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lem is well understood under set semantics, it is by far less understood under bag semantics. In particular,

it is a long-standing open question whether or not the conjunctive query containment problem under bag

semantics is decidable. We unveil tight connections between information theory and the conjunctive query

containment under bag semantics. These connections are established using information inequalities, which

are considered to be the laws of information theory. Our first main result asserts that deciding the validity

of a generalization of information inequalities is many-one equivalent to the restricted case of conjunctive

query containment in which the containing query is acyclic; thus, either both these problems are decidable

or both are undecidable. Our second main result identifies a new decidable case of the conjunctive query
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1 INTRODUCTION

Since the early days of relational databases, the query containment problem has been recognized
as a fundamental algorithmic problem in data management. This problem asks: given two queries
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12:2 M. A. Khamis et al.

Q1 and Q2, is it true that Q1 (D) ⊆ Q2 (D), for every database D? Here, Qi (D) is the result of
evaluating the query Qi on the database D. Thus, the query containment problem has several
different variants, depending on whether the evaluation uses set semantics or bag semantics, and
whether D is a set database or a bag database. Query containment under set semantics on set
databases is the most extensively studied and well understood. In particular, Chandra and Merlin
[8] showed that, for this variant, the containment problem for conjunctive queries is NP-complete.
Chaudhuri and Vardi [9] were the first to raise the importance of studying the query contain-

ment problem under bag semantics. In particular, they raised the question of the decidability of the
containment problem for conjunctive queries under bag semantics. There are two variants of this
problem: in the bag-bag variant, the evaluation uses bag semantics and the input database is a bag,
while in the bag-set variant, the evaluation uses bag semantics and the input database is a set. It
is known that for conjunctive queries, the bag-bag variant and the bag-set variant are polynomial-
time reducible to each other (see, e.g., [17]); in particular, either both variants are decidable or both
are undecidable. Which of the two is the case, however, remains an outstanding open question
to date.
During the past 25 years, the research on the query containment problem under bag semantics

has produced a number of results about extensions of conjunctive queries and also about restricted
classes of conjunctive queries. Specifically, using different reductions from Hilbert’s 10th Problem,
it has been shown that the containment problem under bag semantics is undecidable for both
the class of unions of conjunctive queries [16] and the class of conjunctive queries with inequal-
ities [17]. It should be noted that, under set semantics, the containment problem for these two
classes of queries is decidable; in fact, it is NP-complete for unions of conjunctive queries [27],
and it is ΠP

2 -complete for conjunctive queries with inequalities [20, 28]. As regards to restricted
classes of conjunctive queries, several decidable cases of the bag-bag variant were identified in
[2], including the case where both Q1 and Q2 are projection-free conjunctive queries, i.e., no vari-
able is existentially quantified. Quite recently, this decidability result was extended to the case
where Q1 is a projection-free conjunctive query and Q2 is an arbitrary conjunctive query [21];
the proof is via a reduction to a decidable class of Diophantine inequalities. In a different direction,
information-theoretic methods were used in [22] to study the homomorphism domination exponent

problem, which generalizes the conjunctive query containment problem under bag semantics on
graphs. In particular, it was shown in [22] that the conjunctive query containment problem under
bag semantics is decidable when Q1 is a series-parallel graph and Q2 is a chordal graph. This was
the first time that notions and techniques from information theory were applied to the study of
the containment problem under bag semantics.
Notions and techniques from information theory have found a number of uses in other areas

of database theory. For example, entropy and mutual information have been used to characterize
database dependencies [23, 24] and normal forms in relational and XML databases [3]. More re-
cently, information inequalities were used with much success to obtain tight bounds on the size of
the output of a query on a given database [4, 14, 15, 18, 19], and to devise query plans for worst-case
optimal join algorithms [18, 19].

This article unveils deeper connections between information theory and the query containment
problem under bag semantics. These connections are established through the systematic use of
information inequalities, which have been called the “laws of information theory” [26] as they
express constraints on the entropy and thus “govern the impossibilities in information theory” [31].

An information inequality is an inequality of the form

0 ≤
∑

X ⊆V

cXh(X ), (1)
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whereV is a set of n random variables over finite domains, each coefficient cX is a real number, i.e.,
c = (cX )X ⊆V is a 2n-dimensional real vector, h is the entropy function of a joint distribution over
V (V -distribution henceforth). In particular, h(X ) denotes the marginal entropy of the variables in
the set X ⊆ V .

An information inequality may hold for the entropy function of some V -distribution, but may
not hold for all V -distributions. Following [5], we say that an information inequality is valid if
it holds for the entropy function of every V -distribution. This notion gives rise to the following
natural decision problem, which we denote as IIP: given integer coefficients cX ∈ Z for all X ⊆ V ,
is the information inequality (1) valid?1

In this article, we will also study a generalization of this problem that involves taking maxima
of linear combinations of entropies. A max-information inequality is an expression of the form

0 ≤ max
�∈[k]

∑

X ⊆V

c�,Xh(X ), (2)

where V , X , and h(X ) are as before, and for each � ∈ [k], c� := (c�,X )X ⊆V is a 2n-dimensional real
vector. We say that a max information inequality is valid if it holds for the entropy function of
everyV -distribution. We write Max-IIP to denote the following decision problem: given k integer
vectors c� of dimension 2n , is the max information inequality (2) valid? Clearly, IIP is the special
case of Max-IIP in which k = 1.
Our first main result asserts that Max-IIP is many-one equivalent to the restricted case of the

conjunctive query containment problem under bag semantics in whichQ1 is an arbitrary conjunc-
tive query and Q2 is an acyclic conjunctive query. In fact, we show that these two problems are
reducible to each other via exponential-time many-one reductions. This result establishes a new

and tight connection between information theory and database theory, showing that Max-IIP and
the conjunctive query containment problem under bag semantics with acyclicQ2 are equally hard.

To the best of our knowledge, it is not known whether Max-IIP is decidable. In fact, even IIP

is not known to be decidable; in other words, it is not known if there is an algorithm for telling
whether a given information inequality with integer coefficients is valid. Even though the decid-
ability question about IIP and about Max-IIP does not seem to have been raised explicitly by
researchers in information theory, we note that there is a growing body of research aiming to
“characterize” all valid information inequalities; moreover, finding such a “characterization” is re-
garded as a central problem inmodern information theory (see, e.g., the survey [5]). It is reasonable
to expect that a “good characterization” of valid information inequalities will also give an algorith-
mic criterion for the validity of information inequalities. Thus, showing that IIP is undecidable
would imply that no “good characterization” of valid information inequalities exists.

Our second main result identifies a new decidable case of the conjunctive query containment
problem under bag semantics. Specifically, we show that there is an exponential-time algorithm
for testing whether Q1 is contained in Q2 under bag semantics, where Q1 is an arbitrary conjunc-
tive query and Q2 is a conjunctive query that is chordal and admits a junction tree that is simple.
Here, a query is chordal if its Gaifman graph G is chordal, i.e., G admits a tree decomposition
whose bags induce (maximal) cliques of G; such a tree decomposition is called a junction tree. A
tree decomposition is simple if every pair of adjacent bags in the tree decomposition share at most
one common variable. The result follows from a new class of decidable Max-IIP problems. Note
that this result is incomparable to the aforementioned decidability result about series-parallel and
chordal graphs in [22], in two ways. First, the result in [22] applies only to graphs (i.e., databases

1Equivalently, one can allow the input coefficients to be rational numbers.
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12:4 M. A. Khamis et al.

with a single binary relation symbol), while our result applies to arbitrary relational schemas.
Second, our result imposes more restrictions on Q2, but no restrictions on Q1.

The work reported here reveals that the conjunctive query containment problem under bag
semantics is tightly intertwined with the validity problem for information inequalities. Thus, our
work sheds new light on both these problems and, in particular, implies that any progress made
in one of these problems will translate to similar progress in the other.

2 DEFINITIONS

We describe here the two problems whose connection forms the main result of this article.

2.1 Query Containment Under Bag Semantics

Homomorphisms between Relational Structures. We fix a relational vocabulary, which is a tuple
R = (R1, . . . ,Rm ), where each symbol Ri has an associated arity ai . A relational structure is A =
(A,RA1 , . . . ,R

A
m ), where A is a finite set (called domain) and each RAi is a relation of arity ai over

the domain A. Given two relational structures A and B with domains A and B, respectively, a
homomorphism from B toA is a function f : B → A such that for all i , we have f (RBi ) ⊆ RAi . We
write hom(B,A) for the set of all homomorphisms from B to A, and denote by |hom(B,A) | its
cardinality.

Bag-Set Semantics. A conjunctive query Q with variables vars(Q ) and atom set atoms(Q ) =

{A1, . . . ,Ak } is a conjunction:

Q (x) = A1 ∧A2 ∧ · · · ∧Ak . (3)

For each j ∈ [k], the atom Aj is of the form Ri j (xj ), where rel(Aj )
def
= Ri j is a relation name, and

vars(Aj )
def
= xj is a function,

vars(Aj ) : [arity(rel(Aj ))]→ vars(Q ), (4)

associating a variable to each attribute position of rel(Aj ). We allow repeated variables in an atom.
The variables x are called head variables, and must occur in the body.

A database instance is a structure D with domain D. The answer of a query (3) with head vari-

ables x is a set of x-tuples2 with multiplicities. Formally, for each d ∈ Dx, denote Q (D)[d]
def
=

{ f ∈ hom(Q,D) | f (x) = d}. The answer to Q on D under the bag-set semantics is the mapping
d �→ |Q (D)[d]|. The bag-set semantics corresponds to a count(*)-groupby query in SQL.

Given two queries Q1,Q2 with the same number of head variables, we say that Q1 is contained

in Q2 under bag-set semantics, and denote with Q1 � Q2, if for every D, we have Q1 (D) ≤ Q2 (D),
where ≤ compares functions point-wise, ∀d, |Q1 (D)[d]| ≤ |Q2 (D)[d]|.

Problem 2.1 (Query Containment Problem Under Bag-set Semantics). Given Q1 and Q2,

check whether Q1 � Q2.

A query Q is called a Boolean query if it has no head variables, |x| = 0. It is known that the
query containment problem under bag semantics can be reduced to that of Boolean queries under
bag semantics. For completeness, we provide the proof in Appendix A, and only mention here that
the reduction preserves all special properties discussed later in this article: acyclicity, chordality,
simplicity. For that reason, in this article, we only consider Boolean queries, and denote Problem 2.1
by BagCQC.

2An x-tuple is a tuple that assigns each variable in x a value in D .
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Bag-Bag Semantics. In our setting, the input database D is a set, only the query’s output is a
bag. This semantics is known under the term bag-set semantics. Query containment has also been
studied under the bag-bag semantics, where the database may also have duplicates. This problem
is known to be reducible to the containment problem under bag-set semantics [17], by adding a
new attribute to each relation, and for that reason, we do not consider it further in this article. One
aspect of the bag-bag semantics is that repeated atoms change the meaning of the query, while
repeated atoms can be eliminated under bag-set semantics. For example R (x ) ∧ R (x ) ∧ S (x ,y) and
R (x ) ∧ S (x ,y) are different queries under bag-bag semantics, but represent the same query under
bag-set semantics. Since we restrict to bag-set semantics we assume no repeated atoms in the
query.

The Domination Problem. We briefly review two related problems that are equivalent to BagCQC.
Given two relational structures A and B, we say that B dominates A, and write A � B, if ∀D,
|hom(A,D) | ≤ |hom(B,D) |.

Problem 2.2 (The Domination Problem, DOM). Given a vocabulary R, and two structuresA and

B, check if B dominates A: A � B.

DOM and BagCQC are essentially the same problem. Kopparty and Rossman [22] considered the
following generalization:

Problem 2.3 (The Exponent-domination Problem). Given a rational number c ≥ 0 and two

structures A and B, check whether |hom(A,D) |c ≤ |hom(B,D) | for all structures D.

This problem is equivalent to DOM, because it can be reduced to DOM by observing that |hom(n ·

A,D) | = |hom(A,D) |n , wheren·A representsn disjoint copies ofA [22, Lemma 2.2]. Conversely,
DOM is the special case c = 1.

2.2 Information Inequality Problems

In this article, all logarithms are in base 2. For a random variable X with values that are in a finite
domain D, its (binary) entropy is defined by

H (X ) := −
∑

x ∈D

Pr[X = x] · log Pr[X = x]. (5)

Note that in the above definition,X can be a tuple of random variables, in which caseH (X ) is their
joint entropy. The entropy H (X ) is a non-negative real number.
Let V = {X1, . . . ,Xn } be a set of n random variables jointly distributed over finite domains.

For each α ⊆ [n], the joint distribution induces a marginal distribution for the tuple of variables
Xα = (Xi : i ∈ α ). One can also equivalently think of Xα as a vector-valued random variable.
Either way, the marginal entropy on Xα is defined by Equation (5) too, where we replace X by Xα .

Define the function h : 2[n] → R+ as h(α )
def
= H (Xα ), for all α ⊆ [n]. We call h an entropic function

(associated with the joint distribution on V ) and identify it with a vector h ∈ R2
n

+
.

The set of all entropic functions is denoted3 by Γ∗n ⊆ R
2n
+
. With some abuse, we blur the dis-

tinction between the set [n] and the set of variables V = {X1, . . . ,Xn }, and write h(Xα ) instead of
h(α ).

3Most texts drop the component h (∅), which is always 0, and define Γ∗n ⊆ R
2n−1
+

. We prefer to keep the ∅-coordinate to

simplify notations.
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An information inequality, or II, defined by a vector c = (cX )X ⊆V ∈ R
2V , is an inequality of the

form

0 ≤
∑

X ⊆V

cXh(X ). (6)

The information inequality is valid if it holds for all h ∈ Γ∗n [5].

Problem 2.4 (II-Problem). Given a setV and a collection of integers cX , forX ⊆ V , check whether

the information inequality (6) is valid.

Amax-information inequality, or Max-II, is defined by k vectors c� := (c�,X )X ⊆V ∈ R
2V , � ∈ [k],

and is written as:

0 ≤ max
�∈[k]

∑

X ⊆V

c�,Xh(X ). (7)

The Max-II is valid if it holds for all entropic functions h ∈ Γ∗n .

Problem 2.5 (Max-II Problem). Given a set V and integers c�,X , for � ∈ [k] and X ⊆ V , check

whether the Max-II (7) is valid.

We denote the II- and Max-II problems by IIP and Max-IIP, respectively. Both are co-
recursively enumerable (Appendix B) and it is open if any of them is decidable.

3 MAIN RESULTS

3.1 Connecting BagCQC to Information Theory

We state our first main result, and defer its proofs to Sections 4 and 5. Recall that amany-one reduc-

tion of a decision problem A to another decision problem B, denoted by A ≤m B, is a computable
function f such that for every input X , the yes/no answer to problem A on X is the same as the
yes/no answer to the problem B on f (X ). This is a special case of a Turing reduction, A ≤T B,
which means an algorithm that solvesA given access to an oracle that solves B. Two problems are
many-one equivalent, denoted by A ≡m B, if A ≤m B and B ≤m A.
Our main result is that the Max-IIP is many-one equivalent to the query containment problem

under bag semantics, when the containing query is restricted to be acyclic. We briefly review
acyclic queries here (we only consider α-acyclicity in this article [11]):

Definition 3.1. A tree decomposition of a query Q is a pair (T , χ ) where T is an undirected for-

est4 and χ : nodes(T ) → 2vars(Q ) satisfies (a) the running intersection property: ∀x ∈ vars(Q ),
{t ∈ nodes(T ) | x ∈ χ (t )} is connected inT , and (b) the coverage property: for everyA ∈ atoms(Q ),
there exists t ∈ nodes(T ) s.t. vars(A) ⊆ χ (t ). The sets χ (t ) are called the bags5 of the tree decompo-
sition. A queryQ is acyclic if there exists a tree decomposition (T , χ ) such that, for all t ∈ nodes(T ),
χ (t ) = vars(A) for some A ∈ atoms(Q ).

Theorem 3.2. Let BagCQC-A denote the BagCQC problemQ1 � Q2, whereQ2 is restricted to acyclic

queries. Then Max-IIP ≡m BagCQC-A.

The proof of the theorem consists of three steps. First, we describe in Section 4.1 a Max-IIP

inequality that is sufficient for containment, which is quite similar to, and inspired by an in-
equality by Kopparty and Rossman [22]. Second, we prove in Section 4.2 that, when Q2 is acyclic,
then this inequality is also necessary, thus solving the conjecture in [22, Section 3]; our proof is
based onChan-Yeung’s group-characterizable entropic functions [6, 7]. In particular, BagCQC-A ≤m

4We allow Q to be disconnected, in which case T can be a forest, but we continue to call it a tree decomposition.
5Not to be confused with the bag semantics.
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Max-IIP. We do not know if this can be strengthened to BagCQC and/or IIP, respectively. Finally,
we give the many-one reduction Max-IIP ≤m BagCQC-A in Section 5.

3.2 Novel Decidable Class of BagCQC

Our next two results consist of a novel decidable class of query containment under bag semantics,
and, correspondingly, a novel decidable class of max-information inequalities. We state here the
results, and defer their proofs to Section 6.2.
We show that containment is decidable when Q2 is chordal and admits a simple junction tree

(decomposition); to formally state the result, we define chordality, simplicity, and junction tree
next.
A queryQ is said to be chordal if its Gaifman graphG is chordal, i.e., there is a tree decomposition

of G in which every bag induces a clique of G. A tree decomposition of G (and thus of Q) where
all bags inducemaximal cliques ofG is called a junction tree in the graphical models literature (see
Definition 2.1 in [29]).

Fix a tree decomposition of a queryQ , and let t ∈ nodes(T ). A tree decomposition is called simple

if ∀(t1, t2) ∈ edges(T ), |χ (t1)∩ χ (t2) | ≤ 1, and is called totally disconnected if6 ∀(t1, t2) ∈ edges(T ),
χ (t1) ∩ χ (t2) = ∅. As an example of a totally disconnected tree decomposition, consider the query
Q () ← R (a), S (b) and a tree decomposition of Q with only two nodes t1 and t2 where χ (t1) = {a}

and χ (t2) = {b}.
Note that every acyclic query is chordal, but not necessarily simple; for example, the query

Q () ← R (a,b, c ), S (b, c, e ) is a non-simple acyclic query. Conversely a chordal query is not neces-
sarily acyclic; for example, any k-clique query with k ≥ 3 is chordal.

Theorem 3.3. Checking Q1 � Q2 is decidable in exponential time when Q2 is chordal and admits

a simple junction tree.

Next, we complement Theorem 3.3 by showing that, if Q1 � Q2, then there exists a “witness”
with a simple structure. This result is similar in spirit to other results where a decision problem
can be restricted to special databases: for example, query containment under set semantics holds
iff it holds on the canonical database of Q1 [8], and implication between functional dependencies
holds iff it holds on all relations with two tuples.
Let Q1 be a query and V = vars(Q1). A relation P ⊆ DV is called a V -relation. A V -relation P

and Q1 induce a database instance ΠQ1 (P )
def
= (D,RD1 , . . . ,R

D
m ) where,

∀� ∈ [m] : RD
�

def
=

⋃

A∈atoms(Q1 ):rel(A)=R�

Πvars(A) (P ). (8)

In other words, we project P on each atom, and define RD
�
as the union of projections on atoms

with relation name R� .
The notation Πvars(A) (P ) requires some explanation, because the atom A may have repeated

variables, thus vars(A) is a function (described in (4)). Given a set of integer indicesY and a function

φ : Y → V , the generalized projection is Πφ (P )
def
= { f ◦ φ | f ∈ DV }. A tuple f ∈ DV is a function

V → D, hence f ◦ φ just denotes function composition. For example, if Q1 = R (x ,x ,y) and P =

{(a,b)}, then RD = Π(x,x,y ) (P ) = {(a,a,b)}. Obviously P ⊆ hom(Q1,ΠQ1 (P )), which means |P | ⊆
|hom(Q1,ΠQ1 (P )) |, and this implies:

Fact 3.4 (Witness). If there exists a vars(Q1)-relation P such that |P | > |hom(Q2,ΠQ1 (P )) |, then

Q1 � Q2, in which case P is said to be a witness (for the fact that Q1 � Q2).

6Equivalently, edges(T ) = ∅, because any edge s.t. χ (t1) ∩ χ (t2) = ∅ can be removed.
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We next define two special types of relations (and witnesses) that have interesting analogues in
information theory and thus arise naturally when doing reductions between the database world
and the information theory world. LetW be a set of integer indices. Fix ψ :W → 2V and a tuple

f ∈ DV . For any index y ∈ W , we view f (ψ (y)) as an atomic value in the domain Dψ (y ) . Define

theW -tupleψ · f
def
= ( f (ψ (y)))y∈W ; its components may belong to different domains.

Definition 3.5 (Product and Normal Relations). AV -relation P is a product relation if P =
∏

x ∈V Sx ,
where each Sx is a unary relation. A W -relation is called a normal relation if it is of the form
{ψ · f | f ∈ P } where P is some product V -relation andψ :W → 2V is some function.

One can verify that every product relation is a normal relation. For a simple illustration, consider
the case whenV = {X1,X2}. A product relation onV is {(u,v ) | u,v ∈ [N ]} = [N ]× [N ]. A normal
relation with four attributes is {(uv,u,v,v ) | u,v ∈ [N ]}, where uv denotes the concatenation
of u and v . This normal relation corresponds to the map ψ : [4] → 2V where ψ (1) = {X1,X2},
ψ (2) = {X1}, and ψ (3) = ψ (4) = {X2}. In a product relation, all attributes are independent, while
a normal relation may have dependencies: in our example, the first attribute uv is a key, and the
last two attributes are equal.

Theorem 3.6. Let Q2 be chordal,

(i) If Q2 admits a totally disconnected junction tree, then Q1 � Q2 if and only if there is a product

witness.

(ii) If Q2 admits a simple junction tree, then Q1 � Q2 if and only if there exists a normal witness.

We prove both theorems in Section 6.2, using the novel results on information-theoretic inequal-
ities described next, in Section 3.3.

Example 3.7. We illustrate with the following queries:

Q1 =A(x1,x2) ∧ B (x1,x2) ∧C (x1,x2) ∧A(x
′
1,x
′
2) ∧ B (x

′
1,x
′
2) ∧C (x

′
1,x
′
2).

Q2 =A(y1,y2) ∧ B (y1,y3) ∧C (y4,y2).

Q2 is acyclic with a simple junction tree: {y1,y3} − {y1,y2} − {y2,y4}. We prove that Q1 � Q2 has a
normal witness:

P
def
= {(u,u,v,v ) | u ∈ [n],v ∈ [n]} ⊆ D {x1,x2,x

′
1,x
′
2 } .

P induces the database ΠQ1 (P ) = ([n],AD ,BD ,CD ), whereAD
= BD = CD

= {(u,u) | u ∈ [n]}, and
|P | = n2 > |hom(Q2,ΠQ1 (P )) | = n when n > 1, proving Q1 � Q2.
On the other hand, there is no product relation P that can witness Q1 � Q2. Indeed, if P =

S1 × S2 × S3 × S4 where S1, . . . , S4 are unary relations, then the associated database ΠQ1 (P ) has

relations AD
= BD = CD def

= (S1 × S2) ∪ (S3 × S4), and therefore |hom(Q2,ΠQ1 (P )) | ≥ max( |S1 ×
S2 |

2, |S3 × S4 |
2) ≥ |S1 × S2 × S3 × S4 | = |P |.

3.3 Novel Class of Shannon Inequalities

Our decidability results are based on a new result on information-theoretic inequalities, proving
that certain max-linear inequalities are essentially Shannon inequalities. To present it, we need
to review some known facts about entropic functions. We refer to Appendix B and to [30] for
additional information. Recall that the set of entropic functions over n variables is denoted Γ∗n ⊆

R2
n
, and that we blur the distinction between a set V of n variables and [n].

We begin by discussing closure properties of entropic functions and then introduce certain spe-
cial classes of entropic functions. For the benefit of the readers familiar with database theory, we
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Table 1. Translation between the Database World and the Information Theory World

Database theory Information theory

P ⊆ DV

A relation P over a set of n variables V , each
of which has domain D

h ∈ Γ∗n
An entropic function h : 2V → R+ over a set

of n variables V .
h is defined by a uniform probability

distribution p over P .

P = S1 × · · · × Sn ⊆ DV

A product relation P (Definition 3.5)
h(X ) =

∑

i ∈X h(i ), for all X ⊆ V

A modular function h ∈ Mn

The set of product relations The set of modular functionsMn

P = P1 ⊗ P2, where
P1 ⊆ DV

1 , P2 ⊆ DV
2 , P ⊆ (D1 × D2)

V

A domain product P of two relations P1, P2, all
of which are over the same variable set V

(Definition 6.9)

h = h1 + h2, where h,h1,h2 ∈ Γ
∗
n

A sum h of two entropic functions h1,h2, all
of which are over n variables

PW
def
= { f1, f2} ⊆ DV , for someW ⊆ V , where

f1
def
= (1, 1, . . . , 1),

f2
def
= (2, . . . , 2

︸��︷︷��︸
V−W

, 1, . . . , 1
︸��︷︷��︸

W

),

GivenW ⊆ V , the relation PW has two tuples
f1, f2 differing only in positions V −W . (See

Section 3.3)

hW (X )
def
=

⎧⎪⎨⎪⎩
0 if X ⊆W

1 otherwise

GivenW ⊆ V , a step function hW .

P = PW1 ⊗ PW2 ⊗ · · · ⊗ PWm

A normal relation P over variable set V is a
domain product ofm (not necessarily
distinct) relations PWi

forWi ⊆ V

(Another way to phrase Definition 3.5)

h =
∑

W ⊆V

cWhW , where cW ≥ 0

A normal entropy h ∈ Nn is a non-negative
weighted sum of step functions hW

The set of normal relations The set of normal functions Nn ≡

the cone closure of step functions

PW , when |V −W | = 1, becomes a product
relation

hW , when |V −W | = 1, becomes a modular
function

Product relations are a proper subclass of
normal relations

Modular functions are a proper subclass of
normal functions
Mn � Nn

A group-characterizable relation [6]

P
def
= {(aG1, . . . ,aGn ) | a ∈ G}, where G is a
group and G1, . . . ,Gn are subgroups

An entropic function h ∈ Γ∗n

The set of group-characterizable relations Γ∗n
– Γn − Γ∗n

Polymatroids that are not entropic have no
analog in databases

give in Table 1 the mapping between some of the database concepts used in this article and their
information-theoretic counterparts. For our discussion, it is useful to define the notion of the en-
tropy of a relation. Given a V -relation P , its entropy is the entropy of the joint distribution on V ,
uniform on the support of P (i.e., tuples in P ).
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First, the sum of two entropic functions is also an entropic function, that is, if h1,h2 ∈ Γ∗n ,
then h1 + h2 ∈ Γ∗n . It follows that if k is a positive integer and h is an entropic function, then the
function h′ = kh is also entropic. However, if c > 0 is a positive real number and h is an entropic
function, then the function h′ = ch need not be entropic, in general. In contrast, the function
h′ = ch is entropic, if c > 0 is a positive real number and h is a step function, defined as follows.
LetW � V be a proper subset of V . The step function atW , denoted by hW , is the function

hW (X ) =
⎧⎪⎨⎪⎩
0 if X ⊆W

1 otherwise.

Every step function hW is entropic. To see this, consider the relation PW = { f1, f2} ⊆ {1, 2}
V ,

where f1 = (1, 1, . . . , 1) and f2 = (2, . . . , 2
︸��︷︷��︸
V−W

, 1, . . . , 1
︸��︷︷��︸

W

), that is, f2 has 1’s on the positionsW and 2’s

on all other positions. It is not hard to verify that hW is the entropy of the relation PW , and thus
the step function hW is indeed entropic.
As mentioned above, if c > 0 is a positive real number and hW is a step function, then the

function h′ = chW is entropic; the proof of this fact is given in Appendix B. A normal entropic

function, or simply normal function, is a non-negative linear combination of step functions, i.e.,
∑

W �V cWhW , for cW ≥ 0. We write Nn to denote the set of all normal functions. Since, as men-
tioned earlier, the sum of two entropic functions is entropic, it follows that every normal func-
tion is entropic; thus, we have that Nn ⊆ Γ∗n . In Appendix B, we show that the normal functions
are precisely the entropic functions with a non-negative I-measure (defined by Yeung [30]). The
term “normal” was introduced in [18]. One can check that the entropy of every normal relation
(Definition 3.5) is a normal function.

Example 3.8. The parity function is the entropy of the following relation with three variables:
P = {(X ,Y ,Z ) | X ,Y ,Z ∈ {0, 1},X ⊕ Y ⊕ Z = 0} where ⊕ is the exclusive OR. More precisely, the
entropy is h(X ) = h(Y ) = h(Z ) = 1, h(XY ) = h(XZ ) = h(YZ ) = h(XYZ ) = 2. We show in
Section 6.1 that h is not normal.

A function h : 2V → R+ is calledmodular if it satisfies h(X ∪Y )+h(X ∩Y ) = h(X )+h(Y ) for all
X ,Y ⊆ V , and h(∅) = 0. It is easy to show that h is modular iff h(Xα ) =

∑

i ∈α h(Xi ) for all α ⊆ V .
It is immediate to check that the entropy of any product relation (Definition 3.5) is modular. We
writeMn to denote the set of all modular functions. Every modular function is normal; hence, it
is also entropic. To see this, given a modular function h, for each i ≤ n, defineWi = V \ {Xi } and
let hWi

be the associated step function atWi . It is now easy to verify that h =
∑n

i=1 h(Xi ) ·hWi
, thus

h is a normal function. In summary, we haveMn ⊆ Nn ⊆ Γ∗n .
All entropic functions satisfy Shannon’s basic inequalities, called monotonicity and

submodularity,

h(X ) ≤ h(X ∪ Y ) h(X ∪ Y ) + h(X ∩ Y ) ≤ h(X ) + h(Y ), (9)

for allX ,Y ⊆ V . (Sinceh(∅) = 0, monotonicity implies non-negativity too.) A functionh : 2V → R+,
h(∅) = 0, that satisfies Equation (9) is called a polymatroid, and the set of all polymatroids is
denoted by Γn . Thus, Γ

∗
n ⊆ Γn . Zhang and Yeung [32] showed that Γ∗n is properly contained in

Γn , for every n ≥ 4. Any inequality derived by taking a non-negative linear combination of
inequalities (9) is called a Shannon inequality. In a follow-up paper [33], Zhang and Yeung gave
the first example of a 4-variable valid information inequality which is non-Shannon.
In summary, we have considered the chain of the following four sets:Mn � Nn � Γ∗n � Γn .

Except for Γ∗n , each of these sets is a polyhedral cone. Using basic linear programming, one can show
that it is decidable whether a max-linear inequality holds on a polyhedral set. In contrast, (even)
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the topological closure of Γ∗n is not polyhedral [25]; in fact, it is conjectured to not even be semi-
algebraic [13], and it is an open question whether linear inequalities or max-linear inequalities on

Γ
∗

n are decidable.

For a given vector (cX )X ⊆V ⊆ R
2n where c∅ = 0, we associate a linear expression E which is the

linear function E (h)
def
=

∑

X ⊆V cXh(X ). As stated earlier, a linear inequality E (h) ≥ 0 that is valid
for all h ∈ Γ∗n is called an information inequality; furthermore, a max information inequality is one
of the form max� E� (h) ≥ 0, where ∀�,E� is a linear expression.

In this article, for any variable sets X ,Y ⊆ V , we write h(XY ) as a shorthand for h(X ∪ Y ),

and define the conditional entropy to be h(Y |X )
def
= h(XY ) − h(X ). Despite its name, the mapping

Y �→ h(Y |X ) is not always an entropic function (Appendix B), but it is always a limit of entropic
functions. The submodularity law (9) can be written using conditional entropies as

h(XY |X ) ≤ h(Y |X ∩ Y ). (10)

Definition 3.9 (Simple and Unconditioned Linear Expressions). We call the term h(Y |X ) simple if
|X | ≤ 1. A simple term h(Y |X ) is unconditioned if X = ∅. A conditional linear expression is a linear
expression E of the form E (h) =

∑

X ⊆Y ⊆V dY |X ·h(Y |X ), where dY |X are non-negative coefficients.
A conditional linear expression is said to be simple (respectively, unconditioned) ifdY |X > 0 implies
h(Y |X ) is simple (respectively, unconditioned).

Definition 3.10 (Decidable Classes of Inequalities). A class I of inequalities over variables h :
2[n] → R+ is decidable if the problem of determining whether a given inequality I ∈ I holds for
all h ∈ Γ∗n is decidable.

Definition 3.11 (Essentially Shannon Inequalities). Let I be a class of max-linear inequalities. We
say that I is essentially Shannon if, for every inequality I in I, I holds for every h ∈ Γ∗n if and only
if I holds for every h ∈ Γn . Any essentially Shannon class is decidable, because Γn is polyhedral.

Theorem 3.12. Consider a max-linear inequality of the following form, where q > 0, and E� are

conditional linear expressions:

q · h(V ) ≤max
�∈[k]

E� (h). (11)

(i) Suppose that E� is unconditioned, ∀� ∈ [k]; then inequality (11) holds ∀h ∈ Mn if and only if

it holds ∀h ∈ Γn .

(ii) Suppose that E� is simple, ∀� ∈ [k]; then, inequality (11) holds ∀h ∈ Nn if and only if it holds

∀h ∈ Γn .

In particular, the class of inequalities (11), where each E� is simple, is essentially Shannon and decid-

able. (Recall Definitions 3.9, 3.10 and 3.11.)

The proof of the theorem follows from a technical lemma, which is of independent interest:

Lemma 3.13. Let h : 2[n] → R+ be any polymatroid. Then there exists a normal polymatroid

h′ ∈ Nn with the following properties:

(1) h′(X ) ≤ h(X ), for all X ⊆ [n];
(2) h′([n]) = h([n]); and
(3) h′({i}) = h({i}), for all i ∈ [n].

In addition, there exists a modular function h′′ ∈ Mn that satisfies conditions (1) and (2).

This lemma says that every polymatroid h can be decreased to become a normal polymatroid
h′, while preserving the values at [n] (all variables) and at all singletons {i}. If we drop the last
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condition, then the existence of amodular functionh′′ follows from themodularization lemma [19],
which is based on Lovasz’s monotonization of submodular functions:

h′′(X )
def
=

∑

i ∈X

h({i}|[i − 1]).

The proof that one can also satisfy condition (3), by relaxing from a modular function to a normal
one, is non-trivial and given in Section 6.1.

Proof of Theorem 3.12. We prove the second item. Let E (h)
def
= max� E� (h) − q · h(V ), where

each E� has the form
∑

i h(Yi |Xi ) with |Xi | ≤ 1. Let h ∈ Γn , and let h′ ∈ Nn be the normal
polymatroid in Lemma 3.13. For every �, we have E� (h

′) =
∑

i h
′(XiYi )−

∑

i h
′(Xi ) ≤

∑

i h(XiYi )−
∑

i h(Xi ) = E� (h), because |Xi | ≤ 1 and therefore h′(Xi ) = h(Xi ). Since E (h′) ≥ 0, we obtain
q · h(V ) = q · h′(V ) ≤ max� E� (h

′) ≤ max� E� (h) completing the proof. The first item of the
theorem is proven similarly, and omitted. �

Example 3.14. We illustrate Theorem 3.12 here with an inequality needed later in Ex. 4.3. Con-
sider h(X1X2X3) ≤ max(E1,E2,E3), where:

E1 = h(X1X2) + h(X2 |X1),

E2 = h(X2X3) + h(X3 |X2),

E3 = h(X1X3) + h(X1 |X3).

Notice that all three expressions are simple, hence part (ii) of the theorem applies. In particular
according to Theorem 3.12, in order to check whether the above inequality holds for all entropic
h ∈ Γ∗3 ⊇ N3, it is sufficient to check that the inequality holds for all polymatroids h ∈ Γ3. (This
latter check is much easier than the former because Γ3 is polyhedral while Γ

∗
3 is not. The non-trivial

direction of the theorem is proving that if the inequality fails on some h ∈ Γ3, then it must fail on
some h′ ∈ N3 ⊆ Γ∗3 .) In this example, it turns out the above inequality does indeed hold for all
h ∈ Γ3. In particular, using Shannon’s submodularity law (10), we infer E1 = h(X1X2)+h(X2 |X1) ≥

h(X1X2) + h(X2 |X1X3) and, similarly for E2 and E3; therefore,

max(E1,E2,E3) ≥
1

3
[E1 + E2 + E3]

≥
1

3

[
h(X1X2) + h(X2 |X1X3) + h(X2X3) + h(X3 |X1X2) + h(X1X3) + h(X1 |X2X3)

]
= h(X1X2X3).

4 REDUCING BagCQC-A TO Max-IIP

In this section, we prove that BagCQC-A ≤m Max-IIP, showing half of the equivalence claimed in
Theorem 3.2. We start by associating to each query containment problem a max-information in-
equality.We then prove, two results: the inequality is always a sufficient condition for containment,
and it is also necessary when the containing query is acyclic. From now on, we will use only upper
case to denote variables, both random variables and query variables.
Before we begin, we need to introduce some notations. Fix a relation P ⊆ DV and a probability

distribution with mass function p : P → [0, 1]. If X ⊆ V is a set of variables, and φ : Y → V

is a function, then recall that ΠX (P ) and Πφ (P ) denote the standard, and the generalized projec-
tions, respectively. We write ΠX (p) for the standard X -marginal of p, and write Πφ (p) for the

φ-pullback7. The latter is a probability distribution on Πφ (P ) defined as follows. Start from the

7This is a generalization of the pullback in [22, Section 4].
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standard marginal Πφ (Y ) (p) on Πφ (Y ) (P ), then apply the isomorphism Πφ (P ) → Πφ (Y ) (P ) defined
as Πφ ( f ) �→ Πφ (Y ) ( f ), ∀f ∈ P . Finally, if E =

∑

i cih(Yi ) is a linear expression of entropic terms,

where eachYi ⊆ Y , then we denote by E◦φ
def
=

∑

i cih(φ (Yi )) the result of applying the substitution
φ to each term in E.

Example 4.1. Let V = {X1,X2,X3}, P ⊆ DV , φ (Y1) = X1,φ (Y2) = φ (Y3) = X2. The generalized
projection is Πφ (P ) = {(a,b,b) | (a,b, c ) ∈ P } ⊆ D {Y1,Y2,Y3 } . Its tuples are in 1-1 correspondence
with the standard projection Πφ (Y ) (P ) = ΠX1X2 (P ) = {(a,b) | (a,b, c ) ∈ P }. If p is a distribution on

P , then the φ-pullback is Πφ (p) (Y1Y2Y3 = abb)
def
= p (X1X2 = ab) =

∑

c p (X1X2X3 = abc ). Notice
that we do not need to define the pullback for (a,b, c ) where b � c , because (a,b, c ) � Πφ (P ).
Consider now the linear expression E = 3h(Y1) + 4h(Y2Y3) − 6h(Y3). Then E ◦ φ = 3h(X1) +

4h(X2) − 6h(X2) = 3h(X1) − 2h(X2).

We will introduce now a fundamental expression, ET , that connects query containment to in-
formation inequalities; we discuss its history in Section 7. Fix a tree decomposition (T , χ ) of some
queryQ , and recall thatT may be a forest. Choose a root node in each connected component, thus
giving an orientation of T ’s edges, where each node t has a unique parent(t ). We associate to T
the following linear expression of entropic terms:

E (T , χ ) (h)
def
=

∑

t ∈nodes(T )

h(χ (t ) |χ (t ) ∩ χ (parent(t ))), (12)

where χ (parent(t )) = ∅ when t is a root node. We abbreviate E (T , χ ) with ET when χ is clear from
the context. Expression (12) is independent of the choice of the root nodes, because one can check
that ET =

∑

t ∈nodes(T ) h(χ (t )) −
∑

(t1,t2 )∈edges(T ) h(χ (t1) ∩ χ (t2)).

4.1 A Sufficient Condition

Henceforth, let TD(Q ) denote the set of all tree decompositions of a given query Q .

Theorem 4.2. Let Q1 and Q2 be two conjunctive queries, n = |vars(Q1) |. If the following Max-II

inequality holds ∀h ∈ Γ∗n :

h(vars(Q1)) ≤ max
(T , χ )∈TD(Q2 )

max
φ ∈hom(Q2,Q1 )

(ET ◦ φ) (h), (13)

then Q1 � Q2.

The theorem is inspired by, and is similar to Theorem 3.1 by Kopparty and Rossman [22], with
three differences. First, the result in [22] applies only to graphs (i.e., databases with a single binary
relation symbol), while our result applies to arbitrary relational schemas. Second, we do not restrict
Q2 to be chordal. Finally, [22] restricth to entropies satisfying the independence constraints defined
by Q1; while this restriction is not needed to prove Theorem 4.2, it was needed in [22] to prove
necessity in a special case (Theorem 3.3 in [22]). We will prove necessity in Theorem 4.7 in the next
section without needing this restriction. Our proof of Theorem 4.2 in this section is an extension of
the proof in [22]. The proofs of both Theorems 4.2 and 4.7 use the following notation. Give a node
t ∈ nodes(T ) of tree decomposition of Q , we denote by Qt the “subquery at t ,” consisting of all
atomsA ∈ atoms(Q ) s.t. vars(A) ⊆ χ (t ). We can assumew.l.o.g. (Appendix A) that vars(Qt ) = χ (t ).
Before we present our proof of Theorem 4.2, we give an example, also from [22], that illustrates
the main idea of the proof.

Example 4.3. This example is attributed to Eric Vee in [22]:

Q1 = R (X1,X2) ∧ R (X2,X3) ∧ R (X3,X1),

Q2 = R (Y1,Y2) ∧ R (Y1,Y3).

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 12. Publication date: September 2021.



12:14 M. A. Khamis et al.

We show that Q1 � Q2. Query Q2 is acyclic, and its tree decomposition T is {Y1,Y2} − {Y1,Y3},
therefore:

ET = h(Y1Y2) + h(Y3 |Y1) = h(Y1Y2) + h(Y1Y3) − h(Y1).

There are three homomorphisms φ : Q2 → Q1, hence inequality (13) becomes:

h(X1X2X3) ≤ max(E1,E2,E3), (14)

where E1, E2, and E3 are the linear expressions in Example 3.14, where we have shown that the
inequality holds for all entropic h. Theorem 4.2 implies Q1 � Q2. Here we prove the theorem on
this particular example. Consider any databaseD, let P1 = hom(Q1,D),p1 the uniform probability
space on P1, and h1 its entropy. Since h1 satisfies inequality (14), one of the three terms on the right
is larger than the left, assume w.l.o.g. that this term corresponds to the homomorphismφ (Y1) = X1,
φ (Y2) = φ (X3) = X2. Thus, h1 (X1X2X3) ≤ h1 (X1X2) + h1 (X2 |X1). Let P2 = hom(Q2,D). This is a
relation with attributes Y1, Y2, and Y3. We define a probability distribution p2 on P2 as follows: the
marginal p2 (Y1,Y2) is the same as p1 (X1,X2), and the conditional p2 (Y3 |Y1) is the same as p1 (X2 |X1).
In particular, its entropy h2 satisfies log |P2 | ≥ h2 (Y1Y2Y3) = h2 (Y1Y2) + h2 (Y3 |Y1) = h1 (X1X2) +

h1 (X2 |X1) ≥ h1 (X1,X2,X3) = log |P1 | proving Q1 � Q2.

Finally, we give our general proof of Theorem 4.2. To prove the theorem, we need three lemmas.
The first lemma is folklore, and represents the main property of tree decomposition used for query
evaluation. If f ∈ DX , д ∈ DY agree on X ∩Y , then f � д is the unique tuple ∈ DX∪Y that extends
both f and д. If P1 ⊆ DX , P2 ⊆ DY , then P1 � P2 = { f � д | f ∈ P1,д ∈ P2}.

Lemma 4.4. Let (T , χ ) be a tree decomposition for Q and recall that Q ≡
∧

t ∈nodes(T ) Qt where

Qt is a conjunction of atoms A s.t. vars(A) ⊆ χ (t ). Then, for every D, hom(Q,D) =�t ∈nodes(t )
hom(Qt ,D).

Lemma 4.5. Fix a homomorphism φ : Q2 → Q1, let (T , χ ) be a tree decomposition of Q2, D be

a database instance, and P = hom(Q1,D). Then, for every node t ∈ nodes(T ), denoting P ′t
def
=

Πφ |χ (t )
(P ) we have:

P ′t ⊆ hom(Qt ,D). (15)

Proof. Every tuple inΠφ |χ (t )
(P ) is the composition f ◦φ |χ (t ) for some f ∈ P . The lemma follows

from the fact that both φ |χ (t ) : Qt → Q1 and f : Q1 → D are homomorphisms. �

Lemma 4.6. Let p : P (⊆ DV ) → [0, 1] be a probability distribution, and h : 2V → R+ be its

entropy.

(1) If φ : Y → V and Z ⊆ Y , then the φ |Z -pullback of p, Πφ |Z (p), is equal to the Z -marginal of

Πφ (p). In particular, if h′ : 2Y → R+ is the entropy of Πφ (p), then, ∀Z ⊆ Y , h′(Z ) = h(φ (Z )).

(2) If φ : V ′ → V and Y1,Y2 ⊆ V ′, then the pull-back distributions Πφ |Y1
(p) and Πφ |Y2

(p) agree on

the common variables Y1 ∩ Y2.

Proof. (1) The φ-pullback Πφ (p) is defined to be the same as the φ (Y )-marginal of p. Therefore
its Z -marginal is the φ (Z )-marginal of p. By definition, Πφ |Z (p) is also the φ (Z )-marginal of p,
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hence they are equal. Formally, given f ∈ P :

Πφ (p) (Z = ΠZ (Πφ ( f ))) =
∑

f ′:ΠZ (Πφ (f ′))=ΠZ (Πφ (f ))

p ( f ′)

=

∑

f ′:Πφ (Z ) (f
′)=Πφ (Z ) (f )

p ( f ′)

= Πφ |Z (p) (Z = Πφ |Z ( f )),

because ΠZ ◦ Πφ = Πφ |Z . This discussion immediately implies that h′(Z ) = h(φ (Z )), for all Z .
(2) Let Z = Y1 ∩ Y2. By claim (1), the Z -marginal of Πφ |Y1

(p) is Πφ |Z (p) and similarly for the

Z -marginal of Πφ |Y2
(p), hence they are equal. �

Proof of Theorem 4.2. Let D be any database with domain D, and let P = hom(Q1,D). Con-
sider the uniform probability distribution p : P → [0, 1], defined as p ( f ) = 1/|P | for all tuples
f ∈ P , and let h be its entropy. We have h = log |P | because p is uniform. By assumption of the
theorem, there exists a homomorphism φ : Q2 → Q1 and a tree decomposition (T , χ ) of Q2 such
that:

log |P | = h(vars(Q1)) ≤(ET ◦ φ) (h). (16)

For each t ∈ nodes(T ), consider the projections of P and p on χ (t ):

P ′t
def
= Πφ |χ (t )

(P ),

p ′t
def
= Πφ |χ (t )

(p).

Lemma 4.4 and Lemma 4.5 imply:

P ′
def
= �t ∈nodes(T ) P

′
t

⊆ �t ∈nodes(T ) hom(Qt ,D)

= hom(Q2,D). (17)

We will construct a probability distribution p ′ : P ′ → [0, 1], with entropy function h′ : 2vars(Q2 ) →

R+, such that the following hold:

h′(vars(Q2)) = ET (h
′), (18)

ET (h
′) = (ET ◦ φ) (h). (19)

Assuming the existence of a distribution p ′ whose entropy function h′ satisfies Equations (18)
and (19), the proof of the theorem follows from:

log |hom(Q1,D) | = log |P |

= h(vars(Q1)) ≤ (ET ◦ φ) (h) (by Equation (16))

= ET (h
′) (by Equation (19))

= h′(vars(Q2)) (by Equation (18))

≤ log |P ′ | (Since P ′ is the support of h′)

≤ log |hom(Q2,D) | (By Equation (17))

It remains to show how to construct this distribution p ′ that satisfies Equations (18) and (19). We
will construct p ′ by stitching together the pull-back distributions p ′t , for t ∈ nodes(T ); this is
possible because, by Lemma 4.6 (2), any two induced probabilities p ′t1 ,p

′
t2
agree on the common

variables χ (t1) ∩ χ (t2).

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 12. Publication date: September 2021.



12:16 M. A. Khamis et al.

Formally, we start by listing nodes(T ) in some order, t1, t2, . . . , tm , such that each child is listed

after its parent. Let P ′i
def
=�j=1,i P ′tj , let Ti be the subtree induced by the nodes {t1, . . . , ti }, and

vars(Ti ) =
⋃

j=1,i χ (ti ) its variables. We construct by induction on i a probability distribution
p ′i : P ′i → [0, 1] such it agrees with p ′t1 , . . . ,p

′
ti
on χ (t1), . . . , χ (ti ), respectively, and its entropy

function h′i : 2
vars(Ti ) → R+ satisfies:

h′i (vars(Ti )) =ETi (h
′
i ) (20)

ETi (h
′
i ) =(ETi ◦ φ) (h). (21)

To define p ′i , we need to extend p ′i−1 to the variables vars(Ti ) − vars(Ti−1) = χ (ti ) − χ (parent(ti )).
We define p ′i to satisfy the following: (1) p ′i agrees with p

′
ti
on χ (ti ); (2) p

′
i agrees with p

′
i−1 on the

vars(Ti−1); and (3) χ (ti ) is independent of vars(Ti−1) given χ (ti )∩ χ (parent(ti )). Notice that (1) and
(2) are not conflicting because p ′ti agrees with any other p ′j on their common variables. Formally,

we define p ′i through a sequence of three equations:

p ′i (χ (ti ) |χ (ti ) ∩ χ (parent(ti )))
def
= p ′ti (χ (ti ) |χ (ti ) ∩ χ (parent(ti ))), (22)

p ′i (χ (ti ) |vars(Ti−1))
def
= p ′i (χ (ti ) |χ (ti ) ∩ χ (parent(ti ))), (23)

p ′i (vars(Ti ))
def
= p ′i (χ (ti ) |vars(Ti−1))p

′
i−1 (vars(Ti−1)). (24)

We check Equation (20):

h′i (vars(Ti )) = h
′
i (χ (ti ) |vars(Ti−1)) + h

′
i−1 (vars(Ti−1)) (by Equation (24))

= h′i (χ (ti ) |vars(Ti−1)) + ETi−1 (h
′
i−1) (Induction)

= h′i (χ (ti ) |vars(Ti−1)) + ETi−1 (h
′
i ) (h′i is identical to h

′
i−1 on vars(Ti−1))

= h′i (χ (ti ) |χ (ti ) ∩ χ (parent(ti ))) + ETi−1 (h
′
i ) (by Equation (23))

= ETi (h
′) (Definition of ET )

We check Equation (21).

ETi (h
′
i ) = h

′
i (χ (ti ) |χ (ti ) ∩ χ (parent(ti ))) + ETi−1 (h

′
i ) (Definition of ET )

= h′i (χ (ti ) |χ (ti ) ∩ χ (parent(ti ))) + (ETi−1 ◦ φ) (h) (Induction)

= h′ti (χ (ti ) |χ (ti ) ∩ χ (parent(ti ))) + (ETi−1 ◦ φ) (h) (by Equation (22))

= h(φ (χ (ti )) |φ (χ (ti ) ∩ χ (parent(ti )))) + (ETi−1 ◦ φ) (h) (Lemma 4.6 (1))

= (ETi ◦ φ) (h) (Definition of ET )

This completes the inductive proof.
By setting i =m (the number of nodes inT ) in Equations (20) and (21), we derive Equations (18)

and (19). �

4.2 A Necessary Condition

Next we prove that inequality (13) is also a necessary condition for containmentQ1 � Q2, whenQ2

is acyclic. Our result answers positively the conjecture by Kopparty and Rossman [22, Section 3,
Discussion 1], in the case whenQ2 is acyclic. To prove the theorem, we consider some entropyh on
which Equation (13) fails, and prove that the support of its probability distribution, P , is a witness
for Q1 � Q2. The key idea is to use Chan-Yeung’s group-characterizable entropic functions [6, 7],
and show that P can be chosen to be “totally uniform.” This allows us to relate |hom(Q2,D) | to
the right-hand-side of Equation (13). More precisely, we prove the following.
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Theorem 4.7. Let Q2 be acyclic. If there exists an entropic function h such that (13) does not hold,
namely,

h(vars(Q1)) > max
(T , χ )∈TD(Q2 )

max
φ ∈hom(Q2,Q1 )

(ET ◦ φ) (h), (25)

then there exists a database D such that |hom(Q1,D) | > |hom(Q2,D) |.

Together, Theorems 4.2 and 4.7 prove that BagCQC-A ≤m Max-IIP. To prove Theorem 4.7, we
need some definitions and lemmas, where we fix a relation P ⊆ DV , for some set of variables V ,

let p : P → [0, 1] be its uniform distribution (p ( f )
def
= 1/|P |, for all f ∈ P ), and h : 2V → R+ its

entropy.

Definition 4.8. We call P totally uniform if every marginal of p is also uniform.

For any two sets X ,Y ⊆ V , and any tuple f0 ∈ ΠX (P ), define the Y -degree of f0 as

degP (Y |X = f0)
def
= |{ΠY ( f ) | f ∈ P ,ΠX ( f ) = f0}|.

Lemma 4.9. Let P be totally uniform. Then, for any two sets X ,Y ⊆ V , the following hold:

(1) degP (Y |X = f0) is independent of the choice of f0, and we denote it by degP (Y |X ).

(2) degP (Y |X ) = |ΠXY (P ) |/|ΠX (P ) | and h(Y |X ) = log(degP (Y |X )).

Proof. Item 1 follows from the fact that the X -marginal of p is uniform and, therefore, p (X =
f0) = deg(Y |X = f0)/|ΠXY (P ) | is independent of f0. For item 2,

|ΠXY (P ) | =
∑

f0∈ΠX (P )

degP (Y |X = f0) = |ΠX (P ) | · degP (Y |X ),

and

h(Y |X ) = h(XY ) − h(X )

= log |ΠXY (P ) | − log |ΠX (P ) | = log(degP (Y |X )). �

Lemma 4.10. If P1 ⊆ DX , P2 ⊆ DY and P2 is totally uniform, then |P1 � P2 | ≤ |P1 | ·degP2 (Y |X∩Y ).

Proof.

|P1 � P2 | ≤
∑

f ∈P1

degP2 (Y |X ∩ Y = ΠX∩Y ( f ))

= |P1 | degP2 (Y |X ∩ Y ). �

Lemma 4.11. Suppose the Max-II maxi=1,q Ei (h) ≥ 0 fails for some entropic function h. Then, for

every ∆ > 0, there exists a totally uniform relation P such that its entropy h satisfiesmaxi=1,q Ei (h)+
∆ < 0. In other words, we can find a totally uniform witness that fails the inequality with an arbitrary

large gap ∆.

Proof. We use the following result on group-characterizable entropic functions [7]. Fix a group

G. For every subgroup G1 ⊆ G, denote aG1
def
= {ab | b ∈ G1}. An entropic function h ∈ Γ∗n is

called group-characterizable if there exists a group G and subgroups G1, . . . ,Gn such that h is

the entropy of the uniform probability distribution on P
def
= {(aG1, . . . ,aGn ) | a ∈ G}. Chan and

Yeung [7] proved that the set of group-characterizable entropic functions is dense in Γ∗n ; in other
words, every h ∈ Γ∗n is the limit of group-characterizable entropic functions. In particular, if a max-
linear inequality is valid for all group-characterizable entropic functions, then it is also valid for
all entropic functions.
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We show that, if maxi Ei (h) ≥ 0 fails, then it fails with a gap > ∆ on a group-characterizable
entropy. Let h0 be any entropic function witnessing the failure: maxi=1,q Ei (h0) < 0. Choose any

δ > 0 s.t. maxi=1,q Ei (h0) + δ < 0, and define k
def
= �∆/δ� + 1. Since h

def
= k · h0 = h0 + h0 + · · · + h0

is also entropic and Ei (k · h0) = k · Ei (h0) for all i , we have that maxi=1,q Ei (h) + k · δ < 0,
and therefore maxi=1,q Ei (h) + ∆ < 0. By Chan-Yeung’s density result, we can assume that h is
group-characterizable.
Finally, we prove that the set P defining a group-characterizable entropy is totally uni-

form. This follows immediately from the fact that, under the uniform distribution, every tuple
(aG1, . . . ,aGn ) ∈ P has probability |G1 ∩ · · · ∩Gn |/|G |, and the marginal probability of any tuple
(aGi1 , . . . ,aGik ) ∈ Πi1 · · ·ik (P ) has probability |Gi1 ∩ · · · ∩Gik |/|G |. (See Theorem 1 from [6].) �

Proof of Theorem 4.7. Let (T , χ ) be a junction tree (decomposition) of Q2, which exists be-
cause acyclic queries are chordal. Then,

h(vars(Q1)) > max
(T ′, χ )∈TD(Q2 )

max
φ ∈hom(Q2,Q1 )

(ET ′ ◦ φ) (h) (26)

≥ max
φ ∈hom(Q2,Q1 )

(ET ◦ φ) (h). (27)

Fix ∆ such that ∆ > log |hom(Q2,Q1) |, and let P ⊆ Dvars(Q1 ) be the totally uniform relation given
by Lemma 4.11, whose entropy h satisfies:

log |P | = h(vars(Q1)) > ∆ + max
φ ∈hom(Q2,Q1 )

(ET ◦ φ) (h). (28)

P ’s columns are in 1-1 correspondence with vars(Q1) = {X1, . . . ,Xn }. We annotate each value with
the column name, thus a tuple f = (c1, c2, . . . , cn ) ∈ P becomes

f = ((“X1”, c1), (“X2”, c2), . . . , (“Xn”, cn )).

The annotated P is isomorphic with the original P , hence still totally uniform. Let D = ΠQ1 (P ) be
the database obtained by projecting the annotated P on the atoms of Q1 (Equation (8)). We have
seen that |hom(Q1,ΠQ1 (P )) | ≥ |P |. We will show that |P | > |hom(Q2,D) |, thus P is a witness for
Q1 � Q2. To do this we need to upper bound |hom(Q2,D) |.

Let e : D → Q1 be the homomorphism mapping every value (“X ”, c ) to the variable X : this is
a homomorphism8 because, by the definition of D, Equation (8), each tuple f0 = Ri ((“X j1”, c1),
(“X j2”, c2), . . .) in D is the projection of some f ∈ P on the variables vars(A) of some A ∈

atoms(Q1); then e maps f0 to A. If we view a tuple f ∈ P as a function vars(Q1) → D, where
D is the domain, then e ◦ f is the identity function on vars(Q1). Fix φ ∈ hom(Q2,Q1) and denote:

homφ (Q2,D)
def
= {д ∈ hom(Q2,D) | e ◦ д = φ}.

We have

hom(Q2,D) =
⋃

φ ∈hom(Q2,Q1 )

homφ (Q2,D)

|hom(Q2,D) | =
∑

φ ∈hom(Q2,Q1 )

|homφ (Q2,D) |. (29)

8For example, letQ1 = R (X , X ), R (X , Y ), S (X , Y ) and let P have a single tuple (a, a). First annotate P to ((X , a), (Y , a)).

Then RD = {((X , a), (X , a)), ((X , a), (Y , a)) }, SD = {((X , a), (Y , a)) }. Without the annotation, these relations would

be RD = SD = {(a, a) }, and there is no homomorphsims to Q , since the tuple in SD cannot be mapped anywhere.
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We will compute an upper bound for |homφ (Q2,D) |, for each homomorphism φ. We claim:

homφ (Q2,D) ⊆�t ∈nodes(T ) Πφ |χ (t )
(P ), (30)

where φ |χ (t ) is the restriction of φ to χ (t ), and Πφ |χ (t )
(P ) is the generalized projection (Section 3.2),

i.e., it is a relation with attributes χ (t ). The reason for partitioning hom(Q2,D) into subsets
homφ (Q2,D) is so we can apply inequality (30) to each set: notice that the right-hand-side de-
pends on φ. To prove the claim (30), we first observe:

homφ (Q2,D) ⊆ �t ∈nodes(T ) homφ |χ (t )
(Qt ,D). (31)

This is a standard property of any join decomposition (not necessarily acyclic): every tuple д ∈
hom(Q2,D) is the join of its fragments Πχ (t ) (д) ∈ hom(Qt ,D), as long as the fragments cover all
attributes of д. Next we prove the following locality property:

homφ |χ (t )
(Qt ,D) ⊆ Πφ |χ (t )

(P ) (32)

It says that every answer ofQt onD can be found in a single row of P . Here we use the fact thatQ2

is acyclic therefore there exists some B ∈ atoms(Q2) s.t. vars(B) = χ (t ). Then, any homomorphism
д0 ∈ homφ |χ (t )

(Qt ,D) maps B to some tuple f0 ∈ D. By construction of D, there exists some

A ∈ atoms(Q1) such that f0 ∈ Πvars(A) (P ); in particular, f0 = Πvars(A) ( f ) for some f ∈ P . Thus д0,

when viewed as a tuple over variables χ (t ), can be found in a single row f ∈ P , more precisely9

д0 = Πψ ( f ), from some function ψ : χ (t ) → vars(Q1). Noticed that we have used in an essential
way the fact that χ (t ) is covered by a single atom B: we will need to remove this restriction later
when we prove Theorem 3.3 (Lemma 6.7 in Section 6.2). From here it is immediate to show that
ψ = φ |χ (t ) , by composing with e: φ |χ (t ) = e ◦ д0 = e ◦ f ◦ψ = ψ because e ◦ f is the identity on
vars(Q1). This completes the proof of Equation (32), which, together with Equation (31), proves
the claim Equation (30).

Finally, we will upper bound the size of the join in Equation (30), by applying repeatedly
Lemma 4.10. This is possible because each projection Πφ |χ (t )

(P ) is totally uniform. Formally, fix

an order of nodes(T ), t1, t2, . . . , tm , such that every child occurs after its parent, and compute the

join Equation (30) inductively, applying Lemma 4.10 to each step. If Si
def
=�j=1,i Πφ |χ (tj )

(P ), then

the lemma implies |Si | = |Si−1 � Πφ |χ (ti )
(P ) | ≤ |Si−1 | degΠφ |χ (ti )

(P ) (χ (ti ) |χ (ti ) ∩ χ (parent(ti ))),

and this proves:

| �t ∈nodes(T ) Πφ |χ (t )
(P ) | ≤

∏

i=1,m

degΠφ |χ (ti )
(P ) (χ (ti ) |χ (ti ) ∩ χ (parent(ti )). (33)

Let p ′
def
= Πφ |χ (ti )

(p) be the φ |χ (ti )-pullback of p. Its entropy satisfies h′(Z ) = h(φ (Z )) = (h ◦φ) (Z )

for all Z ⊆ χ (ti ), implying log degΠφ |χ (ti )
(P ) (Y |Z ) = (h ◦ φ) (Y |Z ). This observation, together with

Equations (30) and (33) allow us to relate hom(Q2,D) to (ET ◦ φ) (h):

log |homφ (Q2,D) | ≤
∑

i=1,m

log degΠφ |χ (ti )
(P ) (χ (ti ) |χ (ti ) ∩ χ (parent(ti )))

=

∑

i=1,m

(h ◦ φ) ((χ (ti ) |χ (ti ) ∩ χ (parent(ti ))) = (ET ◦ φ) (h)

< h(vars(Q1)) − ∆ = log |P | − ∆ (By Equation (28))

9We include here the rigorous, but rather tedious argument. Since д0 is a homomorphism, it “maps” the atom B to the

tuple f0, meaning (д0 ◦ vars(B )) = f0 = (f ◦ vars(A)) (all are functions [arity(B )] → D , where D is the domain). Since

vars(B ) : [arity(B )]→ χ (t ) is surjective, it has a right inverse, which implies д0 = f ◦ψ for some ψ .
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Equivalently, |homφ (Q2,D) | < |P |/2∆. We sum up Equation (29):

|hom(Q2,D) | < |hom(Q2,Q1) |
|P |

2∆
< |P |,

completing the proof. �

We remark that inequality (25) is slightly stronger than necessary to prove containment. In the
proof, we only need the inequality to hold for some junction tree. Conversely, Theorem 4.2 can
also be stated such that we only consider non-redundant tree decompositions, of which junction
trees are a special case.

5 REDUCING Max-IIP TO BagCQC-A

The results of the previous section imply BagCQC-A ≤m Max-IIP. We now prove the converse,
Max-IIP ≤m BagCQC-A; in other words we show that Max-IIP can be reduced to the containment
problem Q1 � Q2, with acyclic Q2.

Theorem 5.1. Max-IIP ≤m BagCQC-A.

The proof has two parts. First, we convert the Max-IIP in Equation (7) into a form that resembles
Equation (13), then we construct Q1 and Q2.

5.1 Max-IIP ≤m Uniform-Max-IIP

Consider a general Max-IIP (Equation (7)), which we repeat here:

0 ≤ max
�∈[k]

E� (h), (34)

where E� (h)
def
=

∑

X ⊆V c�,Xh(X ). In order to reduce it to a query containment problem, we start by
making the expressions E� uniform. More precisely, for fixed natural numbers n,p,q, we say that
an expression E is (n,p,q)-uniform if:

E (h) = n · h(U ) +
∑

j=0,p

h(Yj |X j ) − q · h(V ), (35)

whereV is the set of all variables,U is a single variable called the distinguished variable, andX j ,Yj ,
for j = 0,p, are (not necessarily distinct) sets of variables, satisfying the following conditions:

Chain condition X0 = ∅ and X j ⊆ Yj−1 ∩ Yj for j = 1,p.
Connectedness U ∈ X j for j = 1,p.

A Uniform-Max-IIP is a Max-IIP, Equation (34), such that there exist numbers n,p,q and a vari-
able U s.t. all expressions E� in Equation (34) are (n,p,q)-uniform, and have U as a distinguished
variable. Notice that n,p,q, andU are the same in all expressions E� . Clearly, a Uniform-Max-IIP
is a special case of a Max-IIP. We prove:

Lemma 5.2. Max-IIP ≤m Uniform-Max-IIP. Moreover, the reduction can be done in polynomial

time.

Proof. Every E� in Equation (34) has the form
∑

X ⊆V c�,Xh(X ). By expanding each positive
coefficient as c�,X = 1 + 1 + · · · and each negative coefficient as c�,X = −1 − 1 − · · · , we can write:

E� (h) =

m�∑

i=1

h(Yi ) −

n�∑

j=1

h(X j ) =

m�∑

i=1

h(Yi ) +

n�∑

j=1

h(V |X j ) − n� · h(V ).
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Define X0
def
= ∅ and add h(V |X0) − h(V ) (= 0) to E� :

E� (h) =

m�∑

i=1

h(Yi ) +

n�∑

j=0

h(V |X j ) − (n� + 1) · h(V ). (36)

The second sum is a chain, because X0 = ∅ and every X j is contained in V . Let n
def
= max� n� . We

add n − n� terms h(V ) − h(V ) to the expression E� , resulting in two changes to the expression
(36): the term −(n� + 1) · h(V ) is replaced by −(n + 1) · h(V ), and the sum

∑

i=1,m�
h(Yi ) becomes

∑

i=1,m�+n−n�
h(Yi ) where the n −n� new terms are Yi

def
= V . We combine the two sums

∑

i h(Yi ) +
∑

j h(V |X j ) into a single sum by writing h(Yi ) as h(Yi |∅), and thus E� becomes:

E� (h) =

p�∑

j=0

h(Yj |X j ) − (n + 1) · h(V ). (37)

Notice that Equation (37) still satisfies the chain condition: X0 = ∅, and X j ⊆ Yj−1 ∩Yj for j = 1,p� .
Our next step is to enforce the connectedness condition.
LetU be a fresh variable. We will denote by h an entropic function over the variablesV , and by

h′ an entropic function over the variablesUV . For � ∈ [k], denote by E ′
�
the following expression:

E ′
�
(h′) = (n + 1) · h′(U ) +

p�∑

j=0

h′(UYj |UX j ) − (n + 1) · h′(UV ). (38)

We claim: ∀h, 0 ≤ max� E� (h) iff ∀h
′, 0 ≤ max� E

′
�
(h′). For the ⇐ direction, assume ∀h′ : 0 ≤

max� E
′
�
(h′) and let h be any entropic function over the variablesV . We extended it to an entropic

function h′ over the variablesUV , by definingU to be a constant random variable. In other words,

h′(X )
def
= h(X − {U }) for all X ⊆ UV ; in particular h′(U ) = 0. Then E ′

�
(h′) = E� (h), for all � ∈ [k],

and the claim follows from 0 ≤ max� E
′
�
(h′) = max� E� (h). For the ⇒ direction, let h′ be any

entropic function over the variables UV , and denote h(−)
def
= h′(−|U ) the conditional entropy.

The conditional entropy h is not necessarily entropic, but it is the limit of entropic functions (see

Appendix B), hence it satisfies 0 ≤ max� E� (h). Then, E
′
�
(h′) =

∑p�
j=0 h

′(UYj |UX j ) − (n + 1) ·

h′(UV |U ) =
∑p�

j=0 h(Yj |X j ) − (n + 1) · h(V ) = E� (h), and the claim follows from 0 ≤ max� E� (h) =

max� E
′
�
(h′).

To enforce X0 = ∅ in the chain condition, we write E ′
�
as:

E ′
�
(h′) = n · h′(U ) +

	

�h
′(U ) +

p�∑

j=0

h′(UYj |UX j )
�

� − (n + 1) · h′(UV ).

Finally, we need to ensure that all numbers p� are equal, and, for that, we set p
def
= 1 + max� p�

and add p − p� − 1 terms h′(U |U ) to E ′
�
(h′). Comparing it with Equation (35), the new E ′

�
is an

(n,p,n + 1)-uniform expression, proving the lemma. �

5.2 A Technical Lemma

The Uniform-Max-IIP has some arbitrary q, while Equation (13) has q = 1. We prove here a tech-
nical lemma showing that an (n,p,q)-uniform Max-IIP is equivalent to some Uniform-Max-IIP
with q = 1. We do this by introducing new random variables.

Let V be a set of variables. For each variable Z ∈ V , we create q fresh copies Z (�) , � = 1 . . .q,

called adornments ofZ . IfX is a set of variables, thenX (�) is the set where all variables are adorned
with �. Wewill denote byh an entropic function over the original variablesV , and byh′ an entropic
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function over the adorned variables V (1) · · ·V (q ) . If F =
∑

i cih
′(X

(�i )
i ) is a linear expression over

adorned variables, then its erasure, ϵ (F )
def
=

∑

i cih(Xi ), is defined as the expression obtained by
erasing every adornment; we also say that F is an adornment of ϵ (F ). Conversely, if E =

∑

i cih(Xi )

is an expression over the original variables, then a constant adornment is an expression of the form

E (�)
=

∑

i cih
′(X

(�)
i ), i.e., all terms are adorned by the same �; clearly ϵ (E (�) ) = E.

Lemma 5.3. Let E1, . . . ,Ek be linear expressions over variablesV , and F1, . . . , Fm be linear expres-

sions over adorned variables V (1), . . . ,V (q ) for some q ≥ 1, such that (a) each Fj is an adornment of

some Ei , i.e., ϵ (Fj ) = Ei , and (b) all constant adornments are included, i.e for every Ei and every �

there exists Fj = E
(�)
i . Then the following two statements are equivalent:

∀h : q · h(V ) ≤max
i ∈[k]

Ei (h), (39)

∀h′ : h′(V (1) · · ·V (q ) ) ≤ max
j=1,m

Fj (h
′). (40)

Proof. (39)⇒ (40) follows from:

h′(V (1) · · ·V (q ) ) ≤
∑

�=1,q

h′(V (�) )

≤ q max
�=1,q

h′(V (�) )

≤ max
�=1,q

max
i ∈[k]

E
(�)
i (h′) (Equation (39) applied to V (�))

≤ max
j=1,m

Fj (h
′) (Assumption (b))

(40) ⇒ (39) Let h be an entropic function over variables V . That means that there exists a joint
distribution over random variables V whose entropy is given by h. For each random variable Z ,

create q i.i.d. copies Z (�) , for � = 1,q, and denote by h′ the entropy function of the new random

variables V (1), . . . ,V (q ) . Thus, for any adorned set X (�) , h′(X (�) ) = h(X ), and, if Ei = ϵ (Fj ), then
Ei (h) = Fj (h

′). The claim follows from:

q · h(V ) = h′(V (1) ) + · · · + h′(V (q ) ) (By h(V ) = h′(V (�) ), for all �)

= h′(V (1) · · ·V (q ) ) (Independence)

≤ max
j=1,m

Fj (h
′) (Equation (40))

≤ max
i ∈[k]

Ei (h) (Assumption (a)) �

5.3 Uniform-Max-IIP ≤m BagCQC-A

Given an (n,p,q)-uniform Max-IIP problem (39), q · h(V ) ≤ maxi Ei , where

Ei = n · h(U ) +
∑

j=0,p

h(Yi j |Xi j ), (41)

we will construct two queriesQ1 andQ2 such thatQ1 � Q2 iff condition (40) holds, which we have
proven is equivalent to Equation (39). Recall that the distinguished variableU occurs everywhere,
except in the sets Xi0, which, by definition, are ∅. We first substitute everywhere the single
variable U with two variables, U = U1U2. This does not affect the Max-IIP, since we can simply
treatU1U2 as a joint variable.
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The query Q2 will have one atom for each term of the expression Ei in Equation (41), which is
possible because, by uniformity, all expressions Ei have the same number of terms. In particular,
there will be an atom R j corresponding to the term h(Yi j |Xi j ); however, the number of variables
Yi j depends on i . For that reason, we consider their disjoint union, as follows. For each variable
V ∈ V and each i, j, let V i j be a fresh copy of V ; ifW = {V1,V2, . . .} is a set, then we denote by

W i j def
= {V

i j
1 ,V

i j
2 , . . .}. We define Ỹj

def
=

⋃

i ∈[k] Y
i j
i j , for j = 0,p, and X̃ j

def
=

⋃

i ∈[k]X
i (j−1)
i j , for j = 1,p,

and X̃0
def
= ∅. We notice that |Ỹj | =

∑

i |Yi j |, the sets Ỹ0, . . . , Ỹp are disjoint, and, since the chain

condition Xi j ⊆ Yi (j−1) holds in Equation (41), we also have X̃ j ⊆ Ỹj−1; of course, X̃ j is disjoint

from Ỹj . We define Q2 as:

Q2 = S1 (Ũ1) ∧ · · · ∧ Sn (Ũn ) ∧ R0 (X̃0Ỹ0Z̃ ) ∧ · · · ∧ Rp (X̃pỸpZ̃ ).

All relation symbols are distinct. The relations S1, . . . , Sn are binary, and Ũ1, . . . , Ũn are disjoint
sets of two fresh variables each, and Z̃ is a fresh set of k variables. Thus, each relation R j has

arity (
∑

i ( |Xi j | + |Yi j |)) + k . All variables occurring in R j are distinct (since X̃ j ⊆ Ỹj−1, which is

disjoint from Ỹj ) and they occur in the order that corresponds to the order X1j . . .Xk jY1j . . .Yk j of

the original variables, followed by the k variables Z̃ . Any two consecutive atoms R j−1,R j share the

variables X̃ j and Z̃ , and therefore the tree decomposition of Q2 consists of n isolated components
plus a chain:

T : {Ũ1} . . . {Ũn } (42)

{X̃0, Ỹ0, Z̃ }
X̃1,Z̃
− {X̃1, Ỹ1, Z̃ }

X̃2,Z̃
− {X̃2Ỹ2, Z̃ } · · ·

X̃p,Z̃

− {X̃p , Ỹp , Z̃ }.

The query Q1 consists of q isomorphic sub-queries:

Q1 = Q
(1)
1 ∧ · · · ∧Q

(q )
1 ,

which have disjoint sets of variables. We describe now the subquery Q
(�)
1 . Its variables consist of

adorned copies V (�) of the variables V , and the query is in turn a conjunction of k sub-queries
(which are no longer disjoint):

Q
(�)
1 = Q

(�)
1,1 ∧ · · · ∧Q

(�)

1,k
.

To define its atoms, we need some notations. Recall that the distinguished variables U1U2 occur
everywhere (except Xi0 which is empty). Then, for every i , we define the the following sequences
of variables:

X̂
(�)
i j = U

(�)
1 · · ·U

(�)
1

︸���������︷︷���������︸
|X1j |

· · · X
(�)
i j
︸︷︷︸

|Xi j |

· · ·U
(�)
1 · · ·U

(�)
1

︸���������︷︷���������︸
|Xk j |

Ŷ
(�)
i j = U

(�)
1 · · ·U

(�)
1

︸���������︷︷���������︸
|Y1j |

· · · Y
(�)
i j
︸︷︷︸

|Yi j |

· · ·U
(�)
1 · · ·U

(�)
1

︸���������︷︷���������︸
|Yk j |

Ẑ
(�)
i = U

(�)
1
︸︷︷︸

1

· · · U
(�)
1
︸︷︷︸

i−1

U
(�)
2
︸︷︷︸

i

U
(�)
1
︸︷︷︸

i+1

· · · U
(�)
1
︸︷︷︸

k

That is, the length of X̂
(�)
i j is the same as that of the concatenation X1jX2j . . .Xk j , and has the

distinguished variables U
(�)
1 on all positions except the positions of Xi j , where it has the adorn-

ment X
(�)
i j . (As a special case, X̂

(�)
i0 = ∅.) Note that the length of X̂

(�)
i j is independent of i , and
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|X̂
(�)
i j | = |X̃ j | (the variables fromQ2). Similarly for Ŷ

(�)
i j . The sequence Ẑi has length k and contains

U
(�)
1 everywhere except for position i where it hasU

(�)
2 . Then, query Q

(�)
1,i is:

Q
(�)
1,i = S1 (U

(�) ) ∧ · · · ∧ Sn (U
(�) )∧

R0

(

X̂
(�)
i0 Ŷ

(�)
i0 Ẑ

(�)
i

)

∧ R1

(

X̂
(�)
i1 Ŷ

(�)
i1 Ẑ

(�)
i

)

∧ · · · ∧ Rp
(

X̂
(�)
ip Ŷ

(�)
ip Ẑ

(�)
i

)

.

Notice that the variables of the atom R j are just Y
(�)
i j (which contains U

(�)
1 ,U

(�)
2 , and X

(�)
i j ), and

some variables are repeated several times.
We start by noticing that every homomorphism φ : Q2 → Q1 must map all atoms in the chain

R0 · · ·Rp to the same sub-query Q
(�)
1 : this is because the chain is connected and, if one atom is

mapped to an atom whose variables are adorned with �, then all atoms must be mapped to atoms
adorned similarly with �. We claim something stronger, that φ maps the entire chain to the same

sub-queryQ
(�)
1,i . This is enforced by the variables Z̃ ofQ2: if one atoms is mapped to the sub-query

Q
(�)
1,i , then φ (Z̃i ) = U

(�)
2 and φ (Z̃i′ ) = U

(�)
1 for all i ′ � i , implying that all other atoms are mapped

to the same sub-query.
By Theorems 4.2 and 4.7, we have:

Q1 � Q2 iff ∀h′,h′(vars(Q1)) ≤ max
φ ∈hom(Q2,Q1 )

(ET ◦ φ) (h
′). (43)

We claim that the following are equivalent:

∀h′,h′(vars(Q1)) ≤ max
φ ∈hom(Q2,Q1 )

(ET ◦ φ) (h
′) iff

∀h,q · h(V ) ≤max
i

Ei (h), (44)

where Ei is given by Equation (41). The claim implies the theorem: Q1 � Q2 iff ∀h,h(V ) ≤ maxi
Ei (h). To prove the claim, we will use Lemma 5.3, and, for that, we need to verify the conditions
of the lemma. We start by applying the definition of ET (Equation (12)), whereT is the tree decom-

position of Q2, Equation (42), and obtain (recall that X̃0 = ∅):

ET = h(Ũ1) + · · · + h(Ũn ) + h(Ỹ0Z̃ ) +
∑

j=1,p

h(X̃ jỸjZ̃ |X̃ j Z̃ ).

Consider a homomorphism φ ∈ hom(Q2,Q1). By the previous discussion, it maps all atoms in the

chain to the same subquery Q
(�)
1,i for some � and i . We illustrate it by showing Q2 and φ (Q2) next

to each other:

Q2 = S1 (Ũ1) ∧ · · · ∧ Sn (Ũn ) ∧ R0 (X̃0Ỹ0Z̃ ) ∧ · · · ∧ Rp (X̃pỸpZ̃ ),

φ (Q2) = S1 (U
(�1 ) ) ∧ · · · ∧ Sn (U

(�n ) ) ∧ R0 (X̂
(�)
i0 Ŷ

(�)
i0 Ẑ

(�)
i ) ∧ · · · ∧ Rp (X̂

(�)
ip Ŷ

(�)
ip Ẑ

(�)
i ).

Next, we apply the substitution φ to ET to obtain ET ◦ φ. Since each of the original expressions
Ei in Equation (41) was (n,p,q)-uniform, U occurs in every set Yi j and Xi j (except for Xi0). By

construction, Ẑ
(�)
i is a sequence consisting only of the variables U

(�)
1 and U

(�)
2 , thus the following

set inclusions hold (except for Ẑ
(�)
i ⊆ X̂

(�)
i0 ): Ẑ

(�)
i ⊆ X̂

(�)
i j ⊆ Ŷ

(�)
i j , and we obtain:

ET ◦ φ = h(U
(�1 ) ) + · · · + h(U (�n ) ) + h

(

Ŷ
(�)
i0 Ẑ

(�)
i

)

+

∑

j=1,p

h
(

X̂
(�)
i j Ŷ

(�)
i j Ẑ

(�)
i |X̂

(�)
i j Ẑ

(�)
i

)

= h(U (�1 ) ) + · · · + h(U (�n ) ) + h
(

Y
(�)
i0

)

+

∑

j=1,p

h
(

Y
(�)
i j |X

(�)
i j

)

.
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Clearly its erasure is precisely ϵ (ET ◦ φ) = Ei from Equation (41) (recall that Xi0 = ∅), proving

condition (a) of the lemma. Conversely, for each adornment E
(�)
i there exists a homomorphism φ :

Q2 → Q1 such that ET ◦φ = E
(�)
i , which proves condition (b), completing the proof of Theorem 5.1.

Example 5.4. We will illustrate the main idea of our reduction from Max-IIP to BagCQC-A by
reducing an IIP to a BagCQC-A. Consider the following IIP:10

0 ≤ h(X1) + 2h(X2) + h(X3) − h(X1X2) − h(X2X3). (45)

We start by rewriting the inequality as:

3h(X1X2X3) ≤ h(X1) + h(X2) + h(X2) + h(X3)

+ h(X1X2X3) + h(X3 |X1X2) + h(X1 |X2X3). (46)

From the right-hand side, we derive two queriesQ1 andQ2. QueryQ1 has 9 variables,X
(�)
i , i = 1, 3,

� = 1, 3, while Q2 has 13 variables:

Q1 = Q
(1)
1 ∧Q

(2)
1 ∧Q

(3)
1 ,

� = 1, 3 : Q
(�)
1 = S1 (X

(�)
1 ) ∧ S2 (X

(�)
2 ) ∧ S3 (X

(�)
2 ) ∧ S4 (X

(�)
3 )

∧ R1 (X
(�)
1 ,X

(�)
2 ,X

(�)
3 ) ∧ R2 (X

(�)
1 ,X

(�)
2 ,X

(�)
1 ,X

(�)
2 ,X

(�)
3 )

∧ R3 (X
(�)
2 ,X

(�)
3 ,X

(�)
1 ,X

(�)
2 ,X

(�)
3 ),

Q2 = S1 (U1) ∧ S2 (U2) ∧ S3 (U3) ∧ S4 (U4)

∧ R1 (Y
0
1 ,Y

0
2 ,Y

0
3 ) ∧ R2 (Y

0
1 ,Y

0
2 ,Y

1
1 ,Y

1
2 ,Y

1
3 ) ∧ R3 (Y

1
2 ,Y

1
3 ,Y

2
1 ,Y

2
2 ,Y

2
3 ).

We apply Equation (13) to Q1 and Q2. TD(Q2) has a single tree because Q2 is acyclic. Q1 has three
connected components, and Q2 has five; therefore, there are 3

5 homomorphisms Q2 → Q1. Equa-
tion (13) becomes:

h
(

X
(1)
1 X

(1)
2 X

(1)
3 X

(2)
1 X

(2)
2 X

(2)
3 X

(3)
1 X

(3)
2 X

(3)
3

)

≤ max
�1, ..., �5=1,3

(

h
(

X
(�1 )
1

)

+ h
(

X
(�2 )
2

)

+ h
(

X
(�3 )
2

)

+ h
(

X
(�4 )
3

)

+ h
(

X
(�5 )
1 X

(�5 )
2 X

(�5 )
3

)

+ h
(

X
(�5 )
3 |X

(�5 )
1 X

(�5 )
2

)

+ h
(

X
(�5 )
1 |X

(�5 )
2 X

(�5 )
3

))

. (47)

By Theorems 4.2 and 4.7 and because Q2 is acyclic, the Max-II (47) holds for all entropic h if
and only if Q1 � Q2. Moreover Lemma 5.3 proves that this Max-II is equivalent to the II in
Equation (46), completing the reduction from Equation (45) to the BagCQC-A instanceQ1 � Q2. Our
example only illustrated the reduction from IIP; Lemma 5.2 addresses the challenges introduced
by Max-IIP.

6 PROVING DECIDABILITY OF A NOVEL CLASS OF BagCQC

In this section, we aim to prove the decidability of our novel class of BagCQC that was presented
earlier in Section 3.2. In particular, we prove Theorems 3.3 and 3.6. The proofs of both theorems
rely on Theorem 3.12, which in turn relies on Lemma 3.13. Therefore, we first prove that lemma
in Section 6.1, and then we prove both theorems in Section 6.2.

10This IIP holds, but our goal is not to check it, but to reduce it to BagCQC-A.
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6.1 Proof of Lemma 3.13

Lemma 6.1 (Re-statement of Lemma 3.13). Let h : 2[n] → R+ be any polymatroid. Then there

exists a normal polymatroid h′ ∈ Nn with the following properties:

(1) h′(X ) ≤ h(X ), for all X ⊆ [n];
(2) h′([n]) = h([n]); and
(3) h′({i}) = h({i}), for all i ∈ [n].

In addition, there exists a modular function h′′ ∈ Mn that satisfies conditions (1) and (2).

Before we prove the lemma, we need some preliminaries. Recall that we blurred the distinction

between a set of n variables V and the set [n]. In this section, we will use only [n]. Let L
def
= 2[n]

be the lattice of subsets of [n]. Given a function h : L → R+, we define its dual д : L → R+ as its
Möbius inverse [18]:

∀X : h(X ) =
∑

Y :Y ⊇X

д(Y ), д(X ) =
∑

Y :Y ⊇X

(−1) |Y−X |h(Y ) (48)

For any set S ⊆ L we define:

д(S )
def
=

∑

X ∈S

д(X ). (49)

Notice that д(L) = h(∅).

Fact 6.2. Let h : L → R+ be any function. Then h is a normal polymatroid (i.e., h ∈ Nn) iff its

Möbius inverse д satisfies: д(L) = 0, д([n]) ≥ 0 and д(X ) ≤ 0 for all X � [n].

Proof. First we check that the Möbius inverse of a step function hW satisfies the required prop-
erties, forW � V :

hW (X ) =
⎧⎪⎨⎪⎩
0 if X ⊆W

1 otherwise
дW (X ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if X = V

−1 if X =W

0 otherwise

The converse follows by observing that every д with the required properties is a non-negative
linear combination of the дW ’s: д =

∑

W �[n] (−д(W )) ·дW ; therefore, h =
∑

W �[n] (−д(W )) ·hW . �

Fact 6.2 can be used, for example, to show that the parity function h (Example 3.8) is not normal.
Indeed, it is Möbius inverse given by Equation (48) at ∅ is д(∅) = 1, which implies that h is not
normal. Fact. 6.2 will be our key ingredient to prove Lemma 3.13: in order to construct the required
normal polymatroidh′, wewill instead construct its dualд′ and check that it satisfies the conditions
in Fact. 6.2. We also need a technical lemma:

Lemma 6.3. Let a1, . . . ,an ≥ 0 be n non-negative numbers. Define:

h(X ) =max{ai | i ∈ X }. (50)

Then h is a normal polymatroid.

Proof. Assume w.l.o.g. a1 ≤ a2 ≤ · · · ≤ an and define δi = ai+1 − ai for i = 0, 1, . . . ,n − 1,
where a0 = 0. Define д : 2[n] → R:

д(X )
def
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
an if X = [n]

−δi if X = [i], (= {1, 2, . . . , i}), for some i < n

0 otherwise
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We check that д is the dual of h by verifying:

h(X ) =amax(X ) = −δmax(X ) − δmax(X )+1 − · · · − δn−1 + an =
∑

Y :X ⊆Y

д(Y ).

We assumed above that max(∅) = 0. �

Finally, we need to recall the definitions of the conditional entropy and the conditional mutual

information:

h(i |X ) =h({i} ∪ X ) − h(X )

I (i; j |X ) =h({i} ∪ X ) + h({j} ∪ Y ) − h(X ) − h({i, j} ∪ X ), (51)

and observe that, denoting [X ,Y ]
def
= {Z | X ⊆ Z ⊆ Y }, we have:

h(X ) =д([X , [n]]), (52)

h(i |X ) = − д([X , [n] − {i}]), (53)

I (i; j |X ) = − д([X , [n] − {i, j}]). (54)

We are now ready to prove Lemma 3.13.

Proof of Lemma 3.13. We will proceed by induction on n. Split the lattice L = 2[n] into two
disjoint sets L = L1 ∪ L2 where:

L1 =[∅, [n − 1]], L2 = [{n}, [n]].

In other words, L1 contains all subsets without n, while L2 contains all subsets that include n. Then:

• д(L2) = h({n}). It follows д(L1) = −h({n}).
• Subtract h({n}) from д([n]) and add it to д([n−1]), and call д1,д2 the new functions on L1,L2
respectively. Formally:

д1 (X ) =
⎧⎪⎨⎪⎩
д([n − 1]) + h({n}) if X = [n − 1]

д(X ) if X ⊂ [n − 1]

д2 (X ∪ {n}) =
⎧⎪⎨⎪⎩
д([n]) − h({n}) if X = [n − 1]

д(X ∪ {n}) if X ⊂ [n − 1]

Notice that д1 (L1) = 0 and д2 (L2) = 0.
• One can check that the dual11 of д2 is the conditional polymatroid12, defined as h2 : L2 → R:

∀X ∈ L2 : h2 (X )
def
=h(X |{n}).

• We apply induction to h2 and obtain a normal polymatroid h′2 : L2 → R satisfying properties
(1), (2), and (3) that are stated in Lemma 3.13:

h′2 (X ) ≤ h2 (X ) =h(X |{n}),

h′2 ([n]) = h2 ([n]) =h([n]|{n}),

h′2 ({i,n}) = h2 ({i,n}) =h({i}|{n}), since {i,n} is an atom in L2.

Notice that h′2 ({n}) = 0, since {n} is the bottom of L2. Let д
′
2 be the dual of h

′
2, thus д

′
2 (X ) ≤ 0

for all X � [n] (because h′2 is normal).

11Strictly speaking, we cannot talk about the dual of д2 because we defined the dual only for functions д : 2[m] → R.

However, with some abuse, we identify the lattice L2 with 2[n−1], and in that sense the dual of д2 : L2 → R is a function

h2 : L2 → R.
12Proof: h2 (X ) =

∑

Y :X⊆Y ⊆[n] д2 (Y ) =
∑

Y :X⊆Y ⊆[n] д (Y ) − h ( {n }) = h (X ) − h ( {n }) = h (X | {n }).
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• One can check that the dual of д1 is the function
13

h1 (X )
def
= I (X ; {n}).

This is no longer a polymatroid. Instead, here we use Lemma 6.3 and define the normal
polymatroid h′1 : L1 → R:

h′1 (X )
def
= max

i ∈X
h1 ({i}) = max

i ∈X
I ({i}; {n}).

Let д′1 : L1 → R be its dual. Thus, д′1 (X ) ≤ 0 for all X � [n − 1], and д′1 ([n − 1]) =
maxi ∈[n−1] I ({i}; {n}).
• We combine д′1,д

′
2 into a single function д′ : L(= L1 ∪ L2) → R as follows. д′ agrees with д′1

on L1 and with д
′
2 on L2 except that we subtract a mass of h({n}) from д′1 ([n − 1]) and add it

to д′2 ([n]). Formally:

д′(X )
def
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

д′2 ([n]) + h({n}) if X = [n]

д′1 ([n − 1]) − h({n}) if X = [n − 1]

д′1 (X ) if X ∈ L1,X � [n − 1]

д′2 (X ) if X ∈ L2,X � [n]

• We claim that for every X � [n], д′(X ) ≤ 0. This is obvious for all cases above (since д′1,д
′
2

are normal), except when X = [n − 1]. Here we check: д′([n − 1]) = д′1 ([n − 1]) − h({n}) =
maxi ∈[n−1] I ({i}; {n}) − h({n}) ≤ 0 because I ({i}; {n}) ≤ h({n}).
• Denote h′ : L(= L1 ∪ L2) → R the dual of д′; we have established that h′ is a normal
polymatroid. The following hold:

∀x ∈ L1 : h
′(X ) =

∑

Y :X ⊆Y ⊆[n]

д′(Y )

=

∑

Y :X ⊆Y ⊆[n−1]

д′(Y ) +
∑

Y :X ⊆Y ⊆[n−1]

д′(Y ∪ {n})

=

∑

Y :X ⊆Y ⊆[n−1]

д′1 (Y ) +
∑

Y :X ⊆Y ⊆[n−1]

д′2 (Y ∪ {n})

= h′1 (X ) + h′2 (X ∪ {n}), (55)

∀X ∈ L2 : h
′(X ) =

∑

Y :X ⊆Y ⊆[n]

д′(Y )

= h({n}) +
∑

Y :X ⊆Y ⊆[n]

д′2 (Y ) = h({n}) + h
′
2 (X ). (56)

13Proof:

h1 (X ) =
∑

Y :X⊆Y ⊆[n−1]

д1 (Y ) = h ( {n }) +
∑

Y :X⊆Y ⊆[n−1]

д (Y )

= h ( {n }) +
∑

Y :X⊆Y ⊆[n]

д (Y ) −
∑

Y :X⊆Y ⊆[n−1]

д (Y ∪ {n })

= h ( {n }) + h (X ) − h (X ∪ {n }) = I (X ; {n })
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• We check that h′ satisfies properties (1), (2), and (3) that are stated in Lemma 3.13:

∀X ∈ L1 : h
′(X ) = h′1 (X ) + h′2 (X ∪ {n}) by Equation (55)

≤ h1 (X ) + h2 (X ∪ {n})

= I (X ; {n}) + h(X |{n}) = h(X )

∀X ∈ L2 : h
′(X ) = h({n}) + h′2 (X ) by Equation (56)

≤ h({n}) + h2 (X )

= h({n}) + h(X |{n}) = h(X )

h′([n]) = h({n}) + h′2 ([n]) by Equation (56)

= h({n}) + h2 ([n])

= h({n}) + h([n]|{n}) = h([n])

∀i ∈ [n − 1] : h′({i}) = h′1 ({i}) + h
′
2 ({i,n}) by Equation (55)

= h1 ({i}) + h2 ({i,n})

= I ({i}; {n}) + h({i}|{n}) = h({i})

h′({n}) = h({n}) + h′2 ({n}) = h({n}) + 0 by Equation (56)

This completes the proof. �

We illustrate the main idea of the above proof using the following example, which is based on
the parity function, also shown in Figure 1.

Example 6.4. Recall the parity function, and it is Möbius inverse:

h(∅) = 0, h(1) = h(2) = h(3) = 1,

h(12) = h(13) = h(23) = h(123) = 2,

д(123) = 2, д(12) = д(13) = д(23) = 0,

д(1) = д(2) = д(3) = −1, д(∅) = +1.

The parity function is not normal, because д(∅) > 0. The lattice L = 2[3] is shown on the top left
of Figure 1.

We partition L = L1 ∪ L2, and move a mass of +1 from д(123) to д(12) (so that both lattices are
balanced, i.e., д1 (L1) = 0,д2 (L2) = 0); this is show in the top right. We compute h1,h2 from д1,д2.
Notice that h1 is not a polymatroid.
We define h′1 using the max-construction (Lemma 6.3) and define h′2 = h2 (since it is already

normal). Notice that h′1 = 0. From h′1,h
′
2 we compute д′1,д

′
2. Lower right of Figure 1.

Finally we combine the two functions д′1 and д′2 and obtain the functions h′ and д′ shown in
the lower left. h′ is normal, is dominated by h, and agrees with h on the atoms and the maximum
element of the lattice.

6.2 Proof of Theorem 3.3 and 3.6

Theorem 6.5 (Re-statement of Theorem 3.3). Checking Q1 � Q2 is decidable in exponential

time when Q2 is chordal and admits a simple junction tree.

Theorem 6.6 (Re-statement of Theorem 3.6). Let Q2 be chordal,

(i) If Q2 admits a totally disconnected junction tree, then Q1 � Q2 if and only if there is a product

witness.

(ii) If Q2 admits a simple junction tree, then Q1 � Q2 if and only if there exists a normal witness.

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 12. Publication date: September 2021.



12:30 M. A. Khamis et al.

Fig. 1. Illustration of Example 6.4. The top-left corner shows the lattice L = 2[3], where each node is annotated

with a pair (h,д), which are the values of the original h and д of the parity function. The bottom-left corner

shows the final (h′,д′) satisfying the conditions of Lemma 3.13, including normality.

In order to prove the above theorems, we need a technical lemma. In Theorem 4.7, we proved
that, when Q2 is acyclic and Equation (13) fails, then Q1 � Q2. Our next lemma is a variation of
that result: whenQ2 is chordal and Equation (13) fails on a normal entropic function, thenQ1 � Q2.
Recall that a junction tree is a special tree decomposition.

Lemma 6.7. LetQ2 be chordal and admit a simple junction treeT , and let ET be its linear expression,

Equation (12). If there exists a normal entropic function h (i.e., with a non-negative I-measure) such

that:

h(vars(Q1)) > max
φ ∈hom(Q2,Q1 )

(ET ◦ φ) (h), (57)

then there exists a database instance D such that |hom(Q1,D) | > |hom(Q2,D) |.
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We first show how to use the lemma and the essentially Shannon inequalities in Theorem 3.12 to
prove Theorems 3.3 and 3.6. AssumeQ2 is chordal and has a simple junction treeT . We prove:Q1 �

Q2 iff Equation (13) holds. It suffices to prove that Equation (13) is necessary, because sufficiency
follows from Theorem 4.2. Suppose Equation (13) fails, then there exists an entropic function h

such that Equation (57) holds where T in Equation (57) is a simple junction tree of Q2. Since T is
simple, the conditional linear expressions on the right-hand-side of Equation (57) are also simple.
By Theorem 3.12, there exists a normal entropic function h such that Equation (57) holds. Then, by
Lemma 6.7, Q1 � Q2. This proves that Equation (13) is necessary and sufficient for containment.
Furthermore, Equation (13) is decidable, since it is an essentially Shannon inequality, and this
completes the proof of Theorems 3.3. The proof of Theorem 3.6 follows immediately from the fact
that the set of normal entropic functions Nn is the cone generated by the entropies of normal
relations, and the set of modular functionsMn is the cone generated by the entropies of product
relations.
It remains to prove Lemma 6.7; the lemma generalizes Theorem 3.2 of [22] to arbitrary vocabu-

laries (beyond graphs). To prove the theorem, we will update the proof of Theorem 4.7, where we
used acyclicity of Q2: more precisely we need to re-prove the locality property, Equation (32). We
repeat it here:

homφ |χ (t )
(Qt ,D) ⊆Πφ |χ (t )

(P ).

We start by observing that this property fails in general.

Example 6.8. Let Q1 = R (X1,X2), S (X2,X3),T (X3,X1) and Q2 = R (Y1,Y2), S (Y2,Y3),T (Y3,Y1)

(they are identical). Consider the parity function in Example 3.8; more precisely, this is the entropy
of the relation P = {(X1,X2,X3) | X1,X2,X3 ∈ {0, 1},X1 ⊕ X2 ⊕ X3 = 0}, which we show here for
clarity:

0 0 0
P = 0 1 1

1 0 1
1 1 0

Recall that the entropy of P is not a normal entropic function (Section 6.1). This relation is perfectly
uniform (in fact it is a group characterization). ComputingD = ΠQ1 (P ), we obtainR

D
= SD = TD =

{(0, 0), (0, 1), (1, 0), (1, 1)}. Q2 is a clique, with a bag Qt = Q2, and hom(Qt ,D) contains one extra
triangle, (1, 1, 1), which is in no single row of P .

The example shows that we need to use in a critical way the fact that the counterexample h is
a normal entropic function, h ∈ Nn . To use this fact, we will describe a class of relations whose
entropic functions generate precisely the cone Nn , and prove that these are precisely the normal
relations (Definition 3.5).

Before we start, we review a basic concept, which we call “domain-product,” first introduced by
Fagin [10] to prove the existence of an Armstrong relation for constraints defined by Horn clauses,
and later used by Geiger and Pearl [12] to prove that Conditional Independence constraints on
probability distributions also admit an Armstrong relation. The same construction appears under
the name “fibered product” in [22].

Definition 6.9. Fix two domains D1 and D2. For any two tuples f ∈ DV
1 , д ∈ DV

2 , we define

f ⊗ д ∈ (D1 × D2)
V as the function ( f ⊗ д) (x )

def
= ( f (x ),д(x )) for all x ∈ V . The domain product

of two relations P1 ⊆ DV
1 and P2 ⊆ DV

2 is P1 ⊗ P2
def
= { f ⊗ д | f ∈ P1,д ∈ P2}. If p1 and p2 are
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probability distributions on P1 and P2, respectively, then their product p1 · p2 is the probability

distribution (p1 · p2) ( f ,д)
def
= p1 ( f ) · p2 (д) on P1 ⊗ P2.

The following basic fact relates to the above definition: if h1 and h2 are two entropic functions,
then h1 +h2 is also entropic. In particular, if hi is the entropy of pi : Pi → [0, 1], then h1 +h2 is the
entropy of p1 · p2 : P1 ⊗ P2 → [0, 1], where P1 ⊗ P2 is the domain product.
Now we are ready to prove Lemma 6.7. Consider the normal entropic function h given by

Lemma 6.7. We can assume w.l.o.g. that h is a sum of step functions,14 h =
∑

i hWi
, where each

hWi
is a step function (not necessarily distinct). Recall from Section 3.3 that PWi

is the 2-tuple re-
lation whose entropy is hWi

; to reduce clutter, we denote here PWi
by Pi . Then h is the entropy of

their domain-product (Def 6.9), P = P1 ⊗ P2 ⊗ · · · ⊗ Pm . One can check that P is totally uniform (it
is even a group realization). We now prove the locality property, Equation (32), using the fact that
P is a domain product, which allows us to rewrite Equation (32) as:

homφ |χ (t )
(Qt ,D1 ⊗ · · · ⊗ Dm ) ⊆Πφ |χ (t )

(P1 ⊗ · · · ⊗ Pm ).

It suffices prove that homφ |χ (t )
(Qt ,Di ) ⊆ Πφ |χ (t )

(Pi ) for each i . Recall that Pi has two tuples,

Pi = { f1, f2}, where f1 = (1, 1, . . . , 1) and f2 has values 1 on positions ∈ W and values 2 on
positions �W , for some set of attributesW . Fix a tuple д ∈ homφ |χ (t )

(Qt ,Di ); we must prove that

either д ∈ Πφ |χ (t )
( f1) or д ∈ Πφ |χ (t )

( f2). If д maps every variable in vars(Qt ) to 1, then the first

condition holds, so assume that д maps some variable Y ∈ vars(Qt ) to 2; in particular, φ (Y ) �W .
We must prove that, for every variable Y ′, if φ (Y ′) �W then д(Y ′) = 2. Here we use the fact that
Q2 is chordal, hence Qt is a clique, thanks to Fact A.3. Therefore, there exists B ∈ atoms(Qt ) that
contains bothY andY ′. Since д is a homomorphism, it maps B to some tuple in Πφ (vars(B )) (P ); since
both φ (Y ),φ (Y ′) � W , this tuple must have the value 2 on both positions (they can be identical:
φ (Y ) = φ (Y ′)). It follows that all variables Y ′ s.t. φ (Y ′) � W are mapped to 2, proving that д ∈
Πφ |χ (t )

( f2). This proves the local property, Equation (32). The rest of the proof of Theorem 4.7
remains unchanged, and this completes the proof of Lemma 6.7.

7 CONCLUSION AND DISCUSSION

In this article, we established a fundamental connection between information inequalities and
query containment under bag semantics. In particular, we proved that the max-information-
inequality problem is many-one equivalent to the query containment where the containing query
is acyclic. It is open whether these problems are decidable. Our results help in the sense that,
progress on one of these open questions will immediately carry over to the other. We end with a
discussion of our results and a list of open problems.
Beyond Chordal. Our results showed that the query containment problem Q1 � Q2 is equiva-

lent to a Max-IIP when Q2 is either acyclic, or when it is chordal and has a simple junction tree.
In all other cases, condition (13) is only sufficient, and we do not know if it is also necessary.

Repeated Variables, Unbounded Arities.Our reduction form Max-IIP to query containment
constructs two queriesQ1 andQ2 where the atoms have repeated variables, and the arities of some
of the relation names depend on the size of the Max-IIP. We leave open the question whether the
reduction can be strengthened to atoms without repeated variables, and/or queries over vocabu-
laries of bounded arity.

14Suppose the contrary, that the inequality holds for all functions h that are sums of step functions. Then it holds for all

linear combinations
∑

W cW hW where cW ≥ 0 are integer coefficients. If an inequality holds for h, then it also holds for

λ · h for any constant λ > 0; it follows that the inequality holds for all linear combinations
∑

W cW hW where cW ≥ 0

are rationals. The topological closure of these expressions is Nn , contradicting the fact that the inequality fails on some

h ∈ Nn .

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 12. Publication date: September 2021.



Bag Query Containment and Information Theory 12:33

Max-Linear Information Inequalities. Linear information inequalities have been studied ex-
tensively in the literature, while Max-linear ones much less. Our result proves the equivalence of
BagCQC-A and Max-IIP, and this raises the question of whether IIP and Max-IIP are different. The
following theorem (Appendix C) suggests that they might be computationally equivalent.

Theorem 7.1. Let E� , � = 1,m be linear expressions of entropic terms. Then the following conditions

are equivalent:

• This max-linear inequality holds: ∀h ∈ Γ∗n , 0 ≤ max� E� (h).

• There exists λ� ≥ 0, s.t.
∑

� λ� = 1 and, denoting E
def
=

∑

� λ�E� , this linear inequality holds:

∀h ∈ Γ∗n , 0 ≤ E (h).

The second item implies the first, because max� E� ≥
∑

� λ�E� ; the proof of the other direction is
in the Appendix. Suppose we could strengthen the theorem and prove that the λ’s can be chosen to
be rationals. Then there exists a simple Turing-reduction from the Max-IIP to IIP: given a Max-IIP,
search in parallel for a counter example (by iterating over all finite probability spaces), and for
rational λ’s such that

∑

� λ�E� (h) ≥ 0 (which can be checked using the IIP oracle). However, we
do not know if the λ’s can always be chosen to be rational.

The remarkable formula ET (Equation (12)). The first to introduce the expression ET was
Tony Lee [23]. This early paper established several fundamental connections between the entropy
h of the uniform distribution of a relation P , and constraints on P : it showed that an FD X → Y

holds iff h(Y |X ) = 0, that an MVD X � Y holds iff I (Y ;V − (X ∪ Y ) |X ) = 0, and, finally, that P
admits an acyclic join decomposition given by a tree T iff ET (h) = h(V ). It also proved that ET is
equivalent to an inclusion-exclusion expression, which, in our notation becomes:

Et =
∑

S ⊆nodes(T )

(−1) |S |+1CC (T ∩ S ) · h(χ (S )), (58)

where χ (S )
def
=

⋂

t ∈S χ (t ), and CC (T ∩ S ) denotes the number of connected components of the
subgraph of T consisting of the nodes {t | t ∈ nodes(T ), χ (t ) ∩

⋃

t ′∈S χ (t
′) � ∅}.

Discussion of Kopparty and Rossman [22].We now re-state the results in [22] using the no-
tions introduced in this article in order to describe their connection. Theorem 3.1 in [22] essentially
states that Equation (13) is sufficient for containment, thus it is a special case of our Theorem 4.2
for graph queries; they use an inclusion-exclusion formula for ET , similar to Equation (58), but
given for chordal queries only. Theorem 3.2 in [22] essentially states that, if Equation (13) fails on
a normal polymatroid, then there exists a databaseD witnessingQ1 � Q2, thus it is a special case
of our Lemma 6.7 for the case when the queries are graphs; they use a different expression for ET ,
based on the Möbius inversion of h. This inversion is precisely the I-measure of h, as we explain
in Appendix B. Finally, Theorem 3.3 in [22] proves essentially that Equation (13) is necessary and
sufficient when Q1 is series-parallel and Q2 is chordal. This differs from our Theorem 3.3 in that
it imposes more restrictions on Q1 and fewer on Q2. The proof of our Theorem 3.3 relies on the
fact that any counterexample of Equation (13) is a normal entropic function, but this does not hold
in the setting of Theorem 3.3 [22]; however, the only exception is given by the parity function
(Appendix B), a case that [22] handles directly.

APPENDICES

A BACKGROUND ON CQ’S

Lemma A.1. The containment problem under bag-set semanticsQ1 � Q2 is reducible in polynomial

time to the containment problem under bag-set semantics for Boolean queries, Q ′1 � Q ′2. Moreover,

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 12. Publication date: September 2021.



12:34 M. A. Khamis et al.

this reduction preserves any property of queries discussed in this article: acyclicity, chordality, and

simplicity.

Proof. Assume w.l.o.g. that Q1 and Q2 have the same head variables x (rename them other-
wise). Define two Boolean queries Q ′1 and Q ′2 by adding new unary atoms Ui (xi ) to Q1 and Q2,
one atom for each xi ∈ x . We prove: Q1 � Q2 ⇔ Q ′1 � Q ′2. For the ⇒ direction, fix a database

instance D ′, denote the product of the unary relations by U
def
=

∏

i U
D
i , and let D be obtained

from D ′ by removing the unary relations U D
i . It follows that

⋃

d ∈U Q�[d](D) = hom(Q ′
�
,D ′),

for � = 1, 2. Since Q1 � Q2, and the sets Q�[d](D),d ∈ U are disjoint, for � = 1, 2, we conclude
|hom(Q ′1,D

′) | =
∑

d ∈U |Q1[d](D) | ≤
∑

d ∈U |Q2[d](D) | = |hom(Q ′2,D
′) |. For the⇐ direction, let

D be a database instance, and let d ∈ Dx . Define D ′ to be the database obtained by adding to D

unary relations with one element,U D
i

def
= {di } for each xi ∈ x . Then,Q�[d](D) = hom(Q ′

�
,D ′) for

� = 1, 2. By assumption Q ′1 � Q ′2, which implies |Q1[d](D) | = |hom(Q ′1,D
′) | ≤ |hom(Q ′2,D

′) | =
|Q2[d](D) |. �

Example A.2. We illustrate with this example from [9]:

Q1 (x , z) =P (x ) ∧ S (u,x ),∧S (v, z) ∧ R (z),

Q2 (x , z) =P (x ) ∧ S (u,y),∧S (v,y) ∧ R (z).

We associate them to the following two Boolean queries:

Q ′1 () =P (x ) ∧ S (u,x ),∧S (v, z) ∧ R (z) ∧U1 (x ) ∧U2 (z),

Q ′2 () =P (x ) ∧ S (u,y),∧S (v,y) ∧ R (z) ∧U1 (x ) ∧U2 (z).

Then Q1 � Q2 iff Q ′1 � Q ′2; the latter can be shown using Theorems 4.2 and 4.7.

We prove now a claim that wemade in Section 4.1, namely, that for any node t of a tree decompo-
sition, we can assume vars(Qt ) = χ (t ), where Qt is the query obtained by taking the conjunction
of all atoms with vars(A) ⊆ χ (t ).

Fact A.3 (Informal). Let (T , χ ) be a tree decomposition of some query Q , and, for all t ∈

nodes(T ), let Qt denote the conjunction of A ∈ atoms(Q ) s.t. vars(A) ⊆ χ (t ). Then, for the purpose

of query containment, we can assume that vars(Qt ) = χ (t ), for every t ∈ nodes(T ). More specifically,

we can assume that for every t ∈ nodes(T ) and every A ∈ atoms(Q ) such that vars(A) ∩ χ (t ) � ∅,

there exists A′ ∈ atoms(Q ) such that vars(A′) = vars(A) ∩ χ (t ), hence A′ ∈ atoms(Qt ).

Proof. To see an example where this property fails, considerQ = R (x ,y,u)∧S (y, z)∧R (x , z,v ).
Let T be the tree decomposition {x ,y,u} − {x ,y, z} − {x , z,v}, and let t be the middle node, χ (t ) =
{x ,y, z}. Then Qt = S (y, z) and its variables do not cover χ (t ).
We prove that the property can be satisfied w.l.o.g. We first modify the vocabulary, by adding

for each relation name R of arity a and for each S ⊂ [a], a new relation name RS of arity |S |.
Similarly, we modify a query Q by adding, for each atom R (X1, . . . ,Xa ) and for each S ⊂ [a], a

new atom RS (xS ), where xS
def
= (Xi )i ∈S . Denote by Q̂ the modified query. Obviously Q̂ satisfies

the desired property. We claim that this change does not affect query containment, more precisely

Q1 � Q2 ⇔ Q̂1 � Q̂2. The ⇐ direction follows by expanding an input database D for Q1 and

Q2 with extra predicates RDS
def
= ΠS (R

D ) for every relation symbol R and every S ⊂ [a] where a

is the arity of R. The⇒ direction follows from modifying an input database D for Q̂1 and Q̂2 by
replacing every (a-ary) relation RD by RD � (�S ⊂[a] R

D
S ). �
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B BACKGROUND ON INFORMATION THEORY

In this section, we review some additional background in information theory used in this article,
continuing the brief introduction in Section 3.3.

Fact B.1. If n = 1 (i.e., there is a single random variable) and h is entropic, then c ·h is also entropic

for every c > 0.

Proof. Start with a distribution p whose entropy is �c� · h. Let n be the number of outcomes,

and p1, . . . ,pn their probabilities. For each λ ∈ [0, 1] define p (λ) to be the distribution p
(λ)
1 =

p1 + (1−p1) (1− λ), p
(λ)
i = pi · λ for i > 1, and h (λ) its entropy. Then h (0)

= 0, h (1)
= �c� ·h, and, by

continuity, there exists λ s.t. h (λ)
= c · h. �

Corollary B.2. For everyW � V and every c > 0, the function c · hW is entropic, where hW is

the step function. It follows that every normal function is entropic (because it is a sum
∑

W cWh(W )

and cWh(W ) is entropic).

Proof. By the previous fact, there exists a random variable Z whose entropy is h0 (Z ) = c . Let

h be the entropy of the following n random variables: for all U ∈ V −W , define U
def
= Z (hence,

for all X ⊆ V −W , h(X ) = h0 (Z ) = c), and for every U ∈W , define U to be a constant (hence for
every X ⊆W , h(X ) = 0). Therefore, h = c · hW . �

However, when n ≥ 3, then Zhang and Yeung [32] proved that c · h is not necessarily entropic.
Their proof is based on the parity function, introduced in Example 3.8.

Fact B.3. Γ∗3 is not convex.

Proof. Zhang and Yeung [32] prove this fact as follows. Let h be the entropy of the parity
function in Example 3.8. For every c > 0, consider the function h′ = c · h. They prove that h′ is
entropic iff c = logM , for some integer M , which implies that Γ∗3 is not convex. We include here
their proof for completeness. Assuming h′ is entropic let p ′ be its probability distribution, then the
following independence constraints hold: X ⊥ Y , because h′(XY ) = h′(X ) + h′(Y ), and similarly
X ⊥ Z and Y ⊥ Z . The following functional dependencies also hold: XY → Z (because h′(XY ) =
h′(XYZ )) and similarly XZ → Y , YZ → X . Let x ,y, z be any three values s.t. p ′(x ,y, z) > 0. Then
p ′(x ,y, z) = p ′(x ,y) = p ′(x )p ′(y). Similarly p ′(x ,y, z) = p ′(y)p ′(z), which implies p ′(x ) = p ′(z).
Therefore, for any other value x ′, p ′(x ′) = p ′(z). This means that the variable X is uniformly
distributed, because p ′(x ) = p ′(x ′) for all x ,x ′, hence p ′(x ) = 1/M where M is the size of the
domain of X . It follows that h′(X ) = logM , proving the claim. �

Yeung [30] proves that the topological closure Γ̄∗n is a convex set, for every n. Thus, Γ∗n ⊆ Γ̄∗n
and the inclusion is strict for n ≥ 3. The elements of Γ̄∗n are called almost entropic functions. We
note that if a linear information inequality, or a max-linear information inequality is valid for all
entropic functions h ∈ Γ∗n , then, by continuity, it is also valid for all almost entropic functions
h ∈ Γ̄∗n .

Let h be an entropic function, and X ,Y ⊆ V two sets of variables. For every outcome X = x , we
denote by h(Y |X = x ) the entropy of Y conditioned on X = x . The function Y �→ h(Y |X = x ) is

an entropic function (by definition). Recall that we have defined h(Y |X )
def
= h(XY ) − h(X ). It can

be shown by direct calculation that h(Y |X ) =
∑

x h(Y |X = x ) · p (X = x ), in other words it is a
convex combination of entropic functions. Thus, h(Y |X ) is the expectation, over the outcomes x ,
of h(Y |X = x ), justifying the name “conditional entropy.”

Fact B.4. In general, the mapping Y �→ h(Y |X ) is not entropic.
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Proof. To see an example, consider two probability spaces on X ,Y ,Z , with probabilities p,p ′

and entropies h,h′ such that h is the entropy of the parity (Example 3.8) and h′ = 2h. Consider
a 4’th variable U , whose outcomes are U = 0 or U = 1 with probabilities 1/2, and consider the
mixture model: ifU = 0 then sample X ,Y ,Z using p, ifU = 1 then sample X ,Y ,Z using p ′. Let h′′

be the entropy over the variables X ,Y ,Z ,U . Then the conditional entropy h′′(W |U ) = 3/2h(W ),
for allW ⊆ {X ,Y ,Z }, and thus it is not entropic. �

Yeung [30] defines the I-measure as follows. Fix a set of variablesV , which we identify with [n].
Let Ω = 2[n] − {∅}. An I-measure is any function μ : 2Ω → R such that μ (X ∪ Y ) = μ (X ) + μ (Y )

whenever X ∩Y = ∅. Notice that μ is not necessarily positive. For each variableVi ∈ V we denote

by V̂i
def
= {ω ∈ Ω | i ∈ ω} ⊆ Ω, and extend this notation to setsX ⊆ V by setting X̂

def
=

⋃

V ∈X V̂ . For

each variableVi denote V̂
1
i

def
= V̂i and V̂

0
i

def
= the complement of V̂i . An atomic cell is an intersection

C
def
=

⋂

j=1,n V̂
εj
j , where εj ∈ {0, 1} for all j, where at least one εj = 1. Obviously, μ is uniquely

defined by its values on the atomic cells.
Given h ∈ R2

n
(not necessarily entropic), the I-measure associated to h is the unique μ satisfying

the following, for all X ⊆ V :

h(X ) =
∑

C :C⊆X̂

μ (C ). (59)

The normal entropic functions Nn are precisely those with a non-negative I-measure. This can
be seen immediately by observing that, for any step function hW , its I-measure μW assigns the
value 1 to the cell (

⋂

V �W V 1) ∩ (
⋂

V ∈W V 0), and 0 to everything else. In fact, there is a tight con-
nection between the I-measure μ and the Möbius inverse function д (Equation (48) in Section 6.1),
which we explain next. First, we notice that Equation (48) implies:

h(X ) = −
∑

Y :Y�X

д(Y ). (60)

The connection between μ and д follows by a careful inspection of Equations (59) and (60). Each
atomic cell C in Equation (59) is uniquely defined by the set of its negatively occurring vari-

ables, denote this by neg(C ). Then, C ⊆ X̂ iff X � neg(C ). Define the function д : 2V → R

as д(neg(C ))
def
= −μ (C ) and д(V ) = h(V ) (recall that neg(C ) � V ). Then Equation (59) becomes

h(X ) =
∑

C :X�neg(C ) μ (C ) = −
∑

Y :X�Y д(Y ), which is precisely Equation (60).
We end our background with a proof that the Max-IIP problem is co-recursively enumerable.

Recall that a setA ⊆ Zk is called recursively enumerable, or r.e., if there exists a Turning computable
function f whose image is A. Equivalently, there exists a computable function that, given x ∈ Zk

returns “true” if x ∈ A and does not terminate if x � A. The setA is called co-recursively enumerable,
or co-r.e., if its complement is r.e.

Lemma B.5. Max-IIP is co-r.e.

Proof. (Sketch) Enumerate all finite probability distributions where the probabilities are given
by rational numbers, and check Equation (7) on each of them. This is possible because each en-

tropy value h(X ) is the log of a number of the form
∏

i (
1

p
(X )
i

)p
(X )
i , where i ranges over all possible

assignments of the variable set X , and p
(X )
i is the probability that X takes the i-th assignment.

Therefore the inequality becomes

∃� ∈ [k] s.t.
∏

X ⊆V

∏

i

	
�

1

p
(X )
i

�
�
c�,X ·p

(X )
i

≥ 1.
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In the above, c�,X are integers whilep
(X )
i are rational numbers.We can raise both sides of the above

inequality to a power ofd , which is the common denominator among allp
(X )
i . If the inequality fails,

then return “false,” otherwise continue with the next finite probability distribution. �

C PROOF OF THEOREM 7.1

We note that we can replace Γ∗n in the statement of Theorem 7.1 by Γ̄∗n , because any max-
information inequality holds on Γ∗n iff it holds on Γ̄∗n . We will then prove that the theorem holds
more generally, for any closed, convex cone K ; the claim follows from the fact that K = Γ̄∗n is a
closed, convex cone.
Recall that a cone is a subset K ⊆ RN such that x ∈ K implies c ·x ∈ K for all c ≥ 0. All four sets

Mn ,Nn , Γ̄
∗
n , Γn defined in Section 3.3 are closed, convex cones. We prove:

Theorem C.1. Let K ⊆ RN be a closed, convex cone, and let y1, . . . ,ym ∈ R
N . Then the following

two conditions are equivalent:

(1) ∀x ∈ K : maxi 〈x ,yi 〉 ≥ 0.
(2) There exist λ1, . . . , λm ≥ 0 such that

∑

i λi = 1 and ∀x ∈ K :
∑

i λi 〈x ,yi 〉 ≥ 0. Equivalently,
∑

i λiyi ∈ K
∗ (the dual of K).

Notice that the coefficients λi need not necessarily be rational numbers. The theorem says that
every Max-IIP can be reduced to an IIP with, possibly irrational coefficients.

Proof. Obviously (2) implies (1) because maxi 〈x ,yi 〉 ≥
∑

i λi 〈x ,yi 〉 ≥ 0. We will prove that (1)
implies (2).
First, we prove that (1) implies (2) when K is a finitely generated cone: K = {x | Ax ≥ 0} for

some P × N matrix A. Condition (1) implies that the following optimization problem has a value
≥ 0:

minimize max
i
〈x ,yi 〉

where: Ax ≥ 0

x ∈ RN .

This optimization problem is equivalent to the following, where x0 is a fresh variable, and B is
them × N matrix whose rows are the vectors y1, . . . ,ym :

minimize x0

where: Ax ≥ 0 P rows⎡⎢⎢⎢⎢⎢⎣
x0
. . .

x0

⎤⎥⎥⎥⎥⎥⎦
− Bx ≥ 0 m rows

This is a linear optimization problem whose solution is equal to that of the dual, which is a linear
program over variables μ1, . . . , μP , λ1, . . . , λm :

maximize 0

where: λ1 + · · · + λm = 1 x0

μtA − λtB = 0 x1, . . . ,xN

λ ≥ 0, μ ≥ 0.
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Since the optimal solution of the primal is ≥ 0, the dual must have a feasible solution λ, μ. To prove
Condition (1), assume x ∈ K . Then Ax ≥ 0, therefore μtAx ≥ 0, thus λtBx = 〈

∑

i λiyi ,x〉 ≥ 0
proving the theorem for the case when K is a finitely generated cone.

We prove now the general case. Let K ′ = K ∩ Q be the vectors in K with rational coordinates,
and let K ′ = {x1,x2, . . . ,xn , . . .} be an enumeration of K ′. For each n ≥ 0, let Kn ⊆ K be the
closed, convex cone generated by {x1, . . . ,xn }. Let Λn ⊆ R

m be the set of all vectors λ satisfying
Condition (1) for the cone Kn . Since Kn is finitely generated, we have Λn � ∅. Furthermore it is
easy to check that Λn is topologically closed. Since Λn is bounded, it follows that Λn is a compact
subset of RN . Since K1 ⊆ K2 ⊆ · · · ⊆ Kn ⊆ · · · it follows that Λ1 ⊇ · · · ⊇ Λn ⊇ · · · This
implies that any finite family has a nonempty intersection: Λn1 ∩ · · · ∩ Λns = Λmax(n1, ...,ns ) � ∅.
It follows that the entire family has a non-empty intersection, i.e., there exists λ ∈

⋂

n≥0 Λn . We
prove that λ satisfies Condition (1). Indeed, let x ∈ K , and consider any sequence (xn )n≥0 such
that xn ∈ Kn and limn xn = x . For all n ≥ 0, λ ∈ Λn , which implies

∑

i λi 〈xn ,yi 〉 ≥ 0, therefore
∑

i λi < x ,yi > = limn
∑

i λi < xn ,yi >≥ 0 proving the claim. �
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