution inference attack without being able to reconstruct any training records perfectly. Such a

5



perspective is useful, though, for quantifying the power of an attack in a way that allows comparisons between attacks
distinguishing distributions with different levels of variation. For some observed performance ω via an attack, we can
compute the corresponding value of n that would give an upper bound on accuracy as ω. This value of n, which we term
as nleaked, thus quantifies the size of the dataset “leaked” by the attack. In other words, it is equivalent to the adversary
being able to draw nleaked samples from the training distribution and executing an optimal distinguishing statistical test.
The following theorem, proven in Appendix A.2, shows how to compute nleaked for an observed attack for the kind of
distributions described above.

Theorem 4.2. Given two Boolean-property proportional distributions G0(D), G1(D) with proportion values α0, α1
derived from the same underlying distributionD, and distinguishing accuracy ω using some attack,

nleaked =
log(4ω(1 − ω))

log(max
(

min(α0,α1)
max(α0,α1) ,

1−max(α0,α1)
1−min(α0,α1)

)
)
.

A high value of nleaked means the adversary is learning a lot about the underlying distribution, just using the given
model. It helps put the attack’s strength in perspective, given how similar the two distributions are. For instance,
distinguishing between α0 = 0.5 and α1 = 1.0 with distinguishing accuracy ω = 0.95 corresponds to nleaked ≈ 3,
whereas distinguishing between α0 = 0.5 and α1 = 0.52 with the same accuracy would correspond to nleaked ≈ 42. This
aligns with intuition: the latter distribution is more similar and thus, should be “harder” for an attack to achieve the
same kind of performance, and this notion is exactly what nleaked aims to capture.

Note that this analysis is based on modeling an “optimal attack” where the adversary is able to directly sample
records from the training distribution. This is just for deriving an expression for nleaked, and not meant to assume
any such attack. The expression above (and subsequent expressions for nleaked) is a useful measure of any attack’s
effectiveness that quantifies the leakage observed in the attack by relating it to the amount of information that would
be leaked in an “optimal attack” where the adversary is just sampling training distribution records directly rather than
inferring properties from a revealed model.

Regression over α. The case of distinguishing between ratios can be further extended to consider an adversary
that wishes to directly predict the proportion value α for a given distribution. The following theorem, proven in
Appendix A.3, shows how to compute nleaked for an observed attack with square error ω.

Theorem 4.3. Given a Boolean-property proportional distribution with proportion value α, and square error ω
observed using some attack,

nleaked =
α(1 − α)

ω
.

This result extends our notion of nleaked to adversaries that directly infer the underlying ratio α, a more realistic
adversary goal that we also explore in our experiments.

Graphs as Distributions of Natural Numbers. Similar to the ratio case, our framework enables us to compute nleaked
when working with distributions of natural numbers. For the purpose of distinguishing between graph distributions, this
notion of ‘distribution of numbers’ can be extended to graphs by studying their degree distributions. As a setup, we
provide the following lemma, proven in Appendix A.4, that gives an upper bound on the distinguishing accuracy of any
statistical test distinguishing between two distributions following Zipf’s law, using n samples:

Lemma 4.4. Given two distributions of natural numbers, G0(D) and G1(D) that follow Zipf’s law, with N0 and N1
elements (without loss of generality assume N0 ≤ N1) and parameters s0, s1 respectively, the distinguishing accuracy
between models trained on graphs with n nodes from these distributions is at most:

1
2

+

√
1 −

(
HN0 ,s0
HN1 ,s1

N(s0−s1)I[s1>s0]
0

)n

2
.

Here, Hn,s is the nth generalized Harmonic number of order s, Hn,s =
∑N

k=1 k−s. Together, these two parameters are
related to the expected mean of the distribution αb (mean node-degree, in the case of degree distributions) as:

αb =
HNb,sb−1

HNb,sb

(4)

Similar to the case of different Boolean-property ratios distributions, we can compute nleaked for a given attack and
its observed performance (see Appendix A.5 for the proof):
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Theorem 4.5. Given two distributions of natural numbers distributionsG0(D),G1(D) that follow Zipf’s law, with N0,N1
elements (without loss of generality assume N0 ≤ N1) and parameters s0, s1 respectively, and observed distinguishing
accuracy ω,

nleaked =
log(4ω(1 − ω))

log
(

HN0 ,s0
HN1 ,s1

)
+ (s0 − s1)I[s1 > s0] log(N0)

.

Compared to the ratio distinguishing attacks, attacks on the ogbn-arxiv dataset are much more successful: reaching
near-perfect distinguishing accuracies as well as the highest nleaked numbers (Table 1).

5 Attacks
In our experiments to evaluate the risks of property inference attacks, we use two simple black-box attacks and
the state-of-the-art white-box meta-classifier attack based on Permutation-Invariant Networks [12]. We extend the
meta-classifier attack to support convolutional neural networks (Section 5.2.2). These attacks do not assume anything
about the underlying distributions they try to differentiate other than the availability of the underlying distribution and
knowledge of the public G0 and G1 transformers. For the white-box attacks, full access to the trained model is assumed;
for the black-box attacks, the ability to sample data from distributions G0 and G1is assumed.

5.1 Black-Box Attacks
The black-box attacks assume the adversary has access to representative data for the candidate distributions, but only
has API access to the target model which outputs its prediction (just the label) for a submitted input. Although access to
model parameters is unavailable in such an approach, its model-agnostic nature allows adversaries to launch attacks on
any target model.

5.1.1 Loss Test

A simple algorithm H is to test the accuracy of the model on datasets from the two candidate distributions, and
conclude that the training distribution is closest to whichever test dataset the model performs better on. For data samples
S b∈{0,1} ∼ Gb(D):

b̂ = I[acc(M, S 0) < acc(M, S 1)], (5)

where acc(M, S ) is the accuracy of model M on some sample of data S , and I is the indicator function. Intuitively, a
model would have higher accuracy on data sampled from the training distribution, compared to another distribution.
This method does not require the adversary to train models, but only to have access to suitable test distributions, and
the ability to submit samples from those distributions to the target model. The data held by the adversary here is not
overlapping with the data used by the victim to train its models, thus ruling out any potential for leakage via shared data.
Although we use the accuracy in Equation 5, the adversary can use any other metric that captures model performance,
like the loss used to train these models.

5.1.2 Threshold Test

The Loss Test assumption may not hold for some pairs of distributions if one distribution is inherently easier to classify
than the other (as we observe in our experiments in Section 6.3). To account for this, we consider an attack where the
adversary trains and uses a small (balanced) sample of models from each distribution to identify which of S 0 or S 1
maximizes the performance gap between its models.

γc∈{0,1} =
∑

i;yi=0

acc(Mi, S c) −
∑

i;yi=1

acc(Mi, S c)

k = I[|γ0| < |γ1|], (6)
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Figure 1: Transforming a k1 × k2 kernel matrix K (with input channels cin and output channels cout) into a 2-dimensional
weight matrix for compatibility with the Permutation Invariant Network architecture. The node-processing functions φi

and the rest of the pipeline are identical to the Permutation Invariant Network described in Section 5.2.1.

where yi ∈ {0, 1} denotes that the model Mi is trained on a dataset sampled from G{0,1}(D) respectively. After identifying
k∈{0,1}, the adversary derives a threshold λ to maximize accuracy distinguishing between models trained on datasets
from the two distributions (using a simple linear search). Assuming γk is positive,

δ(Λ) =
∑

i;yi=0

I[acc(Mi, S k) ≥ Λ] +
∑

i;yi=1

I[acc(Mi, S k) < Λ]

λ = arg max
Λ

δ(Λ). (7)

The adversary then predicts b̂ = I[acc(M, S k) ≥ λ] (or with a < inequality when γk is negative). Thus, the adversary
uses a sample of locally-trained models to derive a classification rule based on model accuracy, which it then uses to
infer the training distribution of the target model. For the same reasons as Loss Test the data used by the adversary here,
for both training its local set of models and computing the threshold), is non-overlapping with data used by the victim.
Similar to the Loss Test, we can use any other metric instead of accuracies in the Threshold Test (Equations 6, 7) that
capture model performance, like the loss used to train these models.

5.2 White-Box Attacks
The white-box attacks assume the adversary has direct access to the trained model, including its parameters, and has
access to a large enough amount of representative data to train local models on the candidate distributions. Although
access to the model itself is a stronger assumption than the black-box approach, it can potentially reveal much more
information about the training distribution via model parameters.

5.2.1 Meta-Classifiers

The state-of-the-art property inference attack is Ganju et al.’s attack using Permutation-Invariant Networks as meta-
classifiers [12]. The meta-classifiers take as input model parameters (weights, bias) and predict which distribution
was used to sample training data for the model. This architecture is designed to be invariant to different neuron
orderings inside neural network layers, which it achieves by utilizing the DeepSets [25] architecture. Neuron-ordering
invariance is achieved via a set of transforming functions, φi (defined for each layer i), over each row of the layer weight
matrix. The outputs of these functions are then summed to create a layer representation Li, achieving invariance to the
ordering of the neurons within each layer via the summation function. Since the meta-classifier is itself a classifier that
requires many models (800 per distribution Ganju et al.’s work [12]) trained on the two distributions for training, this
attack is only feasible for adversaries with access to sufficient data from both training distributions and considerable
computational resources.
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5.2.2 Targeting Convolutional Neural Networks

The Permutation-Invariant Network only supports linear layers in a feed-forward architecture; previous work only
considered two or three layer MLPs on small datasets [12], or single-layer recurrent neural networks [9]. Applying the
same architecture on top of convolutional layers requires some adaptations since kernel matrices are four-dimensional.
While there is permutation invariance within channels, the kernel itself is sensitive to permutations by the nature of
how the convolution operation works. We extend property inference attacks to convolutional neural networks and
demonstrate their effectiveness on deep-learning models with up to eight layers, trained from scratch.

Figure 1 illustrates our method. Let K be a kernel of size (k1, k2) associated with some convolutional layer, with
input and output channel dimensions cin and cout respectively. While designing the architecture to capture invariance, it
is important to remember that positional information in the kernel matters, unlike neurons in a linear layer. Thus, any
attempt to capture invariance should be limited to the mapping between input and output channels of a convolutional
kernel. With this in mind, we flatten the kernel of size (k1, k2, cin, cout) such that the resulting matrix is of size
(k1 × k2 × cin, cout). Concatenating along the input channel dimension helps preserve location-specific information
learned by the kernel while capturing permutation invariance across the output channels themselves.

This two-dimensional matrix is then processed in the same way as the linear layers are in Permutation-Invariant
Networks (using the same notation as Section 5.2.1), applying function φi and summing to capture invariance while
concatenating feature representations from prior layers. Similar to the original architecture, the bias component can be
concatenated to the kernel matrix itself. Since this feature extraction process on a convolutional layer also produces a
layer representation, it can be easily incorporated into the existing architecture to work on models with a combination
of convolutional and linear layers.

6 Experiments
To better understand the risks of distribution inference, we execute distribution inference attacks to measure their ability
to distinguish distributions with varying disparity on tabular, image, and graph datasets. Although it is unknown how
close these attacks are to the best possible distribution inference attacks, they help demonstrate an empirical lower
bound on adversarial capabilities and can be helpful in estimating general trends. Code for reproducing our experiments
is available at: https://github.com/iamgroot42/FormEstDistRisks.

6.1 Datasets
We report on experiments using five datasets, summarized in Table 1. We construct non-overlapping data splits between
the simulated adversary,A, and model trainer T . These non-overlapping splits help better capture a realistic scenario
where the adversary has access to training data from the distributionD but is unlikely to have any of the model trainer’s
training data (which is considered private). Both parties then modify their dataset to emulate a distribution property,
and then sample training datasets from these adjusted distributions to train and evaluate their models. This sampling,
along with the disjoint data splits betweenA and T , helps ensure that any distinguishing power we observe is actually
distribution inference, rather than inadvertent dataset inference.

Our experimental datasets were selected to incorporate common benchmarks (Census, CelebA) to enable com-
parisons with previous work, new datasets to assess more realistic property inference threats (RSNA Bone Age), as
well as applying our definitions beyond ratio-based properties on graphs (mean node-degree on ogbn-arxiv, clustering
coefficient on Chord). As noted by Zhang et al. [9], the target properties for a distribution inference attack can be
either related to or independent of the task and can be either explicit features of the input data or latent features. For
instance, attributes varied for Census are feature-based properties since these attributes are directly used as features for
the models trained on them. On the other hand, an attribute like the age of a person is unrelated to detecting smiles and
is a latent property that is not directly encoded as an input feature in the training data (but is available for our CelebA
experiments from provided metadata).

Census [26] consists of several categorical and numerical attributes like age, race, education level to predict whether
an individual’s annual income exceeds $50K. We focus on the ratios of whites (race) and females (sex) as properties
and use a three-layer feed-forward network as the model architecture.

RSNA Bone Age [27] contains X-Ray images of hands, with the task being predicting the patient’s age in months.
We convert the task to binary classification based on an age threshold and use a pre-trained DenseNet [28] model for
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Dataset Task Property Size Binary Regression
Adversary Victim nleaked ‖α0 − α1‖0.75 nleaked

Census Income prediction
Ratio female 3200 3200 0.2 0.5 8.8
Ratio white 1800 1800 0.1 0.6 6.0

CelebA
Smile identification Ratio female 22,000 36,000 0.3 0.5 10.6
Gender prediction Ratio young 6700 18,800 0.2 0.6 5.1

RSNA Bone Age Age prediction Ratio female 1800 3600 6.2 0.2 269.4

ogbn-arxiv
Node classification

Node degree 40,000 97,000 30.6 - -
Chord Clustering 135,216 135,523 - - -

Table 1: Descriptions of datasets, along with the effectiveness of inference attacks (best of all Loss Test, Threshold Test,
and meta-classifier for binary classification, and meta-classifier for regression) while varying ratios of distributions.
‖α0−α1‖0.75 is the minimum difference in ratios observed that has at least 75% average accuracy. For binary classification,
nleaked is the median effective n value based on Theorem 4.2 using the maximum distinguishing accuracies across all
experiments and pairs of property ratios (degrees in the case of ogbn-arxiv) without outliers. For regression, nleaked
is the mean effective n value based on Theorem 4.3 across all ratios excluding 0 and 1. Size for ogbn-arxiv refers to
number of nodes, and the average number of nodes for Chord.

feature extraction, followed by a two-layer network for classification. We focus on the ratios of the females (available
as metadata, but implicit in the examples) as properties.

CelebA [18] contains face images of celebrities, with multiple images per person. Each image is annotated with
forty attributes such as gender, sunglasses, and facial hair. We use two different tasks, smile detection and gender
prediction, and train convolutional neural networks from scratch for this dataset. We focus on the ratios of the females
(smile-detection task) and old people (gender-prediction task) as properties. These attributes are provided as meta-data
in the dataset. We create a network architecture with five convolutional layers and pooling layers followed by three
linear layers, which is the smallest one we could find with reasonable task accuracy.

The ogbn-arxiv [29] dataset is a directed graph, representing citations between computer science arXiv papers. The
task is to predict the subject area categories for unlabeled papers. We infer the mean node-degree property of the graph.
We use a four-layer Graph Convolutional Network [30].

Chord [31] contains botnets with the Chord [32] topology artificially overlaid on top of background network traffic
from CAIDA [33]. The dataset contains multiple graphs, with the task of detecting bot nodes in the graphs. We focus
on inferring whether the underlying graphs (onto which we overlay botnets) have average clustering coefficients within
a specific range. Following the model architecture proposed in Zhou et al. [31], we implement a Graph Convolutional
architecture.

6.2 Attack Details
We perform each experiment ten times and report mean values with standard deviation in all of our experiments. Since
the Loss Test uses a fixed test set per experiment, its results show no variation. For each dataset, we train 1000 victim
models per distribution.

Loss Test. The adversary uses its test data to sample the two test sets S 0 and S 1. Since we use the same test data in
evaluations, we turn off sampling while generating data with desired properties for this setting.

Threshold Loss. The adversary trains 50 models per distribution on its data split.

Meta-Classifier. We used Permutation Invariant Networks as our meta-classifier architecture [12]. The simulated
adversary produces 800 models per distribution using its split of data to train the meta-classifier. For the case of CelebA,
we use our extension of the Permutation Invariant Network that is compatible with convolutional layers (Section 5.2.2).
Following experimental designs from prior works, we were able to achieve the accuracies that the authors reported
(Section 6.3.1). However, using our experimental design leads to significantly lower distinguishing performance. Steps
like ensuring no overlap in victim/adversary training data, randomly sampled datasets for G0(D) and G1(D), and
ensuring the same dataset size are necessary to avoid the risk that the meta-classifier is identifying something different
about the distributions other than the claimed property. We think these steps are important for realistic experiments, so
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Figure 2: Classification accuracy for distinguishing proportion of females in training data for (a) Census, (b) RSNA
Bone Age, and (c) CelebA. The RSNA Bone Age dataset does not include ratios below 0.2 or above 0.8, since sampling
the original dataset for that ratios produces datasets that are too small to train models with meaningful performance.
Performance of the attacks increases as the distributions diverge (α1 moves away from 0.5), but is not symmetric.

report the distinguishing accuracies based on this experimental design, even if they are lower for the same attacks than
the results reported for the same tasks in previous work.

6.3 Binary Properties
We fix G0 and try the attacks on a range of G1 distributions for the first set of experiments. In Section 6.3.2, we
report on experiments varying both distributions. Most prior works on distribution inference use arbitrary ratios, like
distinguishing between 42% and 59% males [12] while executing property inference attacks. Only recently have works
started transitioning to more controlled experimental settings, like comparable dataset sizes for the victim and adversary
and non-overlapping sampling of data [6]. While having one of the ratios corresponding to the estimate of the underlying
data distribution is justified, fixing the other arbitrarily makes it hard to understand the adversary’s capabilities—we
want to understand how dissimilar the distributions must be in order to be distinguishable. Additionally, the lack
of using the same ratios in experiments while looking at different properties makes it harder to compare how much
information about one property is leaked by models compared to the other. Analyzing such trends is important for
understanding how much of these properties are leaked across different configurations (explicit attribute, latent property)
and assess the adversary’s capabilities under different scenarios (black-box access, white-box access).

Experiments with binary classification for properties provide a simple goal that can provide useful insights into the
effectiveness of distribution inference attacks, but most realistic attacks would not be based on distinguishing between
two known distributions. In Section 6.4, we consider attacks that can infer the underlying ratio without any prior
assumptions about distinguishing particular distributions.

6.3.1 Distinguishing Imbalanced Ratios

Since the original ratios for the targeted property may be unbalanced in the dataset (Section 3), for these experiments set
the fixed G0 to a balanced (α0 = 0.5) ratio for the chosen attribute for the Census, CelebA, and RSNA Bone Age datasets.
Then, we vary α1 (Equation 2) to evaluate inference risks and understand how well an adversary could distinguish
between models trained using distributions with different proportions of the targeted property.

Census. We summarize the accuracies for the three attack methods across varying proportions of females in Figure 2a
and whites in Figure 3a. The Loss Test performs only marginally better than random guessing in most cases for females,
yielding nleaked values in the range [0, 0.03], essentially close to random guessing. On the other hand, the Threshold
Test and meta-classifiers are able to achieve non-trivial distinguishing accuracies for the female proportion, with nleaked
values in ranges [0.1, 1.2] and [0.02, 6.5] respectively, with a similar median nleaked value of 0.33, showing how the two
are not very far apart in effectiveness. Leakage increases as the distributions become more disparate, with near-perfect
distinguishing accuracy for the extreme case of α1 = 0. For race, none of the attacks detect anything (nleaked≈ 0) apart
from the surprising results on Threshold Test, which performs asymmetrically well, approaching 80% accuracy for
mostly-white distributions.
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Figure 3: Distinguishing accuracy for proportion of (a) whites in training data for the Census and (b) old people
in the CelebA. The black-box attacks approach the performance of the white-box meta-classifier attacks for some
distributions (especially the Threshold Test and the Census (race) task), further motivating the importance of considering
computationally cheaper black-box attacks.

Comparison with previous results. Ganju et al. [12] applied their meta-classifier method on two properties on this
dataset: 38% vs. 65% women (case A), and 0% vs. 87% whites (case B). For case B, the Loss Test performs as
well as random guessing (50.1%), while the Threshold Test (92.4 ± 2.6%) approaches meta-classifier performance
(99.9 ± 0.1%), achieving a high (compared to α = 0.5 experiments) nleaked≈ 11. For case A, the Threshold Test
(62.7 ± 2.0%) outperforms meta-classifiers (62.1 ± 1.7%) while achieving nleaked≈ 0.03, barely better than random
guessing , and the Loss Test method fails (50%). Ganju et al. report 97% accuracy for case A and 100% for case B.
We were able to closely reproduce these results in their setting which includes overlapping data between victim and
adversary and does not ensure changes in ratios do not affect dataset size or class imbalance. In the more realistic
experimental design in which we ensure there is no victim/adversary overlap and maintain the label ratios and same
dataset sizes (Section 6.2), the accuracies are much lower—for example, in case A the distinguishing accuracy is 97%
using their experimental design but drops to 62% when more carefully prepared datasets are used in our design. These
results suggest that although the distinguishing accuracy is high between the two distributions in the tests in their setting,
the attacks are not actually inferring the intended property but are predicting the distribution based on other differences
between the datasets.

RSNA Bone Age. Distinguishing accuracies for the female proportion on the RSNA Bone Age dataset are plotted in
Figure 2b. The simple Loss Test performs nearly as well as the Threshold Test leaking a median of nleaked≈ 0.2 and
nleaked≈ 0.1 respectively. The meta-classifier attack, on the other hand, has a much higher leakage of nleaked≈ 6.

CelebA. Figure 2c shows the distinguishing accuracy for the CelebA data on proportion of females, and Figure 3b for
the proportion of examples marked as “old”. The Threshold Test performs much worse compared to Census and RSNA
Bone Age, with the median nleaked< 0.05, compared to ≈ 0.7 using meta-classifiers. Figure 4 shows meta-classifier
prediction accuracy for three different representations of the shadow models used to train the meta-classifier: using
parameters from only linear layers, only convolutional layers, and all layers of the models. While inferring the ratio
of old people (Figure 4a), including just the fully-connected layers works best, yielding nleaked≈ 0.12 and not too far
off from using all layers or just the convolutional layers (nleaked≈ 0.07). For the case of sex ratios (Figure 4b), using
the full model helps extract more information (nleaked≈ 0.32) than either of the convolutional (nleaked≈ 0.24) or linear
(nleaked≈ 0.05) layers. These trends suggest the likelihood of some layers’ parameters capturing specific property-related
information better than the others. Linear layers are more helpful for ratios of old people whereas for ratios of females,
convolutional layers are significantly better.
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Figure 4: Distinguishing accuracy for meta-classifiers for proportion of (a) old people and (b) females in the training
data for CelebA. Using all the layers’ parameters is not necessarily helpful and can lead to lower performance (e.g.,
CelebA, females).
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Figure 5: Effectiveness of meta-classifiers in distinguishing proportions of females on Census and RSNA Bone Age .
The bottom-left triangles of the heatmaps show the nleaked values, and the top-right triangles show the distinguishing
accuracies between training distributions G0(D) with ratio α0 and G1(D) with ratio α1 for females. Distinguishing
accuracies seem to follow intuitive patterns, with an increase as the distributions diverge (larger |α0 − α1|). The nleaked
values allow for comparisons of attack power between different pairs of distributions, but also show that very little
leakage is observed for most settings, except for RSNA Bone Age.

6.3.2 Varying Proportions

An adversary may not necessarily be interested in distinguishing between the balanced case (α = 0.5) and other ratios.
For instance, health datasets for specific ailments may have a higher underlying prevalence in females, and the adversary
may be interested in differentiating between two particular ratios of females, like 0.3 and 0.4. We thus experiment
with the case where both distributions are varied: G0(D) and G1(D) with corresponding ratios α0 and α1 respectively.
Distribution inference risk seems particularly acute when an adversary can distinguish the proportion of an uncommon
property. Observing performance trends as the difference in ratios increases also helps us understand how much of a
threat property inference may pose as the similarity of the distributions varies.

Figure 5 shows the distinguishing accuracies (and corresponding nleaked values) between models (in the form of
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Figure 6: Predicted α values (left y-axis) for models with training distributions for varying α values (x-axis), for all
victim models and regression meta-classifier experiments (green box-plots), along with mean squared error (right y-axis
labels, with different scales on the two graphs, and blue dots), for (a) Census and (b) RSNA Bone Age datasets. with
The diagonal gray dashed line represents the ideal case, where the regression classifier would perfectly predict α. For
each ratio of the form 0.05 · x (for varying x), we train regression meta-classifiers 5 times with different seeds, and test
100 victim models. As indicated by nleaked values, the RSNA Bone Age dataset observes very good performance, with
nearly all predictions lining up with the diagonal, while for Census (sex), predicted ratios are usually in [0.2, 0.6].

heatmaps) trained on distributions G0(D) and G1(D) while varying corresponding α0 (horizontal axis) and α1 (vertical
axis), for ratios of females on Censusand RSNA Bone Age. For instance, in Figure 5a, (α0, α1) = (0.2, 0.9) in the
upper-right triangle correspond to meta-classifier performance (70%), while (α0, α1) = (0.9, 0.2) in the lower-left
triangle gives the corresponding nleaked = 0.17. Entries along a given diagonal have the same value of |α0 − α1|. As
reflected in the heatmap colors, distinguishing accuracies are roughly the same along diagonals. The variance in
performance across runs is relatively high for similar distributions (small |α0 − α1|) and decreases as the distributions
diverge. For CelebA (sex) and Census (sex), we observe that nleaked< 1 in most cases. These small values do not imply
the inability of any adversary to distinguish between the distributions, only that for the given attacks we observe little
information leakage.

6.4 Direct Regression over α
Inspired by Zhou et al. [6], we performed a direct regression experiment in which we trained the meta-classifiers to
predict α directly. This corresponds to a more realistic attack setting for many scenarios than one in which the adversary
is distinguishing between two predefined α values. For this experiment, we construct a training dataset for the regression
meta-classifier with tuples of the form (Mα, α), where Mα is some model with a training distribution corresponding to
the ratio α. We train the meta-classifier using Mα models for all the ratios α that we experiment with in Section 6.3.2
({0.0, 0.1, . . . , 1.0} for Census and CelebA, and {0.2, . . . , 0.8} for RSNA Bone Age). The meta-classifier follows the
same permutation-invariant architecture as in the binary property experiments (Section 5.2), just with a mean squared
error (MSE) loss for training.

Figure 6 shows the distribution of the predictions of the regression meta-classifiers and Table 2 reports the MSE and
nleaked values. For all these experiments, we train meta-classifiers five times with different seeds, and report aggregate
results over all the meta-classifiers and victim models, for each dataset and property. In the plots in Figure 6, we include
results for actual α values at both tenths and the intermediate 0.05 ratios to confirm that the meta-classifiers are indeed
learning to predict α and not just overfitting to the α values observed in training. The meta-classifiers do exhibit a bias
toward balanced predictions, showing a smooth curve for the MSE values with a minimum near α = 0.5.

The attacks are quite successful in most cases, achieving nleaked over 5 for all of our settings, and surprisingly high
leakage for RSNA Bone Age, achieving nleaked over 260. These regression attacks show that adversaries can infer
sensitive information about training datasets even in the more realistic settings where the adversary does not have prior
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Dataset Attribute
nleaked MSE

(B) (BR) (R)

Census
Sex 0.2 0.3 8.8 0.053

Race 0.1 0.2 6.0 0.091

CelebA
Sex 0.3 0.4 10.6 0.030
Age 0.2 0.4 5.1 0.047

RSNA Bone Age Sex 6.2 15 269.4 0.001

Table 2: Median nleaked values when using the binary meta-classifiers nleaked (B), regression meta-classifiers nleaked (R),
and regression meta-classifiers for binary predictions nleaked (BR), along with average Mean Squared Error (MSE) for
direct regression over α. nleaked is nearly double for all cases that use regression meta-classifiers for binary predictions,
when compared to the binary meta-classifiers.
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Figure 7: Distinguishing binary ratio properties using (a) binary classifiers and (b) regression meta-classifiers, for
CelebA (age). nleaked values (lower triangle) and classification accuracies (upper triangle) for distinguishing proportion
of old people (ratios α0, α1) in training data for the CelebA dataset. nleaked values are higher than those observed for
binary meta-classifiers, especially for cases where |α0 − α1| is small.

knowledge of the distributions to distinguish. However, the attacks are not always highly successful— the performance
observed for our meta-classifiers on Census (race) is not much better (Figure 6a) than that when guessing α = 0.5
blindly (expected MSE 0.1).

Given the high nleaked values for the regression tests, we tried using the regression meta-classifiers to distinguish
between binary properties. To produce a classification between models with training distribution ratios α0 and α1, a
regression meta-classifier Mregression’s prediction for some model m is converted to a binary outcome by simply checking
which of the two considered distribution ratios the predicted ratio is closer to: b̂ = I

[
Mregression(m) ≥ α0+α1

2

]
. Each entry

in Table 2 is averaged over 5 trials × 100 victim models × 11 ratios ({0.0, 0.1, . . . , 0.9, 1.0} for Census; 7 in the case
of RSNA Bone Age). In most cases, the accuracy improves significantly over the binary classifiers, with the nleaked
value nearly doubling for most settings. For instance, the classification accuracy increases by ∼ 4% and ∼ 15% for
CelebA (sex) and RSNA Bone Age respectively, corresponding to an increase of nleaked by ∼ 0.14 for CelebA (sex)
and ∼ 8.51 for RSNA Bone Age. This improvement is not surprising since the binary attack uses models only from
two distributions, whereas the regression attack has models from a wide range of alpha values and thus can learn more.
Further looking at the nleaked values for each pair of ratios (α0, α1) shows how these improvements are uniform across
all pairs of distributions. Figure 7 shows the accuracies and nleaked values for using specific ratio binary classifiers
compared with the improved accuracies obtained using the regression meta-classifier.
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Figure 8: Performance for (a) distinguishing between models with different mean node-degrees in training data, and (b)
directly inferring the mean node-degree of the training data, for the ogbn-arxiv dataset. Each color represents the true
degree (dashed lines) of the models being tested. The meta-classifier attack is remarkably successful on this dataset and
further accentuates how some attacks can infer underlying properties nearly exactly on some datasets.
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Figure 9: Effectiveness of meta-classifiers on ogbn-arxiv dataset. nleaked values (bottom-left triangles) and mean
node-degree (degrees α0, α1) in training data.

6.5 Graph Properties
Our experiments using both binary and regression classifiers on the graph datasets reveal surprisingly high property
leakage. Observed nleaked values for ogbn-arxiv are much higher (100-200 range) than was observed in the experiments
on tabular and image datasets (with the exception of RSNA Bone Age). (For the clustering coefficients on Chord, we do
not have a way to compute nleaked, but also see evidence of substantial leakage.)

ogbn-arxiv. For the ogbn-arxiv dataset, we set G0 such that the graph has a mean node-degree of α0 = 13, and
for G1, modify the graph to have a mean-degree α1 as an integer in the range [9, 17]. We produce test datasets by
pruning either high or low-degree nodes from the original graph to achieve a desired α1. Like the other datasets,
meta-classifier performance increases as the distributions diverge, albeit with much smaller drops. Both the Loss
Test and Threshold Test fail on this dataset with nleaked values below 1, compared to the meta-classifiers (Figure 8a)
which leaks nleaked ≈ 40 in most cases. The attacks leak much more information as the degrees increase than when
they decrease— nleaked values are nearly double for (12, 14) than (12, 13) as the two mean node-degrees, despite
having comparable distinguishing accuracies. Motivated by the success of regression attacks for ratio-based properties
(Section 6.4), we also trained a regression variant of the meta-classifier to predict the average degree of the training
graph directly. The resulting meta-classifier performs quite well (Figure 8b), achieving a mean squared error (MSE)
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Figure 10: Distinguishing accuracy (a) and MSE (b) for inference attacks with varying α1 on the horizontal axis. The
plotted results are for the most effective attacks from the experiments described in Section 6. The curves in (a) show
the comparable distinguishing accuracy for nleaked = 2 (indicating that most of the attacks are comparable to leaking
fewer than two samples from the training distribution) and nleaked = 8, showing that a few of the attacks on the RSNA
Bone Age dataset (and extreme attacks on Census for the race attribute) do leak a substantial amount of information.
Similar trends hold for regression, with nleaked somewhere between 1 and 10 for most cases (b). The highest leakages
we observed are for the graph datasets, not shown in this figure.

loss of 0.393 ± 0.36. It generalizes well to unseen distributions, achieving an average MSE loss of 0.076 for α = 12.5
and 13.5. A property inference adversary can thus be strong enough to directly predict the average node degree of the
training distribution. Similar to the case of ratios, we try different combinations of mean node-degree values by setting
different mean node-degrees α0 and α1 (Figure 9). As apparent, nleaked has a wide spread in its values across different
distributions—starting from ≈ 3 to approaching infinity, with a median of ≈ 31.

Chord. For the Chord dataset, we construct G0 to have graphs with average clustering-coefficient below 0.0061 and G1
to have graphs with average clustering-coefficient above 0.0071. We pick these values to minimize the overlap between
the two distributions, while maintaining a decent accuracy on the original task. For the case where both the trainer’s and
adversary’s datasets are sampled from the same pool of data, the adversary has near-perfect distinguishing accuracy,
even when training the meta-classifier with ten models (and testing on 1000). However, the adversary cannot achieve
the same level of performance in the absence of data overlap. Using the Loss Test yields an accuracy of 63%, while
the Threshold Test and meta-classifier struggle to perform better than random (≈51%). This disparity in performance
further justifies our experimental design choice to consider non-overlapping data splits—evaluating property inference
attacks on models trained from the same dataset pool seems effective, but it cannot distinguish learning some unrelated
property from the claimed inference. Additionally, the gap in meta-classifier performance and the simple Loss Test
suggests there might exist better methods that could infer properties even under the non-overlapping scenario.

6.6 Summary of Experimental Results
We summarize the distribution leakage observed for our ratio and regression based experiments in Figure 10. The
results show that the most effective property inference attacks for all datasets (other than RSNA Bone Age) are less
accurate predictors than would be possible with the best possible statistical test from a random sample of size two
from the training distribution. Most attacks across varying distributions and datasets correspond to values of nleaked ≈ 1
for classification, and nleaked between 5 and 10 for regression. The low nleaked values for binary classifiers show how
little information those attacks are able to leak from the model, but the regression results do indicate that even in these
settings non-trivial information is leaking and there are opportunities for better inference attacks. The biggest exception
is for RSNA Bone Age, where we observe nleaked values above 10 for the binary classifiers (Figure 5b) and up to 270 for
the regression meta-classifier, and the graph datasets, where they are in the hundreds for ogbn-arxiv (Figure 9).
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Dataset Inference Susceptibility. This leakage is much higher for RSNA Bone Age than it is for similar Boolean
ratio-like properties for datasets like Census and CelebA, suggesting this particular dataset is prone (much more than
the others we explore) to high-confidence inference attacks, at least for the sex property. We do not yet have a good
understanding of why this dataset leaks so much more distribution information than the other two, but think the causes
of variation in inference risk is an important question for future study. Although we observe an increase in nleaked values
across all our experiments as the distributions diverge from each other, these trends are not symmetric. Hence, not
only do more divergent distributions seem to leak more information, that information is more valuable to an adversary
since as the distributions diverge less information is needed to distinguish them accurately. This might be suggestive of
biased learning algorithms, or perhaps the attacks’ capabilities to infer distributional properties effectively.

Attack Comparison. Analyzing nleaked values for different attacks, which is one of the primary purposes of that
notion, shows there is no clear winner out of the three attacks in our experiments. The concept of nleaked serves as a
measure for comparing the power of different attacks across ranges of distributions—seemingly different distinguishing
accuracies can correspond to very close nleaked values (for instance, CelebA), while similar ones can correspond to very
different nleaked values (for instance, ogbn-arxiv). The lack of any clear ranking of the simple black-box and white-box
meta-classifier attacks shows why it is necessary to include simple baselines when evaluating property inference risk. In
fact, the inexpensive Threshold Test does better than meta-classifiers for about 30% of our experiments across all the
datasets. There are many instances where either of the two simple black-box tests perform exceptionally well—even
better than meta-classifier. For instance, Threshold Test on Census (race) and Loss Test on CelebA (old) outperform the
meta-classifiers for nearly all of pairs of ratios. These observations further support the approach of using more direct
attacks like Loss Test and Threshold Test before training expensive meta-classifiers, especially since there is no clear
ordering of these attacks across datasets and ratios, and also considering attacks that combine meta-classifiers with
direct loss tests to improve overall accuracy.

Peculiar Trends. We also observe some trends specific to a dataset and property, but can only speculate on their causes.
For example, on the Census dataset, the adversary has notably high accuracy in differentiating between distributions
when one is without any females (α0 = 0) or males (α0 = 1) with distinguishing accuracies close to 100%, regardless of
the actual proportion of females in the data. This suggests that detecting the mere presence or absence of members with
a particular attribute is significantly easier than trying to deduce the exact ratio of members with that attribute, and
perhaps is unsurprising here for an attribute that does impact the task predictions. Similarly, a difference in ratios of
≥ 0.3 on RSNA Bone Age (Figure 5b) yields at least 90% accuracy for all cases using meta-classifiers, with nleaked
values ≥ 7, going up to perfect distinguishing accuracy. Unlike Census, performance on CelebA at the extremes (no
males or females when inferring sex ratios, and no young or old people when inferring old ratios) is far from perfect.
This may be because features like race and gender in Census are directly used for model training, and thus their presence
or absence would directly impact both predictions and model parameters. Whereas for CelebA, the complicated feature
extractor may not embed these latent (and inherently ambiguous) properties explicitly.

Regression for Binary Classification. Comparing nleaked values for the binary meta-classifiers and regression-based
meta-classifiers tuned for binary classification demonstrates how additional information about the underlying ratios can
have a huge impact on leakage. Having models trained on training distributions for a wide range of α can help ensure the
meta-classifier actually learns to infer the underlying ratios, compared to the binary classification case where it is most
likely to rely on specific signals just to distinguish between two given distributions. Although that is indeed the given
task, the ability to capture the association between α and the desired predictions can, and does, help the meta-classifiers
improve their performance. Note that training the regression-based meta-classifiers does not require a stronger threat
model than is assumed for the binary classifier case. In both cases, the adversary needs access to a training distribution
with enough samples to be able to create representative datasets for different distributions. Training the regression
meta-classifier requires more computational resources (training models for multiple ratios) than is required to train the
binary meta-classifier (training models only for two ratios), but does not otherwise require a stronger adversary.

7 Conclusions
A important step to developing understanding of distribution inference risks is a precise and formal definition, and we
found the general definition we introduce to be useful for conceptualizing the space of attacks especially in having
a precise way to separate intended statistical inference from distribution inference attacks. The definition also leads
to a systematic approach to quantifying the leakage from distribution inference attacks. Our empirical results reveal
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how intuition may not necessarily align with actual observations. Seemingly similar pairs of distributions can have
starkly different attack success rates, and simple attacks with limited access can sometimes outperform computationally
expensive meta-classifiers. Our experiments also show how direct regression of underlying ratios of training distributions
is a real threat, and can be used to improve the performance of binary distinguishing attacks.

Our work raises more questions than it answers—why do some models leak a lot of information about certain
properties of their training distribution but others leak little, what are the limits on how precisely training distributions
can be distinguished, why do models trained on some datasets (like RSNA Bone Age and the graphs) appear to leak so
much more information than others. We are not able to answer these questions yet, although our experiments provide
several intriguing observations and suggest possibilities to explore. It is not surprising that so little is understood about
distribution inference—the research community has put extensive effort into studying membership inference attacks
for several years now, and we are just beginning to be able to understand how and why membership inference risk
varies [34]. There could also be trade-offs between accuracy, robustness, fairness, interpretability, and vulnerability to
distribution inference attacks. For instance, a model that is fair with regards to its predictions across some sensitive
attribute may be less vulnerable to distribution inference attacks on that attribute.

Another aspect of these attacks, which is accounted for theoretically but hard to implement in practical attacks,
is robustness to different training processes. It is unclear how factors like overfitting, training for robustness, or data
augmentation can impact property inference risk. Exploring how these factors increase or decrease susceptibility is part
of ongoing work and may pave the way for understanding these attacks better, perhaps even leading to principled and
effective defenses.

We expect there is room for improving distribution inference attacks, and hope our results raise awareness that
distribution inference attacks that expose sensitive aspects of training data are possible and require further exploration,
analysis, and development of mitigations.
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A Proofs

A.1 Proof of Lemma 4.1
Assume the adversary can fully recover a dataset S (of size n) from some model M trained on it. Assume ψ(·) is an
estimator for testing the hypothesis, i.e. ψ(S ) = b∈{0,1} means that S comes from Gb(D). Assuming an equal likelihood
of the chosen dataset S being from either distributions, we have:

Error =
1
2
(
PrS←G0(D)n

[
ψ(S ) = 1

]
+ PrS←G1(D)n

[
ψ(S ) = 0

])
=

1
2

(Type I Error + Type II Error).

Combining with the result from [35]:

Error ≥
1
2
−

1
2
δ(G0(D)n,G1(D)n) (8)

⇒ Accuracy ≤
1
2

+
1
2
δ(G0(D)n,G1(D)n), (9)

where δ() is the total variation distance between two probability measures, and Gb∈{0,1}(D)n refers to the distribution of
n samples from Gb∈{0,1}(D).. Thus, the maximum accuracy while differentiating between datasets sampled from either
distribution is bounded by the total variation distance between them. Let ρb(x) be the generative probability density
function for some sample x drawn from Gb(D), for b ∈ {0, 1}. This density function can then be broken down into a
multinomial distribution and priors as:

ρb(x) = (1 − αb)pb(x|0) + αb pb(x|1), (10)

where αb is the prior for p(1) corresponding to Gb(D), and ρb(x|1) is the associated conditional generative probability
density function. Note that p0(x|0) = p1(x|0) and p0(x|1) = p1(x|1), since they both come from the underlying
distribution D. Without loss of generality, let α0 > α1 (we omit the case of same ratios, since that is trivially
indistinguishable). Then:

α1ρ0(x) − α0ρ1(x) = α1((1 − α0)p0(x|0) + α0 p0(x|1)) − α0((1 − α1)p1(x|0) + α1 p1(x|1))
= α1 p0(x|0) − α1α0 p0(x|0) + α0α1 p0(x|1) − (α0 p1(x|0) − α0α1 p1(x|0) + α1α0 p1(x|1))
= (α1 − α0)p0(x|0) ≤ 0

⇒
ρ0(x)
ρ1(x)

≤
α0

α1
(11)

Using this inequality, the relative entropy (KL divergence) from G1(D) to G0(D) can be written as:

DKL(G0(D) ‖ G1(D)) =

∫
ρ0(x) log

(
ρ0(x)
ρ1(x)

)
dx ≤

∫
ρ0(x) log

(
α0

α1

)
dx (12)

= log
(
α0

α1

) ∫
ρ0(x)dx = log

(
α0

α1

)
(13)

Since the function f is binary, a prior of αb for p( f (x) = 1) implies a prior of (1 − αb) for p( f (x) = 0). Utilizing this
symmetry, we can similarly upper-bound DKL(G1(D) ‖ G0(D)) with log

(
1−α1
1−α0

)
. Removing the α0 ≥ α1 assumption and

replacing with the max/min of these two appropriately, we get:

DKL(G0(D) ‖ G1(D)) ≤ log
(

max(α0, α1)
min(α0, α1)

)
(14)

DKL(G1(D) ‖ G0(D)) ≤ log
(

1 −min(α0, α1)
1 −max(α0, α1)

)
From [36], we know that:

DKL(G0(D)n ‖ G1(D)n) = nDKL(G0(D) ‖ G1(D)) (15)
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Thus, when using a dataset S of size |S | = n, the equivalent KL-divergence can be bounded by:

DKL(G0(D)n‖G1(D)n) ≤ n log
(

max(α0, α1)
min(α0, α1)

)
(16)

DKL(G1(D)n‖G0(D)n) ≤ n log
(

1 −min(α0, α1)
1 −max(α0, α1)

)
Using the relation between total variation distance and KL-divergence [37], we know:

δ(G0(D)n,G1(D)n) ≤
√

1 − e−DKL(G0(D)n ‖ G1(D)n) (17)

=

√
1 − e

−nlog
(

max(α0 ,α1)
min(α0 ,α1)

)
=

√
1 −

(
min(α0, α1)
max(α0, α1)

)n

(18)

Similarly, using DKL(G1(D) ‖ G0(D)) in the inequality above we get:

δ(G0(D)n,G1(D)n) ≤
√

1 − e−DKL(G1(D)n ‖ G0(D)n) (19)

=

√
1 − e

−nlog
(

1−min(α0 ,α1)
1−max(α0 ,α1)

)
=

√
1 −

(
1 −max(α0, α1)
1 −min(α0, α1)

)n

(20)

Since the function f () is boolean, an adversary can choose to focus on a property value of 0 or 1, and infer the ratio
of one using the other. Thus, any two ratios (α0, α1) can be alternatively seen as (1 − α0, 1 − α1). Combining the two
inequalities above and plugging them back in (9), we get:

Accuracy ≤
1
2

+

min
{√

1 −
(

min(α0,α1)
max(α0,α1)

)n
,
√

1 −
(

1−max(α0,α1)
1−min(α0,α1)

)n
}

2
(21)

Note that the proof of this bound hinges on both the distributions originating from the same underlying distributionD,
which is why we use G0(D), G1(D) instead of some arbitrarily defined distributionsD0,D1.

A.2 Proof of Theorem 4.2
Consider Lemma 4.1: let ω be the observed distinguishing accuracy for some attack. Let nleaked be the effective value of
n corresponding to the given attack, i.e. Equating it with the best distinguishing accuracy for this value of n, we can
compute nleaked. If min(α0,α1)

max(α0,α1) ≥
1−max(α0,α1)
1−min(α0,α1) :

2ω − 1 =

√
1 −

(
min(α0, α1)
max(α0, α1)

)nleaked

(22)

log(1 − (2ω − 1)2) = nleaked

(
log

(
min(α0, α1)
max(α0, α1)

))
(23)

nleaked =
log(4ω(1 − ω))

log
(

min(α0,α1)
max(α0,α1)

) (24)

Similarly, for the case of min(α0,α1)
max(α0,α1) <

1−max(α0,α1)
1−min(α0,α1) , we get:

nleaked =
log(4ω(1 − ω))

log
(

1−max(α0,α1)
1−min(α0,α1)

) (25)

Combining these two cases, we get:

nleaked =
log(4ω(1 − ω))

log(max
(

min(α0,α1)
max(α0,α1) ,

1−max(α0,α1)
1−min(α0,α1)

)
)

(26)
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A.3 Proof of Theorem 4.3
Assume the adversary can fully recover a dataset S (of size N) from some model M trained on it. Let n1 be the number
of entries in S that are 1, and n0 0 such that n0 + n1 = N. Then, the conditional probability density function of the
underlying distribution D having Pr[1] = z (assume all z are equally likely), given the observed dataset S , can be
written using the continuous Bayes’ rule as:

Pr[z | S ] =
Pr[S | z ] Pr[z]∫ 1

0 Pr[S | x ] Pr[x]dx
=

(
N
n1

)
zn1 (1 − z)n0∫ 1

0

(
N
n1

)
xn1 (1 − x)n0 dx

= zn1 (1 − z)n0
Γ(n0 + n1 + 2)

Γ(n0 + 1)Γ(n1 + 1)
(27)

The above conditional probability is maximized when z = n1
N , i.e. the guessed ratio is the ratio observed in the given

sample S . Then, we can compute the expected square error over all possible datasets of size N, given that the distribution
they were sampled from has a proportion value α:

E
[
(z − α)2

]
= E

[
z2

]
+ α2 − 2αE[z] (28)

We can then compute E[z] as:

N∑
n1=0

n1

N

(
N
n1

)
(α)n1 (1 − α)N−n1 =

1
N

N∑
n1=0

n1

(
N
n1

)
(α)n1 (1 − α)N−n1 = α (29)

Similarly, E
[
z2

]
can be computed as:

N∑
n1=0

(
n1

N
)2
(
N
n1

)
(α)n1 (1 − α)N−n1 =

1
N2

N∑
n1=0

n2
1

(
N
n1

)
(α)n1 (1 − α)N−n1 = α2 +

α(1 − α)
N

(30)

Plugging (29) and (30) in (28), we get:

E
[
(z − α)2

]
=
α(1 − α)

N
(31)

Thus, for an observed square error ω for some attack, nleaked can be computed as:

nleaked =
α(1 − α)

ω
(32)

A.4 Proof of Lemma 4.4
We assume that both degree distributions follow Zipf’s law, such that the PDF for either of G0 or G1can be written as

ρb(x) =
x−sb

HNb,sb

(33)

where HN,s is the N th generalized harmonic number of order s, Nb corresponds to the maximum degree (with nonzero
probability) GB(D), and sb determines the spread of the distribution. Since the inequality between the total variation
distance and accuracy is independent of the underlying distributions, (9) applies in this case too.

Without loss of generality, let N1 ≥ N0. In that case, the relative entropy from G0 to G1 would be undefined, since
support(G1) ⊆ support(G0) would be false. Computing the relative entropy from G1 to G0, we get:

DKL(G0(D) ‖ G1(D)) =

N1∑
n=1

ρ0(x) log
(
ρ0(x)
ρ1(x)

)
(34)

Since ρ0(x) only applies until N0, it evaluates to 0 for n > N0. Substituting:

N0∑
n=1

ρ0(x) log
(
ρ0(x)
ρ1(x)

)
+

N1∑
n=N0+1

0 · log
(

0
ρ1(x)

)
=

1
HN0,s0

 N0∑
n=1

x−s0

(
log

(
HN1,s1

HN0,s0

)
+ (s1 − s0) log(x)

) (35)

=
1

HN0,s0

HN0,s0 log
(

HN1,s1

HN0,s0

)
+ (s1 − s0)

N0∑
n=1

x−s0 log(x)

 = log
(

HN1,s1

HN0,s0

)
+

s1 − s0

HN0,s0

N0∑
n=1

x−s0 log(x) (36)
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If s1 > s0:

DKL(G0(D) ‖ G1(D)) ≤ log
(

HN1,s1

HN0,s0

)
+

s1 − s0

HN0,s0

N0∑
n=1

x−s0 log(N0) (37)

= log
(

HN1,s1

HN0,s0

)
+ (s1 − s0) log(N0) (38)

If s1 ≤ s0:

DKL(G0(D) ‖ G1(D)) ≤ log
(

HN1,s1

HN0,s0

)
(39)

Computing the total variation distance for n samples according to (17) for both cases, we get:

δ(G0(D)n,G1(D)n) ≤


√

1 −
(

HN0 ,s0
HN1 ,s1

N s0−s1
0

)n
, if s1 > s0√

1 −
(

HN0 ,s0
HN1 ,s1

)n
otherwise

Plugging this in (9) to get an upper bound on the distinguishing accuracy.

Accuracy ≤
1
2

+

√
1 −

(
HN0 ,s0
HN1 ,s1

N(s0−s1)I[s1>s0]
0

)n

2
(40)

A.5 Proof of Theorem 4.5
Consider Lemma 4.4: let ω be the observed distinguishing accuracy for some attack. Let nleaked be the effective value of
n corresponding to the given attack, i.e. Equating it with the best distinguishing accuracy for this value of n, we get:

ω =
1
2

+

√
1 −

(
HN0 ,s0
HN1 ,s1

N(s0−s1)I[s1>s0]
0

)nleaked

2
(41)

log(1 − (2ω − 1)2) = nleaked ·

(
log

(
HN0,s0

HN1,s1

)
+ (s0 − s1)I[s1 > s0] log(N0)

)
(42)

nleaked =
log(4ω(1 − ω))

log
(

HN0 ,s0
HN1 ,s1

)
+ (s0 − s1)I[s1 > s0] log(N0)

(43)

A.6 Leakage by Layers
Observing differences in performance when focusing on different network layers of the same model for CelebA
(Section 6.3.1, Figure 4) raises an interesting question: how does information leaked vary across model layers?
Understanding and identifying which layers leak the most information can help better understand the distribution
inference risks and how to mitigate them, as well as how to make attacks more efficient. Here, we propose a simple
test to help the adversary rank layers for value in distinguishing between the given distributions, and show how some
layers (the first layer, in most cases) seem to capture properties of the training distribution better than others in a
given model. Meta-classifier attacks are expensive and deciphering what they learn is challenging—identifying critical
parameters can both improve understanding and lower resource requirements. If we can use just a fraction of the
model’s parameters, we may be able to achieve comparable inference performance with fewer shadow models and
much lower meta-classifier training costs.

Identifying Useful Layers. Let j be some layer of the model for which the adversary wishes to gauge inference
potential. We optimize query point x̂ to maximize the difference in the total number of activations for layer j between
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Dataset Layer
1 2 3 4 5 6 7

CelebA (female) 89.2 76.7 75.8 74.2 70.0 66.7 63.3
CelebA (old) 64.2 60 60 68.3 73.3 70 66.7

Census (female) 62.0 58.0 56.4 - - - -
Census (white) 81.7 75.0 63.3 - - - -

RSNA Bone Age 65.0 64.0 - - - - -

ogbn-arxiv 93.3 95.0 98.3 - - - -
Chord 69.4 60.0 64.0 64.8 57.2 50.2 -

Table 3: Maximum accuracy using layer-identification method. Since the last layer in all of these models is used for
classification with a Softmax/Sigmoid activation, the process in Equation 44 cannot be applied to the last layer.
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Figure 11: Classification accuracy for distinguishing between models with different training distributions on the RSNA
Bone Age dataset, for meta-classifiers trained with (a) 10, (b) 40, and (c) 1600 models. Orange box plots correspond
to using parameters only from the first layer, while blue box plots correspond to using all (three) layers’ parameters.
Although the experiment that uses just the first-layer’s parameters has much more variance, its average performance
(and even the first quartile) is better than that of the version that uses all the layer’s parameters.

models trained on datasets from the two distributions:

M j(x) =
∑

i

I[(M[: j](x))i > 0]

x̂ = arg max
x

∣∣∣∣∣∣∣∣
∑

i;yi=0

Mi
j(x) −

∑
i;yi=1

Mi
j(x)

∣∣∣∣∣∣∣∣ , (44)

where M[: j](x) refers to the activations after layer j of model M on input x. The adversary can use a set of test points
to select one that maximizes the above constraint. Then, similar to the process for Threshold Test (Equation 7), the
adversary finds a threshold on the number of activations to maximize distinguishing accuracy. By iterating through
all layers and computing the corresponding accuracies, the adversary can create a ranking of layers to estimate how
much information these layers can potentially leak. This process is computationally much cheaper than running a
meta-classifier experiment for all layers, and can be done with as few as 20 models. Once it has ranked all the layers, the
adversary can pick the most informative ones (even just a single layer suffices in some cases) to train the meta-classifier.
Since the resulting meta-classifier has fewer parameters (as it computes over fewer model layers), it can be trained
using far fewer shadow models than when all network parameters are used, without having a significant impact on
distinguishing accuracy.

Results. To understand how well the layer-identification process correlates with meta-classifier performance, we also
perform experiments where each layer’s parameters are used one at a time to train the meta-classifier. We run the
layer-identification process, as described in Equation 44, for all layers across datasets. For the numbers reported in

26



Table 3, the adversary samples data from its local test set to maximize Equation 44. Distinguishing accuracies reported
in this table are on the adversary’s models since it uses this ranking of layers to train a meta-classifier for its attack on
the targeted model. For most cases, the layers closest to the inputs are identified as most useful. These accuracies for
CelebA align with observations from previous experiments (Section 6.3) as well—for distinguishing sex ratios, the
convolutional layers (until layer 5) seem to be more useful; for age, the fully-connected layers appear to be most useful.
Layers of machine-learning models closer to the input are commonly associated with learning generic patterns, and
later layers more abstract ones along with invariance to the given task [38]. Thus, the position of layers identified to be
most useful is telling of how close the target property is to the input space or task.

(a) Census, varying proportion female (b) Census, varying proportion white
(c) RSNA Bone Age, varying proportion

female

Figure 12: Classification accuracy for distinguishing between training distributions for unseen models for on Census
(sex: left, race: middle) and RSNA Bone Age, while varying the models’ layers used while training meta-classifiers.
There is no clear winner in the case of Census, while the first layer seems to the most useful for the case of RSNA Bone
Age.
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Figure 13: Classification accuracy for distinguishing between models with different training distributions for on the ogbn-
arxiv dataset. Left to right: meta-classifiers trained using 20, 100, and 1600 (original experiment) models, respectively.
Orange box plots correspond to using parameters only from the first layer, while blue box plots correspond to using all
(three) layers’ parameters. Using as few as 20 models is sufficient for satisfactory meta-classifier performance when the
right layers are identified and used.

Excluding the last layer does not lead to a significant performance drop. Intuitively, layers closer to the output will
capture invariance for the given task and are thus less likely to contain any helpful information that prior layers would
not already capture. If the last layer reveals enough information for the attack to succeed, then a black-box attack should
also be possible. Results from layer-wise meta-classifier experiments confirm how the last layer’s parameters rarely
appear useful for distribution inference. Using these observations, we train meta-classifiers while using parameters
only from some of the layers selected on the ranking we obtain via layer-identification experiments. We observe a
clear advantage of doing so across all datasets, with minimal decreases in accuracy. For instance, using just the first
layer produces a meta-classifier with only 20 training models on RSNA Bone Age (orange boxes in leftmost graph in
Figure 11) that performs much better than using parameters from all of the layers. In order for the meta-classifier trained
on all parameters to approach the accuracy of the one-layer meta-classifier, hundreds of shadow models are needed.
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For datasets like Census, all the layers seem to equally useful while for RSNA Bone Age, only the first layers’
parameters are useful (see Figure 12). When using the first layer’s parameters, the adversary can achieve an average
of 75% accuracy with as few as 20 models, compared to 54% when using the entire model. In fact, the first layer is
identified as most useful and using any other layer leads to near-random performance. Additionally, for larger models
like those for CelebA, the adversary can pick more than one layer—using as few as three layers of the model can help
lower computational resources. As observed in ablation experiments with convolutional and linear layers for CelebA
(old people), using just the last three layers (of which two the layer-identification process identifies), the adversary
can train its meta-classifiers while using significantly fewer models. For instance, when using 100 models to train the
meta-classifier, using just the fully-connected layers gives a 4% absolute improvement in accuracy, along with 0.5%
reduction in standard deviation across experiments.

Graph Datasets. The layer-identification process does not work on the graph datasets. It incorrectly predicts the third
layer as most useful for ogbn-arxiv, whereas actual performance with that layer’s parameters leads to a significant
performance drop. We suspect this behavior can be explained by the inherent properties of the graph data. Intermediate
activations for nodes can have complicated interactions with neighboring nodes, leading to the detection method’s
instability when analyzing activation values. These challenges on graph datasets is something that we plan to investigate
in future work. Nonetheless, the fact the first two layers are useful for both graph datasets suggests a useful direction
for graph-based property inference attacks.
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