vaccines

Article

The Existence of at Least Three Genomic Signature Patterns and
at Least Seven Subtypes of COVID-19 and the End of the Disease

Zhengjun Zhang

Citation: Zhang, Z. The Existence of
at Least Three Genomic Signature
Patterns and at Least Seven
Subtypes of COVID-19 and the End
of the Disease. Vaccines 2022, 10, 761.
https://doi.org/10.3390/
vaccines10050761

Academic Editor: Sankar Basu

Received: 9 March 2022
Accepted: 9 May 2022
Published: 11 May 2022

Publisher’s Note: MDPI stays
neutral with regard to jurisdictional
claims in published maps and

institutional affiliations.

Copyright: © 2022 by the author.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC  BY)
(https://creativecommons.org/license

s/by/4.0/).

license

Department of Statistics, University of Wisconsin, Madison, WI 53706, USA; zjz@stat.wisc.edu;
Tel.: +1-(608)-262-2598

Abstract: Hoping to find genomic clues linked to COVID-19 and end the pandemic has driven scientists’
tremendous efforts to try all kinds of research. Signs of progress have been achieved but are still limited.
This paper intends to prove the existence of at least three genomic signature patterns and at least seven
subtypes of COVID-19 driven by five critical genes (the smallest subset of genes) using three blood-
sampled datasets. These signatures and subtypes provide crucial genomic information in COVID-19
diagnosis (including ICU patients), research focuses, and treatment methods. Unlike existing
approaches focused on gene fold-changes and pathways, gene-gene nonlinear and competing
interactions are the driving forces in finding the signature patterns and subtypes. Furthermore, the
method leads to high accuracy with hospitalized patients, showing biological and mathematical
equivalences between COVID-19 status and the signature patterns and a methodological advantage over
other methods that cannot lead to high accuracy. As a result, as new biomarkers, the new findings and
genomic clues can be much more informative than other findings for interpreting biological
mechanisms, developing the second (third) generation of vaccines, antiviral drugs, and treatment
methods, and eventually bringing new hopes of an end to the pandemic.

Keywords: direct gene effects; indirect gene effects; COVID-19 detection; gene-gene interaction;
competing risks

1. Introduction

Since the virus SARS-CoV-2 was first reported in December 2019, numerous research
results related to the virus and COVID-19 disease have been published. Scientists have put
tremendous effort into trying to find genomic clues linked to COVID-19. However,
knowledge of COVID-19 is still limited, and many problems have remained unanswered [1-
12]. As a result, many published results have not guaranteed convincing accuracy. With an
exception, a data science study by Zhang (2021) reported five critical genes, and their
combined effects can accurately classify COVID-19 patients and COVID-19 free patients into
their respective groups and further classify COVID-19 patients into seven subtypes [2].

The analytical method used in this study has been proven a powerful approach in earlier
studies where breast cancer patients, colorectal cancer patients, and lung cancer patients are
again classified into their respective groups (nearly) without errors among eleven different
study cohorts with thousands of patients [2,13-15]. For example, in a breast cancer study,
eight widely known genes—BRCA1, BRCA2, PALB2, BARD1, RAD51C, RAD51D, ATM —
were proved to have low efficacy in terms of diagnosis [13]. In addition, a colorectal cancer
study showed CXCLS alone could predict early-stage colorectal cancer accurately [14]. It was
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surprising that such a unique feature has been missed in the literature using other existing
analytical methods.

This paper intends to prove the existence of at least three genomic signature patterns and
at least seven subtypes of COVID-19 driven by five critical genes (the smallest subset of
genes). For this purpose, we are going to advance further the signature patterns found in the
earlier study by Zhang (2021) using a different dataset generated by the same study in
Overmyer et al. (2020) [1]. This paper is completely new in its conceptual framework in
biological and mathematical equivalence compared with earlier pure data analysis. This new
study conducted a competing risk analysis using the max-linear logistic regression model to
analyze 126 blood samples from COVID-19-positive and COVID-19-negative patients [1]. The
two sampled groups are: lab-confirmed COVID-19 hospitalized patients and the control is
other disease types of hospitalized patients, including ICU cases. There are two types of
datasets available. One type is TPM (transcripts per million), while another type is EC
(expected counts), which are analyzed in this paper. Both datasets led to competing COVID-
19 risk classifiers derived from 19,472 genes and their differential expression values. The final
classifier models for both datasets only involve five critical genes, ABCB6, KIAA1614, MND1,
SMGT1, and RIPK3, which led to 100% sensitivity and 100% specificity of the 126 samples. The
two datasets naturally cross-validate the efficiency of the discovered five genes. These five
genes also form signature patterns as new biomarkers and classify COVID-19 patients into
seven subgroups coded by involved genes, sub-I (KIAA1614, MND1, SMG1), sub-II (ABCB6,
MND1, SMG1), sub-IIl (RIPK3), sub-IV (ABCB6, KIAA1614, MND1, SMGI1), sub-V
(KIAA1614, MND1, RIPK3, SMG1), sub-VI (ABCB6, MND1, RIPK3, SMG1), sub-VII (ABCBe6,
KIAA1614, MND1, SMG1, RIPK3), and heterogeneous populations. We note that the control
group was hospitalized patients, including non-ICU patients and ICU patients [1]. As a result,
the genes identified can be classified as COVID-19 specific. Given their high accuracy in
predicting COVID-19-positive or -negative status, these five genes can be critical in
developing proper, focused, and accurate COVID-19 testing procedures, guiding the second-
generation vaccine development, studying antiviral drugs, and treatments. Furthermore, the
accurate results prove the biological equivalences between COVID-19 status and the signature
patterns and mathematically establish the correspondences. Such a phenomenon is
fundamentally meaningful for conducting further focused research on these five genes and
other highly correlated genes (e.g., DBN1, LY6G6C, TMEM54, MTMR1, SNORC, ANP32E,
ATAD2, SMC2, ZWILCH, SMC4, Cé6orf47, STRADA, LRSAM1, UNC93B1, SASH3) to these
five, leading to the second (third) generation of vaccines, antiviral drugs, and treatment
methods.

We further test the above five critical genes using a third dataset published in Science by
Arunachalam et al. [16]. The dataset contains 64083 genes and 17 COVID-19 subjects and 17
healthy controls. We found that four genes, ABCB6, KIAA1614, MND1, and SMG1, can
accurately predict all subject labels.

Among these five genes, KIAA1614 is an uncharacterized protein gene, according to
genecards.org. This gene could be fundamental. SMG1 has the description: nonsense
mediated mRNA decay associated PI3K related kinase. It could be essential for developing
second-generation mRNA vaccines. According to the literature, nonsense mediated mRNA
decay plays a decisive role in monitoring and controlling protein changes. The mRNA gene
SMG1 showed two different signs (+, —) in two formulas and did not appear in the third
formula presented in Section 3, which suggests that we need three different types (both
mRNA and non-mRNA) of vaccines to cover the entire possible spectrum of COVID-19
variants. Our proven classifiers show that one particular vaccine may only be effective for one
type of virus caused by one signature pattern and one subtype among three signature patterns
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(CF-I, CF-II, and CF-III in Section 3.3) and seven subtypes, which can explain the high
percentages of breakthrough infections; see Sections 3.4 and 3.5 for detailed explanations.

The rest of the paper is organized as follows. In Section 2, the methodology is briefly
summarized. Then, Section 3 presents the data, the derived competing classifiers, and the
interpretations. Finally, in Section 4, conclusions and discussions on the findings, future
directions, and limitations are discussed.

2. Methodology

This methodological section briefly introduces max-linear competing factor classifiers for
self-contained due to different data structures used in this work compared with other
research, whose details for data structures can be found in the papers [2,13-15].

Suppose Y; is the ith individual patient’'s COVID-19 status (¥; = 0 as not infected, ¥; = 1
for infected) and Xl.(k) = (Xl(lk ),Xl.(zk ), ...,Xi(;‘)), k=1,..,K, are the gene expression values with
p = 19,472 genes in this study. Here k stands for the kth type of gene expression level drawn
based on K different biological sampling methodologies. Note that most published works set
K =1, and hence, the superscript (k) can be dropped from the predictors. In this paper, K =
2 (TPM and EC). Using a logit link (or other monotone links), we can model the risk
probability pi(k) of the ith person’s infection status as:

(k)
p.
log (1 —lp(k)> =By + %{7p® (1)

alternatively, we write

k k
w0 __exp (B + X{VB%)
" Ttexp (B +x10p)

where ,Bék) is an intercept, X i(k) isa 1 X p observed vector, and ) isa p x 1 coefficient vector
which characterizes the contribution of each predictor (gene in this study) to the risk.

Considering there have been several variants of SARS-CoV-2 and multiple symptoms
(subtypes) of COVID-19 diseases, it is natural to assume that the genomic structures of all
subtypes could be different. Suppose that all subtypes of COVID-19 diseases may be related
to G groups of genes

o® — (X(k) ¥

¢ & i,jz""'Xi(,Ej)'J =1,.,6,9;20k=1.,K (@
where i is the ith individual in the sample, and g; is the number of genes in jth group. Note
that we do not use the widely used gene pathways in our newly developed machine learning
algorithm. It is possible that blind pursuit of gene pathways may lead to wrong directions
and lose chances of finding the scientific truth. Instead, our methodological approach will
automatically find the smallest numbers of G and g; to reach 100% accuracy, and as a result,
better interpretations can be achieved.
The competing (risk) factor classifier is defined as

(k)

b (k) (k) k) (k) (k) () (k) (F)

10g<1 Lp(k)>=max(ﬁm + @B Bz + PR By Bog + P Be) 3)
i

where ﬂé’;)’

which characterizes the contribution of each predictor in the j group to the risk.

s are intercepts, CDL.(}’.C) isa 1 X g; observed vector, ,8j(k) is a g; X 1 coefficient vector
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(B,S,G) = argmin

k)

Remark 1. In (3), pl.(k) is mainly related to the largest component [)’(gj + d>l.(jk)ﬁj(k),j =1,..,G, ie.,all

components compete to take the most significant effect.

Remark 2. Taking ,83’;) = —o00,j = 2,...,G, (3) is reduced to the classical logistic regression, i.e., the
classical logistic regression is a special case of the new classifier. Compared with black-box machine
learning methods (e.g., random forest, deep learning (convolutional) neural networks (DNN, CNN))
and regression tree methods, each competing risk factor in (3) forms a clear, explicit, and interpretable
signature with the selected genes. The number of factors corresponds to the number of signatures, i.e.,
G. This model can be a bridge between linear models and more advanced machine learning methods
(black box) models. However, (3) remains the desired properties of interpretability, computability,
predictability, and stability. Note that this remark is similar to Remark 1 in Zhang (2021) [15].

In practice, we have to choose a threshold probability value to decide a patient’s class
label. Following the general trend in the literature, we set the threshold to be 0.5. As such, if
pi(k) < 0.5, the ith individual is classified as disease-free; otherwise, the individual is classified
to have the disease.

With the above-established notations, we introduce a new machine learning classifier,
smallest subset and smallest number of signatures (54), for K = 1 to K = 2 as follows.

(K — (k) —
55,05 jmiz, o (1 A + 1S, ]) Zasarasan( GE0DEIHOTHODICE 1 g, (15,

IS,l +G -1 4)
(S + 1) X G — D}

where I(.) is an indicative function, pl.(k) is defined in Equation (3), S = {1,2, ...,19472} is the
index set of all genes, S; = {jj1,...,J f'gi}’ j=1,..,G are index sets corresponding to (2), S,, is
the union of {S;,j = 1,...,G}, |S,| is the number of elements in S, 4, =0 and 1, = 0 are

A A

penalty parameters, and S = {j 1y ] j.gj j=1,..,G} and G are the final gene set selected in
the final classifiers and the number of final signatures.

Remark 3. The case of K = 1 corresponds to the classifier introduced in Zhang (2021) [15]. The case
of K = 1 and A, = 0 corresponds to the classifier introduced in Zhang (2021) [2].

The following Proposition 1 mathematically proves the existence of desired solutions.
The proof follows the lines in the work by extending K = 1 to K = 2 [15].

() —
1sksK;1sisn(I(pi S0)IY; =1+
I(pi(k) > 0.5)I(Y; = 0)) can reach is m. Then, for suitable choices of 2; = 0 with A; +|S,| > 0 and

Ay = 0, the new classifier S4 will lead to the smallest |S, | and the smallest number of G such that A =
m.

Proposition 1. Suppose the smallest number that A = ).

Remark 4. A perfect classifier (100% sensitivity and 100% specificity) will have m = 0 in Equation
(4), which is the case in our study. We note that only with m = 0 and the smallest subset of genes, the
mathematical and biological equivalence between the disease and the selected genes can be established.

3. Data Descriptions, Results, and Interpretations
3.1. The First and Second Datasets

The COVID-19 data to be analyzed is publicly available as GSE157103: large-scale multi-
omic analysis of COVID-19 severity, public on 29 August 2020 [1]. The experiment type is
“Expression profiling by high throughput sequencing”. One hundred and twenty-six samples
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were analyzed in total, with 100 COVID-19 hospitalized patients and 26 hospitalized non-
COVID-19 patients. There are two types of datasets available. One type is TPM (transcripts
per million), while another type is EC (expected counts). The prior analysis outcome of TPM
data was reported in Zhang (2021) [2]. This new study targets EC data and makes comparisons
to TPM data. We note that among 100 COVID-19 patients, 50 are ICU patients and 50 are non-
ICU hospitalized patients. Among 26 COVID-19 free patients, 16 of them are ICU patients
with other types (non-COVID-19) of disease, and 10 of them are non-ICU patients with other
types of disease.

3.2. The Third Dataset

The third set of COVID-19 data to be analyzed is publicly available as GSE152418:
RNAseq analysis of PBMCs in a group of 17 COVID-19 subjects and 17 healthy controls,
public on 13 June 2020 and last updated on 20 May 2021 [16]. Illumina bcl2fastq v2.17.1.14
was used for demultiplexing. Reads were mapped to the human (GRCh38 Ensemble release
100) genomic reference with STAR (v2.7.3a) with default alighment parameters. Abundance
estimation of raw read counts per transcript was done internally with STAR using the
algorithm of htseq-count.

In the following subsections, we first focus on the first two datasets: TPM and EC.

3.3. The Competing Factor Classifiers and Their Resulting Risk Probabilities

Solving the optimization problem (4) among 19,472 genes with K = 2 (k = 1 for TPM

data, and k = 0 for EC data) using the Monte Carlo search method, we obtain the following
classifiers with five critical genes (ABCB6 (ATP binding cassette subfamily B member 6—
Langereis blood group), KIAA1614 (uncharacterized protein)) MND1 (meiotic nuclear
divisions 1), SMG1 (nonsense mediated mRNA decay associated PI3K related kinase), RIPK3
(receptor interacting serine/threonine kinase 3)):

CF-I (TPM): —0.3303 + 3.4153 x KIAA1614 — 0.1248 x SMGI + 0.2177 x MND1

CF-1I (TPM): —0.7378 — 0.4620 X ABCB6 + 0.0654 x SMG1 + 0.9093 x MND1

CE-III (TPM):  6.9283 — 0.3921 x RIPK3 ®)

CF (TPM) = max{CF-I(TPM), CF-II(TPM), CF-II[(TPM)}

CF-I (EC): —0.7877 + 0.0351 x KIAA1614 — 0.0008 x SMG1 + 0.0181 x MND1

CF-II (EC): —4.6701 — 0.0408 x ABCB6 + 0.0014 x SMG1 + 0.2134 x MND1 ©)

CF-III (EC):  3.1584 — 0.0042 x RIPK3

CF (EC) = max{CF-I(EC), CF-II(EC), CF-III(EC)}
where Equation (5) is for TPM data which were first reported in Zhang (2021) [2], while
Equation (6) is for the EC data. In all equations, (TPM) stands for data being TPM, and (EC)
means data are expected counts. In Equation (5), CF-I (TPM) is the first component classifier
derived from TPM data and three critical genes, KIAA1614, SMG1, and MND1. CE-1I (TPM)
is the second component classifier derived from TPM data and three critical genes, ABCB6,
SMGI1, and MND1. CF-III (TPM) is the third component classifier derived from TPM data
using one gene, RIPK3 alone. CF (TPM) is the final combined classifier with competing
component classifiers (signatures) of CF-I (TPM), CF-II (TPM), and CF-III (TPM). Other
competing classifiers for EC are similarly defined.

The risk probabilities of each of three component classifiers based on TPM are

exp (CF-i-(TPM))

P-i-(TPM) = 7 + exp (CF-i-(TPM))’

i =111, I 7)

and the risk probabilities based on all three component classifiers together are
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_exp (CF(TPM))

P-IPM) = 3 exp (CF(TPM))’ ®)
Similarly, the risk probabilities calculated from EC are
] _exp (CF-i-(EC)) =

P-i-(EC) = 1+ exp (CE-i(EQ) ;i =1 1L III )

and the risk probabilities based on all three component classifiers together are
exp (CF(EC
P-(EC) = —XP (CE(EQ)) (10)

" 1+ exp (CF(EQ))
Table 1 presents the performance (accuracy, sensitivity, specificity) of each individual

classifier in Equations (5) and (6).

Table 1. Performance of individual classifiers and combined max-competing classifiers in Equations (5)
and (6).

Classifiers Intercept ABCB6 KIAA1614 MND1 RIPK3  SMGI1 Accuracy % Sensitivity % Spe‘if/ﬁ“ty
CF-1(TPM) -0.3303 34153 02177 01248 69.84 62 100
CF-Il (TPM) —0.7378  —0.462 0.9093 00654  80.16 75 100
CF-1II
arvy 6922 -0.3921 34.13 17 100
CFmax 100 100 100
CF-1(EC) -0.7877 00351  0.0181 -0.0008  59.52 49 100
CF-I[ (EC) -4.6701 -0.0408 0.2134 00014  73.02 66 100
CF-III (EC) 3.1584 ~0.0042 58.73 18 100
CFmax 100 100 100

From Table 1, we can see that the coefficients of MND1 are different between CF-I and
CF-II, and the signs of SMG1 are different. This phenomenon tells us that the function of each
gene and its contribution to the risk probability depends on other factors (genes) in the
combination, i.e., there are gene-gene interactions and gene-subtype interactions. We note
that such interactions are hardly expressed in existing models, and as a result, the
interpretation of other types of current models can be difficult. We also notice that the
sensitivities of individual classifiers are low, and at first glance, we may think such models
are not powerful enough to be used in practice. Given the combined classifiers’ superior
performance, we can immediately infer that the populations are heterogeneous, and as a
result, a single model in the literature must have low performance in all samples. A
combination of individual classifiers should lead to better performance. However, the number
of genes can be large, and their practical value can be in doubt. Fortunately, our 5S4 classifiers
will not suffer such problems.

Tables 2 and 3 present some patients’ gene expression values, competing classifier
factors, and predicted probabilities defined in Equations (5)—(10). For full tables, we refer to
tables in a Supplementary Excel File.
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Table 2. TPM data: Expression values of the five critical genes, competing classifier factors, and
predicted probabilities.

ID ABCB6 KIAA1614 MND1 RIPK3 SMG1 CF-I CF-II CF-III CE(TPM) P-I P-II P-III P-(TPM)

C1 2.77 0.78 0.6 3922 302 -1.30 0.50 -8.45 0.50 0.21 0.62 0.00 0.62
Cc2 2.52 0.39 291 26.82 20.33 -0.90 2.07 -3.59 2.07 0.29 0.89 0.03 0.89
C3 3.14 1.07 1.26 40.13 16.16 1.58 0.01 -8.81 1.58 0.83 0.50 0.00 0.83
C4 2.11 0.59 1.99 2549 2333 -0.79 1.62 -3.07 1.62 0.31 0.84 0.04 0.84
C5 1.14 0.43 0.75 23.62 204 -124 0.75 -2.33 0.75 0.22 0.68 0.09 0.68
C103 3.37 0.54 0.7 27.31 543 099 -1.30 -3.78 0.99 0.73 0.21 0.02 0.73
NC1 217 0.15 0.16 18.89 357 -0.23 -1.36 -0.48 -0.23 0.44 0.20 0.38 0.44
NC2 1.83 0.25 0.25 2577 824 -045 -0.82 -3.18 -0.45 0.39 0.31 0.04 0.39
NC26 1.36 0.06 1.36 19.9 147 -0.01 -0.03 -0.87 -0.01 0.50 0.49 0.29 0.50
Cci,...... , C103 are hospitalized COVID-19 patient IDs, and NC1,...... , NC26 are COVID-19 free patient

(also hospitalized) IDs. CF and P are definded in Equations (5)—(10).

Table 3. EC data: Expression values of the five critical genes, competing classifier factors, and predicted
probabilities.

ID ABCB6 KIAA1614 MND1 RIPK3 SMG1 CF-I CF-II CF-III CF(TPM) P-I P-II P-IllI P-(TPM)

Co1 143 141.2 8 1217 8952 -2.88 333 -047 3.32678 0.05 097 0.39 0.97
C02 82 46.13 25 539 3913 -186 2.62 0.213 2.62006 0.13 093 0.55 0.93
Co03 159 195.76 17 1250 4803 253 -1.02 -0.5 2.53444 093 026 0.38 0.93
C04 92 924 23 685 6001 -195 4.61 0.067 4.61279 0.12 099 0.52 0.99
C05 58 78.36 10 734 6085 -2.74 334 0.018 3.33954 0.06 0.97 0.50 0.97
C103 290 169.66 16 1451 2773 323 -933 -0.7 3.23146 0.96 0.00 0.33 0.96
NCO01 151 37.54 3 826 1479 -0.6 -8.19 -0.07 -0.074 0.35 0.00 048 0.48
NCO02 140 67.34 5 1199 3688 -1.3 -4.32 -0.45 -0.447 0.21 0.01 0.39 0.39
NC26 126 22 35 1168 8142 -0.04 -1.24 -042 -0.03501 049 0.22 040 0.49
Cci, ...... , C103 are hospitalized COVID-19 patient IDs, and NC1, ...... , NC26 are COVID-19 free patient

(also hospitalized) IDs. CF and P are definded in Equations (5)—(10).

Figures 1 and 2 present critical gene expression levels and risk probabilities
corresponding to different measurement scales (TPM and EC) and different component
competing factor classifiers in Tables 2 and 3.
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Figure 1. COVID-19 classifiers using TPM data with axis units corresponding to Table 2: visualization
of gene-gene relationship and gene-risk probabilities. Note that 0.5 is the probability threshold. The left
panel is for CF-I with the X-axis being MND1, Y-axis being KIAA1614, and Z-axis being SMG1. The risk
probability bar is on the right. The middle panel is for CF-II with the X-axis being MND1, Y-axis being
ABCB6, and Z-axis being SMGI. The risk probability bar is on the right. The right panel is for CF-III
with the X-axis being RIPK3 and the Y-axis being the risk probability.
Covid-19 Classification Covid-19 Classification Covid-19Clssfieaton
09 —
09 10000 0 ul -
L] 0.8 f
0! o 8000 . o B
.. 07 0 Y
o0 S . gl \
’ .‘0 [ 06 & 6000 ° 06 8 : \
4 #! E g v ' % Zos; L
0ot 05 4 Ol 05 3 3 L
FARN S
') .' 04 (X .' ‘0.'. 04 5 é’m- ‘
g B 0 2000 o 98,0 0 '
J o, ~'0 U 4
1 " é 02r !
Jo 02 L oz \
[ 04 ‘0 (3 \
100 \// o ot
01 .
0 5 o °
100 20 ‘
0 4 N0 0 MND 0 spg 400 n g:c- 0 60 80 1000 1200 MO0 %00 1800 A0
KIA1614 ABCB RFK)

Figure 2. COVID-19 classifiers using EC data with the units corresponding to Table 3: visualization of
gene-gene relationship and gene-risk probabilities. Note that 0.5 is the probability threshold. The left
panel is for CF-I with the X-axis being MND1, Y-axis being KIAA1614, and Z-axis being SMG1. The risk
probability bar is on the right. The middle panel is for CF-II with the X-axis being MND1, Y-axis being
ABCB6, and Z-axis being SMGI. The risk probability bar is on the right. The right panel is for CF-III
with the X-axis being RIPK3 and the Y-axis being the risk probability.

From Figures 1 and 2, we can see clear patterns of how the patients are classified and
how they are correlated with individual genes. For example, some patients can be classified
by one gene, RIPK3 (the right panels in the figures), while some patients are classified by the
combined effects of linear combinations of three genes (the left and middle panels). As a
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result, these observations justify the existence of three genomic signature patterns, i.e., the
three competing classifiers of COVID-19.

We can also see similar patterns between Figures 1 and 2. This phenomenon is mainly
due to the component genes and signs of coefficients in the classifiers CF-i-(TPM) and CF-i-
(EC) being the same. In addition, the linear correlation coefficients between TMP and EC data
for genes ABCB6, KIAA1614, MND1, RIPK3, and SMGI, are 0.87, 0.94, 0.95, 0.68, and 0.93,
respectively, which supports the pattern similarity.

3.4. The Combination Effects and the Competing Factor Effects

The same signs of coefficients in the classifiers CF-i-(TPM) and CF-i-(EC) reveal that
these classifiers are robust to nonlinear transformations and the five genes are critical and
COVID-19 specific (recall that the patients in the control group are also hospitalized patients
with 16 of them being ICU patients).

The pairwise correlation coefficients among these five genes are presented in Table 4.
The table shows that TPM data and EC data show different gene-gene correlations. Even so,
they still lead to the same accuracy. As a result, they can be used as cross-validation of the
proposed S4 model (4) and the selected genes. Finally, we note that the classical cross-
validation works under a homogeneous population, i.e., it does not apply to heterogeneous
populations.

Table 4. Pairwise Pearson’s correlation coefficients: The upper triangle is for TPM data, and the lower
triangle is for EC data.

ABCB6 KIAA1614 MND1 RIPK3 SMG1

ABCB6 1 0.6931 0.3448 -0.1204 0.2138

KIAA1614 0.5209 1 0.1609 0.1688 0.5948

MND1 0.4009 0.1163 1 -0.1328 0.1276

RIPK3 -0.0727 -0.1608 -0.0769 1 0.2293
SMGI1 -0.0955 0.4681 -0.0137 -0.1762 1

From Equations (5) and (6), we can see that increasing ABCB6 and RIPK3 expression
levels (TPM) and decreasing KIAA1614 and MND1 expression levels will help the patients.
However, from Table 4, we see that ABCB6 is positively correlated with KIAA1614 and
MND1, and then, an increase in ABCB6 expression level may result in an increase in MND1
expression level and KIAA1614 expression level, which increases the COVID-19 competing
risk CF-I. As a result, any efficient treatments of COVID-19 must consider the functional
effects of the discovered genes.

Note that RIPK3 does not appear in the classifiers CF-I and CF-1I, and the signs of SMG1
in CF-I and CF-II are different. As a result, a vaccine/antiviral drug/therapy which is based on
the function of SMG1 (an mRNA gene, with positive and negative coefficient signs) in the CF-
I (CF-II) may benefit the patients classified in the CF-I (CF-II). However, it may not have any
effects on the patients in the CF-III. Furthermore, it may make the status of patients in the CF-
IT (CF-I) worse. Analogously, a vaccine/antiviral drug/therapy which is based on the function
of RIPK3 (CF-III) may not be effective for the patients affected by the effects of CF-I and CF-
II. The vaccines based on the current knowledge and technology have not used any messages
from gene-gene interactions and gene-subtype interactions. Given the uncertainty and the
unknown side effects of the first-generation vaccines, if the next generation vaccines can
utilize the information discovered in the genomic signature patterns of COVID-19, it can be
hoped the efficacy can be largely improved, especially for those mRNA type vaccines. As
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such, these observations reveal that we may need at least three different types of vaccines
against COVID-19 subtypes (variants).

Note that these five critical genes have not been reported in any papers except Zhang
(2021) [2]. They are not from any single gene pathway. Analogously, their functions may be
described as a basketball team’s combination effects. First, in a basketball team, there are five
positions: center (C), power forward (PF), small forward (SF), point guard (PG), and shooting
guard (SG). A combination of ABCB6-MND1-SMG1 (KIAA1614-MND1-SMG1) may be
described as a driving force of a powerful PF-C-PG (SF-C-PG) combination in scoring, and
RIPKS3 is like a powerful SG. Second, the expression levels are comparable to the playing time
of the players and their roles in the rotations competing against different opponents and their
playing combinations. Third, the driving forces of winning games can be either one or two or
all of the three combinations.

Note that the correlation coefficients among the five genes calculated from TPM (upper
triangle) and EC (lower triangle) in Table 4 are different. This phenomenon can be explained
by the nonlinear relationship between TPM and EC, within TPM and EC, and heterogeneous
populations among patients, which is a perfect scenario for the proposed model in Section 2.
In addition, note that due to 100% accuracy, metrics such as ROC, recall, and precision are
also with 100% accuracy.

3.5. The Existence of Subtypes

In Section 3.3, we saw that each signature could be used as a classifier given its 100%
specificity. However, from Figures 1 and 2, we see that some patients can only be classified
by one particular signature classifier, some patients can only be classified by two competing
classifiers, and some patients can be classified by any of the three competing classifiers. This
observation shows that COVID-19 patients are heterogeneous, and their COVID-19 status can
be further classified into subtypes using the classifier combinations.

Figure 3 uses Venn diagrams to plot seven classified subtypes of 100 COVID-19 patients.
In the figure, I-Il means both CF-I and CF-II lead to the correct classification. All other
combinations are interpreted similarly.

CF-1 (18)
CF-1l 33

CFs I-11 (24)

CFs I-11-111 (s)

CFs 11-11l 3 CFs |-l iz
CF-Ill i)
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Figure 3. Venn diagrams of COVID-19 subtypes. The top panel is based on TPM data, and the bottom
panel is based on expected counts data. The legend CF-I corresponds to the classifier formed by
(KIAA1614, MND1, and SMG1); the legend CF-II corresponds to the classifier formed by (ABCB6,
MND1, SMG1); the legend CF-III corresponds to the classifier formed by RIPK3; the legend CFs I-II
corresponds to the combined classifier formed by (ABCB6, KIAA1614, MND1, SMGI1); the legend CFs
I-IIT corresponds to the combined classifier formed by (KIAA1614, MND1, RIPK3, SMG1); the legend
CFs II-III corresponds to the combined classifier formed by (ABCB6, MND1, RIPK3, SMG1); the legend
CFs I-II-III corresponds to the classifiers formed by all five genes. The numbers in the parentheses are
the numbers of COVID-19 positive patients who are classified into the specific groups by the component
classifiers or combined classifiers, respectively.

We first state that the more intersections of subareas, the more complicated the disease
in a Venn diagram. For example, in the lower panel of the figure, we see that seven patients
satisfy the classification conditions of all three competing classifiers. It turns out all of these
seven patients are ICU COVID-19 patients. Using the lower panel as an example, we identify
the ICU patients have the distribution CF-I (6), CF-II (8), CF-1II (2), CFs-I-1I (6), CFs-I-1II (12),
CFs-II-1II (9), and CFs-I-I-III (7) and find that the disease severity (ICU) is positively
correlated with the number of classifiers used. Based on this observation, we can conclude
vaccines can benefit patients even if a particular type of vaccine only works for one signature
pattern related to COVID-19 subtypes. On the other hand, if one particular type of vaccine
can protect a particular COVID-19 subtype (or SARS-CoV-2 virus), this vaccine may not be
effective for other COVID-19 subtypes (or SARS-CoV-2 viruses.) As a result, a fully vaccinated
individual still has the risk of being infected. Furthermore, a recovered individual from an
infected COVID-19 illness can get breakthrough infections again with other COVID-19
subtypes. Two recent papers report concerns about infection-enhancing anti-SARS-CoV-2
antibodies based on lab experiments [17,18]. This phenomenon may be explained by our new
findings due to the existence of three genomic signature patterns and seven subtypes of
COVID-19. Taking the SMG1 gene as an example, an increase (or a decrease) of SMGI1
expression levels that are good for one signature pattern of COVID-19 will be bad for another
signature pattern.

Note that the top and lower panels classify some patients into different subtypes. This
phenomenon can be explained. In Section 3.4, we calculated the linear correlation coefficients
between TPM and EC for each gene and saw there are nonlinear relationships, which lead to
different classifications but are still accurate. Given that both TPM and EC lead to accurate
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results, it is safe to say that the identified five genes can be truly critical in studying COVID-
19.

The identified subtype information opens a new research direction, new drug
developments, and new refined personalized therapies. For example, in the diagnosis stage,
medical doctors can use the final model to predict their patient’s COVID-19 status by
calculating the risk and determining which of those seven groups the patient belongs to. In
the treatment stage, those signature patterns can be used to study the effectiveness of drugs
and treatments, i.e., conduct clinical trials based on classified groups. In the drug
development stage, pharmaceutical companies can use the findings of critical genes to study
new drugs. Finally, it can be hoped that mRNA-based therapies can be introduced using the
critical genes’ information in the therapy stage.

3.6. A Conceptual Framework

From Section 3.3, we see that COVID-19 patients have higher combination expression
values and COVID-19 free patients have lower combination expression values. With 100%
sensitivity and 100% specificity, the competing classifiers derived in Section 3.3 build a
biological equivalence to COVID-19 status. Equations (5) and (6) together with 100%
sensitivity and 100% specificity reveal the hyperplanes formed by five genes, and their
derived classifiers partition a five-dimension space into two subspaces (COVID-19 and
COVID-19 free) in which there is a mathematical equivalence between COVID-19 and
COVID-19 free. Here, the logic is from the fact of 100% sensitivity and 100% specificity, i.e., if
A implies B, then not B implies not A, and if not A implies not B, then B implies A.

In Section 4.1, we will use hydraulic engineering of a reservoir dam with cracks to
describe COVID-19 variants metaphorically. Figure 4 uses the five genes identified in Section
3.3 and one additional gene, CDC6 (to be discussed in Section 4), to describe a conceptual
framework for COVID-19 disease and variants formation dynamics.
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illustration

by rum.

Figure 4. COVID-19 formation: a conceptual visualization of gene-gene relationship. Legend I stands for
the signature formed by KIAA1614, MNDI1, and SMGI1, legend II stands for the signature formed by
ABCB6, MND]1, and SMGI, and legend III stands for the signature formed by RIPK3. The author
designed the concept and flowchart. Jing Zhang drew the figure.

In Figure 4, there are four layers. The first (top) layer stands for SARS-CoV-2 viruses
entering a human’s interior body. The second layer shows the lung will be affected. The third
layer describes gene-gene interaction signature patterns of COVID-19. The bottom layer is a
conceptual illustration of a human genome sequence with the five critical genes placed on the
sequence. In the figure, we use triangles to represent signature patterns (competing factor
classifiers), with the genes on the nodes and the classifier number inside the center. RIPKS3 is
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on its own as an absorbed triangle. There are two arrows to indicate the cause dynamics. With
the triangles or RIPK3, the larger the triangle or the shape of RIPK3, the higher the severity of
the COVID-19. Our conceptual idea is that after being infected with SARS-CoV-2 (top-down
direction), the virus triggers the signature patterns to function, i.e., making the triangles (the
shape) larger. However, simultaneously, the human’s immune system starts to function
(bottom-up direction), and the vaccine also starts to function; therefore, the areas of triangles
(shape) can be reduced, or the edges of the triangles can be broken, i.e., two ways of fighting
against the virus. Depending on which direction (infection or ‘killing” the virus) is more
effective, an infected individual may be fully recovered from COVID-19 disease or suffer
much more severe COVID-19 symptoms.

On the other hand, the genomic signature patterns of a COVID-19 patient represent the
advanced (deep level) gene-gene interactions. A change in the size of the triangle may trigger
new variants to form and transmit to other individuals, i.e., an analog to the hydraulic
engineering example in Section 4.1.

3.7. Clinic Characteristics

In this section, we present the distributions of clinic variables, sex, age, and ICU status,
and seven subtypes, in Table 5.

Table 5. Distributions of basic clinical and pathological characteristics.

. Age (Years) Sex ICU
Subtypes  Number of Patients Median Range Male Female Yes No
sub-I 15 73 33-85 12 3 6 9
sub-II 25 58 27-86 15 10 8 17
sub-III 4 49.5 29-87 3 1 2 2
sub-IV 12 57.5 24-81 3 9 6 6
sub-V 15 68 41-83 9 6 12 3
sub-VI 21 55 35-90 16 6 9 13
sub-VII 7 50 21-71 4 3 7 0

Table 5 shows that ranges of age among all subtypes are similar, i.e., from 20 s to 80 s.
More males were hospitalized than females. Patients with the subtype sub-I were more likely
(6:9 vs. 8:17) to need ICU than those with the subtype sub-Il. The reason why this could
happen is not known. Comparing CF-I and CF-11, we see that KIAA1614 is an unknown gene,
and the sign of SMGI is negative in CF-I, which may be the causal factor. In addition, sub-V
and sub-VI share similar features, and sub-V contains KIAA1614 and a negative coefficient
sign of SMG1. We note that if all things are wrong, i.e., the sub-VII subtype, all patients were
ICU patients. Therefore, it tells us the sub-1 subtype is more puzzling, likely due to the
unknown gene KIAA1614.

3.8. Analysis of the Third Dataset

Table 6 reports the fitted coefficient values for four critical genes and related sensitivities
and specificities of competing risk classifiers using raw counts.



Vaccines 2022, 10, 761 15 of 21

Table 6. Performance of individual classifiers and combined max-competing classifiers.

—
Classifiers Intercept ABCB6 KIAA1614 MND1 RIPK3  SMG1 Accuracy % Sensitivity % Specj/ ity
(1]
CF-I (Raw) 9.0357 200611 0.1628 20.0089  97.06 94.12 100
CE-Il (Raw) 92613  -0.2191 0.1963 00081 97.06 94.12 100
CFmax 100 100 100

Comparing Tables 1 and 6, we can immediately see that Table 6 does not contain a CF-
III classifier (RIPK3), and the coefficient signs of KIAA1614 in CF-I and SMGI in CF-II are
negative, which are different from their counterparts in Table 1. This observation justifies that
there are more than three genomic signature patterns and seven subtypes. Recall that the
controls in the first and second datasets were hospitalized patients with non-COVID-19
diseases, while the control in this third dataset is healthy subjects. As a result, it is safe to
conclude that the five genes, ABCB6, KIAA1614, MND1, RIPK3, and SMG], are truly COVID-
19 specific, and the newly proposed classification method is a powerful tool.

Note that the coefficients of MND1 in both Tables 1 and 6 are uniformly positive. This
observation suggests that MND1 (meiotic nuclear divisions 1) may be the most important
gene related to COVID-19.

Table 7 lists gene expression values, competing classifiers” values among all patients in
the third dataset.

Table 7. The third data: Expression values of four critical genes, their classifier values, risk probabilities.

ID_REF Severity ABCB6 KIAA1614 MND1 SMG1 CF-I CF-II CFmax P-I P-II P-Max
G5M4614985 Convalescent 1 7 2 1107 -0.92 0.47 047 029 0.61 0.61
GSM4614986 ~ Moderate 12 8 23 975 3.61 3.25 361 097 096 0.97
GSM4614987  Severe 2 12 4 731 245 3.69 3.69 092 098 0.98
G5M4614988 Severe 13 5 48 1033 735 7.47 747 1.00 1.00 1.00
G5M4614989 ICU 9 5 10 655 4.53 3.95 453 099 098 0.99
GSM4614990 Severe 9 6 11 1010 147 127 147 081 0.78 0.81
GSM4614991 Moderate 11 11 10 646 424 3.58 424 099 097  0.99
GS5M4614992  Severe 4 6 10 733 377 441 441 098 0.99 0.99
GS5M4614993 ICU 17 13 9 503 523 3.23 523 099 0.96 0.99
GSM4614994  Severe 4 7 12 774 3.67 4.47 447 098 0.99 0.99
GSM4614995  Moderate 9 8 23 1232 133 1.83 1.83 079 0.86 0.86
GSM4614996  ICU 4 15 7 752 257 3.67 3.67 093 0.98 0.98
GSM4614997  Severe 14 10 27 894 486 4.25 486 099 0.99 0.99
GS5M4614998 ICU 7 14 21 965 3.01 4.03 4.03 095 098 0.98
GS5M4614999 Severe 12 12 23 1233 1.07 1.16 1.16 0.75 0.76 0.76
GS5M4615000 Severe 11 8 5 1039 0.11 -0.58 0.11 053 0.36 0.53
GS5M4615001 Moderate 12 6 16 953 2.79 2.05 279 094 0.89 0.94
GSM4615003 Healthy 7 4 1 1157 -1.34 -145 -134 021 0.19 0.21
GSM4615006  Healthy 5 10 1 1040 -0.67 -0.06 -0.06 034 048 0.48
G5M4615008 Healthy 9 6 1 1354 -322 -348 -322 0.04 0.03 0.04
GS5M4615011 Healthy 5 10 0 1285 -3.01 -2.24 -224 0.05 0.10 0.10
GSM4615014  Healthy 16 6 1 1641 -5.77 -734 =577 0.00 0.00 0.00
GSM4615016 ~ Healthy 5 2 3 1250 -1.72 -137 -1.37 0.15 0.20 0.20
GSM4615019 Healthy 11 15 8 1164 -0.94 -1.01 -094 028 027 028
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G5M4615022
G5M4615025
GSM4615027
GSM4615030
GSM4615032
G5M4615033
GS5M4615034
GSM4615035
GSM4615036
GSM4615037

Healthy
Healthy
Healthy
Healthy
Healthy
Healthy
Healthy
Healthy
Healthy
Healthy

11 8 2 1246 -222 -2.85 -222 010 0.05 0.10
13 25 2 1220 -3.02 -3.08 -3.02 0.05 0.04 0.05
7 5 3 1327 -2.59 -243 243 0.07 0.08 0.08
9 6 2 1138 -1.13 -154 -1.13 024 0.18 0.24
8 8 0 1264 -2.70 -2.73 -2.70 0.06 0.06 0.06
7 2 1 1201 -1.61 -1.80 -1.61 0.17 0.14 0.17
8 5 5 1659 -522 -495 -495 0.01 0.01 0.01
12 12 0 1371 -390 -4.47 -390 0.02 0.01 0.02
10 7 5 1337 248 -2.78 -248 0.08 0.06 0.08
6 8 1 1461 -4.29 -3.69 -3.69 0.01 0.02 0.02

From Table 7, we can see that MND1 expression values show significant difference
between the healthy group and the COVID-19 group.

4. Conclusions and Discussions
4.1. Discussions

The proposed method is different from the current diagnostic methods in several ways.
First, our new method (S4) theoretically leads to finding the smallest number of genes with
clear signature patterns which are interpretable. Second, our method directly deals with
heterogeneous populations and performs natural clustering and classifications of samples
into their respective groups. Third, our proposed method can describe gene-gene interactions
and gene-subtypes interactions.

Simultaneously observing the same set of five genes for two different datasets has not
been reported in published literature. In our opinion, those published genes by many other
studies are more like at the surface level (biologically directly related to the disease) based on
the analysis methods used, and the new set of five genes in this work is at the deep level or
the root level, where genes are not directly related to the diseases by the present biological
knowledge. Furthermore, many reported key genes are based on their individualized
expression value changes and significance, i.e., not based on gene-gene interactions. As a
result, treatments are palliative, and the disease is difficult to cure. The findings in our new
research are based on nonlinear and competing risk factors interactions, which is an advanced
gene-gene interaction mechanism. Our proposition is that the biomedical discovery of new
variants of COVID-19 is only the surface level of the virus (diseases). More profound,
underlying “competing factors” of the virus need to be studied. Metaphorically, an expert in
hydraulic engineering finds a dam with cracks and treats them on the surface. However, the
reservoir has an interconnected water dynamic below the surface that will further impact
other points of the dam. As a result, it will cause new cracks unless there is a fundamental
treatment solution with the entire structure in mind. Similarly, scientists may observe the
variants (rather passively) and develop vaccines in response to the variants. However,
knowledge of the virus’s deeper advanced genomic architecture that will systematically cause
other mutations is limited. Traditional methods in statistics, machine learning, and Al are
limited to understanding COVID-19 from surface-level observations. However, our
innovative method has achieved significant results in identifying and understanding COVID-
19 genomic signatures.

The newly identified genes and their combinations may be used as new biomarkers. In
our opinion, traditional methods (e.g., PCR, serology) are directly associated with the disease
symptoms, i.e., they do not provide pathological characteristics; they are a onefold indicator.
On the other hand, the new classifier is a multifold indicator that can further divide the disease
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into subgroups (variants may be another word). In addition, the new classifier shows gene-
gene interactions and advanced (or root) structures.

This work has verified that when all component classifiers simultaneously classify a
group of patients as COVID-19-positive, these patients are ICU patients (Section 3.4), which
definitely points out the advanced genomic structure of COVID-19 disease.

In the literature and the current practice, tremendous efforts have been made to study
COVID-19 genomic sequences, variants and their impacts, and vaccine effectiveness.
However, the progress on the pathological causes of COVID-19 and the functional effects of
genes is still limited. In terms of computational medicine, our new work is the first to
accurately define the functional effects of five critical genes and lead to the mathematical and
biological equivalence between five genes and COVID-19 status. Furthermore, this paper
introduces an advanced machine learning algorithm that identifies five essential genes, which
further determine three genomic signature patterns and seven subtypes of COVID-19 with
high accuracy. The final classifiers are expressed by explicit mathematical equations which
are interpretable and can guide medical practice. In addition, new graphical diagnostic tools
are introduced. Besides the striking advance in studying genomic signature patterns of
COVID-19, our work also sheds new light on computational medicine, genetic studies,
informatics, algorithm and machine learning, and statistics.

We realized readers would ask about the model overfitting and robustness. Please note
that our model is fitted to three different datasets and has reached the highest accuracy. Each
dataset has its heterogeneous patterns (subgroups). Datasets are measured at different scales.
It is hard for the existing models to simultaneously fit such datasets and get satisfactory
accuracy, not to mention the interpretability of the fitted models. Using three such datasets
naturally serves as cross-validation and robust checking. It turns out our new approach is
robust.

In many scenarios, a 100% accuracy may be thought of as “too good to be true”. However,
“too good to be true” may also be dangerous to use to guide science discovery and innovation.
In many applied sciences, the truths can be simple but not straightforward. Complicating or
aggravating the problem can mask the nature of the problem. Blindly insisting on “too good
to be true” may miss ample opportunities of finding the truth. In contrast, we know it is hard
to see the forest through the trees.

One may argue that the dataset we used in this analysis is not large enough as it has only
126 samples with 19,472 predictors in the first two datasets and 34 samples with 64,083 genes
in the third dataset. It is, of course, preferable to have a large dataset. Nevertheless, we argue
that the conclusions and inferences are trustworthy with a convincing accuracy on three
different datasets that show nonlinear and heterogeneous relationships.

On the other hand, if an approach cannot gain a satisfactory performance with a small
dataset, applying it to a large dataset can be a wrong strategy as it may lead to wrong or
suboptimal conclusions.

A natural question is whether or not the high accuracy is by chance. Note that each of
our component competing classifiers has reached 100% specificity, which may be true with a
probability smaller than 1/2%¢ = 1.0 X 10~ by chance. In addition, when all three signature
patterns are satisfied, all classified patients are lab-confirmed ICU patients, which indicates it
cannot be by chance.

We have used analogies to interpret our modeling strategy. We note that our proposed
method is still in its primary stage of development, just started in 2021. Researchers are still
not very familiar with the method. Once the proposed method becomes a standard method,
the introduction of the method and analogies will no longer be needed.
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4.2. Conclusions

As discussed in Sections 1 and 3, the three signature patterns and seven subtypes
maintain the most important biological informatics of COVID-19. This set of genes is the only
set that leads to accurately classifying hospitalized COVID-19 patients, including ICU
patients, into their respective groups. Unless a different new discovery of other advanced
structures of genes other than these five genes can be obtained, and such a new discovery (if
exists) can fully explain the three signature patterns and seven subtypes discussed in this
paper, these five critical genes and their derived three signature patterns and seven subtypes
remain the most informative findings.

When a model is fitted to the whole dataset and leads to (nearly) perfect accuracy, it will
uniformly work for partitioned data as long as the partition is balanced to all heterogeneous
subgroups. This is the case in our analysis. On the other hand, we have not seen any published
papers that used the “standard” procedure to lead to accurate prediction.

We note that multiplying a constant to Equations (5) and (6) will not change the
classification results and the shapes in Figures 1 and 2 with a convincing accuracy being
achieved. However, the color strengths will be changed. Such a phenomenon justifies the use
of signatures to describe the advanced gene-gene interaction structures. Using this idea, we
can express (6) into the following equivalent forms:

CF-I (EC): —0.3303 + 3.4153 x 28101 _ 1948 5 SMCL | 92177 x 20D
231.9296 370.2751 28.6399
CF-II (EC): —0.7378 — 0.4620 X 222 4 0.0654 X —"_ + 0.9093 X Pk
71.6741 305.4532 26.9660
CF-III (EC): 6.9283 — 0.3921 X — (11)

42.5580
CF(EC) = max{CF-I(EC), CF-TI(EC), CF-ITI(EC))

Equation (11), after applying scale changes, shares similar signatures as in Equation (5).
Considering the nonlinear relationships between TPM data and EC data, this observation
again proves our proposed competing factor classifiers are robust.

Our findings can be used to develop precision test kits for testing COVID-19 and to
evaluate the function and performance of already implemented vaccines, i.e., used as new
antibody indexes. Interpretable and implementable formulas are given in the paper. After a
COVID-19 case is confirmed, personalized treatments can be implemented. For example,
increasing or decreasing levels of critical genes based on the identified COVID-19 subtype can
be crucial to the patients’ recovery. Using the relationship determined in the findings,
antiviral drugs can be developed. Mathematically, the new objective function of Equation (4)
is a mixture of combinatorial optimization and continuous optimization. It is a new type of
classification benchmark. It is expected that this new classification formula will motivate
research in statistics, computational mathematics, computer science, and many applied
sciences. The findings can motivate many new types of research in COVID-19 studies and
other studies, e.g., cancer studies. Many finished studies can re-start new investigations using
the new methodology.

4.3. Future Perspectives

With the mathematical equivalence between Equations (6) and (11), different numbers of
patients in different subtypes and in the control will not change the classification results. With
the specificities of each individual classifier (CF-i) reaching 100%, the signature patterns (not
presented in Section 3.3) of patients in the control will be the same, i.e., just one type. This
phenomenon shows that the identified five critical genes are COVID-19 specific. One can
apply our method to study critical genes of disease types (also other respiratory diseases) in
the control, i.e., assign the related samples in the treatment group and specify some other
types of diseases or normal cases as the control.
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We want to hypothesize that the discovered COVID-19 variants (alpha, beta, delta,
lambda, mu, omicron, etc.) may be connected to different signature strengths in our
discovered signature patterns. COVID-22 in Figure 4 means that SARS-CoV-2 variants in 2022
can be combinations of several subtypes (variants), i.e., they are no longer the same types as
in 2019. Mathematically, hyperplanes in geometry formed by Equations (5) and (11) contain a
subspace that can be further partitioned into subspaces. Therefore, we hypothesize that these
variants may fall into separable subspaces. After obtaining new data with variants
information, this hypothesis can be tested, or additional genes may be involved. For example,
in the breast cancer study mentioned earlier, triple-negative breast cancer was accurately
separated from other types of breast cancer using three genes identified by the S4 classifier.
Furthermore, the discovered genomic signature patterns and COVID-19 subtypes are intrinsic
no matter what variants have been identified or will be identified. Given our proven
mathematical and biological equivalences, if these innate signature patterns and subtypes
cannot be treated and fully studied now, they will cause trouble in the future again. In
addition, with available data related to various variants, our study approach may be able to
reveal the causes of higher transmission or mortality of specific variants.

Using classifiers CF-, -II, and -III as new biomarkers, we can study other potential genes
that are highly correlated with these biomarkers. For example, based on the first and second
datasets, the most highly correlated five genes to each new biomarker lead to a total of fifteen
genes: DBN1, LY6G6C, TMEM54, MTMR1, SNORC, ANP32E, ATAD2, SMC2, ZWILCH,
SMC4, Céorfd7, STRADA, LRSAMI1, UNC93B1, and SASH3, which were listed in the
Introduction.

Finally, in our analyses, we also found the gene CDC6 (cell division cycle 6) can be
informative. Its combination with ZNF282 (zinc finger protein 282) can lead to 97.62%
accuracy (98% sensitivity, 96.15% specificity), and its combination with both ZNF282 and
CEP72 (centrosomal protein 72) can lead to 98.41% accuracy (99% sensitivity, 96.15%
specificity). We found the high expression level of CDC6 increases risk while the high
expression levels of ZNF282 and CEP72 decrease risk. Although they did not lead to the best
accuracy as those five genes identified in Section 3 did, such a performance is already better
than other published gene combinations. From the literature, the gene CDC6 is a protein
essential for the initiation of DNA replication, while ZNF282 is known to bind U5RE (U5
repressive element) of HLTV-1 (human T cell leukemia virus type 1) with a repressive effect,
but little is known of its expression and function otherwise. The gene CEP72 coded protein is
localized to the centrosome, a non-membraneous organelle that functions as animal cells’
major microtubule-organizing center. Zhang (2022) hypothesizes that CDC6 is a protein
essential for the initiation of RNA replication of COVID-19 [19].

4.4. Limitation of the Study

Data used in this study are from hospitalized patients” blood samples. We are not sure
whether or not the identified genes work for data sampled from those non-hospitalized
COVID-19 patients or asymptomatic patients. Solving optimization problems (4) involves
combinatorial optimization, integer programming, and continuous programming. The
computational complexity is extremely high, and we have not figured out how to define the
complexity. We used an extensive Monte Carlo search method to find the best solution.
However, we cannot be sure whether additional sets of genes can also be the optimal solutions
even if our finding of five genes is already the best (smallest) subset of genes with the desired
accuracy in the study of COVID-19. Although we have established the mathematical and
biological equivalences, we cannot tell our findings are the causes or the results. Although we
have identified functional effects via gene-gene interactions and gene-subtype interactions of
the five genes, we have not identified how genes interact with each other and their causal
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directions. We are working in this direction. As the proposed method is still at the early stage
of development, just started in 2021, assumptions for future use of the results of this study
have been applied. Finally, due to the lack of available new blood sampled data for new
variants, it is difficult to infer the risks of variants. Furthermore, what we have obtained are
computational results and it is not necessary the case that the results will follow the same
pattern in vitro/in vivo or in clinics.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/vaccines10050761/s1, Table S1 and S2 with complete patients’
IDs and expression values corresponding to Tables 2 and 3 in the main text. Real data and computer
outputs are in a supplementary file available online and submitted together with this paper. In addition,
a MATLAB® demo code for solving a final dataset example in Equation (4) (A2= 0) is also available.

Funding: The author disclosed receipt of the following financial support for the research, authorship,
and/or publication of this article: The project was partially supported by NSF grant DMS-2012298.

Institutional Review Board Statement: The study did not require IRB approval.
Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets are publicly available. The data links are stated in the Data
Description Section.

Acknowledgments: The author thanks the academic editor and four anonymous referees for their
critique and constructive comments, which greatly improved the presentation of the paper. The author
is also thankful for the helpful information, discussions, and assistance from Jing Qin, Yuqing Xu, Hao
Yang Teng, Ariel Qihui Tao, Jing Zhang, Steven Moen, Alex Hayes, and many other people who
discussed the project with the author and encouraged the author to put the effort into this urgently
needed study. Finally, the partial support from NSF-DMS2012298 is acknowledged.

Conflicts of Interest: The author declares no conflict of interest.

References

1

[€5)

10

Overmyer, K.A.; Shishkova, E.; Miller, L].; Balnis, J.; Bernstein, M.N.; Peters-Clarke, T.M.; Meyer, ].G.; Quan, Q.; Muehlbauer, L.K;
Trujillo, E.A.; et al. Large-scale multi-omic analysis of COVID-19 severity. Cell Syst. 2020, 12, 23-40.e7.
https://doi.org/10.1016/j.cels.2020.10.003, 2020.

Zhang, Z. Five critical genes related to seven COVID-19 subtypes: A data science discovery. J. Data Sci. 2021, 19, 142-150.
https://doi.org/10.6339/21-JDS1005.

Callaway, E. The quest to find genes that drive severe covid. Nature 2021, 595, 346-348. https://doi.org/10.1038/d41586-021-01827-w.
Ganna, A. COVID-19 Host Genetics Initiative. Mapping the human genetic architecture of COVID-19. Nature 2021, 600, 1476-4687.
https://doi.org/10.1038/s41586-021-03767-x.

Pairo-Castineira, E.; Clohisey, S.; Klaric, L.; Bretherick, A.D.; Rawlik, K.; Pasko, D.; Walker, S.; Parkinson, N.; Fourman, M.H;
Russell, C.D.; et al. Genetic mechanisms of critical illness in COVID-19. Nature 2021, 591, 92-98. https://doi.org/10.1038/s41586-020-
03065-y.

The RECOVERY Collaborative Group. Dexamethasone in hospitalized patients with COVID-19. N. Engl. |. Med. 2021, 384, 693-704.
https://doi.org/10.1056/NEJMo0a2021436.

Dite, G.S.; Murphy, N.M.; Allman, R. Murphy, and Richard Allman. Development and validation of a clinical and genetic model
for predicting risk of severe COVID-19. Epidemiol. Infect. 2021, 149, e162. https://doi.org/10.1017/S095026882100145X.

Zhang, Q.; Bastard, P.; Liu, Z.; Le Pen, J.; Moncada-Velez, M.; Chen, ].; Ogishi, M.; Sabli, . K.D.; Hodeib, S.; Korol, C.; et al. Inborn
errors of type I ifn immunity in patients with life-threatening COVID-19. Science 2020, 370, eabd4570.
https://doi.org/10.1126/science.abd4570.

Bastard, P.; Rosen, L.B.; Zhang, Q.; Michailidis, E.; Hoffmann, H.-H.; Zhang, Y.; Dorgham, K.; Philippot, Q.; Rosain, J.; Béziat, V.; et
al. Autoantibodies against type I ifns in patients with life-threatening COVID-19. Science 2020, 370, eabd4585.
https://doi.org/10.1126/science.abd4585.

Povysil, G.; Butler-Laporte, G.; Shang, N.; Weng, C.; Khan, A.; Alaamery, M.; Nakanishi, T.; Zhou, S.; Forgetta, V.; Eveleigh R et al.
Failure to replicate the association of rare loss-of-function variants in type IIFN immunity genes with severe COVID-19. medRxiv
2020. Available online: https://www.medrxiv.org/content/early/2020/12/21/2020.12.18.20248226 (accessed on 21 December 2020).


https://www.medrxiv.org/content/early/2020/12/21/2020.12.18.20248226

Vaccines 2022, 10, 761 21 of 21

11

12

13

14

15

16

17

18

19

Kosmicki, J.A.; Horowitz, ].E.; Banerjee, N.; Lanche, R.; Marcketta, A.; Maxwell, E.; Bai, X.; Sun, D.; Backman, ].D.; Sharma, D.; et al.
Genetic association analysis of SARS-CoV-2 infection in 455,838 UK biobank participants. medRxiv 2020. Available online:
https://www.medrxiv.org/content/early/2020/11/03/2020.10.28.20221804 (accessed on 3 November 2020).

Fallerini, C.; Daga, S.; Mantovani, S.; Benetti, E.; Picchiotti, N.; Francisci, D.; Paciosi, F.; Schiaroli, E.; Baldassarri, M.; Fava, F.; et al.
Association of toll-like receptor 7 variants with life-threatening COVID-19 disease in males: findings from a nested case-control
study. eLife 2021, 10, e67569. https://doi.org/10.7554/eLife.67569.

Zhang, Z. Lift the wveil of breast cancers using 4 or fewer critical genes. Cancer Inform. 2022, 21, 1-11.
https://doi.org/10.1177/11769351221076360.

Zhang, Z.; Xu, Y.; Li, X;; Chen, M.; Wang, X.; Zhang, N.; Zhang, X.; Zheng, W.; Zhang, H.; Liu, Y. PSMC2 and CXCL8-Modulated
Four Critical Gene-Based High Performance Biomarkers for Colorectal Cancer. 2022, Manuscript (research article) to be submitted.
Zhang, Z. Functional effects of four or fewer critical genes linked to lung cancers and new sub-types detected by a new machine
learning classifier. J. Clin. Trials 2021, 11, 100001. Available online: https://www.longdom.org/open-access/functional-effects-of-
four-or-fewer-critical-genes-linked-to-lung-cancers-and-new-subtypes-detected-by-a-new-machine-lea.pdf =~ (accessed on 30
November 2021).

Arunachalam, P.S.; Wimmers, F.; Mok, C.K.P.; Perera, R.A.P.M.; Scott, M.; Hagan, T.; Sigal, N.; Feng, Y.; Bristow, L.; Tsang, O.T.-Y;
et al. Systems biological assessment of immunity to mild versus severe COVID-19 infection in humans. Science 2020, 369, 1210-1220.
Li, D.; Edwards, R.J.; Manne, K.; Martinez, D.R.; Schéfer, A.; Alam, S.M.; Wiehe, K.; Lu, X.; Parks, R.; Sutherland, L.L.; et al. In vitro
and in vivo functions of SARS-CoV-2 infection-enhancing and neutralizing antibodies. Cell 2021, 184, 4203-4219.e32.
https://doi.org/10.1016/j.cell.2021.06.021.

Yahi, N.; Chahinian, H.; Fantini, J. Infection-enhancing anti-SARS-CoV-2 antibodies recognize both the original Wuhan/D614G
strain and Delta variants. A potential risk for mass vaccination? J. Infect. 2021, 83, 619-620. https://doi.org/10.1016/j.jinf.2021.08.010.
Zhang, Z. ATP6V1B2 and IFI27 and their intrinsic functional genomic characteristics associated with SARS-CoV-2. bioRxiv 2022.
https://doi.org/10.1101/2022.01.13.476223.


https://www.medrxiv.org/content/early/2020/11/03/2020.10.28.20221804
https://www.longdom.org/open-access/functional-effects-of-four-or-fewer-critical-genes-linked-to-lung-cancers-and-new-subtypes-detected-by-a-new-machine-lea.
https://www.longdom.org/open-access/functional-effects-of-four-or-fewer-critical-genes-linked-to-lung-cancers-and-new-subtypes-detected-by-a-new-machine-lea.

	1. Introduction
	2. Methodology
	3. Data Descriptions, Results, and Interpretations
	3.1. The First and Second Datasets
	3.2. The Third Dataset
	3.3. The Competing Factor Classifiers and Their Resulting Risk Probabilities
	3.4. The Combination Effects and the Competing Factor Effects
	3.5. The Existence of Subtypes
	3.6. A Conceptual Framework
	3.7. Clinic Characteristics
	3.8. Analysis of the Third Dataset

	4. Conclusions and Discussions
	4.1. Discussions
	4.2. Conclusions
	4.3. Future Perspectives
	4.4. Limitation of the Study

	References

