


The gradient has the same dimensionality as 𝑥 ; the group by vari-

able is 𝑖 . Gradient descent is an algorithm to solve for the solution

of ∇𝐽 (𝑥) = 0, or equivalently to solve for a fixpoint solution to the

datalog◦ program 𝑥 = 𝑓 (𝑥) where 𝑓 (𝑥) = ∇𝐽 (𝑥) + 𝑥 .

Example 1.2. The APSP problem is to compute the shortest path

length 𝑃 (𝑥,𝑦) between any pair 𝑥,𝑦 of vertices in the graph, given

the length 𝐸 (𝑥,𝑦) of edges in the graph. The value-space of 𝐸 (𝑥,𝑦)

can be the reals R or the non-negative reals R+. The APSP problem

in datalog◦ can be expressed very compactly as

𝑃 (𝑥,𝑦) :- 𝐸 (𝑥,𝑦) ⊕
⊕

𝑧

𝑃 (𝑥, 𝑧) ⊗ 𝐸 (𝑧,𝑦), (1)

where (⊕, ⊗) = (min, +) are the ładditionž and łmultiplicationž

operators in one of the min-+ tropical semirings Trop := (R ∪

{∞},min, +,∞, 0), or Trop+ := (R+ ∪ {∞},min, +,∞, 0). Here R+
denotes the set of non-negative reals.

By changing the semiring, datalog◦ is able to express similar

problems in exactly the same way. For example, (1) becomes transi-

tive closure over the Boolean semiring, top 𝑝-shortest-paths over

the Trop+𝑝 semiring [23] (see Example 5.7), and so forth.

Semantics. It should be clear that datalog◦ is very powerful.

Unfortunately, łwith great power comes great responsibilityž. In Dat-

alog, the least fixpoint semantics was defined w.r.t. set inclusion [2].

Generalizing to semirings, Green at al.[27] observed that, in order

to define the semantics of datalog over S-relations, one needs a par-

tial order, ⊑, because the least fixpoint is defined w.r.t. some partial

order. They proposed to use semirings which are naturally ordered,

where 𝑥 ⊑ 𝑦 is defined as ∃𝑧 : 𝑥 + 𝑧 = 𝑦. However, some important

semirings are not naturally ordered. For example, (R, +,×, 0, 1) is

not naturally ordered, because the relation ∃𝑧 : 𝑥 + 𝑧 = 𝑦 is not

anti-symmetric: for any 𝑥 ≠ 𝑦 there is a 𝑧 where 𝑥 + 𝑧 = 𝑦 and

𝑦 + (−𝑧) = 𝑥 . This means recursive programs over arrays, matrices,

or tensors cannot be interpreted using the framework in [27].

In datalog◦ we decouple the semiring structure from the partial

order. We define a partially ordered, pre-semiring2, denoted by POPS,

to be any pre-semiring with a partial order, where both ⊕ and ⊗

are monotone operations. The value-space of every 𝑆-relation is

some partially ordered pre-semiring.

In some cases, e.g. the Booleans, the partial order of POPS is

the natural one, but in other cases it is not. For example, we can

define a non-standard order relation on R by adding a new element,

R⊥
def
= R ∪ {⊥}, and defining ⊥ ⊑ 𝑥 for all 𝑥 . The set R⊥ is called

the lifted reals, and we can use it to define a semantics for recursive

programs over vectors, matrices, or tensors. Adding ⊥ to create a

partial order is the standard approach for defining the semantics

in general programming languages [48]. In logic programming,

Fitting [15] proposed adding ⊥, leading to the 3-valued semantics

of logic programs with negation.

With the partial order in place, we define the semantics of a

datalog◦ program as the least fixpoint of the immediate conse-

quence operator. datalog◦ subsumes traditional datalog semantics,

and captures the semantics of complex, recursive computations

over vectors, matrices, tensors, etc.

2A pre-semiring is a semiring without the axiom 𝑥 ⊗ 0 = 0 ⊗ 𝑥 = 0 [23]; see Sec. 2.

Finite Convergence. Example 1.1 hinted at the difficulty with

computing the exact least fixpoint solution in a general POPS, even

when we know that the fixpoint exists. In practice, numerical op-

timization problems are often only solved approximately. This, in

principle, remains true with datalog◦. However, here we concen-

trate on ways to compute the exact least fixpoint solution in a finite

number of steps. In particular, we focus on analyzing the number of

iterations needed for the naïve evaluation algorithm3 to converge.

Note that the infinite cardinality of the semiring value-space is

not the reason why a datalog◦ program does not converge when

iterated naïvely. For example, intuitively we know that the naïve

algorithm for the APSP program (1) may not converge under Trop

(due to negative cycles), but it will always converge under Trop+.

This paper makes this intuitive observation precise: we extract

algebraic properties of the POPSwhich serve as sufficient conditions

under which the naïve algorithm for datalog◦ converges in a finite

number of steps. Furthermore, under additional assumptions, we

show that the naïve algorithm converges in poly-time. These results

subsume the corresponding results in traditional Datalog.

For example, our results imply that while the naïve algorithm

for (1) may not converge under Trop, it converges in a linear number

of steps if the semiring is Trop+ or more generally Trop+𝑝 . The

property satisfied by Trop+ but not Trop is 1 ⊕ 𝑎 = 1 for every

element 𝑎 in the value-space and 1 is the multiplicative identity.

Less formally, this says min(𝑎, 0) = 0 for all 𝑎 ∈ R+ ∪ {∞}.

Beyond the naïve algorithm, we show that the approach of gen-

eralizing Gaussian elimination to closed semirings [38, 47] works

for datalog◦ under POPS too; this leads to essentially a cubic time

algorithm to find a least fixpoint of a linear datalog◦ program.

Optimization. Semi-naïve evaluation is one of the major opti-

mization techniques for evaluating Datalog, which we would like

to generalize to datalog◦. To explain the main ideas, let us consider

the Boolean semiring version of (1):

𝑃 (𝑥,𝑦) :- 𝐸 (𝑥,𝑦) ∨
∨

𝑧

𝑃 (𝑥, 𝑧) ∧ 𝐸 (𝑧,𝑦) . (2)

After initializing 𝑃0 (𝑥,𝑦) = 𝛿0 (𝑥,𝑦) = ∅, at the 𝑡th iteration semi-

naïve evaluation does the following:

𝛿𝑡 (𝑥,𝑦) =

(

𝐸 (𝑥,𝑦) ∨
∨

𝑧

𝛿𝑡−1 (𝑥, 𝑧) ∧ 𝐸 (𝑧,𝑦)

)

\ 𝑃𝑡−1 (𝑥,𝑦) (3)

𝑃𝑡 (𝑥,𝑦) = 𝑃𝑡−1 (𝑥,𝑦) ∪ 𝛿𝑡 (𝑥,𝑦). (4)

Furthermore, starting from iteration 𝑡 = 2 onwards, we can sim-

plify (3) further by removing the base-case 𝐸 (𝑥,𝑦) because we know

𝐸 (𝑥,𝑦) ⊆ 𝑃𝑡−1 (𝑥,𝑦) for 𝑡 ≥ 2:

𝛿𝑡 (𝑥,𝑦) =

(

∨

𝑧

𝛿𝑡−1 (𝑥, 𝑧) ∧ 𝐸 (𝑧,𝑦)

)

\ 𝑃𝑡−1 (𝑥,𝑦) . (5)

Without these optimizations, we will have rederived a lot of facts in

each iteration. Under datalog◦, we are able to generalize the above

ideas by defining an appropriate łminusž ⊖ operator for certain

semirings that plays the role of the \ operator in (3), and we show

that for ⊖, both the semi-naïve evaluation step (3) and the base-case

removal optimization (5) hold for general datalog◦ programs.

3Repeatedly apply the equation until a fixpoint is reached
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Example 1.3 (Shortest paths). The APSP problem is 1 under Trop,

where the analog of (5) is:

𝛿𝑡 (𝑥,𝑦) = (min
𝑧

𝛿𝑡−1 (𝑥, 𝑧) + 𝐸 (𝑧,𝑦)) ⊖ 𝑃𝑡−1 (𝑥,𝑦), (6)

where the difference operator ⊖ is defined later in the pape (20).

Intuitively, the ⊖ operator does what we expect: from the new

shortest paths from 𝑥 to 𝑧 discovered in the previous iteration, we

see if adding a (𝑧,𝑦) edge gives us a shorter path from 𝑥 to 𝑦; if so,

we update the shortest path from 𝑥 to 𝑦.

Paper organization. Section 2 presents basic concepts on semir-

ings and defines (sum-)sum-product queries under semirings. Sec-

tion 3 studies the stability of vector-valued monotone functions

over posets. (Stability of a function is the number of its applications

until a fixpoint is reached.) This fundamental result serves as a

basis for analyzing finite convergence of the naïve algorithm for

datalog◦. Section 4 formulates the concept of partially preordered

semirings (POPS), which form value-spaces of datalog◦ programs. It

formally defines the syntax for datalog◦ programs, and introduces

the fixpoint semantics of datalog◦. A range of possible convergence

behaviors of datalog◦ programs is studied in Section 5. Section 6

presents a generalization of semi-naïve evaluation to datalog◦.

2 BACKGROUND ON SEMIRINGS

A pre-semiring [23] is a tuple 𝑺 = (𝑆, ⊕, ⊗, 0, 1) where ⊕ and ⊗ are

binary operators on 𝑆 for which (𝑆, ⊕, 0) is a commutative monoid,

(𝑆, ⊗, 1) is a monoid, and ⊗ distributes over ⊕. This paper only

considers commutative ⊕ and ⊗ operators. When the absorption

rule 𝑥 ⊗ 0 = 0 holds for all 𝑥 ∈ 𝑆 , we call 𝑺 a semiring.4

Common examples are the Booleans (B
def
= {0, 1},∨,∧, 0, 1), and

sum-product semirings over natural (N, +,×, 0, 1) or real numbers

(R, +,×, 0, 1). We will refer to them simply as B,N and R. Other

useful examples were introduced in Example 1.2: Trop and Trop+.

We will illustrate more semirings in this paper, and also refer the

reader to [23] for many more examples.

Fix a pre-semiring 𝑺 = (𝑆, ⊕, ⊗, 0, 1) and a finite domain 𝐷 ; for

example 𝐷 could be the set [𝑛] = {1, . . . , 𝑛}, or some finite set

of identifiers. An 𝑺-relation is a function 𝑅 : 𝐷𝑘 → 𝑆 , where 𝐷

is a finite domain. 𝐷𝑘 is called the key-space, 𝑆 is the value-space,

and 𝑘 is the arity of 𝑅. The type of 𝑅 is 𝐷𝑘 → 𝑺 . If 𝒕 ∈ 𝐷𝑘 is a

tuple of constants, then we call the expression 𝑅(𝒕) a ground atom.

Equivalently, we can view an 𝑺-relation as a mapping from ground

atoms to 𝑆 . Fix a vocabulary R = {𝑅1, 𝑅2, . . .} of relation names,

and a semiring 𝑺 , where each relation 𝑅 𝑗 has type 𝐷
𝑘 𝑗 → 𝑆 .

Definition 2.1. Let 𝑥1, . . . , 𝑥𝑝 be a set of variables, taking values

in the domain 𝐷 . A sum-product query is an expression of the form

𝑇 (𝑥1, . . . , 𝑥𝑘 ) :-
⊕

𝑥𝑘+1,...,𝑥𝑝 ∈𝐷

𝐴1 ⊗ · · · ⊗ 𝐴𝑚 (7)

where each 𝐴𝑢 is either a relational atom, 𝑅𝑖 (𝑥𝑡1 , . . . , 𝑥𝑡𝑘𝑖 ), or an

equality predicate, [𝑥𝑡 = 𝑥𝑠 ]; the variables 𝑥1, . . . , 𝑥𝑘 are called free

variables, and the others are called bound variables. The body of the

query (RHS of (7)) is a sum-product expression.

4Some references, e.g. [35], define a semiring without absorption.

A sum-sum-product query has the form:

𝑄 (𝑥1, . . . , 𝑥𝑘 ) :- 𝑇1 (𝑥1, . . . , 𝑥𝑘 ) ⊕ · · · ⊕ 𝑇𝑞 (𝑥1, . . . , 𝑥𝑘 ) (8)

where𝑇1,𝑇2, . . . ,𝑇𝑞 are sum-product expressions with the same free

variables 𝑥1, . . . , 𝑥𝑘 .

When the value-space 𝑺 is the Boolean semiring, then a sum-

product query is a Conjunctive Query (CQ) under set semantics, and

a sum-sum-product query is a Union of Conjunctive Queries (UCQ).

When 𝑺 = N, then they are a CQ or UCQ under bag semantics; and

when 𝑺 = R then a sum-product expression is a tensor expression,

sometimes called an Einsum [46].

The semantics of (7) is the following. The value of each ground

atom 𝑇 (𝒕) is defined as the (finite!) sum on the right, where we

substitute the variables 𝑥1, . . . , 𝑥𝑘 with the constants in the tuple 𝒕 .

The semantics of (8) is the sum of terms on the right.

The problem of computing efficiently (sum-)sum-products over

semirings has been extensively studied both in the database and in

the AI literature. In databases, the query optimization and evalua-

tion problem is a special case of sum-sum-product computation over

the value-space of Booleans (set semantics) or natural numbers (bag

semantics). The functional aggregate queries (FAQ) framework [32]

extends the formulation to queries over multiple semirings. In AI,

this problem was studied by Shenoy and Schafer [49], Dechter [13],

Kohlas and Wilson [35] and others. Surveys and more examples

can be found in [3, 34].

Remark 2.2. The notation pair (⊕, ⊗) helps reduce confusion

when we discuss semirings such as the a tropical semiring where

min is ⊕ and + is ⊗. However, ⊕ and ⊗ are quite cumbersome to

parse; thus, in the rest of this paper we will mostly use + and ◦

instead of (⊕, ⊗) to lighten the notational density. Furthermore,

just as with arithmetic multiplication, we will also sometimes drop

◦, writing 𝑎𝑏 for 𝑎 ◦ 𝑏 for instance.

3 LEAST FIXPOINTS OVER PRODUCT SPACES

We review partially ordered sets and present two technical results

that allow us to prove the convergence of datalog◦ programs.

Fix a partially ordered set (poset), 𝑳 = (𝐿, ⊑). In this paper we will

assume that each poset has a minimum element⊥, unless otherwise

specified. We denote by
∨

𝐴, or
∧

𝐴 respectively, the least upper

bound, or greatest lower bound of a set 𝐴 ⊆ 𝐿, when it exists. A

function 𝑓 between two posets is called monotone if 𝑥 ⊑ 𝑦 implies

𝑓 (𝑥) ⊑ 𝑓 (𝑦), and is called strict if 𝑓 (⊥) = ⊥.

Given a monotone function 𝑓 : 𝑳 → 𝑳, a fixpoint is an element

𝑥 such that 𝑓 (𝑥) = 𝑥 . We denote by lfp
𝑳
(𝑓 ) the least fixpoint of 𝑓 ,

when it exists, and drop the subscript 𝑳 when it is clear from the

context. Consider the following 𝜔-sequence:

𝑓 (0) (⊥)
def
= ⊥ 𝑓 (𝑛+1) (⊥)

def
= 𝑓 (𝑓 (𝑛) (⊥)) (9)

If 𝑥 is any fixpoint of 𝑓 , then 𝑓 (𝑛) (⊥) ⊑ 𝑥 (by induction on 𝑛).

There are several restrictions on the poset 𝑳 and/or function 𝑓 that

ensure that
∨

𝑛 𝑓 (𝑛) (⊥) is the least fixpoint of 𝑓 , see [12]. The most

common restriction is for 𝑓 to be monotone and 𝜔-continuous: the

least fixpoint exists due to Kleene’s theorem. This line was studied

extensively in the formal language literature [8, 37]. In the database

literature, Green et al. [27] require the semiring to be naturally
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ordered (𝑳 captures the order) and 𝜔-continuous in order to give a

semantics to datalog programs over semirings.

In this paper we are interested in conditions that ensure that the

sequence (9) reaches a fixpoint after a finite number of steps, and

for this reason we introduce here two alternative conditions. An

𝜔-chain in a poset 𝑳 is a sequence 𝑥0 ≤ 𝑥1 ≤ . . . We say that the

chain is finite if there exists 𝑛0 such that 𝑥𝑛0
= 𝑥𝑛0+1 = 𝑥𝑛0+2 = · · · ;

equivalently, 𝑥𝑛0
=

∨

𝑥𝑛 .

Definition 3.1 (ACC). A poset 𝑳 satisfies the Ascending Chain

Condition, or ACC [43], if it has no infinite 𝜔-chains. The rank of a

strictly increasing chain 𝑥0 < 𝑥1 < · · · < 𝑥𝑘 is 𝑘 . We say that 𝑳 has

rank 𝑘 if every strictly increasing chain has rank ≤ 𝑘 [50].

Definition 3.2. A monotone function 𝑓 on 𝑳 (i.e. 𝑓 : 𝑳 → 𝑳) is

called 𝑝-stable if 𝑓 (𝑝+1) (⊥) = 𝑓 (𝑝) (⊥). The stability index of 𝑓 is

the minimum 𝑝 for which 𝑓 is 𝑝-stable. The function 𝑓 is said to be

stable if it is 𝑝-stable for some 𝑝 ≥ 0.

If 𝑳 has rank 𝑘 then every monotone function 𝑓 is 𝑘-stable. If

ACC holds, then every monotone 𝑓 is stable. If a function 𝑓 is

𝑝-stable, then it has a least fixpoint and lfp(𝑓 ) = 𝑓 (𝑝) (⊥).

In this paper we need to compute the least fixpoint of func-

tions over product spaces, 𝑳1 × 𝑳2, or 𝑳
𝐷 for some set 𝐷 , ordered

pointwise. The ACC immediately extends to products [12]:

Proposition 3.3. Suppose posets 𝑳1, 𝑳2, 𝑳 satisfy ACC. Then 𝑳1×𝑳2
satisfies ACC. If 𝐷 is finite, 𝑳𝐷 also satisfies ACC. If 𝑳1, 𝑳2, 𝑳 have

ranks 𝑘1, 𝑘2, 𝑘 then 𝑳1 × 𝑳2 has rank 𝑘1 +𝑘2 and 𝑳
𝐷 has rank 𝑘 · |𝐷 |.

Next, we consider stability of functions over product spaces. We

start by considering two posets, 𝑳1, 𝑳2, and two functions:

𝑓 :𝑳1 × 𝑳2 → 𝑳1 𝑔 :𝑳1 × 𝑳2 → 𝑳2

Denote by ℎ
def
= (𝑓 , 𝑔) : 𝑳1 × 𝑳2 → 𝑳1 × 𝑳2 and, for any 𝑢 ∈ 𝑳1,

denote by 𝑔𝑢 (𝑦)
def
= 𝑔(𝑢,𝑦). We prove:

Lemma 3.4. Assume that 𝑝, 𝑞 are two numbers such that, for all 𝑢 ∈

𝑳1, the function𝑔𝑢 is𝑞-stable, and the function 𝐹 (𝑥)
def
= 𝑓 (𝑥,𝑔

(𝑞)
𝑥 (⊥))

is 𝑝-stable. Then the following hold:

• The function ℎ has the least fixpoint (𝑥,𝑦), where

𝑥
def
= 𝐹 (𝑝) (⊥) 𝑦

def
=𝑔
(𝑞)
𝑥 (⊥) (10)

• Denoting (𝑎𝑛, 𝑏𝑛)
def
= ℎ (𝑛) (⊥,⊥), the following equalities hold:

𝑎𝑝𝑞+𝑝 =𝑥 𝑏𝑝𝑞+𝑞 =𝑦 (11)

In particular, ℎ is 𝑝𝑞 +max(𝑝, 𝑞)-stable.

We give here the main idea of the proof, and defer the details

to the appendix. The first item of the lemma can be checked by

direct calculation to verify that 𝑓 (𝑥,𝑦) = 𝑥 and 𝑔(𝑥,𝑦) = 𝑦. For the

second item, we view the computation in Eq. (10) as a sequence

of steps, each applying either 𝑔 or 𝑓 (see Fig. 1). The fixpoint 𝑥𝑝 is

reached after 𝑝𝑞 + 𝑝 steps5, while the fixpoint 𝑦𝑝𝑞 is reached after

𝑝𝑞 + 𝑝 + 𝑞 steps. The claim follows by observing that the sequence

ℎ (𝑛) (⊥,⊥) grows at least as fast as the sequence in the figure.

5There are 𝑝𝑞 𝑔-steps plus 𝑝 𝑓 -steps.

We note that the main idea for obtaining a fixpoint in Lemma 3.4

is a general principle that is also used in Floyd-Warshall’s algorithm,

and in other settings [29, 38].

We generalize the lemma as follows. A clone [10] over 𝑛 posets

𝑳1, . . . , 𝑳𝑛 is a set C where (1) each element 𝑓 ∈ C is some mono-

tone function 𝑓 : 𝑳 𝑗1 ×· · ·×𝑳 𝑗𝑘 → 𝑳𝑖 , (2) C contains all projections

𝑳 𝑗1 × · · · × 𝑳 𝑗𝑘 → 𝑳 𝑗𝑖 , and (3) C is closed under composition, i.e.

it contains the function 𝑔 ◦ (𝑓1, . . . , 𝑓𝑘 ) whenever 𝑓1, . . . , 𝑓𝑘 , 𝑔 ∈ C

and their types make the composition correct. We call C a c-clone

if it also contains the constant ⊥ functions: ⊥ : () → 𝑳𝑖 . For a sim-

ple illustration, if 𝑓 : 𝑳1 × 𝑳2 → 𝑳1 and 𝑔 : 𝑳1 × 𝑳2 → 𝑳2 are in

C, then the functions 𝑓 (𝑥, 𝑔(𝑥,𝑦)), 𝑓 (𝑓 (𝑥,𝑦), 𝑔(𝑥,𝑦)), 𝑔(𝑓 (𝑥,𝑦), 𝑦)

are also in C. Similarly, the functions 𝑔(𝑥,⊥), 𝑔(𝑥,𝑔(𝑥,⊥)), and, in

general, all functions 𝑥 ↦→ 𝑔
(𝑞)
𝑥 (⊥) for 𝑞 ≥ 0 are in C, and so is

𝐹 (𝑥)
def
= 𝑓 (𝑥,𝑔

(𝑞)
𝑥 (⊥)).

Theorem3.5. Let C be a c-clone of functions over𝑛 posets 𝑳1, . . . , 𝑳𝑛 ,

and assume that, for every 𝑖 ∈ [𝑛], every function 𝑓 : 𝑳𝑖 → 𝑳𝑖 in C

is 𝑝𝑖 -stable. WLOG, assume 𝑝1 ≥ 𝑝2 ≥ · · · ≥ 𝑝𝑛 . Then, if 𝑓1, . . . , 𝑓𝑛

are functions in C of types 𝑓𝑖 :
∏

𝑗=1,𝑛 𝑳 𝑗 → 𝑳𝑖 , the function ℎ
def
=

(𝑓1, . . . , 𝑓𝑛) is 𝑃-stable where 𝑃 :=
∑𝑛
𝑘=1

∏𝑘
𝑖=1 𝑝𝑖 . Moreover, this upper

bound is tight: there exist posets 𝑳1, . . . , 𝑳𝑛 , a c-clone C, and functions

𝑓1, . . . , 𝑓𝑛 , such that 𝑃 is the stability index of ℎ.

4 DATALOG
◦

We introduce here a new recursive language obtained by combining

traditional datalog with tensor expressions. We call the language

datalog◦, pronounced datalogo, where the superscript ł◦ž is a (semi)-

ring. We restrict our discussion to the basic datalog◦, which is

analogous to the monotone fragment of datalog without interpreted

functions, and discuss extensions in Appendix B.1. Throughout this

sectionwe denote by 𝐸1, . . . , 𝐸𝑚 the relational symbols representing

the EDB predicates, by 𝑅1, . . . , 𝑅𝑛 the symbols representing the IDB

predicates.6 All EDBs and IDBs are assumed to be over the same

finite domain 𝐷 , and have the same value-space 𝑺; thus, their types

are 𝐸 𝑗 : 𝐷
ℓ𝑗 → 𝑺 and 𝑅𝑖 : 𝐷

𝑘𝑖 → 𝑺 , where ℓ𝑗 , 𝑘𝑖 are the arities of

𝐸 𝑗 , 𝑅𝑖 respectively.

A datalog◦ program 𝑃 consists of 𝑛 rules, one for each IDB

predicate:

𝑃 : 𝑅𝑖 (vars𝑖 ) :- 𝑓𝑖 (𝐸1, . . . , 𝐸𝑚, 𝑅1, . . . , 𝑅𝑛) 𝑖 ∈ [𝑛] (12)

where each function 𝑓1, . . . , 𝑓𝑛 is a sum-sum-product expression

given by Def. 2.1, Eq. (8). 𝑃 is called linear if each product contains

at most one IDB predicate. The datalog◦ program in Ex. 1.2 is linear.

While in standard datalog rules are required to be safe, meaning

that every variable must occur in some relational atom, we do not

require this in datalog◦, because we assume the domain 𝐷 is finite.

Partially Ordered Pre-semirings. To define the semantics of

datalog◦, we extend the pre-semiring 𝑺 with a partial order.

Definition 4.1. A partially ordered pre-semiring, in short POPS7,

is a tuple 𝑺 = (𝑆, +, ◦, 0, 1, ⊑), where (𝑆, +, ◦, 0, 1) is a pre-semiring,

(𝑆, ⊑) is a poset, and +, ◦ are monotone.

6EDB and IDB stand for extensional database and intentional database respectively [2].
7For Partially Ordered Pre-Semiring.
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A POPS satisfies the identities ⊥ + ⊥ = ⊥ (because ⊥ + ⊥ ⊑

⊥ + 0 = ⊥) and similarly ⊥ ◦ ⊥ = ⊥. We say that ◦ is strict if the

identity 𝑥 ◦ ⊥ = ⊥ holds (recall that we assume ◦ is commutative).

In any (pre-)semiring 𝑺 , the relation 𝑥 ⪯𝑆 𝑦 defined as ∃𝑧 :

𝑥 + 𝑧 = 𝑦, is a preorder: it is reflexive and transitive, but not always

anti-symmetric. When ⪯𝑆 is anti-symmetric, it is a partial order, in

which case it is called the natural order on 𝑺 . Every naturally ordered

semiring is a POPS, where ⊥ = 0 and ◦ is strict, but not conversely.

Prior semantics to datalog [27] or fixpoint logic [11] required the

semiring to be naturally ordered, 𝜔-complete, meaning that every

𝜔-chain has a least upper bound, and 𝜔-continuous, meaning every

countable sum is associative and commutative, and ◦ distributes

over countable sums. Our approach differs in that we decouple

the order relation from the (pre-)semiring structure. The reason

is that many datalog◦ programs are over a semiring that is not

naturally ordered, and, even when it is, their fixpoint semantics is

over an order different from the natural one. For example, R is not

naturally ordered, yet all tensor operations are over R-relations,

hence we need a means to interpret recursive programs over R. The

common approach for defining recursive functions over R or N (or

any other set) is to łliftž the set. For example, the lifted integers

N⊥
def
= N ∪ {⊥} with the ordering ⊥ ⊑ 𝑥 for all 𝑥 , is used to give a

standard textbook semantics to the recursive definition of factorial:

𝑃 : fact(𝑥) = if 𝑥 = 0 then 1 else 𝑥 × fact(𝑥 − 1)

The immediate consequence operator 𝑃 (fact) takes a partial func-

tion and returns a new partial function. After 𝑞 iterations, 𝑃 (𝑞) (⊥)

returns a function that is = 𝑥 ! for 𝑥 < 𝑞, and is = ⊥ for 𝑥 ≥ 𝑞,

and fact = lfp(𝑃). Important for our discussion is the fact that the

partial order ⊑ is not the natural order 𝑥 ≤ 𝑦 on N, but a different

one. This justifies our definition of a POPS (Def 4.1), where we

decoupled the partial order from the (pre-)semiring operations.

Examples of POPS and discussions are given in Appendix B. It

turns out that POPS capture a big variety of settings, including

Fitting’s 3-valued and 4-valued approaches to logic programming.

The latter connection is worked out in some detail in [31].

Semantics. Wedefine now the semantics of a basic program (12).

Denote by 𝑫EDB
def
=

⋃

𝑗=1,𝑚 𝐷ℓ𝑗 and 𝑫IDB
def
=

⋃

𝑖=1,𝑛 𝐷
𝑘𝑖 , where

the union is a disjoint union. An instance of all EDB predicates is

𝑬 ∈ 𝑆𝑫EDB , and an instance of all IDB predicates is 𝑹 ∈ 𝑆𝑫IDB . For

each datalog◦ rule, the expression 𝑓𝑖 in (12) defines a function:

𝑓𝑖 : 𝑆
𝑫EDB × 𝑆𝑫IDB → 𝑆𝐷

𝑘𝑖

Denote by 𝐻
def
= (𝑓1, . . . , 𝑓𝑛) : 𝑆

𝑫EDB × 𝑺𝑫IDB → 𝑆𝑫IDB .

Definition 4.2. Fix an EDB instance, 𝑬 . The immediate consequence

operator of the program 𝑃 in (12) is the function 𝐹𝑃 : 𝑆𝑫IDB → 𝑆𝑫IDB

defined as 𝐹𝑃 (𝑹)
def
= 𝐻 (𝑬 , 𝑹). The semantics of the datalog pro-

gram 𝑃 is its least fixpoint, lfp(𝐹𝑃 ). The naïve evaluation algorithm

consists of setting 𝑹
(0) def

= (⊥, . . . ,⊥) and repeatedly computing

𝑹
(𝑞+1) def

= 𝐹𝑃 (𝑹
(𝑞) ), until 𝑹 (𝑞+1) = 𝑹

(𝑞) . If such a fixpoint exists,

then we say that the program converges, otherwise it diverges.

The Grounded datalog◦ Program. It is often more convenient

to define the semantics of a datalog◦ program with its grounded

version. Fix a program 𝑃 as defined in Eq. (12), and consider a

rule 𝑅𝑖 (𝑥1, . . . , 𝑥𝑘𝑖 ) :- · · · . A grounding of this rule is obtained by

choosing a tuple 𝒕 ∈ 𝐷𝑘𝑖 , substituting all head variables with

the constants in 𝒕 , and expanding each summation operator into

an explicit sum of expressions, for example
∑

𝑥 ∈𝐷 𝑓 (𝑥) becomes

𝑓 (𝑢1) + 𝑓 (𝑢2) + · · · + 𝑓 (𝑢 |𝐷 |), if the domain is 𝐷 = {𝑢1, . . . , 𝑢 |𝐷 |}.

This results in an expression consisting of ground EDB atoms and

ground IDB atoms connected by the operators + and ◦.

Define𝑀
def
= |𝑫EDB | and𝑁

def
= |𝑫IDB | the number of ground EDB

atoms and ground IDB atoms respectively. Denote these atoms by

the variables 𝑒1, . . . , 𝑒𝑀 and 𝑥1, . . . , 𝑥𝑁 respectively. For example,

one variable 𝑥𝑝 may stand for the ground atom 𝑅𝑖 (𝑢1, . . . , 𝑢𝑘𝑖 ),

where 𝑢1, . . . , 𝑢𝑘𝑖 ∈ 𝐷 . The grounded function 𝑓𝑖 is a multivariate

polynomial in the variables 𝑒1, . . . , 𝑒𝑀 , 𝑥1, . . . , 𝑥𝑁 over the POPS 𝑺;

𝑓𝑖 : 𝑺
𝑀 × 𝑺𝑁 → 𝑺 . If the original program was linear, then each 𝑓𝑖

is a linear function in the IDB variables 𝑥1, . . . , 𝑥𝑁 . The grounded

program 𝑃𝑔 consists of all groundings of all rules in 𝑃 :

𝑃𝑔 : 𝑥𝑘 :- 𝑓𝑘 (𝑒1, . . . , 𝑒𝑀 , 𝑥1, . . . , 𝑥𝑁 ) 𝑘 ∈ [𝑁 ] (13)

EDB and IDB instances of the original program and the grounded

program are the same. For example an instance of 𝑅𝑖 in the origi-

nal program is an 𝑺-relation, i.e. an element in 𝑺
𝐷𝑘𝑖

, while in the

grounded program 𝑅𝑖 is replaced by |𝐷 |
𝑘𝑖 variables 𝑥1, 𝑥2, . . . , 𝑥𝐷𝑘𝑖 ,

which also represent an element in 𝑺
𝐷𝑘𝑖

. Similarly, the immediate

consequence operator of the original and of the grounded program

coincide. In the rest of this paper we will assume w.l.o.g. that the se-

mantics of a datalog◦ program (Def. 4.2) is the fixpoint of a system

of polynomials (13).

For a simple illustration, assuming a domain of size 2, 𝐷 = {1, 2},

the grounding of the datalog◦ program in (1) is the following:

𝑥11 :- 𝑒11 + 𝑒11𝑥11 + 𝑒12𝑥21 𝑥12 :- 𝑒12 + 𝑒11𝑥12 + 𝑒12𝑥22

𝑥21 :- 𝑒21 + 𝑒21𝑥11 + 𝑒22𝑥21 𝑥22 :- 𝑒22 + 𝑒21𝑥12 + 𝑒22𝑥22

5 CONVERGENCE BEHAVIOR OF datalog◦

In traditional datalog, the naïve evaluation algorithm converges

in a number of iterations that is polynomial in the size of the do-

main8, but in datalog◦, the picture is more complex. Recall that 𝐷

denotes the (finite) domain on which the key-space is based, which

is different from the semiring value-space which can be infinite.

Depending on the POPS 𝑺 , and assuming ⊕ and ⊗ take 𝑂 (1)-time

to evaluate, there are four possibilities for datalog◦:

(i) Every program converges in time polynomial in |𝐷 |.

(ii) Every program converges in some time 𝑇 ( |𝐷 |).

(iii) Every program converges.

(iv) Not every program converges.

We study the following question: Given a POPS 𝑺 , determine

which of the four cases holds for datalog◦?

The simplest example is when 𝑺 is the Boolean semiring. This

is the traditional datalog setup when Case (i) holds. This section

provides a series of results pertaining to the question above in the

8In standard datalog the domain is sometimes assumed to be infinite, and instead the
runtime is described in terms of the size of the active domain. In this paper we assume
that the domain is finite, and avoid the need to talk about the active domain. When the
domain is infinite, then one can adopt the approach of standard datalog and consider
the active domain instead.
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general case. Throughout this section we will refer the following

single-rule datalog◦ program:

𝑋 () :- 𝐴() ◦ 𝑋 () + 𝐵() (14)

Obviously, a necessary condition for every datalog◦ program to

converge (in one of the convergence criteria above) is for (14) to

also converge. Surprisingly, in some cases the converse also holds:

convergence of (14) implies convergence of any datalog◦ program.

A linear function9 on the POPS 𝑺 is either a constant function

𝑓 (𝑥)
def
= 𝑏, or is defined as10:

𝑓 (𝑥)
def
= 𝑎𝑥 + 𝑏 (15)

When 𝑏 = 1 then we say that the linear function (15) is simple. A

multivariate function 𝑓 : 𝑺𝑘 → 𝑺 is called linear if it is linear in each

argument; equivalently, 𝑓 (𝑥1, . . . , 𝑥𝑘 ) = 𝑎1 ◦ 𝑥𝑖1 + · · · + 𝑎ℓ ◦ 𝑥𝑖ℓ + 𝑏,

for 1 ≤ 𝑖1 < 𝑖2 < · · · < 𝑖ℓ ≤ 𝑘 .

The following lemma can be verified straightforwardly; recall

that ◦ is strict means 𝑎 ◦ ⊥ = ⊥.

Lemma 5.1. Let 𝑺 be a POPS where ◦ is strict, and 𝑓 be a univariate

linear function. If 𝑓 (𝑥) = 𝑏, then 𝑓 (𝑞) (⊥) = 𝑏 for all 𝑞 ≥ 1. If

𝑓 (𝑥) = 𝑎𝑥 + 𝑏, then, define 𝑔(𝑥)
def
= 𝑎𝑥 + 1, we have

𝑓 (𝑞) (⊥) = 𝑏 + 𝑎𝑏 + 𝑎2𝑏 + · · · + 𝑎𝑞−1𝑏 + ⊥ = 𝑔 (𝑞) (⊥) ◦ 𝑏. (16)

In particular, if every simple linear function is 𝑞-stable, then every

linear function is max(1, 𝑞)-stable.

5.1 Divergence

It is easy to find examples where programs diverge, thus, Case (iv)

is possible. Consider the program (14) over the naturally ordered

semiringN. Set𝐴() = 2, 𝐵() = 1, then𝑋 (𝑞+1) = 2𝑋 (𝑞) +1 and, after

𝑞 iterations, the IDB is 𝑋 (𝑞) = 2𝑞 − 1, hence the program diverges.

5.2 Convergence

This section studies conditions under which a datalog◦ program

converges in a finite number of steps that is not only dependent on

|𝐷 | but also on the value-space of 𝑺 . This corresponds to Case (iii).

The first observation is a simple sufficient condition, which follows

immediately from Proposition 3.3:

Theorem 5.2. If ACC holds for the POPS 𝑺 , then every datalog◦

program 𝑃 on 𝑺 converges on every input EDB instance. In addition, if

𝑺 has rank 𝑘 , then the program converges in at most 𝑘 ·𝑁 = 𝑘 · |𝐷 |𝑂 (1)

iterations (where 𝑁 is the number of ground IDB atoms).

Beyond the above simple result, we give next a complete charac-

terization of POPS 𝑺 for which every linear program converges.

Theorem 5.3. Let 𝑺 be a POPS where ◦ is strict. Then, every linear

datalog◦ program converges in a finite number of steps if and only if

every linear function is stable.

In [31] we give an example of a POPS 𝑺 that belongs to Case (iii),

but not to Case (ii): every datalog◦ program converges in a finite

number of steps, yet the program 𝑃 in (14) requires a number of

steps that depends on the values of 𝐴() and 𝐵().

9Strictly speaking, these are affine functions; however, we use łlinearž to align with
łlinear datalogž.
10 𝑓 (𝑥) = 𝑏 is not a special case of (15), because, in general, 0 ◦ 𝑥 ≠ 0.

5.3 Convergence in 𝑇 ( |𝐷 |) steps

Next, we study conditions under which every program converges

in𝑇 ( |𝐷 |) steps, for some function𝑇 . Unlike the previous case, here

we insist that the number of steps depends only on the size of the

domain, and not on the values in the value-space. This is precisely

Case (ii) in our discussion. We will give a complete characterization

of the POPS 𝑺 for this case, assuming that ◦ is strict.

Definition 5.4. A POPS 𝑺 is called 𝑝-stable if every simple linear

function is 𝑝 + 1-stable.

A necessary condition for every program to converge in time

𝑇 ( |𝐷 |) is that the POPS 𝑺 is 𝑝-stable, for some 𝑝 ≥ 0. This follows

immediately by considering the program (14): it converges in some

fixed number of steps, say 𝑝 +1 steps11, which is independent of the

values𝐴() and 𝐵(). Then, by setting𝐴() = 𝑎 and 𝐵() = 1, it follows

that the a simple linear function 𝑓 is 𝑝 + 1-stable, in particular, the

POPS is 𝑝-stable. In this section we prove that 𝑝-stability of the

POPS 𝑺 is also a sufficient condition.

Theorem 5.5. Let 𝑺 be a 𝑝-stable POPS where ◦ is strict. Consider a

datalog◦ program 𝑃 , and recall that 𝑁 is the number of ground IDB

atoms. Then:

(i) If 𝑝 = 0, then 𝑃 converges in at most 𝑁 steps.

(ii) If 𝑃 is linear, then it converges in ≤
∑𝑁
𝑖=1 (𝑝 + 1)

𝑖 steps.

(iii) In general, 𝑃 converges in ≤
∑𝑁
𝑖=1 (𝑝 + 2)

𝑖 steps.

The bounds given by the theorem are exponential in 𝑁 , except

for 0-stable POPS. For linear programs (case (ii)), we will see in

Theorem 5.11 that 𝑃 can be computed in PTIME, using a different

algorithm than naïve evaluation. For case (iii), we could neither

prove nor disprove a polynomial bound.

In the rest of this section we outline the key steps in the proof

of Theorem 5.5. The main line of development is to start from a

notion of stability of a single element in the value-space, which

is essentially equivalent to the stability of simple linear functions

over the same space. Then, the main technical result for the proof

is to bound the stability of single-valued polynomial functions us-

ing the stability of simple linear functions. This result is stated

in Theorem 5.8 below. It is a statement about properties of semir-

ings, which should be of independent interest from datalog◦. The

theorem is then extended to single-valued polynomial functions

over stable POPS, and finally to vector-valued functions over stable

POPS, which leads to Theorem 5.5.

𝑝-Stable Semirings. We start with the value-space whose ele-

ments are stable. The following notations and simple facts can be

found in [23]. Fix a semiring 𝑺 . For every 𝑎 ∈ 𝑺 and 𝑝 ≥ 0 define:

𝑎 (𝑝)
def
= 1 + 𝑎 + 𝑎2 + · · · + 𝑎𝑝 (17)

Definition 5.6. An element 𝑎 is 𝑝-stable if 𝑎 (𝑝) = 𝑎 (𝑝+1) . A semir-

ing 𝑺 is 𝑝-stable if all its elements are 𝑝-stable.

This definition is consistent with the definition of POPS stability

(Defn. 5.4), for the following reasons. Suppose every element of

𝑺 is is 𝑝-stable. It is known [23] that the stability of 1 implies 𝑺 is

naturally ordered (see also [31] ). Hence, 𝑺 is a POPS using its natural

11The non-recursive program𝑋 () :- 𝐵 () requires at least one step; this justifies writing
the number of steps as 𝑝 + 1.
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order. Furthermore, one can check that every simple linear function

is 𝑝 + 1-stable. Conversely, suppose 𝑺 is naturally ordered and 𝑝-

stable according toDef. 5.4, then every element𝑎 is 𝑝-stable, because

𝑎 (𝑝) = 𝑓 (𝑝+1) (0) where 𝑓 is the simple linear function. We give an

example of a very useful 𝑝-stable semiring; See reference [23] for

more examples.

Example 5.7 (Trop𝑝 ). Consider the following semiring, which

we denote by Trop𝑝 . Its elements are bags of 𝑝 + 1 real numbers

𝒖 = {𝑢0, 𝑢1, . . . , 𝑢𝑝 } ⊆ R ∪ {∞}. The operations are 𝒖 ⊕ 𝒗
def
=

min𝑝 (𝒖 ∪ 𝒗) and 𝒖 ⊗ 𝒗
def
= min𝑝 {𝑢𝑖 + 𝑣 𝑗 | 𝑢𝑖 ∈ 𝒖, 𝑣 𝑗 ∈ 𝒗}, where

min𝑝 (𝐵) returns the smallest 𝑝 +1 elements of a bag 𝐵; for example,

min2 ({3, 5, 5, 5, 9, 9}) = {3, 5, 5}. The units are 0 = {∞, . . . ,∞} and

1 = {0,∞, . . . ,∞} (bags of 𝑝 + 1 elements). One can check that

Trop𝑝 is 𝑝-stable. When the relations 𝐸, 𝑃 in the simple datalog◦

program (1) are interpreted over Trop𝑝 , then the program computes

the values 𝑃 (𝑥,𝑦) of the 𝑝 + 1 lowest cost paths from 𝑥 to 𝑦 in the

graph. When 𝑝 = 0, Trop0 = Trop is the standard tropical semiring.

Our main technical result transfers stability from simple linear

functions to polynomial functions:

𝑓 (𝑥)
def
= 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥

2 + · · · + 𝑎𝑘𝑥
𝑘 (18)

Theorem 5.8. Let 𝑺 be a 𝑝-stable commutative semiring and let 𝑓

be a polynomial function (18). Then, if 𝑝 = 0 then 𝑓 is 1-stable; If 𝑓

is linear, then it is 𝑝 + 1-stable; In general, 𝑓 is 𝑝 + 2-stable.

Abo Khamis et.al. [31] contains the proof of the above theorem,

and an example explaining why in general 𝑓 is not 𝑝 + 1 stable.

Theorem 5.8 generalizes special cases studied by Gondran [22,

23]. The case of a 0-stable semiring has been most extensively

studied. Such semirings are called simple by Lehmann [38], are

called c-semirings by Kohlas [35], and absorptive by Dannert et

al. [11]. In all cases the authors require 1 + 𝑎 = 1 for all 𝑎 (or,

equivalently, 𝑏 + 𝑎𝑏 = 𝑏 for all 𝑎, 𝑏 [11]), which is equivalent to

stating that 𝑎 is 0-stable, and also equivalent to stating that (𝑺, +) is

a join-semilattice with maximal element 1. The tropical semiring is

such an example; every distributive lattice is also a 0-stable semiring

where we set + = ∨ and ◦ = ∧.

The rest of the proof. To complete the proof of Theorem 5.5, we

extend Theorem 5.8 to stable POPS (see [31]), and then to multi-

valued polynomials (see [31]). These corollaries, stated and proved

in the appendix, directly imply Theorem 5.5.

5.4 Convergence in PTIME

Assume, as before, a 𝑝-stable POPS where ◦ is strict. Theorem 5.5

gives an exponential (in the domain size) upper bound on the num-

ber of steps of the naive evaluation algorithm. Is this bound tight?

Or can a datalog◦ program be computed in PTIME? In this section

we answer partially these questions for linear datalog◦ programs. In

this case, the immediate consequence operator is a linear function

𝐹 : 𝑺𝑁 → 𝑺
𝑁 .

First, we consider the case of a 𝑝-stable semiring. In this case

the immediate consequence operator can be written in matrix no-

tation 𝐹 (𝑋 ) = 𝐴𝑋 + 𝐵, where 𝐴 is an 𝑁 × 𝑁 matrix, and 𝑋 , 𝐵 are

𝑁 -dimensional column vectors. After 𝑞 + 1 iterations, the naive

algorithm computes 𝐹 (𝑞+1) (0) = 𝐵 +𝐴𝐵 +𝐴2𝐵 + · · · +𝐴𝑞𝐵 = 𝐴(𝑞)𝐵,

where𝐴(𝑞)
def
= 𝐼𝑁 +𝐴+𝐴

2+· · ·+𝐴𝑞 . The naive algorithm converges

in 𝑞 + 1 steps iff 𝐹 is 𝑞 + 1-stable. A matrix 𝐴 is called 𝑞-stable [23]

if 𝐴(𝑞) = 𝐴(𝑞+1) . The following is easy to check: the matrix 𝐴 is

𝑞-stable iff, for every vector 𝐵, the linear function 𝐹 (𝑋 ) = 𝐴𝑋 + 𝐵

is 𝑞 + 1 stable. Our discussion implies that, in order to determine

the runtime of the naive algorithm on a linear datalog◦ program

over a 𝑝-stable semiring, one has to compute the stability index of

an 𝑁 ×𝑁 matrix 𝐴 over that semiring. Surprisingly, no polynomial

bound for the stability index of a matrix is known in general, except

for 𝑝 = 0, in which case 𝐴 is 𝑁 -stable (see [22], and also [31]). We

prove here a result in the special case when the semiring is Trop𝑝
(introduced in Example 5.7), which is 𝑝-stable.

Lemma 5.9. Every𝑁 ×𝑁 matrix over Trop𝑝 semiring is (𝑝𝑁 +𝑝−1)-

stable. This bound is tight, i.e., there exist 𝑁 ×𝑁 -matrices over Trop𝑝
whose stability index is (𝑝𝑁 + 𝑝 − 1).

We give the full proof in [31] and sketch here the main idea. We

consider an 𝑁 × 𝑁 -matrix over Trop𝑝 as the adjacency matrix of a

directed graph with 𝑁 vertices and up to 𝑝 + 1 parallel edges from

some vertex 𝑖 to 𝑗 . Then 𝐴(𝑘) contains in position (𝑖, 𝑗) the 𝑝 + 1

lowest-cost paths of up to 𝑘 edges from 𝑖 to 𝑗 . The upper bound is

proved by arguing that𝐴(𝑘) with 𝑘 > 𝑝𝑁 +𝑝 − 1 cannot contribute

to the 𝑝 + 1 lowest-cost paths due to the existence of at least 𝑝 + 1

cycles along such paths. For proving the lower bound, we take 𝐴

as the adjacency matrix of the directed 𝑁 -cycle.

The lemma immediately implies:

Corollary 5.10. Any linear datalog◦ program over Trop𝑝 , converges

in 𝑝𝑁 + 𝑝 − 1 steps, where 𝑁 = |𝐷 |𝑂 (1) is the number of ground IDB

tuples. This bound is tight.

Second, we consider arbitrary 𝑝-stable POPS 𝑺 , where ◦ is strict,

and prove that every linear datalog◦ program can be computed in

PTIME, but using an algorithm different from the naïve algorithm.

When 𝑺 is a semiring, then this follows from adapting Gaussian

elimination to semirings [38, 47], which coincides with the Floyd-

Warshall-Kleene algorithm. The algorithm and its variants compute

the closure 𝐴∗ of an 𝑁 × 𝑁 matrix in 𝑂 (𝑁 3) time, in a closed

semiring. The same principle applies to a 𝑝-stable POPS:

Theorem 5.11. Let 𝑺 be a 𝑝-stable POPS, where ◦ is strict, and let

𝑓1, . . . , 𝑓𝑁 be 𝑁 linear functions in 𝑁 variables. Then, there is an

algorithm computing lfp(𝑓1, . . . , 𝑓𝑁 ) in time 𝑂 (𝑝𝑁 + 𝑁 3).

6 SEMI-NAIVE OPTIMIZATION

Consider a single datalog◦ stratum (see, e.g., [2] for a definition of

this standard concept in datalog) that repeatedly computes𝑅 = 𝐹 (𝑅)

until a fixpoint is reached. A naive evaluation consists of repeatedly

applying the immediate consequence operator, that is we compute

𝑅0, 𝑅1, 𝑅2, . . .where𝑅𝑡+1
def
= 𝐹 (𝑅𝑡 ). As observed in standard datalog,

this strategy is inefficient because all facts discovered at iteration

𝑡 will be re-discovered at iterations 𝑡 + 1, 𝑡 + 2, . . . The semi-naive

optimization consists of a modified program that computes 𝑅𝑡+1 by

first computing only the łnovelž facts 𝛿𝑡+1 = 𝐹 (𝑅𝑡 ) − 𝑅𝑡 , which are

then added to 𝑅𝑡 to form 𝑅𝑡+1. Efficiently computing 𝐹 (𝑅𝑡 ) − 𝑅𝑡
without fully evaluating 𝐹 (𝑅𝑡 ) is the incremental computation prob-

lem typical of incremental view maintenance. There are different
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Algorithm 1: Semi-naïve evaluation for datalog◦

𝑅0 ← 0 𝛿0 ← 0;

for 𝑡 ← 1 to∞ do

𝛿𝑡 ← 𝐹 (𝑅𝑡−1) − 𝑅𝑡−1; // incremental computation

𝑅𝑡 ← 𝑅𝑡−1 + 𝛿𝑡 ;

if 𝛿𝑡 = 0 then
Break

return 𝑅𝑡

incremental computation strategies, one of which is to exploit the

fact that 𝐹 is essentially multilinear (see definition below) to in-

crementally compute 𝛿𝑡+1 = 𝐹 (𝑅𝑡−1 + 𝛿𝑡 ) − 𝐹 (𝑅𝑡−1) without fully

evaluating 𝐹 (𝑅𝑡 ). This section generalizes semi-naive evaluation

to datalog◦.

In standard datalog the difference operator is well defined, since

the Boolean semiring supports a difference operator as 𝑥 − 𝑦
def
=

𝑥 ∧ ¬𝑦. For a semi-naive evaluation in datalog◦, we need to define

the difference operator.

A dioid is a semiring (𝑆, +, ◦, 0, 1) for which + is idempotent. It

is known [28] that a dioid is naturally ordered. Furthermore, the

natural order can be simplified by defining 𝑎 ⊑ 𝑏 iff 𝑎 + 𝑏 = 𝑏; and,

under this natural order, + is the same as ∨. (See Appendix C.1.)

Dioids have many applications in a wide range of areas; see [28]

for many examples.

Definition 6.1. A POPS 𝑺 = (𝑆, +, ◦, 0, 1, ⊑) is called a distributive

dioid if (𝑆, +, ◦, 0, 1) is a dioid, ⊑ is the dioid’s natural order, and the

lattice is distributive. In a distributive dioid, the difference operator

is defined by

𝑏 − 𝑎
def
= ∧{𝑐 | 𝑎 + 𝑐 ⊒ 𝑏} (19)

For example, the POPS (2𝑼 ,∪,∩, ∅, 𝑼 , ⊆) is a distributive dioid,

whose difference operator is exactly set-difference 𝑏 − 𝑎 = ∧{𝑐 |

𝑏 ⊆ 𝑎 ∪ 𝑐} = 𝑏 \ 𝑎. The POPS Trop = (R∪ {∞},min, +,∞, 0, ≥) is a

distributive dioid, whose difference operator is defined by

𝑏 − 𝑎 =

{

𝑏 if 𝑏 ≤ 𝑎

∞ if 𝑏 > 𝑎
(20)

Theorem 6.2. Let 𝐹 be a datalog◦ program over a distributive dioid,

then the semi-naïve algorithm 1 returns the same solution as the naïve

algorithm (Algorithm 2 in the appendix).

A proof of the above theorem is in Appendix C. The next pillar of

semi-naïve computation is the fact that the rule 𝐹 (𝑅𝑡−1) −𝑅𝑡−1 can

be computed efficiently by incremental computation. Note that in

general 𝐹 is a vector-valued second-order function, mapping input

IDBs to output IDBs. We describe how to incrementally compute

a component function of 𝐹 . Without loss of generality, consider a

component function 𝑓 (𝑅𝑡−1) of 𝐹 . We show how

𝑓 (𝑅𝑡−1) − 𝑅𝑡−1 = 𝑓 (𝑅𝑡−2 + 𝛿𝑡−1) − 𝑓 (𝑅𝑡−2) (21)

can be computed incrementally.

Note that 𝑓 is a multivariate polynomial in the input IDBs. For

the purpose of incrementally computing (21) once, we can assume

that no IDB in the input of 𝑓 occurs twice without loss of generality;

because, we can give every occurrence of an IDB a unique name.

(See Example C.4 for an illustration.) Let 𝑅𝑡−2 = (𝐴1, · · · , 𝐴𝑘 ) be

the 𝑘-tuple of IDBs that 𝑓 is a function of, and 𝛿𝑡−1 = (𝛿
1, . . . , 𝛿𝑘 ).

Theorem 6.3. Let 𝑓 be a component function of a datalog◦ program

𝐹 over a distributive dioid in which every input IDB of 𝑓 occurs once

in the formula defining 𝑓 . Then, 𝑓 is multilinear, i.e.

𝑓 (𝐴1, . . . , 𝐴 𝑗 + 𝛿 𝑗 , . . . , 𝐴𝑘 )

= 𝑓 (𝐴1, . . . , 𝐴 𝑗 , . . . , 𝐴𝑘 ) + 𝑓 (𝐴1, . . . , 𝛿 𝑗 , . . . , 𝐴𝑘 ) (22)

If 𝑓 (𝑨) = 𝑐 + 𝑓 ′(𝑨) where 𝑐 is a constant, then the incremental com-

putation 𝑓 (𝑅𝑡−1)−𝑅𝑡−1 can be computed by the following differential

rule

𝑓 (𝐴1 + 𝛿1, . . . , 𝐴𝑘 + 𝛿𝑘 ) − 𝑓 (𝐴1, . . . , 𝐴𝑘 ) =

𝑘
∑︁

𝑗=1

𝑓 ′(𝐴1 + 𝛿1, . . . , 𝐴 𝑗−1 + 𝛿 𝑗−1, 𝛿 𝑗 , 𝐴 𝑗+1, . . . , 𝐴𝑘 )

− 𝑓 (𝐴1, . . . , 𝐴𝑘 ) (23)

The simplest application of the differential rule (23) is when 𝐹 is

linear, in which case the rule takes a particularly simple form:

𝛿𝑡+1 = 𝐹 (𝑅𝑡−1 + 𝛿𝑡 ) − 𝐹 (𝑅𝑡−1) = 𝐹 (𝛿𝑡 ) − 𝐹 (𝑅𝑡−1) = 𝐹 (𝛿𝑡 ) − 𝑅𝑡

It should be noted that (23) is not the only way to implement the

incremental computation. We can use (22) to expand 𝑓 into up to

2𝑘 − 1 many terms. However, the linear expansion such as (23)

is the most compact in terms of the number of rules one has to

evaluate to implement the incremental computation. An example of

how (23) works in the context of the APSP problem was presented

in Example 1.3.

7 RELATEDWORK

To empower Datalog, researchers have proposed amendments to

make datalog capable of expressing some problems with greedy so-

lutions such as APSP and MST. Most notably, the non-deterministic

choice construct was extensively studied early on [24ś26]. While

datalog+choice is powerful, its expression and semantics are some-

what clunky, geared totwards answering optimization questions

(greedily). In particular, it was not designed to deal with general

aggregations.

To evaluate recursive datalog◦ program is to solve fixpoint equa-

tions over semirings, whichwas studied in the automata theory [37],

program analysis [8, 43], and graph algorithms [6, 39, 40] communi-

ties since the 1970s. (See [23, 29, 38, 47, 55] and references thereof).

The problem took slighly different forms in these domains, but at

its core, it is to find a solution to the equation 𝑥 = 𝑓 (𝑥), where

𝑥 ∈ 𝑆𝑛 is a vector over the domain 𝑆 of a semiring, and 𝑓 : 𝑆𝑛 → 𝑆𝑛

has multivariate polynomial component functions.

When 𝑓 is affine, researchers realized that many problems in

different domains are instances of the same problem, with the

same underlying algebraic structure: transitive closure [53], short-

est paths [18], Kleene’s theorem on finite automata and regular

languages [33], continuous dataflow [8, 30], etc. Furthermore, these

problems share the same characteristic as the problem of computing

matrix inverse [5, 21, 51]. The problem is called the algebraic path
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problem [47], among other names, and the main task is to solve the

matrix fixpoint equation 𝑿 = 𝑨 ⊗ 𝑿 ⊕ 𝑰 over a semiring.

There are several classes of solutions to the algebraic path prob-

lem, which have pros and cons depending on what we can assume

about the underlying semiring (whether or not there is a closure op-

erator, idempotency, natural orderability, etc.). We refer the reader

to [23, 47] for more detailed discussions. Here, we briefly summarize

the main approaches.

The first approach is to keep iterate until a fixpoint is reached;

in different contexts, this has different names: the naïve algorithm,

Jacobi iteration, Gauss-Seidel iteration, or Kleene iteration. The

main advantage of this approach is that it assumes less about the

underlying algebraic structure: we do not need both left and right

distributive law, and do not need to assume a closure operator.

The second approach is based on Gaussian elimination (also,

Gauss-Jordan) elimination, which, assuming we have oracle access

to the solution 𝑥∗ of the 1D problem 𝑥 = 1 ⊕ 𝑎 ⊗ 𝑥 , can solve the

algebraic path problem in 𝑂 (𝑛3)-time [38, 47].

The third approach is based on specifying the solutions based

on the free semiring generated when viewing 𝑨 as the adjan-

ceny matrix of a graph [52]. The underlying graph structure (such

as planarity) may sometimes be exploited for very efficient algo-

rithm [39, 40].

Beyond the affine case, since the 1960s researchers in formal

languages have been studying the structure of the fixpoint solution

to 𝑥 = 𝑓 (𝑥) when 𝑓 ’s component functions are multivariate polyno-

mials over Kleene algebra [36, 44, 45]. It is known, for example, that

Kleene iteration does not always converge (in a finite number of

steps), and thus methods based on Galois connection or on widen-

ing/narrowing approaches [9] were studied. These approaches are

(discrete) lattice-theoretic. More recently, a completely different

approach drawing inspiration from Newton’s method for solving a

system of (real) equations was proposed [14, 29].

Recall that Newton’s method for solving a system of equations

𝑔(𝑥) = 0 over reals is to start from some point 𝑥0, and at time

𝑡 we take the first order approximation 𝑔(𝑥) ≈ 𝑔𝑡 (𝑥) := 𝑔(𝑥𝑡 ) +

𝑔′(𝑥𝑡 ) (𝑥−𝑥𝑡 ), and set 𝑥𝑡+1 to be the solution of𝑔𝑡 (𝑥) = 0, i.e. 𝑥𝑡+1 =

𝑥𝑡 − [𝑔
′(𝑥𝑡 )]

−1𝑔(𝑥𝑡 ). Note that in the multivariate case 𝑔′ is the

Jacobian, and [𝑔′(𝑥𝑡 )]
−1 is to compute matrix inverse. In beautiful

papers, Esparza et al. [14] and Hopkins and Kozen [29] were able to

generalize this idea to the case when 𝑔(𝑥) = 𝑓 (𝑥)−𝑥 is defined over

𝜔-continuous semirings. They were able to define an appropriate

minus operator, derivatives of power series over semirings, matrix

inverse, and prove that the method converges at least as fast as

Kleene iteration, and there are examples where Kleene iteration

does not converge, while Newton method does. Furthermore, if the

semiring is commutative and idempotent (in addition to being 𝜔-

continuous), then Newton method always converges in 𝑛 Newton

steps. Each Newton step involves computing the Jacobian 𝑔′ and

computing its inverse, which is exactly the algebraic path problem!

In [15], Fitting proposed a three-valued semantics of logic pro-

grams with ⊥ (= undefined) denoting łneither false (0) nor true (1)ž.

In our terminology, this comes down to considering datalog over

the partially ordered semiring THREE = ({⊥, 0, 1},∨,∧, 0, 1, ≤𝑘 ),

where ≤𝑘 denotes the knowledge order ⊥ ≤𝑘 0, 1. Negation can be

introduced as a function łnotž with not(0) = 1, not(1) = 0, and

not(⊥) = ⊥. The immediate consequence operator is monotone

w.r.t. ≤𝑘 and thus guarantees the existence of a least fixpoint also

in the presence of negation. In [16, 17], Fitting further extended his

approach to Belnap’s four-valued logic FOUR and, more generally,

to arbitrary bilattices. FOUR ({⊥, 0, 1,⊤}, ≤𝑡 , ≤𝑘 ) constitutes the

simplest non-trivial, complete bilattice. That is, we have a complete

lattice both w.r.t. the truth order 0 ≤𝑡 ⊥,⊤ ≤𝑡 1 and w.r.t. the

knowledge order ⊥ ≤𝑘 0, 1 ≤𝑘 ⊤. The additional truth value ⊤ in

FOUR denotes łboth false and truež. It provides a means to deal

with contradicting information in a meaningful way. Moreover, it

guarantees the existence of a greatest fixpoint of the immediate

consequence operator. Fitting uses this property to establish precise

lower and upper bounds of the set of stable models in terms of the

orders ≤𝑡 and ≤𝑘 , with the well-founded model [20] as the smallest

w.r.t. ≤𝑘 . We provide a more detailed discussion of Fitting’s work

in [31].

Recently, semi-naïve evaluation was extended for a higher-order

functional language called Datafun [4]. The book [23] contains

many fundamental results on algebraic structures related to semir-

ings and computational problems on such structures.

8 CONCLUSIONS

A massive number of application domains demand us to move

beyond the confine of the Boolean world: from program analysis [8,

43], graph algorithms [6, 39, 40], provenance [27], formal language

theory [37], to machine learning and linear algebra [1, 46]. Semiring

and poset theory ś of which POPS is an instance ś is the natural

bridge connecting the Boolean island to these applications.

The bridge helps enlarge the set of problems datalog◦ can ex-

press in a very natural way. The possibilities are endless. For ex-

ample, amending datalog◦ with an interpretive function such as

sigmoid will allow it to express typical neural network compu-

tations. Adding another semiring to the query language12 helps

express rectilinear units in modern deep learning. At the same time,

the bridge facilitates the porting of analytical ideas from Datalog to

analyze convergence properties of the application problems, and to

carry over optimization techniques such as semi-naïve evaluation.

This paper established part of the bridge. There are many inter-

esting open problems left open; we mention a few here.

The question of whether a datalog◦ program over 𝑝-stable POPS

converges in polynomial time in 𝑝 and 𝑁 is open. This is open even

for linear programs. Our result on Trop𝑝 indicates that the linear

case is likely in PTIME. If 𝑝-stability does not hold, then ACC was

the next best barrier. It would be interesting to have a sufficient

condition for convergence beyond ACC.

We can introduce negation to datalog◦ as an interpreted pred-

icate. The question is, can we extend semantics results (such as

stable model semantics) from general datalog / logic programing to

datalog◦ with negation? The full version of this paper [31] contains

more detailed discussions on this front. Beyond exact solution and

finite convergence, as mentioned in the introduction, it is natural

in some domain applications to have approximate fixpoint solu-

tions, which will allow us to tradeoff convergence time and solution

quality. A theoretical framework along this line will go a long way

towards making datalog◦ deal with real machine learning, linear

algebra, and optimization problems.

12In the functional aggregate queries [32] sense
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APPENDIX

A PROOFS AND EXTENSIONS OF SECTION 3

A.1 Proof of Lemma 3.4

Recall that, for every 𝑎 ∈ 𝑳1, 𝑔𝑎 denotes the function 𝑔𝑎 (𝑦) =

𝑔(𝑎,𝑦); its type is 𝑳2 → 𝑳2, and 𝑔
(𝑘)
𝑎 ∈ C for every 𝑘 ≥ 0, because

C is a c-clone. Similarly, the type of 𝐹 (𝑥)
def
= 𝑓 (𝑥, 𝑔 (𝑞) (𝑥,⊥)) is

𝑳1 → 𝑳1, and 𝐹 (𝑘) ∈ C for all 𝑘 ≥ 0.

Claim 1. The pair (𝑥,𝑦) defined by (10) is a fixpoint of ℎ.

The claim follows immediately from

𝑔(𝑥,𝑦) = 𝑔𝑥 (𝑦) = 𝑔𝑥 (𝑔
(𝑞)
𝑥 (⊥) = 𝑔

(𝑞+1)
𝑥 (⊥) = 𝑔

(𝑞)
𝑥 (⊥) = 𝑦

by the definition of 𝑦 and the 𝑞-stability of 𝑔𝑥 . Similarly,

𝑓 (𝑥,𝑦) = 𝑓 (𝑥, 𝑔
(𝑞)
𝑥 (⊥)) = 𝐹 (𝑥) = 𝑥

by the definition of 𝑥 and the 𝑝-stability of 𝐹 , proving that (𝑥,𝑦) is

a fixpoint of ℎ.

Claim 2. The pair (𝑥,𝑦) defined by (10) is a least fixpoint of ℎ.

Since ℎ is monotone, it converges to the least fixpoint. It follows

that, for every 𝑛 ≥ 0, (𝑎𝑛, 𝑏𝑛)
def
= ℎ (𝑛) (⊥,⊥) ⊑ (𝑥,𝑦). Hence, to

prove Claim 2 it is sufficient to show that (𝑥,𝑦) ⊑ (𝑎𝑛, 𝑏𝑛) for some

𝑛.

We will show that (𝑥,𝑦) ⊑ (𝑎𝑝𝑞+𝑝+𝑞, 𝑏𝑝𝑞+𝑝+𝑞). To prove this

inequality, we observe that the pair (𝑥,𝑦) defined by (10) is the last

term of the following (not necessarily increasing) sequence:

(⊥,⊥) =(𝑥0, 𝑦0,0), (𝑥0, 𝑦0,1), · · · , (𝑥0, 𝑦0,𝑞),

(𝑥1, 𝑦1,0), (𝑥1, 𝑦1,1) · · · (𝑥1, 𝑦1,𝑞),

. . .

(𝑥𝑝 , 𝑦𝑝,0), (𝑥𝑝 , 𝑦𝑝,1), · · · , (𝑥𝑝 , 𝑦𝑝,𝑞) = (𝑥,𝑦) (24)

where:

𝑥0
def
= ⊥ 𝑦𝑘,0

def
= ⊥

𝑥𝑘+1
def
= 𝑓 (𝑥𝑘 , 𝑦𝑘,𝑞) 𝑦𝑘,ℓ+1

def
= 𝑔(𝑥𝑘 , 𝑦𝑘,ℓ )

In the (𝑥𝑘 , 𝑦𝑘,ℓ ) sequence each element is obtained from the previ-

ous one by applying either a 𝑔-step (from (𝑥𝑘 , 𝑦𝑘,ℓ ) to (𝑥𝑘 , 𝑦𝑘,ℓ+1))

or an 𝑓 -step (from (𝑥𝑘 , 𝑦𝑘,𝑞) to (𝑥𝑘+1, 𝑦𝑘+1,0)). The sequence (24)

can be visualized as:

(𝑔𝑔 · · ·𝑔) 𝑓 (𝑔𝑔 · · ·𝑔) 𝑓 · · · (𝑔𝑔 · · ·𝑔) 𝑓 (𝑔𝑔 · · ·𝑔)

Instead of proving (𝑥,𝑦) ⊑ (𝑎𝑝𝑞+𝑝+𝑞, 𝑏𝑝𝑞+𝑝+𝑞), we prove a stronger

claim, which completes the proof of Claim 2

Claim 3. For every 𝑛 ≥ 0, (𝑥𝑘 , 𝑦𝑘,ℓ ) ⊑ (𝑎𝑛, 𝑏𝑛), where 𝑛 = 𝑘 (𝑞 +

1) + ℓ is the position of (𝑥𝑘 , 𝑦𝑘,ℓ ) in the sequence (24).

Before proving the claim, we notice ℎ (𝑛) (⊥,⊥) ⊑ ℎ (𝑛+1) (⊥,⊥)

implies 𝑎𝑛 ⊑ 𝑓 (𝑎𝑛, 𝑏𝑛) and 𝑏𝑛 ⊑ 𝑔(𝑎𝑛, 𝑏𝑛). Now we prove the

claim by induction. Assume the claim holds for (𝑥𝑘 , 𝑦𝑘,ℓ ). If the

next element (𝑥𝑘 , 𝑦𝑘,ℓ+1) is obtained via a 𝑔-step then we have:

(𝑥𝑘 , 𝑦𝑘,ℓ+1) =(𝑥𝑘 , 𝑔𝑥𝑘 (𝑦𝑘,ℓ )) = (𝑥𝑘 , 𝑔(𝑥𝑘 , 𝑦𝑘,ℓ )) ⊑ (𝑎𝑛, 𝑔(𝑎𝑛, 𝑏𝑛))

⊑(𝑓 (𝑎𝑛, 𝑏𝑛), 𝑔(𝑎𝑛, 𝑏𝑛)) = (𝑎𝑛+1, 𝑏𝑛+1)

hence the claim holds for (𝑥𝑘 , 𝑦𝑘,ℓ+1) as well. If the next element

(𝑥𝑘+1, 𝑦𝑘+1,0) is obtained via an 𝑓 -step (which happens when ℓ = 𝑞)

then we use the fact that 𝑦𝑘+1,0 = ⊥ and derive:

(𝑥𝑘+1,⊥) =(𝑓 (𝑥𝑘 , 𝑦𝑘,𝑞),⊥) ⊑ (𝑓 (𝑥𝑘 , 𝑦𝑘,𝑞), 𝑦𝑘,𝑞)

⊑(𝑓 (𝑎𝑛, 𝑏𝑛), 𝑏𝑛) ⊑ (𝑓 (𝑎𝑛, 𝑏𝑛), 𝑔(𝑎𝑛, 𝑏𝑛)) = (𝑎𝑛+1, 𝑏𝑛+1)

This completes the proof of the claim.

Finally, to prove Lemma 3.4, note that𝑥 = 𝑥𝑝 was already reached

at the beginning of the last line in (24), thus 𝑥 = 𝑎𝑛 for 𝑛 = 𝑝𝑞 + 𝑝 .

By switching the roles of 𝑓 and 𝑔, we can reach the same least

fixpoint (𝑥,𝑦) using a sequence (𝑓 · · · 𝑓 )𝑔(𝑓 · · · 𝑓 )𝑔 · · ·𝑔(𝑓 · · · 𝑓 ),

similar to (24). The end of this sequence is the same (𝑥,𝑦) because

the least fixpoint is unique. By the same argument as above, we

have 𝑦 = 𝑏𝑛 for 𝑛 = 𝑝𝑞 + 𝑞. This completes the proof of the lemma.

B PROOFS AND EXTENSIONS OF SECTION 4

B.1 Extensions to datalog◦

We describe here several extensions to the definition of datalog◦

in Sec. 4, which are necessary both in order to make the language

useful for real applications, and in order to express some advanced

optimization techniques, which we pursue in a different project.

First, we allow the use of arbitrary interpreted function on the

key-space, and extend Definition 2.1 with a conditional sum-sum-

product query, which has the form:

𝑄 (𝑥1, . . . , 𝑥𝑘 ) :- case 𝐶1 : 𝑄1; 𝐶2 : 𝑄2; · · · ; else 𝑄𝑛 (25)

where 𝐶1,𝐶2, . . . are conditions on the variables 𝑥1, . . . , 𝑥𝑘 , and

𝑄1, 𝑄2, . . . are sum-sum-product expressions over the same vari-

ables 𝑥1, . . . , 𝑥𝑘 . For example, we may compute the prefix-sum of a

vector 𝑉 using the following datalog◦ rule:

𝑊 (𝑖) :- case 𝑖 = 0 : 𝑉 (0) else 𝑊 (𝑖 − 1) +𝑉 (𝑖)

Here 𝑖 − 1 is an interpreted function on the key-space. All results

in Section 5 continue to hold when datalog◦ is extended with in-

terpreted functions over the key-space and with case-statements,

because the grounding of each rule 𝑅𝑖 :- 𝑓𝑖 continues to be a poly-

nomial over the POPS 𝑺 .

The next extensions are necessary to make datalog◦ practical,

and the results in Section 5 may no longer hold. We pursue these

extensions in a different project where we study optimizations for

datalog◦:

Infinite Key Domains We remove the restriction from Sec. 2 that

requires the key domain 𝐷 to be finite. Instead, we require

the active domain of the EDB predicates to be finite, and

require all datalog◦ rules to be safe, which guarantees that

the active domain of all IDB predicates are also finite.

Multiple Domains We allow bothmultiple key domains, andmul-

tiple value domains (POPS). The types of all EDB and IDB

predicates must be declared at the beginning of a datalog◦

program, for example:

E(String, String) : Bool;

Cost(String, String, N) : Bool;

Path(String, String) : Trop;
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(𝑥0
def
= ⊥, 𝑦00

def
= ⊥)

𝑔
> (𝑥0, 𝑦01)

𝑔
> · · · (𝑥0, 𝑦0𝑞)

(𝑥1, 𝑦10
def
= ⊥)

𝑓∨
𝑔
> (𝑥1, 𝑦11)

𝑔
> · · ·

· · · · · ·

(𝑥𝑝 , 𝑦𝑝,0
def
= ⊥)

𝑓∨
𝑔
> · · ·

𝑔
> (𝑥𝑝 , 𝑦𝑝,𝑞)

Figure 1: Computing the fixpoint of (𝑓 , 𝑔).

Cast Operator We extend datalog◦ with a cast operator, [−] :

B→ 𝑺 , defined as follows:

[0]
def
= ⊥𝑺 [1]

def
= 1𝑺

We notice that the cast operator is monotone. When +𝑺 is

idempotent, then the cast operator is also a pre-semiring

homomorphism. When 𝑺 is a naturally ordered semiring,

then [0] = 0𝑺 and [1] = 1𝑺 .

Keys to Values We allow key values to be used as POPS values,

when the types are right. For example, referring to the dec-

larations above, we may write:

Path(𝑥,𝑦) :- min
𝑐
( [Cost(𝑥,𝑦, 𝑐)] + 𝑐)

The expression [Cost(𝑥,𝑦, 𝑐)] is a cast from Booleans to the

tropical semiring, i.e. its value is∞ or 0, and we add to it the

cost 𝑐 , which is of type N, hence can be cast to Trop.

Stratification Finally, we allow the use of arbitrary interpreted

functions over the value domains. Some of these functions

may not be monotone; in that case we require the datalog◦

program to be stratified, in the usual way.

B.2 Pre-semirings to POPS

We describe a general procedure to convert a pre-semiring to a

POPS.

Definition B.1. Let 𝑺 be a pre-semiring. We say that a POPS 𝑺1

extends 𝑺 if 𝑺 ⊆ 𝑺1, and the operations ⊕, ⊗, 0, 1 in 𝑺 are the same

as those in 𝑺1.

We describe ways to extend a pre-semiring 𝑺 = (𝑆, +, ∗, 0, 1) to

a POPS, all inspired by abstract interpretations in programming

languages [8].

Representing Undefined The lifting operation is defined by set-

ting 𝑺⊥
def
= 𝑺 ∪ {⊥} and extending the operations to 𝑥 + 𝑦 =

𝑥 ∗𝑦 = ⊥ whenever 𝑥 = ⊥ or 𝑦 = ⊥. The value ⊥ represents

undefined.

Representing Contradiction We further extend 𝑺⊥ by defining

𝑺
⊤
⊥

def
= 𝑺⊥ ∪ {⊤} and setting ⊥ + ⊤ = ⊥ ∗ ⊤ = ⊥, 0 ∗ ⊤ = 0,

and 𝑥 + ⊤ = 𝑥 ∗ ⊤ = ⊤ when 𝑥 ≠ ⊥, 𝑥 ≠ 0. The new element

⊤ represents contradiction. Intuitively: ⊥ is the empty set

{}, while ⊤ is the entire set 𝑆 .

Incomplete values More generally, define 𝐼
def
= Pfin (𝑆) ∪ {𝑆};

that is, 𝐼 consists of all finite subsets of 𝑆 , plus 𝑆 itself (which

we add explicitly when 𝑆 is infinite). The operations ⊕, ⊗ are

defined set-wise, such that, if the result of an operation is an

infinite set, then we replace it with 𝑆 . Intuitively, a finite set

{𝑢, 𝑣,𝑤} ∈ 𝐼 represents a value that can be either 𝑢 or 𝑣 or

𝑤 . Here ⊥ = {} and ⊤ = 𝑆 .

B.3 Strictness of ⊕ and ⊗ are independent

We give two examples of POPS where only one of the two operators

⊕, ⊗ is strict.

Strict ⊗ In any non-trivial naturally ordered semiring ⊗ is strict,

while ⊕ is not. For example, consider (N, +, ∗, 0, 1, ≤). Then

∗ is strict because 𝑥 ∗ 0 = 0, while + is not strict because

𝑥 + 0 ≠ 0 for 𝑥 ≠ 0.

Strict ⊗ Next, consider the semiring (N ∪ {⊤}, ⊕, ⊗, {0}, {1}, ⊇),

where ⊤ the infinite set {0, 1, 2, . . .}. We view each element

𝑥 ∈ N as the singleton set {𝑥}, and define the operations

⊕, ⊗ set-wise: 𝐴 ⊕ 𝐵
def
= {𝑥 + 𝑦 | 𝑥 ∈ 𝐴,𝑦 ∈ 𝐵}, 𝐴 ⊗ 𝐵

def
=

{𝑥 ∗ 𝑦 | 𝑥 ∈ 𝐴,𝑦 ∈ 𝐵}, where we replace the result with ⊤ if

the resulting set is not a singleton. Concretely, we have:

{𝑥} ⊕ {𝑦} ={𝑥 + 𝑦} {𝑥} ⊕ ⊤ =⊤

{𝑥} ⊗ {𝑦} ={𝑥 ∗ 𝑦} {0} ⊕ ⊤ ={0} 𝑥 ≠ 0 : {𝑥} ⊕ ⊤ = ⊤

Since ⊤ is the smallest element, ⊕ is strict, while ⊗ is not.

B.4 Need for Pre-Semirings

N⊥ and the similarly defined R⊥ are pre-semirings. They are not

semirings, because ⊥ ∗ 0 = ⊥, thus 0 is not absorptive. It is possible

to define an extension N ∪ {⊥} of N that is a semiring, by simply

re-defining ⊥ ∗ 0 = 0 and ⊥ ∗ 𝑥 = ⊥ for 𝑥 ≠ 0. However, no POPS

extension of R exists that is a semiring:

Lemma B.1. If 𝑺 is any POPS extension of (R, +, ∗, 0, 1), then 𝑺 is

not a semiring, i.e. it fails the absorption law 0 ∗ 𝑥 = 0.

Proof. Let 𝑺 = (𝑆, +, ∗, 0, 1, ⊑) be an ordered semiring that is an

extension of the semiring (R, +, ∗, 0, 1). In particular R ⊆ 𝑆 and 𝑆

has a minimal element ⊥. Since 0, 1 are identity elements for +, ∗

we have:

⊥ + 0 =⊥ ⊥ ∗ 1 =⊥

We claim that the following more general identities hold:

∀𝑥 ∈ R : ⊥ + 𝑥 =⊥ ∀𝑥 ∈ R − {0} : ⊥ ∗ 𝑥 =⊥
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To prove the first identity, we use the fact that + is monotone in 𝑺

and ⊥ is the smallest element and derive ⊥+𝑥 ⊑ (⊥+ (𝑦−𝑥)) +𝑥 =

⊥+𝑦 for fall 𝑥,𝑦. This implies⊥+𝑥 = ⊥+𝑦 for all 𝑥,𝑦 and the claim

follows by setting 𝑦 = 0. The proof of the second identity is similar:

first observe that ⊥ ∗ 𝑥 ⊑ (⊥ ∗
𝑦
𝑥 ) ∗ 𝑥 = ⊥ ∗ 𝑦 hence ⊥ ∗ 𝑥 = ⊥ ∗ 𝑦

for all 𝑥,𝑦 ∈ R − {0}, and the claim follows by setting 𝑦 = 1.

Since 𝑺 is a semiring it satisfies the absorption law, hence⊥∗0 = 0.

We prove now that 0 = ⊥. Choose any 𝑥 ∈ R − {0}, and derive:

⊥ ∗ (𝑥 + (−𝑥)) =⊥ ∗ 0 = 0

(⊥ ∗ 𝑥) + (⊥ ∗ (−𝑥)) =⊥ + ⊥ = ⊥

By distributivity, the two lines are equal, hence 0 = ⊥, and thus

0 is the smallest element in 𝑺 . Then, for every 𝑥 ∈ R, we have

𝑥 +0 ⊑ 𝑥 +(−𝑥) = 0, which implies implies 𝑥 = 0, contradiction. □

C PROOFS AND EXTENSIONS OF SECTION 6

C.1 Dioid

For completeness, we quickly prove the following

Proposition C.1. Let (𝑆, +, ◦, 0, 1) be a dioid, i.e. a semiring where

+ is idempotent. Then, the following hold:

(i) The relation ⪯ defined by 𝑎 ⪯ 𝑏 iff 𝑎 + 𝑏 = 𝑏 is a partial order,

and it is the same as the natural order of the semiring.

(ii) + is the same as ∨

Proof. We first show that ⪯ is the natural order ⊑, which is

defined by 𝑎 ⊑ 𝑏 iff ∃𝑐 : 𝑎 + 𝑐 = 𝑏. One direction, 𝑎 ⪯ 𝑏 implies

𝑎 ⊑ 𝑏 is obvious. For the converse, assume 𝑎 + 𝑐 = 𝑏. Then, 𝑎 + 𝑏 =

𝑎 + (𝑎 + 𝑐) = 𝑎 + 𝑐 = 𝑏 due to idempotency, and thus 𝑎 ⪯ 𝑏. The

relation ⊑ is a preorder; to make it a partial order we only need to

verify anti-symmetry, which is easy using the ⪯ relation: 𝑎 + 𝑏 = 𝑏

and 𝑎 + 𝑏 = 𝑎 imply 𝑎 = 𝑏. We just proved (𝑖).

To show (𝑖𝑖), let 𝑐 = 𝑎 +𝑏 for some 𝑎, 𝑏, 𝑐 . Then 𝑎 +𝑐 = 𝑎 +𝑎 +𝑏 =

𝑎+𝑏 = 𝑐 ; thus, 𝑎 ⊑ 𝑐 . Similarly 𝑏 ⊑ 𝑐 , which means 𝑎∨𝑏 ⊑ 𝑐 = 𝑎+𝑏.

Conversely, let 𝑑 = 𝑎 ∨ 𝑏. Then, 𝑎 + 𝑑 = 𝑑 and 𝑏 + 𝑑 = 𝑑 , which

means 𝑎 + 𝑏 + 𝑑 = 𝑑 and thus 𝑎 + 𝑏 ⊑ 𝑑 = 𝑎 ∨ 𝑏. □

Algorithm 2: Naïve evaluation for datalog◦

𝑅0 ← 0;

for 𝑡 ← 1 to∞ do

𝑅𝑡 ← 𝐹 (𝑅𝑡−1);

if 𝑅𝑡 = 𝑅𝑡−1 then
Break

return 𝑅𝑡

C.2 Proof of Theorem 6.2

Two main properties of distributive dioids we need for semi-naïve

evaluation of datalog◦ are proved in the following lemma, which

is then used to prove Theorem 6.2.

Lemma C.2. Let 𝑺 = (𝑆, +, ◦, 0, 1, ⊑) be a distributive dioid, then,

with the − operator defined in (19), for any 𝑎, 𝑏, 𝑐 ∈ 𝑆 ,

𝑎 + (𝑏 − 𝑎) = 𝑏 if 𝑎 ⊑ 𝑏 (26)

(𝑎 + 𝑏) − (𝑎 + 𝑐) = 𝑏 − (𝑎 + 𝑐) (27)

Proof. To prove these identities we establish several properties

of the − operation in a complete PODS as defined in Eq. (19). First,

we show

𝑏 ⊑ 𝑎 + (𝑏 − 𝑎) ∀𝑎, 𝑏 ∈ 𝑆 (28)

This follows because

𝑎 + (𝑏 − 𝑎) = 𝑎 + ∧{𝑐 | 𝑎 + 𝑐 ⊒ 𝑏}

= 𝑎 ∨ (∧{𝑐 | 𝑎 ∨ 𝑐 ⊒ 𝑏})

(distributivity) = ∧{𝑎 ∨ 𝑐 | 𝑎 ∨ 𝑐 ⊒ 𝑏}

⊒ 𝑏

Next, if 𝑎 ⊑ 𝑏 then 𝑎+𝑏 = 𝑎∨𝑏 = 𝑏. It follows that 𝑏 ⊒ ∧{𝑐 : 𝑎+𝑐 ⊒

𝑏} = 𝑏 − 𝑎. Thus,

𝑎 ⊑ 𝑏 =⇒ 𝑎 + (𝑏 − 𝑎) ⊑ 𝑎 + 𝑏 = 𝑏. (29)

Together with (28), we just proved (26).

Next, we prove (27). For any𝑑 for which 𝑎+𝑐+𝑑 ⊒ 𝑏, 𝑎+𝑎+𝑐+𝑑 ⊒

𝑎 + 𝑏 which implies 𝑎 + 𝑐 + 𝑑 ⊒ 𝑎 + 𝑏 because + is idempotent.

Conversely, 𝑎 + 𝑐 +𝑑 ⊒ 𝑎 +𝑏 implies 𝑎 + 𝑐 +𝑑 ⊒ 𝑏 because 𝑎 +𝑏 ⊒ 𝑏.

Hence,

(𝑎 + 𝑏) − (𝑎 + 𝑐) = ∧{𝑑 | 𝑎 + 𝑐 + 𝑑 ⊒ 𝑎 + 𝑏}

= ∧{𝑑 | 𝑎 + 𝑐 + 𝑑 ⊒ 𝑏}

= 𝑏 − (𝑎 + 𝑐)

□

Proof of Theorem 6.2. It is easy to see that 𝐹 is monotone, i.e.

𝑋 ⊑ 𝑌 implies 𝐹 (𝑋 ) ⊑ 𝐹 (𝑌 ). Hence, by induction we have 𝑅𝑡−1 =

𝐹 (𝑡−1) (⊥) ⊑ 𝐹 (𝑡 ) (⊥) = 𝑅𝑡 for all 𝑡 ≥ 1. Thus, from (26) we have

𝛿𝑡 + 𝑅𝑡−1 = (𝐹 (𝑅𝑡−1) − 𝑅𝑡−1) + 𝑅𝑡−1 = 𝐹 (𝑅𝑡−1). □

C.3 Proof of Theorem 6.3

Proof. From the fact that + is idempotent, 𝑏 + 𝑏 = 𝑏, we have

𝑎 ◦ (𝑥 + 𝛿) + 𝑏 = (𝑎 ◦ 𝑥 + 𝑏) + (𝑎 ◦ 𝛿 + 𝑏),

from which equality (22) follows.

The correctness of the differential rule follows from (22) and (27).

Note that we were able to drop one +𝑓 (𝐴1, . . . , 𝐴𝑘 ) term thanks

to (27). □

C.4 Examples

Example C.3 (Linear transitive closure). For the recursion,

𝑇 (𝑥,𝑦) :- 𝐸 (𝑥,𝑦) ∨ ∃𝑧 : 𝑇 (𝑥, 𝑧) ∧ 𝐸 (𝑧,𝑦) (30)

which is Boolean datalog◦, the differential rule at iteration 𝑡 ≥ 2 is

𝛿𝑡 (𝑥,𝑦) = (∃𝑧 : 𝛿𝑡−1 (𝑥, 𝑧) ∧ 𝐸 (𝑧,𝑦)) \𝑇𝑡−1 (𝑥,𝑦). (31)

We were able to remove the base-case thanks to (23).

Example C.4 (Quadratic transitive closure). For the recursion,

𝑇 (𝑥,𝑦) :- 𝐸 (𝑥,𝑦) ∨ (∃𝑧 : 𝑇 (𝑥, 𝑧) ∧𝑇 (𝑧,𝑦)) (32)

removing the base-case, the differential rule is

𝛿𝑡 (𝑥,𝑦) = (∃𝑧 : 𝑇𝑡−1 (𝑥, 𝑧) ∧ 𝛿𝑡−1 (𝑧,𝑦)) (33)

∪ (∃𝑧 : 𝛿𝑡−1 (𝑥, 𝑧) ∧𝑇𝑡−2 (𝑧,𝑦)) (34)

\𝑇𝑡−1 (𝑥,𝑦) . (35)
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