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A B S T R A C T   

This paper examines the extreme co-movements between infectious disease events and crude oil futures through 
extreme value analyses. We contribute to the literature by providing a novel framework of tail risk early warning 
and considering infectious diseases as a systemic risk factor for crude oil futures. The results provide evidence 
that: (1) when an extreme event occurs, the tail index of the infectious disease reaches its empirical lower 
threshold, which is approximately 2.30; (2) when a jump in volatility corresponding to the severeness of the 
epidemic is observed, the tail index reaches the lower bound, but not reversely; (3) both upside and downside 
extreme co-movements exist, whereas they are asymmetric; and (4) each tail quotient correlation coefficient 
keeps rising and reaches a peak before crises and fall sharply with the collapse of crude oil markets. The findings 
can offer implications for government officials, investors, portfolio managers, and policymakers, respectively.   

1. Introduction 

Infectious diseases are critical to extreme movements in financial 
asset prices (Ozili and Arun, 2020; McKibbin and Fernando, 2021; Lai 
and Zhang, 2020). In the past two decades, infectious diseases like SARS, 
bird flu, Ebola virus, and the coronavirus (COVID-19) have raged in 
local areas and spread around the world, reducing economic develop
ment regionally and globally. In the first half of 2020, the global spread 
of the COVID-19 led to a slowdown in economic activity in many 
important economies and production suspension in some industrial 
cities such as Wuhan, China, which profoundly changed the global in
dustrial, energy, and economic structures. 

The outbreak and rapid spread of COVID-19 not only severely 
affected economic activities like firm performance (Fu and Shen, 2020; 
Shen et al., 2020; Hu and Zhang, 2021), household consumption (Liu 
et al., 2020a), and labor force participation rate (Yu et al., 2020), but 
also deeply affected global financial markets. During the pandemic, 
abrupt changes in returns structures and resistances are found in many 
assets, such as stocks (Mishra et al., 2020; Zhang et al., 2020), crude oil 
prices (Gil-Alana and Monge, 2020), exchange rates (Narayan, 2020a), 
and the option-based volatility (VIX) index (Vera-Valdés, 2021). Nor
mally, the impacts of the pandemic on asset volatilities are asymmetrical 

(Li, 2021). 
Responding to the COVID-19, energy derivative prices fluctuated 

sharply as well. Crude oil prices went down fiercely at the beginning of 
2020, with the market sentiments changing significantly (Huang and 
Zheng, 2020). The most notable extreme event might be the “negative 
price” of WTI on April 20, 2020, when the main contract of WTI crude oil 
futures (expired on April 21, delivery in May) fell by USD$55.90/barrel 
to USD$-37.63/barrel, a drop of 306%. It was the first time in history 
that a crude oil future closed at a price below zero. The “negative price” 
event implies that the extreme shocks of infectious diseases on asset 
prices can no longer be ignored. 

In the literature, how energy futures prices are linked with economic 
factors is a hot topic. For example, risk spillover effects have been evi
denced between crude oil prices and stocks, exchange rates, metals, 
agricultural commodities, and cryptocurrencies (see Section 2 for the 
literature review). Whereas the existing studies do lay a valuable basis 
for related topics, there are still three notable gaps in this field. First, the 
majority of the research focused on the linkages between crude oil fu
tures and other financial markets, while the study focusing on the role of 
infectious diseases on crude oil future prices is relatively scarce. Second, 
most existing studies are based on averages rather than maxima or 
minima. Consequently, Gaussian models are used in those studies, which 
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may cause model misspecification problems under extreme circum
stances like the COVID-19. This is because the second moments of var
iables may not exist in an extreme circumstance (Hansen, 1994), and 
thus extreme value analyses are supposed to be utilized. Third, the 
previous studies mainly discuss the volatility spillovers (the spillover 
effects in second moments) among assets. However, it should be noted 
that, in an extreme environment, co-movements of variables can be 
found in not only the volatility level (the second moment) but also the 
“tail level” (higher moments like skewness and kurtosis). The latter is 
the so-called “extreme co-movements” or “tail risk contagions.” 

This paper tries to fill the current gaps by utilizing the newly 
developed extreme value analysis (EVA) methods and introducing the 
following three novelties. First, different from most previous studies that 
focus on the relationships between crude oil futures and other financial 
markets, this paper directly investigates the linkage between crude oil 
futures and infectious diseases per se. Second, to avoid model mis
specification under extreme environments, this paper converts the daily 
observations into monthly maxima sequences and uses contemporary 
EVA methods in the empirical study. We use an extreme value theory 
theorem (see Theorem 1 in Section 3.1) to ensure the correctness of the 
distribution selection and model setting in this paper. Third, to capture 
the risk spillover effects in higher moments, that is, to measure and 
quantify extreme co-movements and tail risk contagions, dynamic time 
series process (see Section 3.2) is used to model each monthly maxima 
sequence, and a novel tail quotient correlation coefficient (see Section 
3.3) is utilized to model the spillover effects. 

This paper contributes to the literature by introducing an advanced 
EVA approach and the GEV-AcF-TQCC framework in the interdisci
plinary field of price analysis and risk analysis. First, in terms of price 
analysis and asset pricing, this paper considers extreme infectious dis
eases events as pricing factors for crude oil futures markets, which 
constitute the systemic risk premium. Second, the paper provides a 
framework of tail risk early warning in terms of risk management. Based 
on extreme value theory, we propose and utilize an econometric process 
for studying tail risk spillover, which is the so-called GEV-AcF-TQCC 
framework (see Section 3). Using this framework, the resulting AcF tail 
index can distinguish the “extreme time” from the “normal period,” and 
the resulting dynamic tail quotient correlation coefficients can be used 
to signal possible crises in financial markets. Last but not least, our 
empirical finding may offer implications for government officials, in
vestors, portfolio managers, and policymakers (see Section 7 for details). 

The rest of the paper is organized as follows. Literature regarding risk 
spillover effects of crude oil futures markets is reviewed in Section 2. The 
econometric methodologies used in this paper are explained in Section 
3. In Section 4, the infectious disease and crude oil futures data are 
described and analyzed. Section 5 reports the empirical results. Section 
6 discusses the possible economic transmission mechanism behind our 
findings, which may provide research motivations for future studies. 
Section 7 concludes the paper and points out the implications of the 
findings. 

2. Literature review 

There is a lot of literature focusing on the spillover interaction be
tween crude oil future prices and other assets, such as stocks, exchange 
rates, metals, agricultural commodities, and cryptocurrencies. We offer 
a brief review next. 

The crude oil futures market has strong interactions with stocks and 
exchange rates. Lin et al. (2014) showed the risk spillover effect from the 
crude oil market to the Nigerian stock market. Basher and Sadorsky 
(2016) explained that crude oil is the best asset to hedge the risks in 
stock markets in emerging countries. Reboredo et al. (2017) studied co- 
movement and causality between oil and renewable energy stock prices 
using continuous and discrete wavelets. They found that dependence 
between oil and renewable energy returns in the short run was weak but 
gradually strengthened towards the long run, mainly for 2008–2012. 

Based on a nonparametric panel data model, Silvapulle et al. (2017) 
studied the co-movement of crude oil and stock markets in net oil- 
exporting economies. They found a significant relationship between 
these two assets. A similar conclusion can be found in Lin and Su (2020) 
by using the quantile-on-quantile approach. Tiwari et al. (2020) exam
ined systemic risk and dependence between oil and stock market indices 
of G7 economies and found dissimilar dependence structures between 
returns series of oil and the G7 stock markets. Reboredo et al. (2014) 
examined the relationship between oil prices and the US dollar exchange 
rate using detrended cross-correlation analysis. They found that the 
negative dependence between oil and the US dollar increased after the 
onset of the global financial crisis for all time scales, thereby providing 
evidence of both contagion and interdependence. 

Crude oil futures were also found to react to metal prices in extreme 
contexts. Reboredo (2012) estimated bivariate copulas to measure the 
dependence between crude oil and agricultural commodities and 
concluded that extreme oil price increases do not cause food price in
creases. Reboredo and Ugolini (2016) examined the impact of large 
upward/downward oil price movements on metal prices and the 
asymmetric response of metal prices to large oil price movements. They 
found that large downward and upward oil price movements had spill
over effects on all these metals before and after the outbreak of the 
global financial crisis. Recently, Uddin et al. (2020) examined the 
characteristics of the risk spillover under extreme market scenarios be
tween precious metals (gold, silver, platinum) and oil by using a copula 
approach and found symmetric co-movement under normal and extreme 
market scenarios. 

Consequently, the movements of crude oil prices may present im
pacts on agricultural commodities and other energy-related assets. 
Nazlioglu et al. (2013) investigated the causality-in-variance among the 
wheat, corn, soybeans, sugar, and crude oil futures. They found no 
causality-in-variance from crude oil to food during the pre-food crisis 
period (2006–2008), but after 2008 the causality can be unidirectional 
or bidirectional. Hernandez (2014) used c-vines and d-vines copulas to 
study crude oil's symmetric and asymmetric dependence structure with 
natural gas, coal, and uranium. Shahzad et al. (2018) implemented 
ARMA-GARCH-Copula methods to examine the upside and downside 
tail spillovers between oil and agricultural commodities. They evi
denced both symmetry in the tail dependence and asymmetry in spill
overs from oil to agricultural commodities during financial turmoil. 

The linkage between crude oil prices and cryptocurrency markets 
was also found. Huang et al. (2019) found that the Bitcoin market is 
susceptible to price fluctuations from gold and crude oil markets. Using 
the VAR-MGARCH-BEKK methods, Okorie and Lin (2020) find evidence 
of bidirectional volatility spillover between the crude oil market and Bit 
Capital Vendor. 

Regarding the impact of COVID-19 on crude oil prices, Liu et al. 
(2020b) found that the COVID-19 pandemic had a positive effect on 
crude oil returns, which is contrary to our intuition. Qin et al. (2020) 
investigated the interrelationship between pandemics and oil prices. 
They found that the pandemics may reduce the oil demand, causing oil 
prices to decrease, which is inconsistent with the predictions of the 
intertemporal capital asset pricing model. To quantify the pandemic's 
effect by overcoming the lack of robustness, Narayan et al. (2021) 
proposed a new measure. For related issues regarding the connection 
between crude oil news and the pandemic, one can refer to Narayan 
(2020b). 

3. Methodology 

This paper utilizes the newly developed extreme value analysis 
(EVA) methods to examine the extreme co-movements between crude 
oil futures prices and infectious disease. The motivations for using EVA 
are in two aspects: (1) the topic; and (2) the data. Firstly, this paper aims 
to explore the tail risk spillovers among variables, and thus extreme 
analysis methods need to be used to illustrate extreme features of 
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variables. Secondly, as can be seen from Table 2 and the results of the J-B 
tests, the data utilized in this paper is highly asymmetric and may not be 
normally distributed, thereby making it could be better examined using 
EVA rather than conventional Gaussian models. 

In extreme value statistical analysis, two modeling ideas are most 
commonly applied: the first is to model the block maxima or minima, 
and the second is to model the observations that exceed a given 
threshold (Coles, 2001). This paper belongs to the first class. Before our 
econometric analysis, all variables are converted into monthly maxima 
(see Section 4). The modeling procedure in this paper includes three 
steps: (1) to fit the monthly maxima variables with generalized extreme 
value (GEV) distribution and yield the estimated location, scale, and 
shape parameters; (2) to fit the monthly maxima variables using the 
Autoregressive conditional Fréchet (AcF) model, and the dynamic vol
atilities and dynamic tail risk indexes can be obtained; and (3) to mea
sure tail risk spillover effects using the tail quotient correlation 
coefficient (TQCC). To sum up, the modeling procedure of this study can 
be termed as a GEV-AcF-TQCC framework, which serves as a novelty of 
this paper and can be used for investigating other dynamic tail risk 
spillover issues. 

3.1. The static modeling of monthly block maxima 

In the paper, we use the generalized extreme value (GEV) distribu
tion to fit the monthly maxima variables with full samples, and their 
domains of attraction can be investigated. According to Fisher and 
Tippett (1928), Gnedenko (1943), and Gumbel (1958), we present the 
following Theorem 1 without showing the proof which can be seen in 
the literature. 

Theorem 1. If there exist sequences of constants {an > 0} and {bn} such 
that 

Pr
{

Mn − bn

an
≤ z

}

→G(z) (1)  

as n → ∞ for a non-degenerate distribution function G, then G is a member of 
the GEV family 

G(z) = exp
{

−
[
1 + ξ

(z − μ
σ

) ]−1
ξ
}

(2)  

which is defined on {z : 1 + ξ(z − μ)/σ > 0}, where − ∞ < μ < ∞, σ > 0, 
and − ∞ < ξ < ∞. 

In this study, each variable is a monthly block maximum sequence, 
and we will first use the GEV distribution to fit the full sample of the 
variables. Furthermore, the GEV distribution includes three subtypes, 
corresponding to different features in the tail regions: 

Type I GEV: Gumbel distribution, 

G(z) = exp
{

exp
[

−

(
z − b

a

) ] }

, − ∞ < z < ∞, a > 0, − ∞ < b < ∞

(3) 

Type II GEV: Fréchet distribution, 

G(z) = exp
{

−

(
z − b

a

)−α }

, z > b, a > 0, α > 0, − ∞ < b < ∞ (4) 

Type III GEV: Weibull distribution, 

G(z) = exp
{

−

(

−
z − b

a

)α }

, z < b, a > 0, α > 0, − ∞ < b < ∞ (5)  

where α = 1/ξ. For more details on GEV distribution, see Coles (2001). 
In this paper, we will further study the domains of attraction of each 
variable based on the shape parameters (see Section 5.1). The GEV pa
rameters are estimated using maximum log-likelihood estimation (MLE) 
in this paper. 

3.2. The dynamic modeling of monthly block maxima 

Given that all variables of this study follow Fréchet distribution (see 
Section 5.1), we adopt a dynamic model for the maxima using the AcF 
(1,1) model (the Autoregressive conditional Fréchet model, see Zhao 
et al., 2018 for details) for each variable. The AcF (1,1) model is written 
as: 

Qt = μ + σtY
1
αt
t (6)  

logσt = β0 + β1logσt−1 + β2exp( − β3Qt−1) (7)  

logαt = γ0 + γ1logαt−1 + γ2exp( − γ3Qt−1) (8)  

where {Yt} is a sequence of i.i.d. unit Fréchet random variables, 0 ≤ β1 ∕=

γ1 < 1, β2 < 0, β3 > 0, γ2 > 0 and γ3 > 0. {Qt} is the sequence of interest, 
which is a sequence of monthly block maxima with Fréchet location 
parameter μ, dynamic scale parameter sequence {σt}, and dynamic 
shape parameter sequence {αt}. This model can be estimated using 
conditional maximum likelihood estimation (cMLE), and the recovered 
values in {Yt} can be directly used for the extreme co-movements study 
(Zhang, 2008). In financial econometrics, this model can be used for 
generating extreme losses, pricing ad hoc financial assets, and modeling 
tail risk dynamics (Lin et al., 2021). The AcF (1,1) results are shown in 
Section 5.2. 

3.3. The modeling of extreme co-movements and tail risk spillovers 

Extreme co-movements refer to extreme values that co-occur during 
a very short period, and tail risk spillovers or tail risk contagions stand 
for the impact of one variable on another in terms of extreme values 
(Zhang, 2008). In this paper, we use the tail quotient correlation coef
ficient (TQCC), proposed by (Zhang, 2008), and theoretically studied by 
Zhang et al. (2017), to measure the tail spillover effects from infectious 
diseases to crude oil futures prices. The TQCC is defined next. 

Definition 1. If {(Xi,Yi)}i=1
n is a random sample of random variables 

being tail equivalent to unit Fréchet random variables (X,Y), 

qun =

max(
1≤i≤n

max(Xi, un)

max(Yi, un)
− 1

)

+ max
1≤i≤n

(
max(Yi, un)

max(Xi, un)
− 1

)

max
1≤i≤n

max(Xi, un)

max(Yi, un)
× max

1≤i≤n

max(Yi, un)

max(Xi, un)
− 1

(9)  

is the tail quotient correlation coefficient (TQCC) where un is the varying 
threshold that tends to infinity. 

Note that the numerator in (9) is equivalent to the original form 
defined in Zhang et al. (2017). These two new forms clearly reveal that 
the TQCC studies maximum relative errors at tails, while many other 
existing measures, e.g., linear correlation coefficients, are defined based 
on absolute errors. Moreover, the new forms make interpretations easy 
and straightforward. 

Intuitively, TQCC is a measure of tail dependence or extreme co- 
movement, characterized by relative errors at tails, between two 
random variables. It ranges in [0,1], with its lower bound and upper 
bound standing for tail independent and completely dependent, 
respectively. The value of TQCC indicates the chance of one variable 
reaching its extreme value (exceeding the threshold), given that the 
other variable has reached its extreme value, i.e., it approximates P(Xi >

u|Yi > u) as u → ∞; see Zhang et al. (2017). For example, if the TQCC 
between X and Y is 0.2019, this means that given that Y has reached its 
extreme value, the chance that X also reaches its extreme value is 
20.19%. 

To test tail independence, i.e., no extreme co-movements or tail 
spillovers, among variables, we apply the gamma test method proposed 
by Zhang (2008). This test can be generalized to the Chi-square test 
(Zhang et al., 2017), and their results are consistent. Based on the 
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computed TQCC, we can formulate the following hypothesis test of 
independence: 

Hc
0 : X and Y are tail independent.

Hc
1 : X and Y are tail dependent.

here the superscript c means that the complete data are used for this test. 
Under H0

c , we have the following theorem (Zhang, 2008): 

Theorem 2. If X and Y are tail independent and have unit Fréchet margins, 
and (Xi,Yi), i = 1, 2, ⋯, n is a random sample from (X,Y), then random 
variables maxi≤n(Yi/Xi) and mini≤n(Yi/Xi) are asymptotically independent. 
Furthermore, as n → ∞, the random variable qun is asymptotically gamma 
distributed, that is, 

nqun →L Γ (10)  

where Γ is a gamma (2,1) random variable. 
In particular, the GEV-fitted data can be transformed into unit 

Fréchet scales (Pickands III, 1975; Embrechts et al., 1997; Smith, 2003), 
and then the TQCC can be calculated by using the estimated GEV pa
rameters (Zhang et al., 2017). In this paper, since the domain of 
attraction of all variables are Type II GEV (Fréchet), we fit each monthly 
maxima sequence with AcF(1,1) model and yield dynamic Fréchet pa
rameters. Based on that, we can obtain the recovered Fréchet sequences 
of all variables and use them for the TQCC computation. In addition, by 
using the rolling window method, time-varying TQCC can be estimated 
for investigating the dynamic tail spillover effects (see Section 5.3). 

There are merits for using the GEV-AcF-TQCC framework in the tail 
risk spillovers study. First, TQCC outperforms other approaches in terms 
of accuracy, robustness, and universality. The TQCC can measure global 
tail correlations, which cannot be achieved using classical methods such 
as copula. The reason is that the traditional approaches are model-based 
methods that require the joint modeling of variables. However, in re
ality, the dependencies across sections often change over time. The 
underlying model needs to be modified when dependencies vary, mak
ing it challenging to specify an appropriate dependence model. In 
contrast, TQCC does not require any pre-assumptions of cross-sectional 
dependence structure, thereby bringing more modeling accuracy and 
robustness. It has been tested by Zhang (2008) that TQCC outperforms 
Gumbel copula and many other conventional methods. Second, given 
that first point, the calculation of TQCC is of simplicity, that is, as simple 
as the computation of sample Pearson's linear correlation coefficient. 
Third, TQCC can directly evaluate the correlation between block max
ima, which cannot be fulfilled by using traditional Pearson's linear 
correlation coefficient or other Gaussian-based models (Zhang, 2008).1 

These observations form the rationale of using the GEV-AcF-TQCC 
method in this paper, as the variables of interest in this study are all 
monthly block maxima. Last but not least, rolling window TQCC is a 
natural modeling idea to illustrate the dynamics of extreme co- 
movements (see Section 5.3). However, if traditional methods like 
Gumbel copula are applied, investigating dynamic spillovers can be 
extremely difficult because the underlying (static) model may not be the 
same over time. 

4. Variables and data 

This study utilizes two categories of data: Infectious Disease Equity 
Market Volatility Tracker and crude oil futures prices. All original data 
are daily data, and we take monthly maximum values for each variable 
for modeling the extremes. Detailed variable descriptions are shown in 

Table 1. According to Section 5.1, the shape parameters of all variables 
are positive, meaning that the domains of attraction of these variables 
are Type II GEV, i.e., the Fréchet distribution. 

Baker et al. (2020) constructed a newspaper-based Infectious Disease 
Equity Market Volatility (EMV) Tracker, counted across approximately 
3000 newspapers. This daily measure is available from January 1985 to 
the present and is updated daily at http://www.policyuncertainty.com/ 
infectious_EMV.html. In this study, we use the daily data from March 1, 
2002, to September 30, 2021, and convert them into monthly maxima. 
See Fig. 1 for the histogram display of the monthly maxima data. During 
the sample period, there are three clustering periods of the infectious 
disease EMV monthly maxima: (1) from September 2008 to January 
2009, (2) from November 2014 to January 2015, and (3) from January 
2020 to Sep 2021 (the end of sample period of this study). These three 
infectious diseases' EMV maxima periods correspond to Avian flu 
(2007–2009), Ebola virus (2014–2015), and COVID-19. 

The crude oil futures data are extracted from the Investing database 
(investing.com), and the daily data are used to convert to monthly 
maxima. We investigate both the upside and downside extreme move
ments of Brent and WTI crude oil futures. We use the monthly block 
maxima of daily returns and negative daily losses for modeling the up
side and downside extreme movements, respectively. Except for WTI 
crude oil futures on April 20, 2020, all daily returns are calculated on 
logarithmic returns. On April 20, 2020, WTI crude oil futures showed a 
negative price, and we replaced the logarithmic return with a simple 
return. 

Table 2 reports the descriptive statistics for all variables. The mean 
values of WTI are larger than those of Brent for both downside and 
upside, meaning that the WTI market generally fluctuates more severely 
than the Brent market. The maximum of WTI (down) is 3.060, far more 
than other variables due to the “negative price” event” on April 20, 
2020. The kurtosis and skewness of each crude oil market variable and 
the infectious disease variable are greatly larger than 3 and 0, respec
tively. These facts strongly imply that the variables of interest are highly 
asymmetrically distributed. Besides, the Jarque-Bera (J-B) tests are 
conducted for both the original sample and block maxima of all vari
ables. All the resulting J-B stats (H-values) are 1 with a p-value equaling 
to 0, meaning that all the null hypotheses of normality are rejected at 
0.01 level, and both the original sample and monthly block maxima 
sequences are not normally distributed. 

Fig. 2 displays the time series sequences of the crude oil futures. As 
shown, for both Brent and WTI, the downside and upside movements are 
time-varying, asymmetric, share similar patterns. It is worth noting that 
there are three periods when the movements in both sides are extremely 
large: (1) from Nov 2008 to May 2009; (2) from Jan 2015 to Dec 2015; 
and (3) from Apr 2020 to July 2020. Among all the above periods, the 
one from Apr 2020 to July 2020 is the most severe one, which entails the 
“negative price” event of WTI. Upon that event, the downside movement 
of WTI (silver line) is as large as more than 3. 

5. Empirical results 

5.1. The GEV estimations 

Table 3 provides the GEV estimation results of all variables. As 
shown, the shape parameter (tail parameter) ξ is positive for each var
iable, which means all variables follow the Type II GEV (Fréchet) dis
tribution, and there are no upper bounds for all the variables. The 
positive shape parameters also indicate that the underlying distributions 
of these variables are all asymmetric and have infinite tails. For example, 
the shape parameter of infectious disease (ID) is greater than 0.8, which 
indicates that the scale of a “rare” infectious diseases event can be 
extremely huge and thus cannot be ignored. For both directions, the tail 
parameters of Brent and WTI are greater than 0.15 and 0.20, respec
tively. This means that the underlying distributions of crude oil futures 
returns and losses are highly asymmetric and have “fat tails.” 

1 According to Zhang et al. (2011), the sample-based Pearson's linear corre
lation coefficient and the quotient correlation coefficient are asymptotically 
independent. 
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Meanwhile, the shape parameters of WTI are larger than those of Brent 
in both directions, meaning that WTI has “fatter” tails on both sides than 
Brent and is, therefore, more vulnerable to tail risks from both directions 
than Brent.2 

5.2. The AcF model estimations and tail indexes 

Table 4 lists the AcF (1,1) model estimation results.3 Fig. 3 (a) shows 
the AcF model-based tail index estimation of the infectious disease. It 
can be found from the figure that the tail index of infectious disease EMV 
is usually above 2.30, except for three time periods: (1) from Nov 2008 

to Feb 2009; (2) from Nov 2014 to Feb 2015; and (3) from Feb 2020 to 
Sep 2021 (the end of the sample period of this study). These three time 
periods correspond to extreme infectious public health events: Avian flu 
from 2008 to 2009, Ebola from 2014 to 2015, and COVID-19 after Jan 
2020. This means that 2.30 can be regarded as an empirical threshold to 
distinguish if there is an extremely infectious disease event. Intuitively, 
since the AcF tail index is the shape parameter of the underlying dis
tribution, a slightly marginal change in the tail index implies a huge and 
abrupt movement in the monthly block maxima. In this regard, the AcF 
tail index can also be called the “super volatility.” 

The dynamic AcF model-based volatility estimation result is dis
played in Fig. 3(b), which provides additional information to Fig. 3(a). 
As shown in Fig. 3(b), there are three periods when the AcF volatility 
surpasses 2, which happen to be the periods of three infectious public 
health extreme events. In addition, one can significantly distinguish the 
period of COVID-19 from the other two by judging from the volatility 
values. It is too notable for ignoring that the AcF volatility of infectious 
disease EMV ranges from 15 to (more than) 65 during the COVID-19, 
while the volatilities are no more than 10 during the Avian and Ebola 
periods. 

Integrating the above empirical findings, we conclude that: (1) when 
an extreme event occurs, the AcF tail index of infectious disease EMV 
reaches its lower empirical threshold, which is about 2.30; and (2) only 
when the tail index reaches its empirical lower bound which implies an 
extreme situation, the AcF volatility significantly jump up. 

The above findings have at least two economic meanings. First, one 
can distinguish extreme circumstances from normal situations by 
examining the value of the AcF tail index of infectious disease EMV. For 
example, an extremely infectious disease event might occur if the 
empirical AcF tail index value goes down to about 2.30. In other words, 
the tail index may serve as a leading indicator for infectious disease 
warnings. Consequently, government officials may act in advance for 
epidemic prevention and control, and investors may do marketing 
timing based on this signal (see Section 7 for detailed policy implica
tions). Second, in extreme circumstances like COVID-19, one can tend to 
the AcF volatility of infectious disease EMV for additional information 
regarding the dynamic severeness of the epidemic.4 

Fig. 4 shows the AcF(1,1) model-based tail indexes estimations for 
the oil futures. As shown, except for Brent (down), which typically 
fluctuates between [5,20], the typical range for tail indexes of crude oil 
futures is [2,10], and the tail risks of oil futures prices are time-varying. 
These findings present evidence of skewed behaviors of both upside and 
downside movements. The tail indexes show a consistent trend, indi
cating that the tail risks in crude oil markets are simultaneous and bi- 
directional. It is interesting to see that there are varies “empirical 
thresholds” for the extreme movements: for the Brent oil, the downside 
tail index is usually greater than 6, and the upside is generally above 4; 
and for the WTI, the tail indexes for downside and upside movements are 
seldom going below 4 and 3, respectively. Meanwhile, the tail indexes of 
the downside are relatively lower than that of upside for both Brent and 
WTI, suggesting that the left tails are heavier than the right tails. Ac
cording to Fig. 4, there are three time periods when the AcF tail indexes 
of all crude oil futures go below their “extreme events” thresholds: (1) 
from Nov 2008 to May 2009; (2) from Jan 2015 to Dec 2015; (3) from 
Apr 2020 to July 2020. In these periods, each tail index reached a 
trough, which means that the asymmetry of the distribution is extremely 
severe, and tail risks are particularly high. 

Fig. 5 displays the resulting AcF(1,1) model-based volatilities. As 
shown, the AcF volatilities are all time-varying and share the same 
pattern. However, there are three periods that the volatilities jump to 
relatively higher levels: (1) from Nov 2008 to May 2009; (2) from Jan 

Table 1 
Descriptions of the monthly block maxima variables and data.  

Variables Definition Domain of 
attraction 

Infectious disease EMV 
(ID) 

The monthly maxima of daily 
Infectious Disease Equity Market 
Volatility Tracker 

Type II GEV 
(Fréchet) 

Brent crude oil downside 
movement (Brent 
(down)) 

The monthly maxima of daily Brent 
crude oil futures negative losses 

Type II GEV 
(Fréchet) 

Brent crude oil upside 
movement (Brent (up)) 

The monthly maxima of daily Brent 
crude oil futures returns 

Type II GEV 
(Fréchet) 

WTI crude oil downside 
movement (WTI 
(down)) 

The monthly maxima of daily WTI 
crude oil futures negative losses 

Type II GEV 
(Fréchet) 

WTI crude oil upside 
movement (WTI (up)) 

The monthly maxima of daily WTI 
crude oil futures returns 

Type II GEV 
(Fréchet) 

Note: This table describes the variables and data utilized in this paper. The 
original daily data is from March 1, 2002, to September 30, 2021. The Infectious 
Disease Equity Market Volatility Tracker is proposed by Baker et al. (2020), and 
its data is from http://www.policyuncertainty.com/infectious_EMV.html. The 
data of crude oil futures are from Investing database (http://investing.com). 

Fig. 1. The histogram display of the monthly maxima infectious disease EMV. 
Note: This figure shows the bar chart of Infectious Disease EMV from May 2020 
to Sep 2021. There are three notable large values clustering periods: (1) from 
September 2008 to January 2009, (2) from November 2014 to January 2015, 
and (3) from January 2020 to Sep 2021 (the end of sample period of this study). 
These three infectious diseases' EMV maxima periods correspond to Avian flu 
(2007–2009), Ebola virus (2014–2015), and COVID-19. 

2 This result is consistent with the facts in April 2020 when crude oil markets 
crashed. In that extreme event, the price of the main WTI contract fell below 
zero, and all Brent contrasts prices were still positive.  

3 In this study, we choose the burn-in period to be 50 observations, which 
means that 50 more observations before the start date of the sample period have 
been included in the time series model estimation so as to ensure the robustness 
of our results. Note that these 50 observations are only used in the computation 
of Table 4, i.e., not for the remaining computations. We also tried several 
different starting time points, seeds, and burn-in numbers when doing this 
research, and the major findings remained stable. These results can be obtained 
upon request to the authors. 

4 As can be seen from Fig. 3 (b), after the COVID-19 vaccine came out and 
people around the world were vaccinated in the first half of 2021, the volatility 
significantly decreased. 
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2015 to Dec 2015; (3) from Apr 2020 to July 2020, corresponding to the 
three periods that the AcF tail index of infectious disease EMV reached 
its empirical lower bound, 2.30. This means that in extreme circum
stances, the volatility of crude oil futures does go up, which is in line 
with the empirical findings in the literature (see Huang et al., 2019; 
Okorie and Lin, 2020; Gil-Alana and Monge, 2020). Specifically, in April 
2020, the volatility of WTI (down) jumps to a value larger than 0.20, 

which is much greater than its normal value, corresponding to the 
“negative price” event. 

5.3. The TQCC estimations and tail risk spillover effects 

This subsection aims to answer two questions: First, can extreme 
events of infectious diseases lead to severe fluctuations in the crude oil 

Table 2 
The descriptive statistics for the monthly block maxima variables.  

Variable Obs Mean Std. Dev. kurtosis skewness Min Max 

ID 235 7.269 14.778 20.477 3.919 0.590 112.930 
Brent (down) 235 0.017 0.013 39.260 4.931 0.003 0.121 
Brent (up) 235 0.018 0.010 12.793 2.557 0.004 0.083 
WTI (down) 235 0.031 0.199 231.502 15.158 0.004 3.060 
WTI (up) 235 0.019 0.014 28.932 4.243 0.005 0.139 

Note: This table shows the descriptive statistics for the block maxima variables. The kurtosis and skewness of each variable are far more than 3 and 0, respectively. This 
means that the variables of interest are highly asymmetrically distributed, consistent with the results of the J-B tests. 
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Fig. 2. The line curves for (a) Brent crude oil 
futures; (b) WTI crude oil futures. 
Note: This figure displays the time series se
quences of the monthly block maxima se
quences of Brent and WTI crude oil futures in 
panels (a) and (b), respectively. In panel (a), 
the scale of upside movement (orange line) is 
marked on the left axis, and the scale of 
downside movement (silver line) is marked 
on the right axis. For example, upon the 
“negative price” event of WTI on April 2020, 
the downside movement of WTI (silver line) 
is as large as more than 3.   
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market? Second, does the dynamic tail dependence between infectious 
diseases and crude oil futures markets before crises share some common 
patterns? 

The first question is a static problem. Regarding this question, we use 
TQCC to measure the tail dependence between infectious diseases and 
extreme movements of the crude oil futures. Theoretically, the larger the 
TQCC, the more severe the tail dependence. In this study, the random 
threshold is taken as the larger one of each sequence's upper 5% quan
tile. The full sample TQCC estimation results are shown in Table 5. 

The second question is a dynamic problem. Regarding this question, 
we firstly fit the AcF(1,1) model and then insert the resulting AcF pa
rameters into the TQCC algorithm via rolling windows. Each dynamic 
TQCC is calculated using 36, 48, and 60 observations of the most recent 
period, that is, 3-year, 4-year, and 5-year rolling windows are used. The 
dynamic TQCC results are shown in Fig. 6. 

Table 5 shows the full sample TQCC estimation, which measures the 
degree of tail dependent or to what extent a crude oil future variable co- 
moves with infectious disease and other variables. Using 0.393 (the 
TQCC value for WTI (up) and ID) as an example, it means there is a 
39.3% chance that given the infectious disease reaches an extremely 
high level, the upside movement of WTI futures price reaches its 
extremely high level at the same time. Other TQCC values are inter
preted similarly. 

Table 5 evidences that (1) all tail correlation coefficients are signif
icant at the 0.01 level, which means that the extreme co-movements 
between infectious disease and extreme movements of crude oil fu
tures on both sides are significant; and (2) the static TQCC values are 
different in upside and downside, meaning that the extreme co- 
movements are asymmetric. Specifically, the static TQCC of each up
side movement is greater than the corresponding downside, which 
means that extreme infectious disease events are more likely to lead to 
sudden skyrockets rather than abrupt plunges in crude oil prices. 
Nevertheless, this does not mean that the downside co-movements are so 
weak that they can be ignored. For example, the TQCC between WTI 
(down) and ID is 0.122, which intuitively means that there is more than 
10% chance that the WTI future may fall extremely sharply once 
extreme pandemics break out. Furthermore, one needs to further 
investigate the dynamic TQCC structure for detailed information at a 
given time point. For instance, the dynamic TQCC values between WTI 
(down) and ID were as large as 0.70 or even more before the “negative 
price” event in April 2020 (see Fig. 6). 

The existence of bi-directional extreme co-movements can be intui
tively interpreted for the following two reasons. First, as an extreme 
public health event sweeping the world, infectious diseases like COVID- 
19 can simultaneously impact both the buy and sell sides of crude oils, 
resulting in extreme fluctuation in both directions. Second, futures pri
ces may “backfire” after a single directional extreme movement, thereby 
causing (asymmetric) movements on the opposite side. The rationale of 

the backfiring effect is the “market failure” in an extreme situation 
because of the uncertainty and market tension resulting from the 
extreme event and the lack of market liquidity. Consequently, an asset 
can be overpriced (underpriced) after a large one-day surge (pump) for 
several days. However, when market sentiments alleviate, and liquidity 
goes sufficient, the mispricing phenomena will be removed. This is the 
reason why a sharp fall (a sharp rise) is usually followed by another 
fierce backfiring rise (fall) during an extreme event. Meanwhile, since 
the degrees of price fluctuations for an extreme event and its backfiring 
effect may not be exactly the same, the co-movements in upside and 
downside are asymmetric. To sum up, extreme co-movements between 
infectious disease and crude oil futures are bi-directional and asym
metrical. These findings are consistent with the results of Shahzad et al. 
(2018). 

Specifically, the downside co-movements revealed in Table 5 can be 
interpreted in a naive supply-demand economic framework. The global 
spread of extremely infectious diseases may reduce production globally, 
reducing the demand for energy, including crude oil (Qin et al., 2020). 
However, since it takes time for energy suppliers to adjust their pro
duction strategy, it is hard to suddenly reduce production and sell the 
existing inventory. The co-movement of the COVID-19 and the “negative 
price” of WTI is a good example at this point. Due to the epidemic, many 
factories have to shut down in the first quarter of 2020, which led to an 
instantaneous reduction in energy demand, resulting in excess energy 
production capacity and a sharp drop in crude oil futures prices. When 
the costs of transportation, storage, and disposal services of WTI crude 
oil exceed the commodity prices, the future price eventually goes below 
zero.5 In addition, geopolitical issues also lead to sudden changes in 
supply and demand structure (see Section 6 for further discussion). 

Fig. 6 provides evidence of the dynamic tail risk spillovers patterns 
between infectious diseases and crude oil futures. The robustness of the 
dynamic tail contagions results can be demonstrated in the following 
two empirical facts: (1) the dynamic TQCCs have similar patterns under 
3-, 4-, and 5-year rolling windows; and (2) all TQCCs series have 
consistent trends before the oil futures market skyrocketed or 
plummeted. 

The main findings of Fig. 6 can be summarized as follows. First, in 
the “quiet period” when there are no extremely large returns or losses in 
the crude oil futures market, the overall levels of TQCCs are different, 
and there are no common patterns in their trends. Second, each TQCC 
typically reached a relatively higher level before and during an 
extremely infectious disease event and then dropped abruptly after the 
extreme infectious disease event. Specifically: (1) during the Avian flu 
period, all TQCCs fell from September to November 2008, which pre
dated the outbreak of extreme tail risks in the crude oil futures market in 
November 2008; (2) during the Ebola virus period, all TQCCs fell from 
September to November 2014, which predated the outbreak of extreme 
tail risks in the crude oil futures market in November 2014; and (3) 
regarding the most recent COVID-19, all TQCCs started to fall in 
February 2020, and the oil futures market crashed in April 2020, which 
includes the “negative price” event. 

The above findings provide evidence for the tail risk spillovers from 
infectious disease to crude oil futures markets. When extreme infectious 
disease events broke out in the sample period, each TQCC increased to a 
relatively higher level. Subsequently, crude oil market prices fluctuated 
sharply, and then TQCCs went down quickly. Given this fact, we can 
regard the TQCC between infectious diseases and crude oil futures 
markets as the “factor loading” of infectious diseases tail risks in the 
crude oil market. When TQCC rises, systemic risks of infectious diseases 
begin to accumulate in the crude oil futures market. When TQCC reaches 
a relatively high level compared with the past period, it shows that the 
systemic risk from infectious diseases has passed to the crude oil futures 

Table 3 
The GEV estimations for the monthly block maxima variables.   

ξ σ μ 

ID 0.8115 (0.0666) 1.4655 (0.1266) 2.0507 (0.1049) 
Brent (down) 0.1563 (0.0445) 0.0062 (0.0003) 0.0126 (0.0004) 
Brent (up) 0.1960 (0.0533) 0.0058 (0.0002) 0.0130 (0.0004) 
WTI (down) 0.2889 (0.0462) 0.0065 (0.0003) 0.0134 (0.0005) 
WTI (up) 0.2069 (0.0435) 0.0058 (0.0003) 0.0137 (0.0004) 

Note: This table displays the GEV estimation results for the monthly block 
maxima. The scale, shape, and location parameters are shown in the first, sec
ond, and third columns. The estimated standard deviations are listed in paren
theses. As shown, all parameters are significant, as their estimated values are 
twice greater than the corresponding standard deviations. In this table, the 
decimal points are kept to the 4th place for the detailed illustration of the values 
of location parameters and standard deviations. For example, if only 3 decimal 
points are kept, three location parameters would be displayed as 0.013, which 
may miss useful information. 

5 Of course, the geopolitical issue between the Russia and OPEC also 
contributed to the “negative price” event. 
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Table 4 
The estimated AcF (1,1) parameters.   

γ0 γ1 γ2 γ3 β0 β1 β2 β3 μ 

ID 0.830 (0.410) 0.001 
(0.487) 

1.302 (1.380) 1.172 (1.015) 2.200 (0.098) 0.630 
(0.014) 

−1.950 
(0.113) 

0.018 (0.002) −0.676 
(0.440) 

Brent 
(down) −0.376 (0.599) 

0.424 
(0.150) 2.313 (0.744) 

12.996 
(5.259) 

−1.073 
(0.297) 

0.552 
(0.112) 

−0.140 
(0.079) 

43.692 
(32.250) 

−0.065 
(0.037) 

Brent (up) 
−97.677 
(2.207) 

0.492 
(0.004) 

98.736 
(2.197) 0.126 (0.046) 

−2.210 
(0.404) 

0.312 
(0.098) 

−0.730 
(0.237) 

48.454 
(20.428) 

−0.011 
(0.007) 

WTI (down) −1.098 (1.074) 0.001 
(0.190) 

3.297 (0.976) 7.391 (4.166) −0.945 
(0.713) 

0.216 
(0.077) 

−1.867 
(0.782) 

5.738 (2.971) −0.021 
(0.010) 

WTI (up) −56.338 
(1.160) 

0.571 
(0.003) 

56.976 
(1.169) 

0.0950 
(0.045) 

−1.795 
(0.323) 

0.403 
(0.088) 

−1.073 
(0.233) 

29.412 
(11.202) 

−0.003 
(0.003) 

Note: This table provides the parameter estimation results of the AcF (1,1) model. The estimated standard deviations are listed in parentheses. We note that some 
estimations are insignificant in this table, likely because the lengths of time series are not long enough. However, considering the AcF structures and the comparisons 
among all variables, we keep the estimated models for further analysis and inference. The models can be updated when more data are collected. 

Fig. 3. (a) The AcF tail index estimation of 
the infectious disease EMV; (b) The AcF 
volatility estimation of the infectious disease 
EMV. 
Note: This figure shows the AcF model-based 
tail index and volatility dynamics of the In
fectious Disease EMV in panels (a) and (b), 
respectively. In panel (a), the tail index of 
Infectious Disease EMV is usually above 
2.30, except for three time periods: (1) from 
Nov 2008 to Feb 2009; (2) from Nov 2014 to 
Feb 2015; and (3) from Feb 2020 to Sep 
2021 (the end of the sample period of this 
study). These three time periods correspond 
to extreme infectious public health events: 
Avian flu from 2008 to 2009, Ebola from 
2014 to 2015, and COVID-19 after Jan 2020. 
In panel (b), there are three periods when 
the AcF volatility surpasses 2, which happen 
to be the periods of three infectious public 
health extreme events.   
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Fig. 4. The AcF tail indexes estimations of: (a) Brent Oil downside; (b) Brent Oil upside; (c) WTI Oil downside; (d) WTI Oil upside. 
Note: This figure shows the AcF model-based tail index dynamics of Brent and WTI crude oil futures. As shown, except for Brent (down), which typically fluctuates 
between [5,20], the typical range for tail indexes of crude oil futures is [2,10]. 
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Fig. 5. The AcF volatilities estimations of (a) Brent Oil downside; (b) Brent Oil upside; (c) WTI Oil downside; (d) WTI Oil upside. 
Note: This figure shows the AcF model-based Brent and WTI crude oil futures volatility dynamics. As shown, there are three periods that the volatilities jump to 
relatively higher levels: (1) from Nov 2008 to May 2009; (2) from Jan 2015 to Dec 2015; (3) from Apr 2020 to July 2020. 
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market, and a sharp rise or plunge is about to come. Conversely, after 
reaching a relatively higher level, each TQCC dropped down suddenly 
and sharply, indicating that the tail risk began to “release” in the crude 
oil futures markets. This could soon be reflected in asset prices by sky
rocketing (if demand exceeds supply) or plummeting (if supply exceeds 
demand). Therefore, a sudden decline of the TQCC from a high level may 
signal an upcoming skyrocket or crash in crude oil futures markets, 
which may offer implications for investors and policymakers. In prac
tice, one can refer to the dynamic TQCC values and the proposed GEV- 
AcF-TQCC framework for market timing and tail risk warning (see 
Section 7). 

6. Discussions 

Regarding the empirical findings of this paper, we explain the eco
nomic mechanism of the influence of infectious disease events on crude 
oil futures prices from the following three possible channels (financial 
mechanism, macroeconomic policy mechanism, and geopolitical 
mechanism), which may provide motivations for future empirical 
study.6 

The first channel is the tail risk premium channel. The extreme 
shocks resulting from infectious disease constitute the tail and systemic 
risks. As a result, extreme infectious disease events can increase the risk 
premium and be reflected in asset prices. Therefore, an extreme event 
can be seen as an individual tail risk factor. Given the “risk-averse” 
setting of investors, which is a common pre-assumption in financial 
literature, it is natural to believe that investors are also “tail risk-averse” 
when facing extreme events, and each tail risk factor is supposed to be 
priced. 

The second channel is the policy-liquidity channel. Extreme events, 
such as global infectious diseases, may drive the government and central 
bank to adjust policies, especially monetary policy, which can pro
foundly affect market liquidity and further affect asset prices. Policy 
responses may not only help reduce the spread of infectious disease per 
se but also moderate its negative impact on industrial productivity and 
steer countries back to their growth paths (Iyke et al., 2021). Given this 
argument, it can be of practical significance to determine how the 
monetary policies are supposed to respond to infectious disease and 
other tail risk factors via the market liquidity channel. 

The third channel can be the geopolitics-supply-demand channel. 
The spread of the virus may affect geopolitics and inter-state games, 
thereby changing the global energy supply-demand structure and 
impacting crude oil prices. For example, the outbreak of COVID-19 in 
early 2020 caused severe overcapacity in many countries and led to 
subtle changes in the geopolitical landscape. Russia and OPEC thus 
began a “price war” (Ozili and Arun, 2020; Poitiers and Domínguez, 
2020), which was the fuse for the price collapse of crude oil futures in 
early 2020 and the reason why the main WTI crude oil futures contract 
rarely reached “negative prices” in April 2020. 

Regarding the above channels, in the future, it would be of both 
academic and practical significance (1) for financial researchers to 
investigate how tail risk factors like infectious disease add to tail risk 
premia on financial assets, (2) for macroeconomic and monetary econ
omists to study that how extreme infectious disease events affect assets 
prices via market liquidity, and (3) for scholars in political economics 
and geopolitical realms to figure out how infectious diseases affect 
geopolitics and inter-state games, thereby changing global energy 
supply-demand structure. 

7. Conclusions and implications 

This paper examines the extreme co-movements between infectious 
disease events and crude oil futures markets using the GEV-AcF-TQCC 
framework. By fitting the block maxima variables with generalized 
extreme value (GEV) distribution, the Autoregressive conditional 
Fréchet (AcF) model and the tail quotient correlation coefficient (TQCC) 
are further used to study the static and dynamic extreme co-movements 
and tail risk spillovers between infectious diseases and crude oil futures 
markets. The major findings are as follows: (1) the domains of attraction 
of infectious disease and crude oil futures are Type II GEV, meaning that 
there are no upper bounds for their maxima; (2) extreme co-movements 
of infectious disease and crude oil futures are found in both sides 
whereas they are asymmetric; (3) when an extreme event occurs, the 
AcF tail index of infectious disease EMV reaches its lower empirical 
threshold which is about 2.30; (4) when a jump in volatility corre
sponding to the severeness of the pandemic is observed, the tail index 
reaches the lower bound, but not reversely; (5) the full sample gamma 
test shows that TQCCs between infectious disease cases and crude oil 
futures prices are statistically significant; and (6) the rolling window 
TQCC shows that tail dependence between crude oil futures prices and 
infectious disease events may keep rising and reach relatively higher 
levels before crises, and fall sharply with the collapse of the crude oil 
futures markets. 

Our findings may offer novel and interesting implications for gov
ernment officials, financial investors, portfolio managers, and 
policymakers. 

First, government officials, epidemic prevention and control 
personnel, and epidemiological researchers may act in advance for 
epidemic prevention and control by tracing the infectious disease AcF 
tail index and AcF volatility. As shown in Fig. 3 and explained in Section 
5.2, the AcF tail index can be used as a leading indicator for infectious 
disease warning, and the AcF volatility may provide additional infor
mation for pandemic severeness when in an extreme period. In practice, 
if the AcF tail index jumps down to about 2.30, which is the empirical 
threshold for “extreme pandemic events,” this might be a strong signal 
for government officials and epidemic prevention and control workers to 
improve vigilance against the spread of the virus and adjust their 
deployment of epidemic prevention and control. 

Second, our findings may provide information for financial investors 
for their market timing. By looking at the AcF tail index of infectious 
disease, investors can distinguish the “extreme time” from the “normal 
period,” thereby seeking market opportunities in an upcoming “extreme 
event.” In addition, the discovery of tail risk factors and early warning of 
tail risk provide speculators with the possibility to speculate at a low cost 
(Bhansali, 2015). In practice, investors can choose the timing of tail 
speculation by calculating the TQCC of infectious disease EMV and 
crude oil futures. When TQCC sequences peaked and suddenly fell, this 
may herald a tail speculation opportunity in the crude oil market. 

Third, our findings and the proposed GEV-AcF-TQCC framework for 
portfolio managers may imply possible solutions for their tail risk 
hedging problems. For example, as shown in Table 5, the TQCC between 
Brent (down) and WTI (down) is 0.149, and the TQCC between Brent 
(up) and WTI (up) is 0.562. Thus, using the short position of one crude 
oil future to hedge the long position of the other crude oil can be a 
natural and practical way for tail risk hedging. In addition, using the 

Table 5 
The full sample TQCC estimations of monthly block maxima.   

ID Brent (down) Brent (up) WTI (down) 

Brent (down) 0.164***    
Brent (up) 0.376*** 0.139***   
WTI (down) 0.122*** 0.149*** 0.092***  
WTI (up) 0.393*** 0.158*** 0.562*** 0.069*** 

Note: This table displays the resulting TQCC values of all block maxima pairs. 
*** means the p-value is less than 0.001. 

6 We note that the economic channels are from infectious diseases to crude oil 
futures markets, but not reversely. A fact supporting such a statement is that the 
monthly maxima of the ID EMV almost always precede that of crude oil futures. 
For example, the “negative price” extreme event of WTI was on 20 April 2020, 
while the maxima of ID EMV (84.08) of that month was on 5 April 2020. 
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Fig. 6. The TQCC dynamics of Infectious 
Disease and Crude Oil Futures Prices using: 
(a) 3-year rolling window; (b) 4-year rolling 
window; (c) 5-year rolling window. 
Note: This figure displays the dynamic TQCC 
results using the rolling window period of 3, 
4, and 5 years in panels (a), (b), and (c), 
respectively. The TQCC patterns are almost 
the same in all panels, which demonstrates 
the robustness of the results. As shown, each 
tail quotient correlation coefficient keeps 
rising and reaches a peak before crises and 
falls sharply with the collapse of crude oil 
markets.   
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GEV-AcF-TQCC framework, one can further investigate how to hedge 
the infectious disease tail risk in crude oil futures markets using other 
assets. Co-movements between crude oil futures and other assets 
certainly need to be considered to fulfill this task. See Feng et al. (2018), 
Pal and Mitra (2019), and Okorie and Lin (2020) for more details in this 
regard. 

Finally, macroeconomic policymakers might be inspired by the 
empirical evidence of the TQCC pattern before and after pandemics, 
thereby contributing to their policy formulation. The fact that higher 
extreme co-movements and tail spillovers occurred just before crisis 
periods makes it possible for policymakers to warn of crises in the crude 
oil futures market and adopts industrial policy (in terms of long-run) and 
monetary policy (in terms of short-run) tools to hedge the tail risks 
caused by infectious diseases in macroeconomic level. In practice, to 
respond to market panic expectations under extreme events, forward- 
looking monetary policy can be adopted, such as quantitative easing 
and expanding the acceptance of collateral (the “haircut”) in the inter- 
bank market (Nyborg, 2017; Prorokowski et al., 2020). 
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