Session 3: PODS Awards

PODS ’22, June 12-17, 2022, Philadelphia, PA, USA

Convergence of Datalog over (Pre-) Semirings

Mahmoud Abo Khamis Hung Q. Ngo Reinhard Pichler*
relational Al relational Al TU Wien
USA USA Austria
Dan Suciu” Yisu Remy Wang®
University of Washington University of Washington
USA USA
ABSTRACT of datalog [2], a language that restricts recursion to monotone

Recursive queries have been traditionally studied in the framework
of datalog, a language that restricts recursion to monotone queries
over sets, which is guaranteed to converge in polynomial time in
the size of the input. But modern big data systems require recursive
computations beyond the Boolean space. In this paper we study
the convergence of datalog when it is interpreted over an arbitrary
semiring. We consider an ordered semiring, define the semantics
of a datalog program as a least fixpoint in this semiring, and study
the number of steps required to reach that fixpoint, if ever. We
identify algebraic properties of the semiring that correspond to
certain convergence properties of datalog programs. Finally, we
describe a class of ordered semirings on which one can use the
semi-naive evaluation algorithm on any datalog program.

CCS CONCEPTS

« Theory of computation — Database query languages (prin-
ciples).

KEYWORDS

Datalog; Semirings; Fixpoint

ACM Reference Format:

Mahmoud Abo Khamis, Hung Q. Ngo, Reinhard Pichler, Dan Suciu, and Yisu
Remy Wang. 2022. Convergence of Datalog over (Pre-) Semirings. In Pro-
ceedings of the 41st ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of
Database Systems (PODS ’22), June 12-17, 2022, Philadelphia, PA, USA. ACM,
New York, NY, USA, 13 pages. https://doi.org/10.1145/3517804.3524140

1 INTRODUCTION

Traditionally, database systems have focused on non-recursive
(loop-free) queries. However, modern data processing and tensor
computations require iteration and fixpoint computation. Some
systems, like Spark [54], have iteration embedded natively, while
others, like Tensorflow [1] are routinely run by a driver, e.g. in
order to iterate the computation until convergence.

Theoretically, the database community has studied the evalua-
tion and optimization problem for iterative programs in the context

*Suciu and Wang were partially supported by NSF IIS 1907997 and NSF IIS 1954222.
Pichler was supported by the Austrian Science Fund (FWF):P30930.

(o) @

PODS °22, June 12-17, 2022, Philadelphia, PA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9260-0/22/06.
https://doi.org/10.1145/3517804.3524140

This work is licensed under a Creative Commons
Attribution International 4.0 License.

105

queries over sets. However, today’s applications need to iterate
expressions that are not monotone queries over sets. For exam-
ple standard tensor operations (e.g. Einsum, convolution) are not
monotone w.r.t. set inclusion. Even some purely relational problems
such as computing betweenness centrality [19] or all-pairs shortest
paths (APSP) [7] require algebraic computations, and thus are not
monotone in the datalog-sense.

Recursive computations beyond the Boolean space lead to three
major challenges. First, non-monotonicity of general aggregations
leads to difficult semantic conundra [41, 42]. Second, finite conver-
gence behavior of the computation is no longer easy to be swept
under the rug (see examples below). Third, computational opti-
mization techniques developed for datalog, such as semi-naive
evaluation [2], break beyond the confine of Boolean monotonicity.

To address the demand for more expressive computations, this pa-
per introduces the language datalog®, pronounced datalogo, which
allows for expressing recursive computations over general semir-
ings. datalog® is powerful in that it can be used to express problems
such as transitive closure, all-pairs shortest-paths (APSP), minimum
spanning tree (MST), or computing a local minimum of a (class
of) optimization problem(s). To address the challenges, we equip
datalog® with a natural (least fixpoint) semantics, study conver-
gence behavior of datalog® programs, and generalize semi-naive
evaluation to work over semirings (modulo specific assumptions).
In what follows, we informally describe datalog® and how we took
steps towards addressing the challenges.

Expressiveness. A Datalog program is a collection of (unions
of) conjunctive queries, operating on relations. Analogously, a
datalog® program is a collection of (sum-)sum-product queries
over a (pre-) semiring, operating on S-relations.! An S-relation
is a function from the set of tuples to a semiring S, which is a set
equipped with two operations, ® and ®, and relational algebra
extends naturally to S-relations.

Example 1.1. A real-valued matrix A is an R-relation, where each
tuple A(i, j) has the value a4;j; and, R denotes the sum-product
semiring (R, +, -, 0, 1). Both the objective and gradient of the ridge
linear regression problem min, J(x), with J(x) = %I|Ax - bl +
(A/2)||x]|?, are expressible in datalog®, because they are sum-sum-
product queries. The gradient VJ(x) = ATAx — ATb + Ax, for
example, is the following sum-sum-product query:

V(i) =) > alki) - a(k,j) - x()+) (=1) - a(j,1) - b(j) + A() - x(i)
j k J

The notion of K-relations was introduced by Green et al. [27]; we prefer to call them
S-relations in this paper where S stands for “semiring”.

Session 3: PODS Awards

The gradient has the same dimensionality as x; the group by vari-
able is i. Gradient descent is an algorithm to solve for the solution
of VJ(x) = 0, or equivalently to solve for a fixpoint solution to the
datalog® program x = f(x) where f(x) = VJ(x) + x.

Example 1.2. The APSP problem is to compute the shortest path
length P(x,y) between any pair x, y of vertices in the graph, given
the length E(x,y) of edges in the graph. The value-space of E(x, y)
can be the reals R or the non-negative reals R. The APSP problem
in datalog® can be expressed very compactly as

P(x.y) = E(x.y) & (D) P(x.2) ® E(z.v), (1)

where (&, ®) = (min, +) are the “addition” and “multiplication”
operators in one of the min-+ tropical semirings Trop := (R U
{0}, min, +, 00, 0), or Trop* := (R4 U {oo}, min, +, o0, 0). Here R+
denotes the set of non-negative reals.

By changing the semiring, datalog® is able to express similar
problems in exactly the same way. For example, (1) becomes transi-
tive closure over the Boolean semiring, top p-shortest-paths over
the Trop; semiring [23] (see Example 5.7), and so forth.

Semantics. It should be clear that datalog® is very powerful.
Unfortunately, “with great power comes great responsibility”. In Dat-
alog, the least fixpoint semantics was defined w.r.t. set inclusion [2].
Generalizing to semirings, Green at al.[27] observed that, in order
to define the semantics of datalog over S-relations, one needs a par-
tial order, C, because the least fixpoint is defined w.r.t. some partial
order. They proposed to use semirings which are naturally ordered,
where x C y is defined as 3z : x + z = y. However, some important
semirings are not naturally ordered. For example, (R, +, X, 0, 1) is
not naturally ordered, because the relation 3z : x + z = y is not
anti-symmetric: for any x # y there is a z where x + z = y and
y + (—z) = x. This means recursive programs over arrays, matrices,
or tensors cannot be interpreted using the framework in [27].

In datalog® we decouple the semiring structure from the partial
order. We define a partially ordered, pre-semiring®, denoted by POPS,
to be any pre-semiring with a partial order, where both ® and ®
are monotone operations. The value-space of every S-relation is
some partially ordered pre-semiring.

In some cases, e.g. the Booleans, the partial order of POPS is
the natural one, but in other cases it is not. For example, we can

define a non-standard order relation on R by adding a new element,

Ry def R U {1}, and defining L C x for all x. The set R is called

the lifted reals, and we can use it to define a semantics for recursive
programs over vectors, matrices, or tensors. Adding L to create a
partial order is the standard approach for defining the semantics
in general programming languages [48]. In logic programming,
Fitting [15] proposed adding L, leading to the 3-valued semantics
of logic programs with negation.

With the partial order in place, we define the semantics of a
datalog® program as the least fixpoint of the immediate conse-
quence operator. datalog® subsumes traditional datalog semantics,
and captures the semantics of complex, recursive computations
over vectors, matrices, tensors, etc.

2 A pre-semiring is a semiring without the axiom x ® 0 = 0 ® x = 0 [23]; see Sec. 2.

106

PODS ’22, June 12-17, 2022, Philadelphia, PA, USA

Finite Convergence. Example 1.1 hinted at the difficulty with
computing the exact least fixpoint solution in a general POPS, even
when we know that the fixpoint exists. In practice, numerical op-
timization problems are often only solved approximately. This, in
principle, remains true with datalog®. However, here we concen-
trate on ways to compute the exact least fixpoint solution in a finite
number of steps. In particular, we focus on analyzing the number of
iterations needed for the naive evaluation algorithm? to converge.

Note that the infinite cardinality of the semiring value-space is
not the reason why a datalog® program does not converge when
iterated naively. For example, intuitively we know that the naive
algorithm for the APSP program (1) may not converge under Trop
(due to negative cycles), but it will always converge under Trop™.
This paper makes this intuitive observation precise: we extract
algebraic properties of the POPS which serve as sufficient conditions
under which the naive algorithm for datalog® converges in a finite
number of steps. Furthermore, under additional assumptions, we
show that the naive algorithm converges in poly-time. These results
subsume the corresponding results in traditional Datalog.

For example, our results imply that while the naive algorithm
for (1) may not converge under Trop, it converges in a linear number
of steps if the semiring is Trop* or more generally Trop;. The
property satisfied by Trop™ but not Trop is 1 ® a = 1 for every
element a in the value-space and 1 is the multiplicative identity.
Less formally, this says min(a, 0) = 0 for all a € R} U {oo}.

Beyond the naive algorithm, we show that the approach of gen-
eralizing Gaussian elimination to closed semirings [38, 47] works
for datalog® under POPS too; this leads to essentially a cubic time
algorithm to find a least fixpoint of a linear datalog® program.

Optimization. Semi-naive evaluation is one of the major opti-
mization techniques for evaluating Datalog, which we would like
to generalize to datalog®. To explain the main ideas, let us consider
the Boolean semiring version of (1):

P(x,y) - E(x,y) v \/ P(x,2) A E(,9). (2)
z

After initializing Py(x,y) = do(x,y) = 0, at the tth iteration semi-

naive evaluation does the following:

Si(x.y) = (E(x, v \/8-1(x.2) AE(z y)) \Poi(xy) ()

Pr(x,y) = Pr-1(x,y) U 6t (x,). 4)

Furthermore, starting from iteration ¢ = 2 onwards, we can sim-
plify (3) further by removing the base-case E(x, y) because we know
E(x,y) € Pr—1(x,y) for t > 2:

8 (x,y) = (\/ O8t-1(x,2z) NE(z, y)) \ Pr—1(x, y). (5)

Without these optimizations, we will have rederived a lot of facts in
each iteration. Under datalog®, we are able to generalize the above
ideas by defining an appropriate “minus” & operator for certain
semirings that plays the role of the \ operator in (3), and we show
that for ©, both the semi-naive evaluation step (3) and the base-case
removal optimization (5) hold for general datalog® programs.

3Repeatedly apply the equation until a fixpoint is reached

Session 3: PODS Awards

Example 1.3 (Shortest paths). The APSP problem is 1 under Trop,
where the analog of (5) is:

Or(xy) = (min&e—1(x,2) + E(2.y)) © Pr-1(x,y), (6)

where the difference operator © is defined later in the pape (20).
Intuitively, the © operator does what we expect: from the new
shortest paths from x to z discovered in the previous iteration, we
see if adding a (z, y) edge gives us a shorter path from x to y; if so,
we update the shortest path from x to y.

Paper organization. Section 2 presents basic concepts on semir-
ings and defines (sum-)sum-product queries under semirings. Sec-
tion 3 studies the stability of vector-valued monotone functions
over posets. (Stability of a function is the number of its applications
until a fixpoint is reached.) This fundamental result serves as a
basis for analyzing finite convergence of the naive algorithm for
datalog®. Section 4 formulates the concept of partially preordered
semirings (POPS), which form value-spaces of datalog® programs. It
formally defines the syntax for datalog® programs, and introduces
the fixpoint semantics of datalog®. A range of possible convergence
behaviors of datalog® programs is studied in Section 5. Section 6
presents a generalization of semi-naive evaluation to datalog®.

2 BACKGROUND ON SEMIRINGS

A pre-semiring [23] is a tuple S = (S, ®, ®, 0, 1) where ® and ® are
binary operators on S for which (S, @, 0) is a commutative monoid,
(5,®,1) is a monoid, and ® distributes over . This paper only
considers commutative ® and ® operators. When the absorption
rule x ® 0 = 0 holds for all x € S, we call § a semiring.*

Common examples are the Booleans (B d§f {0,1},V, A,0,1), and
sum-product semirings over natural (N, +, X, 0, 1) or real numbers
(R, +,%,0,1). We will refer to them simply as B,N and R. Other
useful examples were introduced in Example 1.2: Trop and Trop™.
We will illustrate more semirings in this paper, and also refer the
reader to [23] for many more examples.

Fix a pre-semiring S = (S, ®, ®, 0, 1) and a finite domain D; for
example D could be the set [n] = {1,...,n}, or some finite set
of identifiers. An S-relation is a function R : D¥ — S, where D
is a finite domain. D is called the key-space, S is the value-space,
and k is the arity of R. The type of Ris DX — S.Ift € D¥ isa
tuple of constants, then we call the expression R(t) a ground atom.
Equivalently, we can view an S-relation as a mapping from ground
atoms to S. Fix a vocabulary R = {Ry, Ry, ...} of relation names,
and a semiring S, where each relation R; has type DN — 8.

Definition 2.1. Let xq, ..., xp be a set of variables, taking values
in the domain D. A sum-product query is an expression of the form

T(x1,...,xE) - Al® - ®Anp 7)

X415 Xp ED

where each Ay is either a relational atom, R;(xy,, . .. X,), or an
equality predicate, [x; = xs]; the variables xi, .. ., x are called free
variables, and the others are called bound variables. The body of the
query (RHS of (7)) is a sum-product expression.

4Some references, e.g. [35], define a semiring without absorption.

107

PODS ’22, June 12-17, 2022, Philadelphia, PA, USA

A sum-sum-product query has the form:

Qxts o sxp) = Ti (X1,) @ @ Tylx1, .. X)) (8)
where Ty, To, . . ., Ty are sum-product expressions with the same free
variables xi, . . ., Xg.

When the value-space S is the Boolean semiring, then a sum-
product query is a Conjunctive Query (CQ) under set semantics, and
a sum-sum-product query is a Union of Conjunctive Queries (UCQ).
When S = N, then they are a CQ or UCQ under bag semantics; and
when S = R then a sum-product expression is a tensor expression,
sometimes called an Einsum [46].

The semantics of (7) is the following. The value of each ground
atom T'(t) is defined as the (finite!) sum on the right, where we
substitute the variables x1, .. ., x; with the constants in the tuple ¢.
The semantics of (8) is the sum of terms on the right.

The problem of computing efficiently (sum-)sum-products over
semirings has been extensively studied both in the database and in
the Al literature. In databases, the query optimization and evalua-
tion problem is a special case of sum-sum-product computation over
the value-space of Booleans (set semantics) or natural numbers (bag
semantics). The functional aggregate queries (FAQ) framework [32]
extends the formulation to queries over multiple semirings. In Al,
this problem was studied by Shenoy and Schafer [49], Dechter [13],
Kohlas and Wilson [35] and others. Surveys and more examples
can be found in [3, 34].

Remark 2.2. The notation pair (®,®) helps reduce confusion
when we discuss semirings such as the a tropical semiring where
min is @ and + is ®. However, @ and ® are quite cumbersome to
parse; thus, in the rest of this paper we will mostly use + and o
instead of (&, ®) to lighten the notational density. Furthermore,
just as with arithmetic multiplication, we will also sometimes drop
o, writing ab for a o b for instance.

3 LEAST FIXPOINTS OVER PRODUCT SPACES

We review partially ordered sets and present two technical results
that allow us to prove the convergence of datalog® programs.

Fix a partially ordered set (poset), L = (L, C). In this paper we will
assume that each poset has a minimum element L, unless otherwise
specified. We denote by \/ A, or A A respectively, the least upper
bound, or greatest lower bound of a set A C L, when it exists. A
function f between two posets is called monotone if x C y implies
f(x) E f(y), and is called strictif f(L) = L.

Given a monotone function f: L — L, a fixpoint is an element
x such that f(x) = x. We denote by Ifpy (f) the least fixpoint of f,
when it exists, and drop the subscript L when it is clear from the
context. Consider the following w-sequence:

Lo
If x is any fixpoint of f, then f(") (1) C x (by induction on n).
There are several restrictions on the poset L and/or function f that
ensure that \/,, f(") (1) is the least fixpoint of f, see [12]. The most
common restriction is for f to be monotone and w-continuous: the
least fixpoint exists due to Kleene’s theorem. This line was studied
extensively in the formal language literature [8, 37]. In the database
literature, Green et al. [27] require the semiring to be naturally

FOw) €L £ (1)

Session 3: PODS Awards

ordered (L captures the order) and w-continuous in order to give a
semantics to datalog programs over semirings.

In this paper we are interested in conditions that ensure that the
sequence (9) reaches a fixpoint after a finite number of steps, and
for this reason we introduce here two alternative conditions. An
w-chain in a poset L is a sequence xp < x1 < ... We say that the
chain is finite if there exists ng such that x,, = xpg41 = Xpg42 =3
equivalently, x,, =\ xp.

Definition 3.1 (ACC). A poset L satisfies the Ascending Chain
Condition, or ACC [43], if it has no infinite w-chains. The rank of a
strictly increasing chain xp < x1 < -+ < xp is k. We say that L has
rank k if every strictly increasing chain has rank < k [50].

Definition 3.2. A monotone function f on L (ie. f: L — L)is
called p-stable if £(P*1) (1) = f(P)(L). The stability index of f is
the minimum p for which f is p-stable. The function f is said to be
stable if it is p-stable for some p > 0.

If L has rank k then every monotone function f is k-stable. If
ACC holds, then every monotone f is stable. If a function f is
p-stable, then it has a least fixpoint and Ifp(f) = f(f’) (L).

In this paper we need to compute the least fixpoint of func-
tions over product spaces, L1 X Ly, or LP for some set D, ordered
pointwise. The ACC immediately extends to products [12]:

Proposition 3.3. Suppose posets L1, Ly, L satisfy ACC. Then L1 X Ly
satisfies ACC. If D is finite, LP also satisfies ACC. If Ly, Ly, L have
ranks k1, ko, k then Ly X Ly has rank ki + ko and LP has rank k - |D|.

Next, we consider stability of functions over product spaces. We
start by considering two posets, L1, Lz, and two functions:

f:L1>(L2—>L1 g:L1XL2—>L2

Denote by h def (f.9) : L1 x L, > Ly X Ly and, for any u € Lj,
denote by g, (y) def g(u, y). We prove:

Lemma 3.4. Assume that p, q are two numbers such that, for allu €

d
L1, the function gy, is q-stable, and the function F(x) =eff(x, g,(cq) (1))
is p-stable. Then the following hold:

o The function h has the least fixpoint (X, j), where

_def
&

de,
x Lr) (1) Zoi (1)

(10)

d
o Denoting (an, bn) =efh(") (L, L), the following equalities hold:

Qpqrp =X bpgrg =7 (11)

In particular, h is pq + max(p, q)-stable.

We give here the main idea of the proof, and defer the details
to the appendix. The first item of the lemma can be checked by
direct calculation to verify that f(x,§) = x and g(%,) = §. For the
second item, we view the computation in Eq. (10) as a sequence
of steps, each applying either g or f (see Fig. 1). The fixpoint x, is
reached after pq + p steps®, while the fixpoint Ypq is reached after
pq + p + q steps. The claim follows by observing that the sequence
h(" (L, 1) grows at least as fast as the sequence in the figure.

SThere are pq g-steps plus p f-steps.

108

PODS ’22, June 12-17, 2022, Philadelphia, PA, USA

We note that the main idea for obtaining a fixpoint in Lemma 3.4
is a general principle that is also used in Floyd-Warshall’s algorithm,
and in other settings [29, 38].

We generalize the lemma as follows. A clone [10] over n posets
Ly,...,Ly is a set C where (1) each element f € C is some mono-
tone function f : Lj, X---XLj, — L;, (2) C contains all projections
Lj, x---xLj — Lj, and (3) C is closed under composition, i.e.
it contains the function g o (fi, ..., fx) whenever fi,..., fr,g € C
and their types make the composition correct. We call C a c-clone
if it also contains the constant L functions: L: () — L;. For a sim-
ple illustration, if f: Ly X Ly — Ly and g: L1 X Ly — Ly are in
C, then the functions f(x, g(x,v)), f(f (x,9).9(x.), 9(f (x,y). y)

are also in C. Similarly, the functions g(x, L), g(x, g(x, 1)), and, in

general, all functions x — g}({q)

def
F(0) < £ gl (1)),
Theorem 3.5. Let C be a c-clone of functions overn posets L1, . .., Ly,
and assume that, for everyi € [n], every function f: Li — L; inC
is pj-stable. WLOG, assume p1 > pp > -+ 2 pp. Then, if fi,..., fn

d
are functions in C of types f; : [1j=1,n Lj — Li, the function h X
(fis- -+, fn) isP-stable where P == 3/, Hle pi. Moreover, this upper

bound is tight: there exist posets L1, . .., Ly, a c-clone C, and functions
fis- ., fn, such that P is the stability index of h.

(1) for ¢ = 0 are in C, and so is

4 DATALOG®

We introduce here a new recursive language obtained by combining
traditional datalog with tensor expressions. We call the language
datalog®, pronounced datalogo, where the superscript “o” is a (semi)-
ring. We restrict our discussion to the basic datalog®, which is
analogous to the monotone fragment of datalog without interpreted
functions, and discuss extensions in Appendix B.1. Throughout this
section we denote by Ey, . . ., Ep, the relational symbols representing
the EDB predicates, by Ry, . .., R, the symbols representing the IDB
predicates.® All EDBs and IDBs are assumed to be over the same
finite domain D, and have the same value-space S; thus, their types
are E; : D% — SandR; : DFi — S, where ?j, k; are the arities of
Ej, R; respectively.

A datalog® program P consists of n rules, one for each IDB
predicate:

P: Ri(vars;) - fi(E1,...,Em,R1,...,Rn) (12)

where each function fi, ..., f, is a sum-sum-product expression
given by Def. 2.1, Eq. (8). P is called linear if each product contains
at most one IDB predicate. The datalog® program in Ex. 1.2 is linear.

While in standard datalog rules are required to be safe, meaning
that every variable must occur in some relational atom, we do not
require this in datalog®, because we assume the domain D is finite.

i €[n]

Partially Ordered Pre-semirings. To define the semantics of
datalog®, we extend the pre-semiring S with a partial order.

Definition 4.1. A partially ordered pre-semiring, in short POPS’,
isatuple S = (S,+,0,0,1,E), where (S,+,0,0,1) is a pre-semiring,
(S,C) is a poset, and +, o are monotone.

®EDB and IDB stand for extensional database and intentional database respectively [2].
7For Partially Ordered Pre-Semiring.

Session 3: PODS Awards

A POPS satisfies the identities L + L = L (because L + L C
1 +0=_1)and similarly 1 o 1 = 1. We say that o is strict if the
identity x o L = 1 holds (recall that we assume o is commutative).

In any (pre-)semiring S, the relation x <g y defined as 3z :
X +z =y, is a preorder: it is reflexive and transitive, but not always
anti-symmetric. When <g is anti-symmetric, it is a partial order, in
which case it is called the natural order on S. Every naturally ordered
semiring is a POPS, where L = 0 and o is strict, but not conversely.
Prior semantics to datalog [27] or fixpoint logic [11] required the
semiring to be naturally ordered, w-complete, meaning that every
w-chain has a least upper bound, and w-continuous, meaning every
countable sum is associative and commutative, and o distributes
over countable sums. Our approach differs in that we decouple
the order relation from the (pre-)semiring structure. The reason
is that many datalog® programs are over a semiring that is not
naturally ordered, and, even when it is, their fixpoint semantics is
over an order different from the natural one. For example, R is not
naturally ordered, yet all tensor operations are over R-relations,
hence we need a means to interpret recursive programs over R. The
common approach for defining recursive functions over R or N (or

any other set) is to “lift” the set. For example, the lifted integers

N, BNV {L} with the ordering 1L C x for all x, is used to give a

standard textbook semantics to the recursive definition of factorial:
P: fact(x)= if x=0 then 1 else x x fact(x—1)

The immediate consequence operator P(fact) takes a partial func-
tion and returns a new partial function. After g iterations, P@ (1)
returns a function that is = x! for x < ¢, and is = L for x > ¢,
and fact = Ifp(P). Important for our discussion is the fact that the
partial order C is not the natural order x < y on N, but a different
one. This justifies our definition of a POPS (Def 4.1), where we
decoupled the partial order from the (pre-)semiring operations.

Examples of POPS and discussions are given in Appendix B. It
turns out that POPS capture a big variety of settings, including
Fitting’s 3-valued and 4-valued approaches to logic programming.
The latter connection is worked out in some detail in [31].

Semantics. We define now the semantics of a basic program (12).

Denote by Dgpp def Uj=1,m D% and Dipg def Ui=1.n Dki | where
the union is a disjoint union. An instance of all EDB predicates is
E € SPeB | and an instance of all IDB predicates is R € SPB, For
each datalog® rule, the expression f; in (12) defines a function:

ki
fi: sDepp o ¢DiB _, gD™

Denote by H S (..., f) : SPos 5 §Pwn —y §Dins,

Definition 4.2. Fix an EDB instance, E. The immediate consequence

operator of the program P in (12) is the function Fp : $Pms — sDms

defined as Fp(R) def H(E, R). The semantics of the datalog pro-

gram P is its least fixpoint, [fp(Fp). The naive evaluation algorithm
consists of setting R(?) def (L4,...,1) and repeatedly computing
R(a+D def Fp(R(q)), until R(@*) = R(D Ifsuch a fixpoint exists,
then we say that the program converges, otherwise it diverges.
The Grounded datalog® Program. It is often more convenient

to define the semantics of a datalog® program with its grounded
version. Fix a program P as defined in Eq. (12), and consider a

109

PODS ’22, June 12-17, 2022, Philadelphia, PA, USA

rule R;(x1,...,Xg,;) := -+ +. A grounding of this rule is obtained by
choosing a tuple t € D¥i, substituting all head variables with
the constants in ¢, and expanding each summation operator into
an explicit sum of expressions, for example },.cp f(x) becomes
fu1) + f(uz) +- -+ + f(up)), if the domain is D = {uy,...,up|}.
This results in an expression consisting of ground EDB atoms and
ground IDB atoms connected by the operators + and o.

Define M def |Dgpg| and N def | Dipg | the number of ground EDB
atoms and ground IDB atoms respectively. Denote these atoms by
the variables ey, ..., ey and x1, . .., XN respectively. For example,
one variable Xp may stand for the ground atom R;(uy, .. .,uki),
where u1, ..., u, € D. The grounded function f; is a multivariate
polynomial in the variables ey, ..., ey, x1, . . ., Xy over the POPS §;
fi : SM x SN — 5. 1If the original program was linear, then each f;
is a linear function in the IDB variables x, ..., xn7. The grounded
program PY consists of all groundings of all rules in P:

P9 ke[N] (13)

EDB and IDB instances of the original program and the grounded
program are the same. For example an instance of R; in the origi-

Xk :—ﬁc(el,...,eM,xl,...,xN)

ki -
nal program is an S-relation, i.e. an element in S, while in the
grounded program R; is replaced by |D|¥i variables x1, x3, . . ., Xpkis

which also represent an element in SP N Similarly, the immediate
consequence operator of the original and of the grounded program
coincide. In the rest of this paper we will assume w.l.o.g. that the se-
mantics of a datalog® program (Def. 4.2) is the fixpoint of a system
of polynomials (13).

For a simple illustration, assuming a domain of size 2, D = {1, 2},
the grounding of the datalog® program in (1) is the following:

X11 i~ e11 + e11X11 + e12Xx21 X12 - €12 + €11X12 + €12X22

X21 i~ €21 + €21X11 + €22X21 X22 i~ €22 t+ €21X12 + €22X22

5 CONVERGENCE BEHAVIOR OF datalog’®

In traditional datalog, the naive evaluation algorithm converges
in a number of iterations that is polynomial in the size of the do-
main®, but in datalog®, the picture is more complex. Recall that D
denotes the (finite) domain on which the key-space is based, which
is different from the semiring value-space which can be infinite.
Depending on the POPS S, and assuming @ and ® take O(1)-time
to evaluate, there are four possibilities for datalog®:

(i) Every program converges in time polynomial in |D|.
(if) Every program converges in some time T(|D|).
(iii) Every program converges.
(iv) Not every program converges.

We study the following question: Given a POPS S, determine
which of the four cases holds for datalog®?

The simplest example is when § is the Boolean semiring. This
is the traditional datalog setup when Case (i) holds. This section
provides a series of results pertaining to the question above in the

81n standard datalog the domain is sometimes assumed to be infinite, and instead the
runtime is described in terms of the size of the active domain. In this paper we assume
that the domain is finite, and avoid the need to talk about the active domain. When the
domain is infinite, then one can adopt the approach of standard datalog and consider
the active domain instead.

Session 3: PODS Awards

general case. Throughout this section we will refer the following
single-rule datalog® program:

X()=AQeX() + B0 (14)

Obviously, a necessary condition for every datalog® program to
converge (in one of the convergence criteria above) is for (14) to
also converge. Surprisingly, in some cases the converse also holds:
convergence of (14) implies convergence of any datalog® program.

A linear function’ on the POPS S is either a constant function

f(x) def b, or is defined as'®:

£ Cax+p (15)

When b = 1 then we say that the linear function (15) is simple. A
multivariate function f : Sk — Sis called linearif it is linear in each
argument; equivalently, f(x1,...,x,) =ajox; +---+apoxi, +b,
fori<ij<ip<---<ip<k.

The following lemma can be verified straightforwardly; recall
that o is strict meansao L = L.

Lemma 5.1. LetS be a POPS where o is strict, and f be a univariate
linear function. If f(x) = b, then f(q)(J_) =bforallq 2 1. If

d
f(x) = ax + b, then, define g(x) :efax + 1, we have

FDL)=b+ab+a®b+---+a? b+ 1L =gD(1)ob. (16)

In particular, if every simple linear function is q-stable, then every
linear function is max(1, q)-stable.

5.1 Divergence

It is easy to find examples where programs diverge, thus, Case (iv)
is possible. Consider the program (14) over the naturally ordered
semiring N. Set A() = 2, B() = 1, then xX(@+D = 2x(9) 41 and, after
q iterations, the IDB is X(9) = 29 — 1, hence the program diverges.

5.2 Convergence

This section studies conditions under which a datalog® program
converges in a finite number of steps that is not only dependent on
|D| but also on the value-space of S. This corresponds to Case (iii).
The first observation is a simple sufficient condition, which follows
immediately from Proposition 3.3:

Theorem 5.2. If ACC holds for the POPS S, then every datalog’®

program P on S converges on every input EDB instance. In addition, if
S has rank k, then the program converges in at mostk-N = k- |D|OM)

iterations (where N is the number of ground IDB atoms).

Beyond the above simple result, we give next a complete charac-
terization of POPS § for which every linear program converges.

Theorem 5.3. Let S be a POPS where o is strict. Then, every linear
datalog® program converges in a finite number of steps if and only if
every linear function is stable.

In [31] we give an example of a POPS S that belongs to Case (iii),
but not to Case (ii): every datalog® program converges in a finite
number of steps, yet the program P in (14) requires a number of
steps that depends on the values of A() and B().
9Strictly speaking, these are affine functions; however, we use “linear” to align with

“linear datalog”.
10 (x) = b is not a special case of (15), because, in general, 0 o x # 0.

110

PODS ’22, June 12-17, 2022, Philadelphia, PA, USA

5.3 Convergence in T(|D|) steps

Next, we study conditions under which every program converges
in T(|D]) steps, for some function T. Unlike the previous case, here
we insist that the number of steps depends only on the size of the
domain, and not on the values in the value-space. This is precisely
Case (ii) in our discussion. We will give a complete characterization
of the POPS S for this case, assuming that o is strict.

Definition 5.4. A POPS § is called p-stable if every simple linear
function is p + 1-stable.

A necessary condition for every program to converge in time
T(|D]) is that the POPS § is p-stable, for some p > 0. This follows
immediately by considering the program (14): it converges in some
fixed number of steps, say p+1 steps!!, which is independent of the
values A() and B(). Then, by setting A() = a and B() = 1, it follows
that the a simple linear function f is p + 1-stable, in particular, the
POPS is p-stable. In this section we prove that p-stability of the
POPS S is also a sufficient condition.

Theorem 5.5. Let S be a p-stable POPS where o is strict. Consider a
datalog® program P, and recall that N is the number of ground IDB
atoms. Then:

(i) If p = 0, then P converges in at most N steps.
(ii) If P is linear, then it converges in < Zfil (p +1)F steps.
(iii) In general, P converges in < Zﬁ-\il (p +2)* steps.

The bounds given by the theorem are exponential in N, except
for 0-stable POPS. For linear programs (case (ii)), we will see in
Theorem 5.11 that P can be computed in PTIME, using a different
algorithm than naive evaluation. For case (iii), we could neither
prove nor disprove a polynomial bound.

In the rest of this section we outline the key steps in the proof
of Theorem 5.5. The main line of development is to start from a
notion of stability of a single element in the value-space, which
is essentially equivalent to the stability of simple linear functions
over the same space. Then, the main technical result for the proof
is to bound the stability of single-valued polynomial functions us-
ing the stability of simple linear functions. This result is stated
in Theorem 5.8 below. It is a statement about properties of semir-
ings, which should be of independent interest from datalog®. The
theorem is then extended to single-valued polynomial functions
over stable POPS, and finally to vector-valued functions over stable
POPS, which leads to Theorem 5.5.

p-Stable Semirings. We start with the value-space whose ele-
ments are stable. The following notations and simple facts can be
found in [23]. Fix a semiring S. For every a € S and p > 0 define:

2

f
a(P)d§1+a+a +-+af (17)

Definition 5.6. An element a is p-stable if a(?) = aP*1_ A semir-
ing S is p-stable if all its elements are p-stable.

This definition is consistent with the definition of POPS stability
(Defn. 5.4), for the following reasons. Suppose every element of
S is is p-stable. It is known [23] that the stability of 1 implies S is
naturally ordered (see also [31]). Hence, S is a POPS using its natural

" The non-recursive program X () :- B() requires at least one step; this justifies writing
the number of steps as p + 1.

Session 3: PODS Awards

order. Furthermore, one can check that every simple linear function
is p + 1-stable. Conversely, suppose S is naturally ordered and p-
stable according to Def. 5.4, then every element a is p-stable, because
a'?) = £(0*1) (0) where f is the simple linear function. We give an
example of a very useful p-stable semiring; See reference [23] for
more examples.

Example 5.7 (Tropp). Consider the following semiring, which
we denote by Trop,,. Its elements are bags of p + 1 real numbers

. def
..»Up} S R U {oo}. The operations are u & v =

. def .
miny(u U o) and u ® v = miny{u; +0; | u; € u,v; € v}, where

miny, (B) returns the smallest p +1 elements of a bag B; for example,
miny({3,5,5,5,9,9}) = {3,5,5}. The units are 0 = {co,...,c0} and
1 = {0,00,...,00} (bags of p + 1 elements). One can check that
Trop,, is p-stable. When the relations E, P in the simple datalog®
program (1) are interpreted over Trop s then the program computes
the values P(x, y) of the p + 1 lowest cost paths from x to y in the
graph. When p = 0, Trop, = Trop is the standard tropical semiring.

u = {uo,uy,.

Our main technical result transfers stability from simple linear
functions to polynomial functions:

def
x) Lag +ajx +asx® + -+ apxk
k

(18)

Theorem 5.8. LetS be a p-stable commutative semiring and let f
be a polynomial function (18). Then, if p = 0 then f is 1-stable; If
is linear, then it is p + 1-stable; In general, f is p + 2-stable.

Abo Khamis et.al. [31] contains the proof of the above theorem,
and an example explaining why in general f is not p + 1 stable.

Theorem 5.8 generalizes special cases studied by Gondran [22,
23]. The case of a 0-stable semiring has been most extensively
studied. Such semirings are called simple by Lehmann [38], are
called c-semirings by Kohlas [35], and absorptive by Dannert et
al. [11]. In all cases the authors require 1 + a = 1 for all a (or,
equivalently, b + ab = b for all a,b [11]), which is equivalent to
stating that a is 0-stable, and also equivalent to stating that (S, +) is
a join-semilattice with maximal element 1. The tropical semiring is
such an example; every distributive lattice is also a 0-stable semiring
where we set + = V and o = A.

The rest of the proof. To complete the proof of Theorem 5.5, we
extend Theorem 5.8 to stable POPS (see [31]), and then to multi-
valued polynomials (see [31]). These corollaries, stated and proved
in the appendix, directly imply Theorem 5.5.

5.4 Convergence in PTIME

Assume, as before, a p-stable POPS where o is strict. Theorem 5.5
gives an exponential (in the domain size) upper bound on the num-
ber of steps of the naive evaluation algorithm. Is this bound tight?
Or can a datalog® program be computed in PTIME? In this section
we answer partially these questions for linear datalog® programs. In
this case, the immediate consequence operator is a linear function
F:S8N — sV

First, we consider the case of a p-stable semiring. In this case
the immediate consequence operator can be written in matrix no-
tation F(X) = AX + B, where A is an N X N matrix, and X, B are
N-dimensional column vectors. After g + 1 iterations, the naive

111

PODS ’22, June 12-17, 2022, Philadelphia, PA, USA

algorithm computes F(4*1) (0) = B+ AB+A2B+---+A4B = A(D B,

where A(© %' 1 N+A+A?+- -+ A9, The naive algorithm converges
in g + 1 steps iff F is g + 1-stable. A matrix A is called g-stable [23]
if A@ = A(4+) The following is easy to check: the matrix A is
g-stable iff, for every vector B, the linear function F(X) = AX + B
is q + 1 stable. Our discussion implies that, in order to determine
the runtime of the naive algorithm on a linear datalog® program
over a p-stable semiring, one has to compute the stability index of
an N X N matrix A over that semiring. Surprisingly, no polynomial
bound for the stability index of a matrix is known in general, except
for p = 0, in which case A is N-stable (see [22], and also [31]). We
prove here a result in the special case when the semiring is Trop »
(introduced in Example 5.7), which is p-stable.

Lemma 5.9. Every NXN matrix overTropp semiring is (pN+p—1)-
stable. This bound is tight, i.e., there exist N X N-matrices over Trop,,
whose stability index is (pN + p — 1).

We give the full proof in [31] and sketch here the main idea. We
consider an N X N-matrix over Trop,, as the adjacency matrix of a
directed graph with N vertices and up to p + 1 parallel edges from
some vertex i to j. Then A%) contains in position (i, j) the p + 1
lowest-cost paths of up to k edges from i to j. The upper bound is
proved by arguing that AK) with k > pN +p —1 cannot contribute
to the p + 1 lowest-cost paths due to the existence of at least p + 1
cycles along such paths. For proving the lower bound, we take A
as the adjacency matrix of the directed N-cycle.

The lemma immediately implies:

Corollary 5.10. Any linear datalog® program overTrop,,, converges

in pN + p — 1 steps, where N = ID|M) s the number of ground IDB
tuples. This bound is tight.

Second, we consider arbitrary p-stable POPS S, where o is strict,
and prove that every linear datalog® program can be computed in
PTIME, but using an algorithm different from the naive algorithm.

When S is a semiring, then this follows from adapting Gaussian
elimination to semirings [38, 47], which coincides with the Floyd-
Warshall-Kleene algorithm. The algorithm and its variants compute
the closure A* of an N x N matrix in O(N?) time, in a closed
semiring. The same principle applies to a p-stable POPS:

Theorem 5.11. Let S be a p-stable POPS, where o is strict, and let
fi.....fN be N linear functions in N variables. Then, there is an
algorithm computing Ifp(fi, ..., fy) in time O(pN + N3).

6 SEMI-NAIVE OPTIMIZATION

Consider a single datalog® stratum (see, e.g., [2] for a definition of
this standard concept in datalog) that repeatedly computes R = F(R)
until a fixpoint is reached. A naive evaluation consists of repeatedly
applying the immediate consequence operator, that is we compute

Ro,R1, Ry, ... where Ry 41 def F(R;). As observed in standard datalog,
this strategy is inefficient because all facts discovered at iteration
t will be re-discovered at iterations ¢t + 1, + 2, ... The semi-naive
optimization consists of a modified program that computes R;+1 by
first computing only the “novel” facts §;41 = F(R;) — Ry, which are
then added to R; to form R;.1. Efficiently computing F(R;) — R;
without fully evaluating F(R;) is the incremental computation prob-
lem typical of incremental view maintenance. There are different

Session 3: PODS Awards

Algorithm 1: Semi-naive evaluation for datalog®
Ry — 0 &y « 0;
for t < 1to oo do
Ot « F(Re-1) = Re-1;
Ry « Ry_1 + 6¢;
if §; = 0 then

| Break
return R;

// incremental computation

incremental computation strategies, one of which is to exploit the
fact that F is essentially multilinear (see definition below) to in-
crementally compute 8441 = F(Ry—1 + &r) — F(R;—1) without fully
evaluating F(R;). This section generalizes semi-naive evaluation
to datalog®.

In standard datalog the difference operator is well defined, since

.. . def
the Boolean semiring supports a difference operator as x — y =

x A —y. For a semi-naive evaluation in datalog®, we need to define
the difference operator.

A dioid is a semiring (S, +, 0,0, 1) for which + is idempotent. It
is known [28] that a dioid is naturally ordered. Furthermore, the
natural order can be simplified by defining a C b iff a + b = b; and,
under this natural order, + is the same as V. (See Appendix C.1.)
Dioids have many applications in a wide range of areas; see [28]
for many examples.

Definition 6.1. APOPS S = (S,+,0,0,1,C) is called a distributive
dioid if (S, +,0,0,1) is a dioid, C is the dioid’s natural order, and the
lattice is distributive. In a distributive dioid, the difference operator
is defined by

b—ad:ef/\{c|a+cgb}

(19)

For example, the POPS (2Y,u,n,0,U, Q) is a distributive dioid,
whose difference operator is exactly set-difference b —a = A{c |
b CaUc}=>\a ThePOPS Trop = (RU {co}, min, +,0,0,>) is a
distributive dioid, whose difference operator is defined by

b
b—a:{
(o)

Theorem 6.2. Let F be a datalog® program over a distributive dioid,
then the semi-naive algorithm 1 returns the same solution as the naive
algorithm (Algorithm 2 in the appendix).

ifb<a

20
ifb>a (20)

A proof of the above theorem is in Appendix C. The next pillar of
semi-naive computation is the fact that the rule F(R;—1) — R;—1 can
be computed efficiently by incremental computation. Note that in
general F is a vector-valued second-order function, mapping input
IDBs to output IDBs. We describe how to incrementally compute
a component function of F. Without loss of generality, consider a
component function f(R;—1) of F. We show how

JRi=1) = Re—1 = f(Re—2 + 6t-1) — f(Re—2)
can be computed incrementally.

Note that f is a multivariate polynomial in the input IDBs. For
the purpose of incrementally computing (21) once, we can assume
that no IDB in the input of f occurs twice without loss of generality;
because, we can give every occurrence of an IDB a unique name.

(1)

112

PODS ’22, June 12-17, 2022, Philadelphia, PA, USA

(See Example C.4 for an illustration.) Let R;_5 = (AL, -- -, AF) be
the k-tuple of IDBs that f is a function of, and 6;—1 = (51, cee, 5k).

Theorem 6.3. Let f be a component function of a datalog® program
F over a distributive dioid in which every input IDB of f occurs once
in the formula defining f. Then, f is multilinear, i.e.

FAL .. AT 468, AF)

= AL LA AR Al s AR (22

Iff(A) = c+ f’(A) where c is a constant, then the incremental com-
putation f(R;—1) —Rs—1 can be computed by the following differential
rule

FA +68Y, . AR+ 55— (Al AR =

k
Zf’(Al +8L . AT I 50 AT AR
Jj=1
—f(AL ... AR (23)

The simplest application of the differential rule (23) is when F is
linear, in which case the rule takes a particularly simple form:

Ot+1 = F(Ry—1 +8¢) — F(Ry—1) = F(6;) = F(Re—1) = F(6¢) — Ry

It should be noted that (23) is not the only way to implement the
incremental computation. We can use (22) to expand f into up to
2k —1 many terms. However, the linear expansion such as (23)
is the most compact in terms of the number of rules one has to
evaluate to implement the incremental computation. An example of
how (23) works in the context of the APSP problem was presented

in Example 1.3.

7 RELATED WORK

To empower Datalog, researchers have proposed amendments to
make datalog capable of expressing some problems with greedy so-
lutions such as APSP and MST. Most notably, the non-deterministic
choice construct was extensively studied early on [24-26]. While
datalog+choice is powerful, its expression and semantics are some-
what clunky, geared totwards answering optimization questions
(greedily). In particular, it was not designed to deal with general
aggregations.

To evaluate recursive datalog® program is to solve fixpoint equa-
tions over semirings, which was studied in the automata theory [37],
program analysis [8, 43], and graph algorithms [6, 39, 40] communi-
ties since the 1970s. (See [23, 29, 38, 47, 55] and references thereof).
The problem took slighly different forms in these domains, but at
its core, it is to find a solution to the equation x = f(x), where
x € S" is a vector over the domain S of a semiring, and f : S — 5"
has multivariate polynomial component functions.

When f is affine, researchers realized that many problems in
different domains are instances of the same problem, with the
same underlying algebraic structure: transitive closure [53], short-
est paths [18], Kleene’s theorem on finite automata and regular
languages [33], continuous dataflow [8, 30], etc. Furthermore, these
problems share the same characteristic as the problem of computing
matrix inverse [5, 21, 51]. The problem is called the algebraic path

Session 3: PODS Awards

problem [47], among other names, and the main task is to solve the
matrix fixpoint equation X = A ® X @ I over a semiring.

There are several classes of solutions to the algebraic path prob-
lem, which have pros and cons depending on what we can assume
about the underlying semiring (whether or not there is a closure op-
erator, idempotency, natural orderability, etc.). We refer the reader
to [23, 47] for more detailed discussions. Here, we briefly summarize
the main approaches.

The first approach is to keep iterate until a fixpoint is reached;
in different contexts, this has different names: the naive algorithm,
Jacobi iteration, Gauss-Seidel iteration, or Kleene iteration. The
main advantage of this approach is that it assumes less about the
underlying algebraic structure: we do not need both left and right
distributive law, and do not need to assume a closure operator.

The second approach is based on Gaussian elimination (also,
Gauss-Jordan) elimination, which, assuming we have oracle access
to the solution x™ of the 1D problem x = 1 ® a ® x, can solve the
algebraic path problem in O(n?)-time [38, 47].

The third approach is based on specifying the solutions based
on the free semiring generated when viewing A as the adjan-
ceny matrix of a graph [52]. The underlying graph structure (such
as planarity) may sometimes be exploited for very efficient algo-
rithm [39, 40].

Beyond the affine case, since the 1960s researchers in formal
languages have been studying the structure of the fixpoint solution
tox = f(x) when f’s component functions are multivariate polyno-
mials over Kleene algebra [36, 44, 45]. It is known, for example, that
Kleene iteration does not always converge (in a finite number of
steps), and thus methods based on Galois connection or on widen-
ing/narrowing approaches [9] were studied. These approaches are
(discrete) lattice-theoretic. More recently, a completely different
approach drawing inspiration from Newton’s method for solving a
system of (real) equations was proposed [14, 29].

Recall that Newton’s method for solving a system of equations
g(x) = 0 over reals is to start from some point xp, and at time
t we take the first order approximation g(x) ~ g;(x) = g(x;) +
g’ (x¢)(x—x;), and set x;41 to be the solution of g; (x) = 0, 1.e. X741 =
x¢ — [9"(x¢)]71g(xz). Note that in the multivariate case ¢’ is the
Jacobian, and [¢(x;)] ™! is to compute matrix inverse. In beautiful
papers, Esparza et al. [14] and Hopkins and Kozen [29] were able to
generalize this idea to the case when g(x) = f(x)—x is defined over
w-continuous semirings. They were able to define an appropriate
minus operator, derivatives of power series over semirings, matrix
inverse, and prove that the method converges at least as fast as
Kleene iteration, and there are examples where Kleene iteration
does not converge, while Newton method does. Furthermore, if the
semiring is commutative and idempotent (in addition to being w-
continuous), then Newton method always converges in n Newton
steps. Each Newton step involves computing the Jacobian g’ and
computing its inverse, which is exactly the algebraic path problem!

In [15], Fitting proposed a three-valued semantics of logic pro-
grams with 1 (= undefined) denoting “neither false (0) nor true (1)”.
In our terminology, this comes down to considering datalog over
the partially ordered semiring THREE = ({L,0,1},V, A, 0,1, <g),
where <;. denotes the knowledge order L <j 0,1. Negation can be
introduced as a function “not” with not(0) = 1, not(1) = 0, and
not(L) = L. The immediate consequence operator is monotone

113

PODS ’22, June 12-17, 2022, Philadelphia, PA, USA

w.r.t. < and thus guarantees the existence of a least fixpoint also
in the presence of negation. In [16, 17], Fitting further extended his
approach to Belnap’s four-valued logic FOUR and, more generally,
to arbitrary bilattices. FOUR ({L,0,1, T}, <;, <z) constitutes the
simplest non-trivial, complete bilattice. That is, we have a complete
lattice both w.r.t. the truth order 0 <; 1, T <; 1 and w.r.t. the
knowledge order L <j 0,1 <z T. The additional truth value T in
FOUR denotes “both false and true”. It provides a means to deal
with contradicting information in a meaningful way. Moreover, it
guarantees the existence of a greatest fixpoint of the immediate
consequence operator. Fitting uses this property to establish precise
lower and upper bounds of the set of stable models in terms of the
orders <; and <, with the well-founded model [20] as the smallest
w.r.t. <. We provide a more detailed discussion of Fitting’s work
in [31].

Recently, semi-naive evaluation was extended for a higher-order
functional language called Datafun [4]. The book [23] contains
many fundamental results on algebraic structures related to semir-
ings and computational problems on such structures.

8 CONCLUSIONS

A massive number of application domains demand us to move
beyond the confine of the Boolean world: from program analysis [8,
43], graph algorithms [6, 39, 40], provenance [27], formal language
theory [37], to machine learning and linear algebra [1, 46]. Semiring
and poset theory — of which POPS is an instance - is the natural
bridge connecting the Boolean island to these applications.

The bridge helps enlarge the set of problems datalog® can ex-
press in a very natural way. The possibilities are endless. For ex-
ample, amending datalog® with an interpretive function such as
sigmoid will allow it to express typical neural network compu-
tations. Adding another semiring to the query language!? helps
express rectilinear units in modern deep learning. At the same time,
the bridge facilitates the porting of analytical ideas from Datalog to
analyze convergence properties of the application problems, and to
carry over optimization techniques such as semi-naive evaluation.

This paper established part of the bridge. There are many inter-
esting open problems left open; we mention a few here.

The question of whether a datalog® program over p-stable POPS
converges in polynomial time in p and N is open. This is open even
for linear programs. Our result on Trop,, indicates that the linear
case is likely in PTIME. If p-stability does not hold, then ACC was
the next best barrier. It would be interesting to have a sufficient
condition for convergence beyond ACC.

We can introduce negation to datalog® as an interpreted pred-
icate. The question is, can we extend semantics results (such as
stable model semantics) from general datalog / logic programing to
datalog® with negation? The full version of this paper [31] contains
more detailed discussions on this front. Beyond exact solution and
finite convergence, as mentioned in the introduction, it is natural
in some domain applications to have approximate fixpoint solu-
tions, which will allow us to tradeoff convergence time and solution
quality. A theoretical framework along this line will go a long way
towards making datalog® deal with real machine learning, linear
algebra, and optimization problems.

1211 the functional aggregate queries [32] sense

Session 3: PODS Awards

REFERENCES

(1]

[12]

[13

[14

[15]

[16

[17]

janrany
2%

[20]
[21]
[22]

~
&

[24]

[25]

[26

[27]

[28]

ABADI, M., BArRHAM, P., CHEN,]., CHEN, Z., Davis, A., DEAN, J., DEVIN, M.,
GHEMAWAT, S., IRVING, G., IsArD, M., KUDLUR, M., LEVENBERG, J., MONGA, R.,
MOORE, S., MURRAY, D. G., STEINER, B., TUCKER, P. A., VASUDEVAN, V., WARDEN,
P., WICKE, M., YU, Y., AND ZHENG, X. Tensorflow: A system for large-scale
machine learning. In 12th USENIX Symposium on Operating Systems Design
and Implementation, OSDI 2016, Savannah, GA, USA, November 2-4, 2016 (2016),
K. Keeton and T. Roscoe, Eds., USENIX Association, pp. 265-283.

ABITEBOUL, S., HULL, R., AND VIANU, V. Foundations of Databases. Addison-
Wesley, 1995.

AJ1, S. M., AND McELIECE, R. J. The generalized distributive law. IEEE Trans. Inf.
Theory 46, 2 (2000), 325-343.

ARNTZENIUS, M., AND KrISHNAswAMI, N. Seminaive evaluation for a higher-order
functional language. Proc. ACM Program. Lang. 4, POPL (2020), 22:1-22:28.
BACKHOUSE, R. C., AND CARRE, B. A. Regular algebra applied to path-finding
problems. J. Inst. Math. Appl. 15 (1975), 161-186.

CARRE, B. Graphs and networks. The Clarendon Press, Oxford University Press,
New York, 1979. Oxford Applied Mathematics and Computing Science Series.
CormeN, T. H,, LEISERSON, C. E.,, RIVEsT, R. L., AND STEIN, C. Introduction to
algorithms, third ed. MIT Press, Cambridge, MA, 2009.

Cousor, P., AND CousoT, R. Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In
Conference Record of the Fourth ACM Symposium on Principles of Programming
Languages, Los Angeles, California, USA, January 1977 (1977), R. M. Graham, M. A.
Harrison, and R. Sethi, Eds., ACM, pp. 238-252.

Cousor, P., AND Cousot, R. Comparing the Galois connection and widen-
ing/narrowing approaches to abstract interpretation. In Programming language
implementation and logic programming (Leuven, 1992), vol. 631 of Lecture Notes
in Comput. Sci. Springer, Berlin, 1992, pp. 269-295.

CreigNov, N, KoLarTis, P. G., AND VOLLMER, H., Eds. Complexity of Constraints
- An Overview of Current Research Themes [Result of a Dagstuhl Seminar] (2008),
vol. 5250 of Lecture Notes in Computer Science, Springer.

DANNERT, K. M., GRADEL, E., NAAF, M., AND TANNEN, V. Semiring provenance
for fixed-point logic. In 29th EACSL Annual Conference on Computer Science
Logic, CSL 2021, January 25-28, 2021, Ljubljana, Slovenia (Virtual Conference)
(2021), C. Baier and J. Goubault-Larrecq, Eds., vol. 183 of LIPIcs, Schloss Dagstuhl
- Leibniz-Zentrum fiir Informatik, pp. 17:1-17:22.

DAVEY, B. A., AND PRIESTLEY, H. A. Introduction to lattices and order. Cambridge
University Press, Cambridge, 1990.

DECHTER, R. Bucket elimination: a unifying framework for processing hard and
soft constraints. Constraints An Int. 7. 2,1 (1997), 51-55.

ESPARzA, J., KIEFER, S., AND LUTTENBERGER, M. Newtonian program analysis. J.
ACM 57, 6 (2010), 33:1-33:47.

FITTING, M. A kripke-kleene semantics for logic programs. J. Log. Program. 2, 4
(1985), 295-312.

FITTING, M. Bilattices and the semantics of logic programming. J. Log. Program.
11, 1&2 (1991), 91-116.

FITTING, M. The family of stable models. 7. Log. Program. 17, 2/3&4 (1993),
197-225.

FLoyp, R. W. Algorithm 97: Shortest path. Commun. ACM 5, 6 (1962), 345.
FREEMAN, L. C. A Set of Measures of Centrality Based on Betweenness. Sociometry
40, 1 (Mar. 1977), 35-41.

GELDER, A. V., Ross, K. A., AND ScHLIPF, . S. The well-founded semantics for
general logic programs. J. ACM 38, 3 (1991), 620-650.

GONDRAN, M. Algebre linéaire et cheminement dans un graphe. Rev. Frangaise
Automat. Informat. Recherche Opérationnelle Sér. Verte 9, V-1 (1975), 77-99.
GONDRAN, M. Les elements p-reguliers dans les dioides. Discret. Math. 25, 1
(1979), 33-39.

GONDRAN, M., AND MINOUX, M. Graphs, dioids and semirings, vol. 41 of Operations
Research/Computer Science Interfaces Series. Springer, New York, 2008. New
models and algorithms.

GRECO, S., SAcCA, D., AND ZaNT10L0, C. DATALOG queries with stratified negation
and choice: from P to dP. In Database Theory - ICDT’95, 5th International Confer-
ence, Prague, Czech Republic, January 11-13, 1995, Proceedings (1995), G. Gottlob
and M. Y. Vardi, Eds., vol. 893 of Lecture Notes in Computer Science, Springer,
pp- 82-96.

GRECO, S., AND ZANIOLO, C. Greedy algorithms in Datalog. Theory Pract. Log.
Program. 1, 4 (2001), 381-407.

GRECO, S., ZANIOLO, C., AND GANGULY, S. Greedy by choice. In Proceedings of the
Eleventh ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, June 2-4, 1992, San Diego, California, USA (1992), M. Y. Vardi and P. C.
Kanellakis, Eds., ACM Press, pp. 105-113.

GreEN, T. J.,, KARVOUNARAKIS, G., AND TANNEN, V. Provenance semirings. In
Proceedings of the Twenty-Sixth ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, June 11-13, 2007, Beijing, China (2007), L. Libkin,
Ed., ACM, pp. 31-40.

GUNAWARDENA, J. An introduction to idempotency. In Idempotency (Bristol, 1994),

114

[29

(30]
(31]

[32

w
&

(34

[35

(36]

S @
o X

=
=

T~
&

i~
)

[55]

PODS ’22, June 12-17, 2022, Philadelphia, PA, USA

vol. 11 of Publ. Newton Inst. Cambridge Univ. Press, Cambridge, 1998, pp. 1-49.
Hopkins, M. W., AND KozeN, D. Parikh’s theorem in commutative kleene algebra.
In 14th Annual IEEE Symposium on Logic in Computer Science, Trento, Italy, July
2-5, 1999 (1999), IEEE Computer Society, pp. 394-401.

Kawm, J. B., AND ULLMAN, J. D. Global data flow analysis and iterative algorithms.
J. ACM 23,1 (1976), 158-171.

Kuawmis, M. A., Nco, H. Q., PICHLER, R, Suctu, D., AND WANG, Y. R. Convergence
of datalog over (pre-) semirings. CoRR abs/2105.14435 (2021).

Knawmis, M. A, NGo, H. Q., AND RUDRA, A. FAQ: questions asked frequently. In
Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles
of Database Systems, PODS 2016, San Francisco, CA, USA, June 26 - July 01, 2016
(2016), T. Milo and W. Tan, Eds., ACM, pp. 13-28.

KLEENE, S. C. Representation of events in nerve nets and finite automata. In
Automata studies, Annals of mathematics studies, no. 34. Princeton University
Press, Princeton, N. J., 1956, pp. 3-41.

KoHLas, J. Information algebras - generic structures for inference. Discrete mathe-
matics and theoretical computer science. Springer, 2003.

KoHLas, J., AND WILsON, N. Semiring induced valuation algebras: Exact and
approximate local computation algorithms. Artif. Intell. 172, 11 (2008), 1360-1399.
Kuich, W. The Kleene and the Parikh theorem in complete semirings. In
Automata, languages and programming (Karlsruhe, 1987), vol. 267 of Lecture Notes
in Comput. Sci. Springer, Berlin, 1987, pp. 212-225.

KuicH, W. Semirings and formal power series: their relevance to formal languages
and automata. In Handbook of formal languages, Vol. 1. Springer, Berlin, 1997,
pp. 609-677.

LEHMANN, D. J. Algebraic structures for transitive closure. Theor. Comput. Sci. 4,
1(1977), 59-76.

Lirton, R. J., RosE, D. J., AND TARJAN, R. E. Generalized nested dissection. SIAM
J. Numer. Anal. 16, 2 (1979), 346—-358.

LipToN, R. J., AND TARJAN, R. E. Applications of a planar separator theorem.
SIAM J. Comput. 9, 3 (1980), 615-627.

Liu, Y. A., AND STOLLER, S. D. Founded semantics and constraint semantics of
logic rules. J. Log. Comput. 30, 8 (2020), 1609-1668.

L1u, Y. A, AND STOLLER, S. D. Recursive rules with aggregation: A simple unified
semantics, 2020.

NieLsoN, F., NieLson, H. R., AND HANKIN, C. Principles of program analysis.
Springer-Verlag, Berlin, 1999.

ParIkH, R. J. On context-free languages. F. Assoc. Comput. Mach. 13 (1966),
570-581.

PrrLiNG, D. L. Commutative regular equations and Parikh’s theorem. J. London
Math. Soc. (2) 6 (1973), 663—666.

RockTAscHEL, T. Einsum is all you need - Einstein summation in deep learning.
https://rockt.github.io/2018/04/30/einsum.

RoTE, G. Path problems in graphs. In Computational graph theory, vol. 7 of
Comput. Suppl. Springer, Vienna, 1990, pp. 155-189.

ScortT, D., AND STRACHEY, C. Toward a mathematical semantics for computer
languages, 1971.

SHENOY, P. P., AND SHAFER, G. Axioms for probability and belief-function proa-
gation. In UAI ’88: Proceedings of the Fourth Annual Conference on Uncertainty in
Artificial Intelligence, Minneapolis, MN, USA, July 10-12, 1988 (1988), R. D. Shachter,
T. S. Levitt, L. N. Kanal, and J. F. Lemmer, Eds., North-Holland, pp. 169-198.
STANLEY, R. P. Enumerative combinatorics. Volume 1, second ed., vol. 49 of Cam-
bridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge,
2012.

TarJAN, R. E. Graph theory and gaussian elimination, 1976. J.R. Bunch and D.J.
Rose, eds.

TarjaN, R. E. A unified approach to path problems. J. ACM 28, 3 (1981), 577-593.
WARSHALL, S. A theorem on boolean matrices. 7. ACM 9, 1 (1962), 11-12.
ZAHARIA, M, XIN, R. S., WENDELL, P., DAs, T., ARMBRUST, M., DAVE, A., MENG,
X., ROSEN, J., VENKATARAMAN, S., FRANKLIN, M. J., GHODsI, A., GONZALEZ,].,
SHENKER, S., AND STOICA, I. Apache spark: a unified engine for big data processing.
Commun. ACM 59, 11 (2016), 56-65.

ZIMMERMANN, U. Linear and combinatorial optimization in ordered algebraic
structures. Ann. Discrete Math. 10 (1981), viii+380.

Session 3: PODS Awards

APPENDIX

A PROOFS AND EXTENSIONS OF SECTION 3

A.1 Proof of Lemma 3.4
Recall that, for every a € L1, g4 denotes the function g,(y) =

(k)

g(a,y); its type is Ly — La, and g, ° € C for every k > 0, because

C is a c-clone. Similarly, the type of F(x) def f(x,g(q) (x,1)) is
L1 — Ly, and F®) € C forall k > 0.
Claim 1. The pair (%, §j) defined by (10) is a fixpoint of k.

The claim follows immediately from

9(%.9) = 95(5) = gz (9 (1) = ot (1) = ¢l? (1) = 9
by the definition of §j and the g-stability of gx. Similarly,

FED) = f(5gP (1) = F) =%
by the definition of x and the p-stability of F, proving that (X, §) is
a fixpoint of h.
Claim 2. The pair (%, §j) defined by (10) is a least fixpoint of h.

Since h is monotone, it converges to the least fixpoint. It follows

that, for every n > 0, (apn, bp) def R (1, 1) C (& 7). Hence, to
prove Claim 2 it is sufficient to show that (%, §j) C (ap, by,) for some
n.

We will show that (X,7) T (apg+p+q Ppg+p+q)- To prove this
inequality, we observe that the pair (%,) defined by (10) is the last
term of the following (not necessarily increasing) sequence:

(L, 1) =(x0,90,0)> (x0,Y0,1), - - - » (X0, Yo,q)s
(x1,91,0), (x1,y1,1) -+ - (X1, Y1,9)5
(xp, Yp,0)s (xps Yp,1)s =+ 5 (Xp, Yp,g) = (X, 9) (24)

where:

def
xg =1

def

Yo =L
def def
Xer1 = f (X Y g) Ykert = 9% Yer)

In the (xy, yg ¢) sequence each element is obtained from the previ-
ous one by applying either a g-step (from (xg, yx) to (x, Y ¢+1))
or an f-step (from (xk, Yk, q) t0 (Xg+1, Yk+1,0))- The sequence (24)
can be visualized as:

(99---9) f(99---9) f - (99---9) f(g99---9)
Instead of proving (%, §) E (apg+p+q: bpg+p+q)> We prove a stronger

claim, which completes the proof of Claim 2

Claim 3. For every n > 0, (X, Y,r) E (an, bn), where n = k(q +
1) + ¢ is the position of (x, yx ¢) in the sequence (24).

Before proving the claim, we notice h(™ (L, 1) £ A"V (L, 1)
implies ap C f(an, bp) and b, C g(ap, bp). Now we prove the
claim by induction. Assume the claim holds for (xi, yx). If the
next element (x, Yk ,4+1) is obtained via a g-step then we have:

(%> Yk,e1) =Xk Gy (Uk,p)) = (X, 9%k, Yie,)) E (an, g(an, bn))
E(f(an, bn)ag(an, bn)) = (an+1: bn+1)

115

PODS ’22, June 12-17, 2022, Philadelphia, PA, USA

hence the claim holds for (xg, yg ¢+1) as well. If the next element
(Xk+1> Yk+1,0) is obtained via an f-step (which happens when ¢ = q)
then we use the fact that yz,; o = L and derive:

(vt L) =(f (x> Yr,g)s L) E (f ks Yg)s Ykog)
E(f(an, bn), bn) E (f(ans bn),g(an, bn)) = (an+1’ bn+1)

This completes the proof of the claim.

Finally, to prove Lemma 3.4, note that X = x;, was already reached
at the beginning of the last line in (24), thus x = a, for n = pq + p.
By switching the roles of f and g, we can reach the same least
fixpoint (% §) using a sequence (f -+ f)g(f -)g---g(f - f),
similar to (24). The end of this sequence is the same (%, §j) because
the least fixpoint is unique. By the same argument as above, we
have § = b, for n = pq + q. This completes the proof of the lemma.

B PROOFS AND EXTENSIONS OF SECTION 4

B.1 Extensions to datalog®

We describe here several extensions to the definition of datalog®
in Sec. 4, which are necessary both in order to make the language
useful for real applications, and in order to express some advanced
optimization techniques, which we pursue in a different project.

First, we allow the use of arbitrary interpreted function on the
key-space, and extend Definition 2.1 with a conditional sum-sum-
product query, which has the form:

Q(x1,...,x;)-case C1:Q1; Co2:Q9;---; else Qnp (25)
where C1,Cy, ... are conditions on the variables xi,...,x, and
01,02, ... are sum-sum-product expressions over the same vari-

ables x1, ..., x;. For example, we may compute the prefix-sum of a
vector V using the following datalog® rule:

W(i):-case i=0:V(0) else W(i—1)+V(i)

Here i — 1 is an interpreted function on the key-space. All results
in Section 5 continue to hold when datalog® is extended with in-
terpreted functions over the key-space and with case-statements,
because the grounding of each rule R; :- f; continues to be a poly-
nomial over the POPS S.

The next extensions are necessary to make datalog® practical,
and the results in Section 5 may no longer hold. We pursue these
extensions in a different project where we study optimizations for
datalog®:

Infinite Key Domains We remove the restriction from Sec. 2 that
requires the key domain D to be finite. Instead, we require
the active domain of the EDB predicates to be finite, and
require all datalog® rules to be safe, which guarantees that
the active domain of all IDB predicates are also finite.

Multiple Domains We allow both multiple key domains, and mul-
tiple value domains (POPS). The types of all EDB and IDB
predicates must be declared at the beginning of a datalog®
program, for example:

E(String, String) : Bool;
Cost(String, String, N) : Bool;
Path(String, String) : Trop;

Session 3: PODS Awards

def

def g g
(x0 = Liyoo = L) = (x0.y01) —> -+ (x0,Yoq)

U

PODS ’22, June 12-17, 2022, Philadelphia, PA, USA

def g g
(x1,y10 = L) —=> (x1,y11) —> -+~

b
def

9 g
(xp, Up,o = 1) = — (xp,yp,q)

Figure 1: Computing the fixpoint of (f, g).

Cast Operator We extend datalog® with a cast operator, [—] :
B — S, defined as follows:

def

def
[0] =Ls

[1] =15
We notice that the cast operator is monotone. When +g is
idempotent, then the cast operator is also a pre-semiring
homomorphism. When S is a naturally ordered semiring,
then [0] = 0g and [1] = 1.

Keys to Values We allow key values to be used as POPS values,
when the types are right. For example, referring to the dec-
larations above, we may write:

Path(x,y) :- mcin ([Cost(x,y,c)] +¢)

The expression [Cost(x,y, c)] is a cast from Booleans to the
tropical semiring, i.e. its value is co or 0, and we add to it the
cost ¢, which is of type N, hence can be cast to Trop.

Stratification Finally, we allow the use of arbitrary interpreted
functions over the value domains. Some of these functions
may not be monotone; in that case we require the datalog®
program to be stratified, in the usual way.

B.2 Pre-semirings to POPS

We describe a general procedure to convert a pre-semiring to a
POPS.

Definition B.1. Let S be a pre-semiring. We say that a POPS §;
extends S if § C S1, and the operations @, ®,0, 1 in S are the same
as those in 7.

We describe ways to extend a pre-semiring S = (S, +, %,0,1) to
a POPS, all inspired by abstract interpretations in programming
languages [8].
Representing Undefined The lifting operation is defined by set-

ting S def S U {1} and extending the operations to x +y =
x *y = 1 whenever x = L or y = L. The value L represents
undefined.

Representing Contradiction We further extend S, by defining
SI Ol:tszLLJ{'I'} andsetting L+ T=L*T=1,0%T =0,
andx+ T =x#*T =T whenx # L,x # 0. The new element
T represents contradiction. Intuitively: L is the empty set
{}, while T is the entire set S.

Incomplete values More generally, define I def Pan(S) U {S};
that is, I consists of all finite subsets of S, plus S itself (which

116

we add explicitly when S is infinite). The operations ®, ® are
defined set-wise, such that, if the result of an operation is an
infinite set, then we replace it with S. Intuitively, a finite set
{u,v, w} € I represents a value that can be either u or v or
w.Here L ={}and T = S.

B.3 Strictness of @ and ® are independent

We give two examples of POPS where only one of the two operators
@, ® is strict.

Strict ® In any non-trivial naturally ordered semiring ® is strict,
while @ is not. For example, consider (N, +, %, 0, 1, <). Then
* is strict because x * 0 = 0, while + is not strict because
x+0#0forx #0.

Strict ® Next, consider the semiring (N U {T}, ®, ®, {0}, {1}, 2),
where T the infinite set {0, 1,2,...}. We view each element

x € N as the singleton set {x}, and define the operations

@, ® set-wise: A ® B déf {x+y | x€eAyeB},A®B déf

{x*y | x € A,y € B}, where we replace the result with T if
the resulting set is not a singleton. Concretely, we have:

{x} & {y} ={x+y}
{x}® {y} ={x*y}

Since T is the smallest element, @ is strict, while ® is not.

{x}eT=T

{0eT={0} x#0: {x}oT=T

B.4 Need for Pre-Semirings

N, and the similarly defined R are pre-semirings. They are not
semirings, because L % 0 = L, thus 0 is not absorptive. It is possible
to define an extension N U {_L} of N that is a semiring, by simply
re-defining 1 0 = 0 and L * x = L for x # 0. However, no POPS
extension of R exists that is a semiring:

LEmMA B.1. IfS is any POPS extension of (R, +,*,0,1), then S is
not a semiring, i.e. it fails the absorption law 0 * x = 0.

PRrOOF. Let S = (S,+, %,0,1,C) be an ordered semiring that is an
extension of the semiring (R, +, #,0, 1). In particular R € S and S
has a minimal element L. Since 0, 1 are identity elements for +,
we have:

1+0=1 1x1=1
We claim that the following more general identities hold:

VxeR: L+x=1 Vx e R—{0}: Lxx=L

Session 3: PODS Awards

To prove the first identity, we use the fact that + is monotone in §
and L is the smallest element and derive L +x C (L+(y—x))+x =
L +y for fall x, y. This implies L +x = L +y for all x, y and the claim
follows by setting y = 0. The proof of the second identity is similar:
first observe that L« x C (L = %)*x:J_*yhenceJ_*sz_*y
for all x,y € R — {0}, and the claim follows by setting y = 1.

Since S is a semiring it satisfies the absorption law, hence L0 = 0.
We prove now that 0 = L. Choose any x € R — {0}, and derive:

Lx(x+(=x))=L+0=0
(Lxx)+(L*(—x)=L+1L=1

By distributivity, the two lines are equal, hence 0 = L, and thus
0 is the smallest element in S. Then, for every x € R, we have
x40 C x+(—x) = 0, which implies implies x = 0, contradiction. O

C PROOFS AND EXTENSIONS OF SECTION 6
C.1 Dioid

For completeness, we quickly prove the following

Proposition C.1. Let (S, +,0,0,1) be a dioid, i.e. a semiring where
+ is idempotent. Then, the following hold:
(i) The relation < defined by a < b iffa+ b = b is a partial order,
and it is the same as the natural order of the semiring.
(ii) + is the same as V

Proor. We first show that < is the natural order C, which is
defined by a C b iff 3¢ : a + ¢ = b. One direction, a < b implies
a C b is obvious. For the converse, assume a+c = b. Then, a+ b =
a+ (a+c) =a+c = b due to idempotency, and thus a < b. The
relation C is a preorder; to make it a partial order we only need to
verify anti-symmetry, which is easy using the < relation: a+ b = b
and a + b = a imply a = b. We just proved (i).

To show (ii), let ¢ = a+b for some a,b,c. Thena+c=a+a+b =
a+b = c; thus, a C c. Similarly b C ¢, whichmeansaVb C ¢ = a+b.
Conversely, letd = a vV b. Then, a+d = d and b + d = d, which
meansa+b+d=dandthusa+bCd=aVb. O

Algorithm 2: Naive evaluation for datalog®
RO «— 0;
for t « 1to o do
Ry <« F(R¢-1);
lf Rt = Rt—l then

| Break
return R;

C.2 Proof of Theorem 6.2

Two main properties of distributive dioids we need for semi-naive
evaluation of datalog® are proved in the following lemma, which
is then used to prove Theorem 6.2.

Lemma C.2. LetS = (S,+,0,0,1,C) be a distributive dioid, then,
with the — operator defined in (19), for any a,b,c € S,
a+(b-a)=b ifaCb
(a+b)-(a+c)=b-(a+c)

(26)
(27)

117

PODS ’22, June 12-17, 2022, Philadelphia, PA, USA

Proor. To prove these identities we establish several properties
of the — operation in a complete PODS as defined in Eq. (19). First,
we show

bCa+(b-a)

This follows because

Va,b €S (28)
at(b—a)=a+AN{c|a+cab}
=aV(A{c|lavcab})
(distributivity) = A{aVc|aVec 2 b}
b
Next, ifa C bthena+b = aVb = b.It follows thatb I A{c:a+c 3
b} = b - a. Thus,

aChbh = a+(b-a)Ca+b=0b. (29)

Together with (28), we just proved (26).

Next, we prove (27). For any d for which a+c+d 3 b, a+a+c+d 2
a + b which implies a + ¢ +d 3 a + b because + is idempotent.
Conversely, a+c+d J a+b impliesa+c+d 3 b because a+b 3 b.
Hence,

(a+b)—(a+c)=AN{d|a+c+dJa+b}
=A{d|a+c+d b}
=b-(a+c)
O
Proor oF THEOREM 6.2. It is easy to see that F is monotone, i.e.
X C Y implies F(X) € F(Y). Hence, by induction we have R;_1 =

Ft=D (1) c F (1) = Ry for all t > 1. Thus, from (26) we have
Ot + Re—1 = (F(Re-1) = Re—1) + Re—1 = F(R—1). u]

C.3 Proof of Theorem 6.3
Proor. From the fact that + is idempotent, b + b = b, we have
ao(x+d8)+b=(aox+b)+(aod+b),

from which equality (22) follows.

The correctness of the differential rule follows from (22) and (27).
Note that we were able to drop one +f (Al, .. ,Ak) term thanks
to (27). O

C.4 Examples
Example C.3 (Linear transitive closure). For the recursion,
T(x,y) - E(x,y) V3Iz : T(x,2) A E(z,y) (30)
which is Boolean datalog®, the differential rule at iteration ¢ > 2 is
St(x,y) = (3z:6-1(x,2) NE(zy) \ Ti-1(xy). (31)
We were able to remove the base-case thanks to (23).

Example C.4 (Quadratic transitive closure). For the recursion,

T(x,y) -E(x,y) vV (Fz:T(x,2) AT(z,y)) (32)
removing the base-case, the differential rule is
3t (x,y) = (3z: T-1(x,2) A St-1(2,y)) (33)
U (3z: 6t-1(x, 2) A Tr-2(2,y)) (34)
\ Tr-1(x,y). (35)

	Abstract
	1 Introduction
	2 Background on Semirings
	3 Least Fixpoints over Product Spaces
	4 DATALOGO
	5 Convergence Behavior of Datalogo
	5.1 Divergence
	5.2 Convergence
	5.3 Convergence in T(|D|) steps
	5.4 Convergence in PTIME

	6 Semi-Naive Optimization
	7 Related Work
	8 Conclusions
	References
	A Proofs and Extensions of Section 3
	A.1 Proof of Lemma 3.4

	B Proofs and Extensions of Section 4
	B.1 Extensions to Datalogo
	B.2 Pre-semirings to POPS
	B.3 Strictness of oplus and otimes are independent
	B.4 Need for Pre-Semirings

	C Proofs and Extensions of Section 6
	C.1 Dioid
	C.2 Proof of Theorem 6.2
	C.3 Proof of Theorem 6.3
	C.4 Examples

