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ABSTRACT: Known genes in the breast cancer study literature could not be confirmed whether they are vital to breast cancer formations due
to lack of convincing accuracy, although they may be biologically directly related to breast cancer based on present biological knowledge. It is
hoped vital genes can be identified with the highest possible accuracy, for example, 100% accuracy and convincing causal patterns beyond
what has been known in breast cancer. One hope is that finding gene-gene interaction signatures and functional effects may solve the puzzle.
This research uses a recently developed competing linear factor analysis method in differentially expressed gene detection to advance the
study of breast cancer formation. Surprisingly, 3 genes are detected to be differentially expressed in TNBC and non-TNBC (Her2, Luminal A,
Luminal B) samples with 100% sensitivity and 100% specificity in 1 study of triple-negative breast cancers (TNBC, with 54675 genes and 265
samples). These 3 genes show a clear signature pattern of how TNBC patients can be grouped. For another TNBC study (with 54673 genes and
66 samples), 4 genes bring the same accuracy of 100% sensitivity and 100% specificity. Four genes are found to have the same accuracy of
100% sensitivity and 100% specificity in 1 breast cancer study (with 54675 genes and 121 samples), and the same 4 genes bring an accuracy of
100% sensitivity and 96.5% specificity in the fourth breast cancer study (with 60483 genes and 1217 samples). These results show the 4-gene-
based classifiers are robust and accurate. The detected genes naturally classify patients into subtypes, for example, 7 subtypes. These findings
demonstrate the clearest gene-gene interaction patterns and functional effects with the smallest numbers of genes and the highest accuracy
compared with findings reported in the literature. The 4 genes are considered to be essential for breast cancer studies and practice. They can
provide focused, targeted researches and precision medicine for each subtype of breast cancer. New breast cancer disease types may be

detected using the classified subtypes, and hence new effective therapies can be developed.

KEYWORDS: Direct and indirect effects, breast cancer detection, gene-gene interaction, functional effects, joint risk competing

RECEIVED: August 14, 2021. ACCEPTED: December 30, 2021.
TYPE: Original Research
FUNDING: The author disclosed receipt of the following financial support for the research,

authorship, and/or publication of this article: The project was partially supported by NSF
grant DMS-2012298.

DECLARATION OF CONFLICTING INTERESTS: The author declared no potential
conflicts of interest with respect to the research, authorship, and/or publication of this
article.

CORRESPONDING AUTHOR: Zhengjun Zhang, Department of Statistics, University of
Wisconsin, Madison, WI 53706, USA. Email: zjz@stat.wisc.edu

Introduction

Breast cancer has been an unconquered plague for centuries. It
has had the highest death rate among all cancers women have
had for many years. It has caused enormous economic losses
and costs. To save lives and protect women from breast cancers,
enormous research efforts and money have been investigated.
Although there have been some considerable signs of progress
in breast cancer diagnoses and therapies, many women still suf-
fer from being diagnosed with breast cancer and lost their lives
every year. No apparent clues or research results show the most
critical genetic causality in breast cancer formation. The most
hopeful direction, finding critical genes, or primary differen-
tially expressed genes related to breast cancer formation, has
been drawing much attention in breast cancer studies. The
most recent editorial summary by Narod? states “Results of two
large case-control studies that analyzed the associations
between a number of putative cancer susceptibility genes and
breast cancer risk are now reported in the Journal. The study by
Dorling et al? included 34 genes and 113 000 women from 25
countries, and the study by Hu et al® included 28 genes and
64000 women from the United States. Variants in 8 genes—
BRCA1, BRCA2, PALB2, BARD1, RAD51C, RAD51D,
ATM, and CHEK2—had a significant association with breast
cancer risk in both studies.” However, a significant association
does not mean the corresponding gene is truly informative.
For example, it has been reported by Berger* that the risk of

developing breast cancer was 40% to 60% greater among
women with the PALB2 mutation. On the other hand, the
study by de Magalhies® shows every gene can (and possibly
will) be associated with cancer, see also an interview report by
Robitzski® in The Scientist. It becomes clear that having a lot of
genes associated with a disease doesn't mean they’re important.
This paper intends to identify a truly important small subset of
breast cancer risk genes.

Differential expression analysis between tumor and non-
tumor cells helps breast cancer prognosis prediction at a rela-
tively early stage, identifying some clear patterns from patients
to patients, recommending different precision therapies
according to breast cancer subtypes. Efforts have been made in
identifying genes associated with breast cancer symptoms. We
now give a brief review of some of the most recent studies. In a
systems biology comprehensive analysis on breast cancer to
identify key gene modules and genes associated with TNM-
based clinical stages,” the authors have identified various num-
bers of genes that can be key genes related to breast cancers at
different cancer stages. Malvia et al® studied gene expression
profiles of breast cancers in Indian women, obtained 2413 dif-
ferentially expressed genes, and demonstrated the existence of
molecular subtypes in Indian women. Lv et al’ aimed to
explore some novel genes and pathways related to TNBC
prognosis through bioinformatics methods as well as poten-
tial initiation and progression mechanisms. Seven hundred
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fifty-five differentially expressed overlapping mRNAs were
detected between TNBC/non-TNBC samples and normal tis-
sue. The authors found 8 hub genes associated with the cell
cycle pathway highly expressed in TNBC. Additionally, a novel
6-gene (TMEM252, PRB2, SMCO1, IVL, SMR3B, and
COLYA3) signature from the 755 differentially expressed
mRNAs were constructed and significantly associated with
prognosis as an independent prognostic signature. Zhong
et al'® conducted a robust rank aggregation (RRA) analysis
based on genome-wide gene expression datasets involving
TNBC patients from the Gene Expression Omnibus (GEO)
database to identify key genes associated with TNBC. A total
of 194 highly ranked differentially expressed genes (DEGs)
were identified in TNBC versus non-TNBC. Gene oncology
(GO) and Kyoto Encyclopedia of Genes and Genomes path-
way (KEGG) enrichment analysis was utilized to explore the
identified genes’ biological functions. The authors also found
that some genes are positively correlated to the life expectancy
(P<.05) of TNBC patients. Lin et al'! identified potential key
genes for HER-2 positive breast cancer based on bioinformat-
ics analysis. A total of 54 up-regulated DEGs and 269 down-
regulated DEGs were identified. Among them, 10 hub genes
including CCNB1, RAC1, TOP2A, KIF20A, RRM2, ASPM,
NUSAP1, BIRCS5, BUB1B, and CEP55 demonstrated by con-
nectivity degree in the PPI network were screened out. Chen
et al!? systematically searched the electronic databases of
MEDLINE (PubMed), Embase, and Cochrane Library to
identify relevant publications from April, 1959 to November,
2017. identified 16 qualified studies from 527 publications
with 46,870 breast cancer patients including 868 BRCA1
mutations carriers, 739 BRCA2 mutations carriers, and 45 263
non-carriers. The results showed that breast cancer patients
with BRCA1Mut carriers were more likely to have TNBC
than those of BRCA2Mut carriers (OR: 3.292; 95% CI: 2.773-
3.909) or non-carriers (OR: 8.889; 95% CI: 6.925-11.410).
Deng et al'3 identified potential crucial genes and key path-
ways in breast cancer using bioinformatic analysis. Two hun-
dred three up-regulated and 118 down-regulated DEGs were
identified. Six hub genes were selected and validated in clinical
sample for further analysis due to the high degree of connectiv-
ity, including CDK1, CCNA2, TOP2A, CCNB1, KIF11, and
MELK. They were all correlated to worse overall survival (OS)
in breast cancer. Zhu et al'* identified some key genes and
pathways associated with irradiation in breast cancer tissue and
breast cancer cell lines. A total of 82 DEGs (74 up-regulated
and 8 downregulated genes) were identified. Two characteristic
subnetworks and 3 hub genes (FOS, CCL2, and CXCL12)
were strongly distinguished in PPI network. Dong et al'® aimed
to identify the key pathways and genes and find the potential
initiation and progression mechanism of TNBC. Fifty-six
up-regulated and 151 downregulated genes were listed, and
the gene oncology (GO) and Kyoto Encyclopedia of Genes
and Genomes pathway (KEGG) enrichment analysis was

performed. The authors found that SOX8, AR, C9orf152,
NRK and RAB30, and other key genes and pathways might be
promising targets for the TNBC treatment. Lu et al'¢ identi-
fied 5 hub genes (PHLPP1, UBC, ACACB, TGFB1, and
ACTB) associated with HER2+BC with brain metastasis.
The GSEA analysis revealed that the ribosomal pathway seems
to play a very important role in the pathogenesis of HER2+BC
with brain metastasis. Among these studies with various study
designs, many genes are linked to breast cancer, which provides
additional evidence stated by de Magalhdes®. As a result, many
efforts are needed in finding vital genes with the highest pos-
sible accuracy, for example, 100% accuracy and convincing
causal patterns.

The reported genes in the published work point out some
promising directions in breast cancer research and treatments.
But it is not clear whether or not they are fundamental causes
or direct causes of breast cancer. The problem is mainly due to
the following 3 main limitations. (1) The number of human
genes is ultra-large compared to the number of patients in
affordable study designs. Identifying a few key (single digit)
genes that are uniformly optimal across different trials, differ-
ent study purposes, different measurement methods, and dif-
ferent cohorts is rather challenging. From the aforementioned
research outcomes, we can see there are many different genes
are identified. As a result, it’s impossible to see which one is the
most important one, which can be a driver of breast cancer
disease. (2) The inefficient detecting power of existing analysis
methods due to restricted model assumptions cannot deal with
heterogeneous populations (different breast cancer subtypes).
As a result, the sensitivity and specificity of many published
gene classifiers are not satisfactory. (3) It isn't easy to extract
informative messages from existing models and analysis meth-
ods. Also, many gene-related classifiers are not interpretable as
gene-gene inter-relationships, and functional effects are hardly
expressed. As a result, scientific research progress in breast can-
cer studies is still limited. Much literature attention has been
focused on individual genes and their expression levels, that is,
not gene-gene interactions, genes-subtypes (of breast cancers)
interactions, and functional effects. As a result, the fundamen-
tal genetic causes of breast cancer formations can be masked by
those suboptimal focuses, and the researches can still be in a
primitive state. Many unknown factors exist. They can be
essential to conquer the breast cancer plague, and therefore
there is an urgent need for identifying critical DEGs with the
highest possible sensitivity and specificity for breast cancer
detection.

This work aims to lift the veil of breast cancers by discover-
ing the joint functional effects of 4 or fewer critical DEGs that
show the highest detecting power of breast cancer in 4 gene
expression RNA-seq datasets. According to our analysis, these
4 genes and their functional effects describe breast cancers’
overall features at the genomic level, with the highest possible
sensitivity (up to 100%) and specificity (up to 100%) for breast
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cancer detection. In addition, they are invariance preserving
with the same group of patients but measured in different
scales, and they are robust from 1 trial to another trial.

Statistical Methodology

In the medical literature and practice, logistic regression has
been widely used in studying the disease types and risk prob-
abilities. Recently, Teng and Zhang!” pointed out a limitation
of the classical logistic regression model: it can only model
absolute treatment effects in medical data modeling, that is, it
does not model relative treatment effects. As a result, many
well-designed trial studies were tested to be insignificant due
to the lack of detecting power of the classical logistic regres-
sion. In their paper, Teng and Zhang!” introduced relative
treatment effects in their enhanced logistic regression model
(AbRelaTEs) and demonstrated its better modeling capability
using 4 clinical trials studies.

When data are drawn from a homogeneous population
with 1 disease type, the classical logistic regression and the
AbRelaTEs model are applicable. However, when data are
drawn from a heterogeneous population, we need a different
modeling framework to deal with competing risks, for exam-
ple, TNBC, Her2, Luminal A, Luminal B in breast cancer.
The most recently developed max-linear competing factor
models,'® max-linear regression models,” and max-linear
logistic models?>?! have proven to be powerful models and
analysis approaches to study heteroscedastic populations and
competing risks and resources. The theoretical foundations of
these models have been established in Cui and Zhang,'® Cui
et al,” Malinowski et al,?> Xu,?0 and Zhang.?"?3 The differ-
ence between the max-linear competing models and the clas-
sical statistical models is that the original linear combination
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where 0.5 is a probability threshold value that is commonly
used in machine learning classifiers, I(.) is an indicate function,
p; is defined in the equation (2). §={1,2,...,54675}is the

oS =202 s
S ={Q1,...,ch} are index sets corresponding to (1), and G

and S={jj.1,...,j].’g‘,j=1,...,G} are the final gene set

index set of all genes, §, ={1l,12,...,1

selected in the final classifiers.

The goal is to identify the clearest patterns of gene-gene
interactions and functional effects related to breast cancer sam-
ples and non-tumor samples. We start with 3 competing fac-
tors in max-linear logistic regression models, with each factor
having only 3 genes randomly drawing from 54 675,54 673, or
60483 genes. Then, a Monte Carlo method with extensive
computation is used to find the final model with the best per-
formance of sensitivity and specificity and the smallest number

of predictors is replaced by the maximum of a set of linear
combinations of predictors, called competing factors or com-
peting-risk factors. The max-linear competing factor models
are different from existing popular classification models such
as random forest, support vector machine, group lasso-based
machine learning methods, and deep learning methods.
However, the max-linear competing factor models are inter-
pretable and outperform existing methods. This study imple-
ments the max-linear logistic regression model to build a
competing factor breast cancer classifier. For completeness, the
model is stated as follows.

Suppose there are i=1,...,n patients with breast cancer
status label Y, =1 for cancer and Y, =0 for cancer-free, and

Y, is related to G groups of genes by

O, = X, . Xi’jz,...,Xi’jgj),jzl,...,G,gj >0 (1)

i,

where i is the 7 th individual in the sample, &; is the number
of genes in J th group. The competing (risk) factor classifier
for the 7 th outcome variable is defined as

2
log[l_Pij ()
= max(ﬂm +D, 8, B + Py By By + (DiGﬁG)

where f3, ;s are intercepts, Q, isalxg; observed vector, 8 j
isa g;x1 coefficient vector which characterizes the contribu-
tion of each predictor to the outcome variable Y in the jth
group to the risk, and B, +®, B, is called the jth competing
risk factor, that is, jth signature. The unknown parameters are
estimated from

3 (I( ,0.5)I(Y,=1)+1( p,>0.5)I(Y,=0)) (3)

)

of genes. Finally, the complete computing description is listed
in Zhang?! in which 5 Covid-19 critical genes and 7 subtypes
were identified, and the validity of (3) is shown theoretically in
Zhang.?*

Data Descriptions

There are 4 datasets used in this study. The first dataset is tri-
ple-negative breast cancer (I'NBC, North American cohort)
study conducted by Burstein et al>> and den Hollander et al?
with 54675 genes, 198 TNBC tumor samples, and 67 not
TNBC (Her2, Luminal A, Luminal B) samples. The data
link and descriptions are https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgiracc=GSE76275. The platforms are GPL570
[HG-U133_Plus_2] Affymetrix Human Genome U133 Plus
2.0 Array. The expression values are log2(RMA signal). The
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second dataset is a European cohort with 55 TNBC samples
and 11 normal breast tissue samples, studied by Maire et al,?”?8
and Maubant et al.?’ The data link and description are https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgiracc=GSE65194.
The platforms are GPL570 [HG-U133_Plus_2] Affymetrix
Human Genome U133 Plus 2.0 Array. The number of genes is
54673. The expression values are log2(GCRMA signal from
Afty cdf). The third dataset is gene expression profiling of 104
breast cancer and 17 normal breast biopsies by Clarke et al.3 It
is from a European cohort. The data link and descriptions are
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc
=GSE42568.The platforms are GPL570 [HG-U133_Plus_2]
Aftymetrix Human Genome U133 Plus 2.0 Array. The expres-
sion values are log2(GC-RMA signal intensity). The fourth
dataset is GDC TCGA Breast Cancer cohort by Genomic
Data Commons. The dataset contains 60484 identifiers (genes)
and 1217 (1104 tumors and 113 tumor-free) samples.
Data from the same sample but from different vials/portions/
analytes/aliquotes is averaged; data from different samples are
combined into genomicMatrix; all data is then log2(fpkm+1)
transformed. The platform is Illumina. The type of data is
gene expression RNAseq. The data link and descriptions are
https://xenabrowser.net/datapages/?dataset=T CGA-BRCA.
htseq_fpkm.tsv&host=https%3A%2F%2Fgdc.xenahubs.net
&removeHub=https%3A%2F%2Fxena.trechouse.gi.ucsc.
edu%3A443.

Results and Interpretations

In medical studies, sensitivity and specificity are 2 main indexes
to evaluate treatment effectiveness and disease classification
capability in diagnoses. If the intention is to rule out disease, a
test with high sensitivity is demanded. If it is desired to con-
firm a diagnosis or find evidence of disease, a test with high
specificity is required. We adopt these 2 metrics in this study.
The aim is to identify the smallest number of genes that lead to
the highest sensitivities and specificities and establish mathe-
matical equivalence and biological equivalence between the
chosen genes and the disease types. Meanwhile, we also present
graphical illustration tools for practical doctors to use in their
daily medical practice.

Using a probability higher than 50% as the threshold, we
identify 3 critical DEGs: RBM22 (RNA binding motif pro-
tein 22), RNF213 (ring finger protein 213), and CACNG4
(Calcium Voltage-Gated Channel Auxiliary Subunit
Gamma 4), which lead to 100% sensitivity and 100% speci-
ficity of classifying all 265 samples in their respective groups
in the first TNBC dataset; 4 critical DEGs: MYCT1 (MYC
Target 1), NUAK2 (NUAK Family Kinase 2), NATSL
(N-Acetyltransferase 8 Like), and CACNG4, which lead to
100% sensitivity and 100% specificity of classifying all 66
samples in their respective groups in the second TNBC data-
set; 4 critical DEGs: MYCT1, UNC5B (Unc-5 Netrin
Receptor B), NUAK2, and NATS8L, which also lead to 100%
sensitivity and 100% specificity of classifying all 121 samples

in their respective groups in the third breast cancer dataset;
and the same 4 critical DEGs as in the third dataset, which
leads to 100% sensitivity and 96.5% specificity of classifying
all 1217 samples in their respective groups in the fourth breast
cancer dataset.

Obur final classifiers are combined classifiers of 3 competing
factor (CFi, i=1, 2, 3) classifiers expressed as:

For the first TNBC (North American cohort) dataset:

Data-1-CF1: 19.0107 +3.1105*"RNF213 - 3.6692*CACNG4
Data-1-CF2: -0.4312 +8.0992*RNF213 - 9.5921*RBM22
Data-1-CFmax: max(Data-1-CF1, Data-1-CF2)

For the second TNBC (European cohort) dataset:

Data-2-CF1: 39.8651 -1.6945*NATSL -3.5933*CACNG4
Data-2-CF2: 9.8676 -5.1333*MYCT1 +0.4595*"NUAK2
Data-2-CFmax: max(Data-2-CF1, Data-2-CF2)

For the third (European cohort) dataset:

Data-3-CF1: 25.1089 - 10.1863*MYCT1 +3.1654*NUAK2
-2.0708*NATSL
Data-3-CF2: 2.4425
-0.8255*NATSL
Data-3-CFmax: max(Data-3-CF1, Data-3-CF2)

+2.0119'UNC5B  -4.1677*NUAK2

For the fourth (Genomic Data Commons) dataset:

Data-4-CF1: 5.7644 - 2.5133*MYCT1 +2.3383*NUAK2
-1.2537*"NAT8L

Data-4-CF2: -9.5458 + 3.1219"UNC5B +0.7849*NUAK2
Data-4-CF3:  7.0281 -2.9389*MYCT1 +4.3574*"NUAK2
-2.8591"NAT8L

Data-4-CFmax: max(Data-4-CF1, Data-4-CF2, Data-4-CF3)

We note that the presentation of the final models above for
different cohorts intends to visually show common genes in
column-wise clusters.

The risk probabilities are calculated using the logistic func-
tion of exp(Data-i-CFmax)/(1+ exp(Data-i-CFmax)) for the
combined classifiers in each dataset, or exp(Data-i-CFj)/
(1+ exp(Data-i-CFy)) for each individual classifier i=1,2, 3, 4,
7=1,2,3.

In the first 3 cohorts, multiple ID-ref subtype genes corre-
spond to a gene symbol. The following ID-ref subtype genes
are used in the classifiers: 236872_at (RBM22), 241480_at
(RNF213), 62987_r_at (CACNGH4), 220471_s_at (MYCT1),
220987_s_at (NUAK2), 228880_at (NATSL), 226899_at
(UNCS5B).

Table 1 lists gene expression values, individual classifiers’
computed values, the combined classifier’s computed values,
and the risk probabilities. Figure 1 plots all patients’ risk prob-
abilities with circles for breast cancer samples and asters for
non-breast cancer samples. Figure 2 is a Venn diagram that
plots individual classifiers’ performance.

This study is the first time TNBC and other breast cancer
types can be further classified into subtypes based on critical
genes’ functions. This new classification opens a new research
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Figure 1. Risk probabilities of 4 cohorts. The circles are for patients with breast cancers. The asters are for tissues without breast cancers.
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Figure 2. Venn diagrams of breast cancer subtypes. The first 3 cohorts have more than 3 subtypes. The fourth cohort has more than 7 subtypes.

direction, new drug developments, and new refined personal-
ized therapies.

For the first TNBC (North American cohort) dataset, 3
genes (RNF213, RBM22, CACNG4) completely classify all
198 TNBC tumor samples into 3 subtypes (Figure 2) with the
sensitivity of 100% and the specificity of 100%. From the indi-

vidual classifiers, we can see that a decrease of RNF213 level

will reduce the risk of developing TNBC, while increases in the
expression levels of RBN22 and CACNG4 will reduce the risk
of developing TNBC.

For the second TNBC (European cohort) dataset, 4 genes
(MYCT1, NAT8L, NUAK2, CACNGH4) completely classify
all 66 TNBC tumor samples into 3 subtypes (Figure 2) with
the sensitivity of 100% and the specificity of 100%. From the
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individual classifiers, we can see that a decrease in NUAK2
level will benefit the patients, while increases in the expression
levels of MYCT1, NATSL, and CACNG4 will benefit the
patients. We note that there are also Her2, Luminal A and
Luminal B samples in this second dataset. After adding classi-
fier CF3: 21.8170 - 8.8170*RBM22 - 0.3047*NATSL, all
breast cancer (TNBC, Her2, Luminal A, Luminal B) patients
will again be 100% accurately classified into their respective
groups.

Comparing the first and second TNBC cohorts, we see that
the TNBC patients from North American and the TNBC
patients from FEuropean cohorts share a common gene
CACNG4 and similar coefficients (-3.6692 vs. -3.5933).
Otherwise, other critical genes from these 2 cohorts are differ-
ent. This observation tells that the causes, the formations, and
the therapies of TNBC can be different from region to region
and race to race. We want to note that based on our knowledge
in the field, there does not exist any other method that can
100% accurately classify breast cancer patients and cancer-free
patients into their respective groups. With 100% accuracy,
regardless of how big and how small the sample is, these genes
should contain basic cancer information of TNBC disease,
they should be thoroughly analyzed and explored.

On the other hand, cautions should be called with any other
classifiers with lower accuracy. Using genes derived/obtained
from low accuracy classifiers may lead to suboptimal results
and even wrong conclusions. The formulas of these 2 cohorts
disclose the puzzle of TNBC as gene-gene interactions and
functional effects are different. Such differences can be the
most important part of studying TNBC and point out new
research directions for better understanding TNBC and
designing better treatments.

For the third (European cohort) dataset, 4 genes (MYCT1,
NATSL, NUAK2, UNC5B) completely classify all 104 tumor
samples into 3 subtypes (Figure 2) with a sensitivity of 100%
and a specificity of 100%. A decrease of UNC5B level will ben-
efit the patients in this cohort, while increases of expression
levels of MYCT1 and NATS8L will benefit the patients. In
addition, it can be seen that NUAK2 can benefit the patients
and can also harm the patients depending on the patients’
breast cancer subtypes in Figure 2. These gene-gene rela-
tionships and genes-subtypes relationships tell efficient
therapies to breast cancer patients depending on their sub-
types’ determinations.

For the fourth (Genomic Data Commons) dataset, the same
4 genes (MYCT1, NAT8L, NUAK2, UNC5B) as for the third
(European cohort) dataset completely classify 1104 tumor
samples into 7 subtypes (Figure 2) with the sensitivity of 100%
and the specificity of 96.5%. There are 4 samples among 103
normal samples being classified as tumor samples. Note that
this dataset does not offer multiple ID-ref subtypes. If genes’
expression values are taken the same as those ID-ref subtypes,
the specificity may be improved to 100%. In this cohort,
increases of MYCT1 and NATSL levels can benefit the

patients, while decreases of UNC5B and NUAK2 levels will
benefit the patients.

Comparing the third and fourth breast cancer cohorts, the
individual classifiers Data-3-CF1, Data-4-CF1, and Data-
4-CF3 have the same component genes and coefficient signs.
Data-3-CF2 has 1 more gene, NAT8L, than Data-4-CF2.
However, the signs of NUAK2 coefficients in these 2 indi-
vidual classifiers are different. We further note that to have 2
similar individual classifiers Data-4-CF1 and Data-4-CF3
in the final classifier is completely new in machine learning
literature. These observations further reveal that breast can-
cer formations are more complicated than simply looking at
some high/low expression values of individual genes as in the
literature. The most important relations in finding critical
genes linked to breast cancers are gene-gene interactions,
genes-individual classifiers interactions, and their functional
effects.

Comparing the second TNBC cohort, the third breast can-
cer cohort, and the fourth cohort, we see that increasing the
levels of MYCT1 and NATS8L can benefit all patients.

In Figure 2, Venn diagrams for 4 different cohorts are dif-
ferent, with 2 TNBC cohorts having similar patterns, while BC
European cohort and Genomic Data Commons are different.
It is because the numbers of component classifiers in the final
classifiers for different cohorts are different. Such phenomena
tell that there are commonalities among breast cancer patients
and specificities from patient to patient, that is, the critical can-
cer informatics are expressed. Note that in Venn diagrams, the
more intersections the groups, the more complex the disease,
and the more difficult the treatment. Taking Genomic Data
Commons as an example, patients in Group VII will be the
most difficult to treat.

Figure 3 presents the gene-gene interactions, gene-subtype
interactions, and functional effects of our identified competing
classifiers. We can see clear signature patterns in each plot.
This visualization tool provides a new way for breast cancer
diagnosis.

Characteristics of studying samples

All 4 datasets are accompanied by some characteristics of
patients. Here we report their inter-relationship with the
competing classifiers. Table 2 displays Sex, Age, BMI, and
Grade from the first dataset (TNBC, a North American
cohort). Table 3 displays Age and BMI from the second data-
set (TNBC samples only, A European cohort). Table 4 is for
the third dataset (breast cancer samples, A European cohort).
Finally, Table 5 includes disease Stage besides Age and Sex
for the fourth breast sample data set (A Genomic Data
Commons—TCGA).

Overall, these 4 tables show that more patients fall in groups
related to more than 1 competing classifier. Obese patients
can make TNBC more complex. The more the competing
classifiers, the worse the grade. In Table 5, Stages (IV, X) are
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Figure 3. Four-dimensional plots for visualizing risk signature patterns from 3 competing component classifiers and the combined functional effects of

gene-gene interactions and gene-subtype interactions of 4 genes.

Table 2. Characteristics of the first dataset samples (TNBC, A North American Cohort).

SEX AGE BMI
MALE FEMALE <50 (50,60] (60,70] =79 NORMAL
CF-1 0 63 34 12 10 5 13
CF-2 0 2 1 0 1 0 0
CF-(1,2) 0 133 51 33 28 18 36

OVERWEIGHT OBESE POORLY MODERATELY

19 61 33 25 1
1 2 1 0 0

41 129 74 28 3

Table 3. Characteristics of the second dataset samples (TNBC, A European Cohort).

CF-1 3 4 2
CF-2 2 2 0
CF-(1,2) 9 10 5

BMI

NORMAL OVERWEIGHT OBESE
5 3 3
2 2 1

12 6 6

Table 4. Characteristics of the third dataset samples (BC, A European Cohort).

CF-1 9 15 11
CF-2 3 4 2
CF-(1,2) 15 13 10

mainly related to CF-(1,2,3), which shows the classifiers are
positively correlated.

Discussions

This study is the first time in the medical literature that breast
cancer diseases can be classified almost 100% correctly using
only a few (3 or 4) genes. The results clearly disclose the puzzle
of breast cancers, including TNBC, due to the selected genes
and their predicting powers through gene-gene interaction,
gene-subtype interaction, and functional effects. The results
also point to new treatment directions.

GRADE
POORLY MODERATELY
9 25 14 5
0 4 5 0
13 24 21 6

WEe note that this study does not use the primary endpoint
information. It is a pure classification study. The main purpose
is to identify the essential breast cancer informatics. The study
has achieved 100% accuracy, which is the first in the literature.
Given patients have different endpoints, the new classifier still
reaches 100% accuracy, which means the classifier is robust to
patients’ disease states, that is, we can conclude that the classi-
fier is robust regardless of primary endpoints and other indi-
vidual attributes.

The discovery of critical genes can motivate many new
research directions and laboratory experiments. These critical
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Table 5. Characteristics of the fourth dataset samples (TCGA, Genomic Data Commons).

(50,60]  (60,70]  (70,80]
CF-1 8 1 3 0 1
CF-2 10 9 7 2 1
CF-3 1 0 0 0 0
CF-(1,2) 5 1 4 1 1
CF-(1,3) a4 36 35 27 7
CF-(2,3) 2 5 5 1 0
CF-(1,2,3) 257 216 225 119 43

FEMALE |
13 4 6 3 0 0
30 6 16 9 0 0
1 0 0 1 0 0
12 2 7 2 0 1
148 25 97 24 2 0
13 3 3 5 1 1
862 143 490 202 17 10

Table 6. Correlation coefficients between CFmax from the fourth data and 8 genes in the literature.

CFMAX BRCA1 BRCA2 PALB2
CFmax 1.00 .25 .25 .24
BRCA1 1.00 .48 .52
BRCA2 1.00 47
PALB2 1.00
BARD1
RAD51C
RAD51D
ATM
CHEK2

genes and their derived signature patterns (individual classifi-
ers) can be a starting point as new biomarkers for conducting
gene network analysis, testing other reported genes, and find-
ing the causal directions of gene expression in various projects.
As a result, many other existing pieces of research can be
enriched. It can also be hoped that new types of diseases can be
discovered. Eventually, new testing procedures and therapies
for breast cancer can be designed.

These critical genes enrich the biological literature of their
new functions related to breast cancer from indirect relation-
ship to direct relationship. In many scenarios, indirect effects
are more significant than direct effects as direct effects can be
seen and controlled, while indirect effects are hard to see and
even not to say how to control.

In the introduction, 8 genes, BRCA1, BRCA2, PALB2,
BARD1, RAD51C, RAD51D, ATM, and CHEK?2, were dis-
cussed as they are potentially helpful. We found that in terms
of detecting power in diagnoses and breast cancer risk predic-
tion, these 8 genes are not significant (even inferior) compared
with the genes presented in this paper. In Table 6 below, we use
the fourth dataset (cohort) to present the linear correlation
coefficients between our final classifier CFmax and each of
these 8 genes and among these 8 genes.

BARD1 RAD51C RAD51D
.31 a2 13 -12 .21
.50 .26 .50 14 .28
.61 15 .24 .28 .45
.53 19 .32 .30 .20
1.00 A7 .27 .21 A
1.00 19 -.15 A7
1.00 14 14
1.00 -.15
1.00

From Table 6, we can immediately see that the correlation
coefficient between each of these 8 genes and the CFmax is
low, for example, between CFmax and PALB2 is 0.24. With a
correlation coefficient of 0.24 and given the CFmax’s super
detecting power of 100% sensitivity and 96.5% specificity, it is
likely PALB2 can be just around 40% to 60% of overall detect-
ing power or even lower. Furthermore, Berger* reported unlike
BRCA1 and BRCA2, which are often found in the Ashkenazi
Jewish population, PALB2 is not associated with the Ashkenazi
group. Some studies have found a PALB2 association with
Finnish and French Canadian and Greek women, but experts
say more research is needed. This phenomenon is interesting;
however, it highlights the more significant uncertainty of
applying those 8 genes in practice. In contrast, the genes iden-
tified in this paper lead to the highest accuracy, perfect or nearly
perfect. As a result, more focuses should be paid to the genes
discovered in this paper.

The risk probability of a patient developing a specific type
of breast cancer in her/his life is low. Among all discovered
breast cancer types, growing more than 1 type of breast cancer
is rare. These breast cancer types compete, and 1 type will first
be diagnosed. As a result, the competing risk factor models can
efficiently model multiple breast cancer types.
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This study’s inference/analysis approach can shed new light
on all gene-related research, that is, not just the breast cancer
study. Researchers can apply max-linear type models in their

studies. Ultimately, our new findings may make researchers’

cancer research efforts more effective and meaningful, reduce
substantial research costs, and save lives and protect people.
Finally, we address an important medical practice issue. In
this paper, all classifier formulas are explicitly expressed. Thus,
the results in all tables are reproducible. Furthermore, Figures
1 and 3 show the risks of all patients. Using this paper’s
results, medical doctors have a powerful tool (testing kit) in
their daily work, that is, in the diagnostic stage, diagnosing
and analyzing patients’ breast cancer risks based on the 4 or
tewer critical genes’ expression values and the computed risks;
in the treatment stage, those signature patterns can be used to
study the effectiveness of drugs and treatments, that is, con-
duct clinical trials, for example, survival analysis, based on
classified groups; in the drug development stage, pharmaceu-
tical companies can use the findings of critical genes to study
new drugs; finally, it can be hoped that mRNA-based thera-
pies can be introduced using the critical genes’information in

the therapy stage.
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