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Abstract: Logistic regression is widely used in the analysis of medical data with binary outcomes
to study treatment effects through (absolute) treatment effect parameters in the models. However,
the indicative parameters of relative treatment effects are not introduced in logistic regression
models, which can be a severe problem in efficiently modeling treatment effects and lead to the
wrong conclusions with regard to treatment effects. This paper introduces a new enhanced logistic
regression model that offers a new way of studying treatment effects by measuring the relative
changes in the treatment effects and also incorporates the way in which logistic regression models the
treatment effects. The new model, called the Absolute and Relative Treatment Effects (AbRelaTEs)
model, is viewed as a generalization of logistic regression and an enhanced model with increased
flexibility, interpretability, and applicability in real data applications than the logistic regression. The
AbRelaTEs model is capable of modeling significant treatment effects via an absolute or relative or
both ways. The new model can be easily implemented using statistical software, with the logistic
regression model being treated as a special case. As a result, the classical logistic regression models
can be replaced by the AbRelaTEs model to gain greater applicability and have a new benchmark
model for more efficiently studying treatment effects in clinical trials, economic developments, and
many applied areas. Moreover, the estimators of the coefficients are consistent and asymptotically
normal under regularity conditions. In both simulation and real data applications, the model provides
both significant and more meaningful results.

Keywords: asymptotics; enhanced logistic regression; estimator consistency; interpretability; preci-
sion medicine; predictability

1. Introduction

Studying treatment effects is central in clinical trials and epidemiology. When response
variables are dichotomous, numerous applications of the logistic regression model can be
found in the literature. Using the logistic regression model in the analysis of the medical
data allows the researchers to understand and estimate the effects of the explanatory
variables on the response variable, control the confounding factors and study the interaction
effects. The purpose of the analysis using the logistic regression is to identify risk factors
that are associated with the response variable of interests and the variables (confounder)
that influence the effect of exposure on disease and the risk factors. For instance, if
the primary goal is to measure the association between physical inactivity and heart
disease with age being a confounding factor, the logistic regression is not only useful to
model dichotomous variables (e.g., the values of 0 and 1 represent the status of heart
disease, respectively), but it can also be used to explain the effects of physical inactivity
on heart disease while controlling for the age variable. Odds ratio, which is often used for
interpretations in the logistic regression model, is adjusted to account for other covariates
(including confounders). Other applications can be found in genetics, clinical trials, or any
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studies that involve treatment groups. This statistical model has been a benchmark model
due to its easy computability, interpretability, predictability, and stability (CIPS).

Logistic regression is also widely used in classifications, e.g., in cancer [1], diabetes [2],
and osteoarthritis [3] among numerous literature publications. Due to the desirable CIPS
properties, logistic regression is often used as a baseline/benchmark model in popular
machine learning to perform classification, including via Support Vector Machine (SVM) [4]
and Naive Bayes Classifier [5]. Applications using machine learning models can be found
in acute coronary syndromes [6], heart failure [7], pancreatic cancer [8], text mining [9],
COVID-19 and seven subtypes [10], etc.

The studies of logistic regression and related models have been drawing much at-
tention in the literature. For instance, as the number of predictor dimensions increases
and exceeds the sample size, direct estimation using the logistic regression model may
fail because the matrix inversion can be a problem due to the matrix being singular. In
addition, issues such as numerical problems lead to poor convergence, overfitting and
low predictive power [11,12]. Regularization is often used to handle high-dimensional
data. Popular penalty functions include but are not limited to the least absolute shrinkage
and selection operator (Lasso) [13], the smoothly clipped absolute deviation (SCAD) [14]
and the minimax concave penalty (MCP) [15]. On the other hand, there have been many
model developments in the handling of semi-continuous data in recent years where the
response data consist of a substantial portion of single value and positive values. In han-
dling such data, a two-part model was proposed, which handles a combination of binary
and continuous data. Since the logistic regression model, which preserves many desirable
properties, is suitable to model the binary part, it is included as part of the model. The
model development and discussions can be found in recent studies [16–18].

In this paper, we focused on developing a more general logistic regression model.
Our paper’s contributions to the literature can be concluded in three-fold: (1) The Abso-
lute and Relative Treatment Effects (AbRelaTEs or Abrelates) are directly, explicitly, and
simultaneously introduced in our proposed enhanced logistic regression. The AbRelaTEs
model incorporates how treatment effects are modeled in the classical logistic regression
(absolute treatment effect) and offers a different way of modeling the effects (relative
treatment effect). In the model, the absolute treatment effect incrementally measures the
treatment effects, while the relative treatment effect accounts for the proportion change in
the treatment effects. Additionally, the new model unifies the logistic regression model in a
new framework. Parameter estimation can be easily performed using software packages,
with the classical logistic regression model being treated as a particular case. (2) The inter-
pretations can be made in two ways, via “between-group” and “within-group” treatments.
The former considers all covariate information (attributes) of each patient/participant,
which can be regarded as an individualized effect. If the individualized effect is better
for a patient/participant in the treatment group than the control group, the treatment is
suitable for the patient. The treatment can also be recommended for other patients with
similar attributes, making it a potential precision medicine. The latter, on the other hand,
individually interprets the effects of each predictor. (3) Simulation examples show that the
classical logistic regression will fail to model data when a relative treatment effect exists.
In addition, the statistical model might fail to capture the absolute treatment effect if the
relative treatment effect exists, resulting in researchers being misled into believing that
the treatments are not significant. The AbRelaTEs model, which offers another way of
modeling the treatment effects, captures the effects via an absolute or relative or even both.
These were shown to be possible as explored using four real datasets. The AbRelaTEs
model can be viewed as a new benchmark model for randomized controlled trial studies.

This paper is organized as follows. In Section 2.1, we will present the classical logistic
regression model. We then introduce the Absolute and Relative Treatment Effects model
and discuss the interpretations in Section 2.2. In Section 3, we will discuss the relative
effect term’s estimation procedures and other coefficient parameters of the new model.
Moreover, asymptotic theories such as the model’s consistency and asymptotic normality
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are presented in the same section. The new model’s computational procedures will be
discussed in Section 4 and simulation examples and discussions will be presented in
Section 4. Furthermore, four real data examples will be explored and discussed in detail in
Section 5. Finally, the concluding remarks are given in Section 6. Technical arguments and
additional simulation results are presented in the Appendices.

2. Logistic Regression and the Enhanced Absolute and Relative Treatment
Effects Model

In this section, we will first present the logistic regression model and then introduce
the AbRelaTEs model. We will deliver the features and interpretations of the AbRelaTEs
model in a more general aspect, and more detailed interpretations will be discussed using
the real data examples in the latter sections.

2.1. Logistic Regression

Before introducing our model, we provide an overview of the ordinary logistic re-
gression model commonly used to model data with binary outcomes. Due to its easy
application and high interpretability, the model is often used to analyze data in various
fields. One common application can be found in randomized controlled trials to investigate
whether the treatment effects are significant in explaining the outcomes. If the treatment ef-
fects are significant, meaningful interpretations of the treatment effects and other covariates
are often made in the forms of an odds ratio and relative risk.

We now describe the classical logistic regression model in a randomized controlled
trial setting. Suppose we consider g treatment groups. Throughout this paper, the g-th
treatment group is considered a control group. In addition, the term “treatment group”
excludes the control group to distinguish and make comparisons with the control group
throughout this paper. In the j-th group, we have nj patients with total patients being
n. Let Yij be the binary response (0 or 1) of i-th patient in treatment group j. Let µ be a
constant and τj be the treatment effect of j-th treatment level. Let Xij be a p× 1 covariate
vector where p is the number of predictors and β is the corresponding p× 1 coefficient
vector. Denote by πij the probability P(Yij = 1|Xij) for i = 1, 2, ..., nj and j = 1, 2, ..., g. The
classical logistic regression model is given by

logit(πij) = log
(

πij

1− πij

)
= µ + τj + X ′ijβ, (1)

where i = 1, 2, ..., nj and j = 1, 2, ..., g. The observations are i.i.d. samples (Yij, Xij) for
i = 1, 2, ..., nj, j = 1, 2, ..., g and Yij|Xij ∼ Bernoulli(πij). We note that the model (1) has been
widely used as a benchmark model in many classification problems and treatment effects
analyses in medical data. In many real applications, if the (absolute) treatment effects τjs in
model (1) are found to be significant, the treatment groups can then be recommended to
be practiced or adopted by the general public. If the treatment effects result insignificant,
the classical logistic regression is not capable of measuring the treatment effects and is
deemed to be insufficient to model treatment effects for some clinical trials, but is actually
effective. If the treatment effects are tested and result not significant, the logistic regression
model not only fails to detect any overall treatment effect but it also has a low predictive
power. Furthermore, the treatment effect τj in the classical logistic regression does not
detect any individualized effect of the treatment groups. If the treatment group is found
to be significant, it is highly questionable that the treatment group will be effective for all
patients. It is of interest to many researchers whether the treatment groups can be further
interpreted as precision medicine for specific groups of people with the same attributes or
characteristics, which is also one of the aspects of this paper. In contrast to the approaches in
the literature, we generalize the model (1) which preserves many desirable properties both
theoretically and practically to serve the purposes mentioned above but with better and
easier interpretations. We will present and discuss our model in the following subsection.
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2.2. Logistic Regression with Absolute and Relative Treatment Effects

We will first introduce some additional notations and some motivations before pre-
senting our model. In the literature, both absolute errors, e.g., |a− b| = |τ|, and relative
errors, e.g., |(a− b)/b| = |δ| or a = (1 + δ)b are useful and powerful measurements for
studying changes between two variables a and b. In many applied scientific areas, relative
changes are also regarded as an increasing rate or decreasing rate; e.g., in economics, we
measure the gross domestic product (GDP) change using the rate; in finance and banking,
the changes are also termed returns or interests. Without loss of generality, we shall call τ
and τj absolute errors or absolute changes, and δ and δj relative errors or relative changes
throughout the paper.

Motivated by the relative measurements, we propose a model that also considers the
relative treatment effects of the treatment groups in addition to the absolute treatment
effects τj of the treatment groups in model (1). Moreover, we also include important
predictors in our model. Let δj be the relative treatment effect of the j-th treatment level.
Then, our newly proposed model, the Absolute and Relative Treatment Effects (AbRelaTEs)
Model, is given by

logit(πij) = log
(

πij

1− πij

)
= (µ + τj + X ′ijβ)(1 + δj), (2)

for i = 1, 2, ..., nj and j = 1, 2, ..., g. In our setting, the parameters µ, τj and β are similarly
defined in the logistic regression model setting. Since the parameter δj in our model
measures the relative effect of the treatments, the parameter can take any value between
−1 and 1.

It is clear that model (2) will be reduced to model (1) when δj = 0 for all j, and
that there is no relative treatment effect. We note that when model (1) is the true model,
model (2) is also true since δj will be estimated to be 0. Furthermore, it is worth noting that
the model (2) is the same as the classical logistic regression when no covariates (Xij) are
available. On the other hand, if model (1) is not a correct/appropriate model for the analysis
of a randomized controlled trial, model (2) is still applicable. Therefore, the AbRelaTEs
model can serve as a new “benchmark" model for better applicability, more flexibility, and
increased interpretability, which can be applied to many fields of medical research.

In our model setting, the term 1 + δj, which will always be positive, can be viewed as
a multiplier effect on the log-odds depending on the sign and magnitude of the estimated
relative treatment effects of δj. In other words, if the relative treatment effect is significant
for a randomized controlled trial, there will be an additional multiplier effect on the log-
odds for patients receiving treatments compared to the control group. The multiplier
effect on the log-odds will depend on the estimated coefficients of the constant µ, absolute
treatment effect τj, and covariates Xij. In fact, the multiplier effect is more interpretable by
computing the overall magnitude and sign of the term µ + τj + X ′ijβ. Since the covariates
Xij are usually the attributes or characteristics of a patient (e.g., weight, height, age, gender,
etc.) in randomized controlled trials, the relative treatment effect will have a different
impact for different patients if some attributes are continuous or a group of patients sharing
similar attributes if the covariates are all discrete or categorical in a particular treatment
group. For example, patients in a specific weight range and age group will benefit more
from receiving the treatment than patients in other weight range and age groups. As a
result, the relative treatment effect is the key to measure individualized treatment effects,
and the model (2) can be viewed as a benchmark model dealing with precision treatments
which can be seen as an advantage over the classical logistic regression model.

Model (2) can be expressed as

logit(πij) = log
(

πij

1− πij

)
= (µ + τ∗j + X ′ijβ

∗
j ), (3)
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for i = 1, 2, ..., nj and j = 1, 2, ..., g, where τ∗j = τj + µδj + τjδj and β∗j = β(1 + δj). We
note that the AbRelaTEs model is different from the classical logistic regression where
the coefficient vector β∗j in Equation (3) depends on the treatment group and it is not the
case for the classical logistic regression though the form resembles the classical logistic
regression. In the model setup, the effects of the coefficient depend on the treatment
groups of the patients. For patients receiving the treatments, the coefficient is β(1 + δj) for
j = 1, 2, ..., g− 1 while the coefficient is β for patients in the control group. The coefficients
are different for patients receiving different treatment. From the construction of the model,
the AbRelaTEs model is different from the standard logistic regression model including
interactions between variables. Furthermore, the AbRelaTEs model can also be expressed
in the following form:

logit(πij) = log
(

πij

1− πij

)
= (µ + τ∗j + X̃ ′ijβ), (4)

for i = 1, 2, ..., nj and j = 1, 2, ..., g, where τ∗j = τj + µδj + τjδj and X̃ ′ij = X ′ij(1 + δj).
At a first glance, model (4) looks like a classical logistic regression model. However,

upon closer examination of X̃ ′ij = X ′ij(1 + δj), we see that within the j-th treatment, each
component covariate has a multiplier of 1 + δj, i.e., | δj | is the relative error of X̃ ′ij to X ′ij.
Note that in X ′ij, some components can be products of other component variables, i.e.,
interactions, which are also kept in X̃ ′ij. As a result, expressing the logistic regression model
as the AbRelaTEs model clearly shows that δj is a relative treatment effect coefficient, and
it should not be interpreted as an interaction effect between τj and the covariates.

In the classical logistic regression, after computing the odds ratios or relative risks,
the treatment effects can be related to covariates. Conventionally, the interpretations can
be made based on each treatment group’s effects and predictors using the coefficients’
magnitude and sign. However, the interpretations of the coefficients in our model are not
as straightforward. The interpretations can be made in two ways which are “between-
group" and “within-group” treatments. For the “within-group” treatment effect, each
predictor’s effect on the log-odds is interpreted. In contrast, all covariates for each patient
are considered for the “between-group” treatment effect. Whether or not a treatment group
is suitable for all people or a particular subgroup of people depends on the interpretations
of the “between” group treatment. If treatment is beneficial for an individual or a subgroup
of people with similar attributes, the treatment is viewed as precision medicine.

To illustrate the concepts of the absolute and relative treatment effects, we consider the
case of two treatment groups, i.e., g = 2 with τg and δg being 0. Additionally, we also assume
that the response variable is the event of a patient having a particular disease with the same
attributes. We first consider the case where there is an absolute treatment effect without a
relative treatment effect. The absolute change in the log odds between the treatments or log
odds ratio of a patient contracting the disease is given as (j = 1 when g = 2)

log(Odds(Treatment))− log(Odds(Control)) = (µ + τj + X ′ijβ)− (µ + X ′ijβ) = τj. (5)

Subsequently, we consider the case where there is a relative treatment effect without an
absolute treatment effect. The change in the log odds can be measured in the following way:

log(Odds(Treatment))− log(Odds(Control))
log(Odds(Control))

=
(µ + X ′ijβ)(1 + δj)− (µ + X ′ijβ)

(µ + X ′ijβ)
= δj. (6)

It is worth noting that δj under the circumstances measures the relative change in the
context of log odds. When considering both treatment effects, the interpretations and forms
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are not as straightforward. The absolute change in the log odds between the treatments or
log odds ratio of a patient contracting the disease is given as (j = 1 when g = 2)

log(Odds(Treatment))− log(Odds(Control)) = (µ + τj + X ′ijβ)(1 + δj)− (µ + X ′ijβ)

= τj + (µ + τj + X ′ijβ)δj.
(7)

If there is no relative treatment effect (δj = 0), the log odds ratio computation only
depends on the treatment effect τj, which is the case of the classical logistic regression.
When there is a relative treatment effect (δj 6= 0), the log odds ratio of contracting the
disease also depends on the attributes X ′ij of the patient. The treatment group will have
varying changes depending on (µ + τj + X ′ijβ), e.g., a larger decrease in the log odds
ratio for some patients i = 1, 2, ..., n of the same attributes and a smaller decrease for a
certain group of people are possible. For example, if the effect of a particular treatment is
more prominent for obese patients than patients with a normal body weight holding other
attributes constant, this is reflected in the smaller log odds ratio for the former patients
than the latter. As a result, the AbRelaTEs model is ideal for interpreting the treatment
effect in the context of precision medicine for some patients i = 1, 2, ..., n.

Furthermore, the relative treatment effect in the AbRelaTEs model can be better
explained in the context of the percentage increase/decrease, ((a− b)/b), in the odds of
contracting the disease in a particular treatment group as discussed at the beginning of the
section. The relative change in the odds between the treatments is:

Odds(Treatment)−Odds(Control)
Odds(Control)

=
exp{(µ + τj + X ′ijβ)(1 + δj)}

exp{µ + X ′ijβ}
− 1

= exp{τj} exp{(µ + τj + X ′ijβ)δj} − 1.

Since the effect of τj is constant while the effect of δj is proportional based on the
absolute change in log odds and relative change in odds, we name the effects of τj and δj
the absolute and relative effects in this paper.

In addition, we present additional discussions on different settings of the parameter
values of τg and δg which can be set differently under our model setting for g = 2. The
parameters for the control group effects are τ2 = −τ1 and δ2 = −δ1 using the constraints
∑2

j=1 τj = 0 and ∑2
j=1 δj = 0 by the convention. Using the example for Equation (5), the

absolute change in the log odds between the treatments or log odds ratio of a patient
contracting the disease is given as (j = 1 when g = 2):

log(Odds(Treatment))− log(Odds(Control)) = (µ + τj + X ′ijβ)− (µ− τj + X ′ijβ) = 2τj. (8)

The relative change in log odds for the case of a relative treatment effect without an absolute
treatment effect is given in the following:

log(Odds(Treatment))− log(Odds(Control))
log(Odds(Control))

=
(µ + X ′ijβ)(1 + δj)− (µ + X ′ijβ)(1− δj)

(µ + X ′ijβ)(1− δj)

=
2δj

1− δj
.

(9)

We first note that τj under this constraint can still be viewed as an absolute treatment
effect. However, it can be seen from Equation (9) that the relative change in log odds
is not equal to δj when g = 2, as shown in Equation (6) without using the constraints.
Even though this constrained setting does not affect the interpretability aspects of our
model as we interpret the additional treatment effects (i.e., relative treatment effect) of our
model for every individual discussed above, the impact of δj is not exactly relative when
using the constraints. On a further note, the constraints can be applied to g > 2 for the
absolute treatment effects, but are not applicable for the relative treatment effects under
our setting. For instance, we consider the case of g = 3. If δ1 and δ2 take values of 0.5 and
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0.7, respectively, then δ3 will take a value of −1.2 under the constraint which violates our
model assumption on δj (i.e., −1 < δj < 1 for j = 1, 2, ..., g). For g = 2, the constrained
setting can be applied in our model setting for both τj and δj. It cannot only be viewed as
a special setting in our model framework but also provides more flexibility in modeling
the treatment groups. For a more general framework g > 2, we require that δg = 0 and
the additional treatment effect is interpreted as a relative treatment effect on the baseline
group which is the control group. Subsequently, the previous discussions for g = 2 can be
extended to g > 2, which we will not further discuss in this paper.

2.3. Toy Example

In this subsection, we provide some toy examples to better understand the AbRelaTEs
model. Two simulated examples from the AbRelaTEs model are presented in Figure 1
and compared to the logistic regression model. The simulated example in the left panel is
simulated with two levels of treatments and two covariates and the simulated example in
the right panel is simulated with two levels of treatments—one covariate and an interaction
effect between the treatment and covariate using model (2). For simplicity, we denote by
treatment group 1 patients receiving a specific treatment and by treatment group 0 the
control group and the outcomes are whether the patients recover from a particular disease
or not. Using the notations introduced above, τ1 and δ1 are set to 0.6 and −0.6, respectively,
in Figure 1a and τ1 and δ1 are set to 0.6 and −0.4, respectively, in Figure 1b. τ2 and δ2 are
set to 0 for both simulated examples. The log odds for both examples are computed and
plotted against treatment groups for models (1) and (2). In Figure 1a, the log odds of the
logistic regression model are similar between the treatment group and the control group.
The effectiveness of the treatment group is not obvious for the logistic regression model.
The log odds are more spread out using the AbRelaTEs model which is reasonable and
can be interpreted in our setting. Higher log odds suggest a high probability of recovering
from the disease for patients with similar attributes receiving the treatment. Lower log
odds, as observed for the treatment group, show that patients with different attributes
(different weight range, age group, etc.) have a lower probability of recovering from
the disease. These observations indicate that the treatment group can be recommended
for patients sharing similar attributes (similar weight range, age group, etc.) using the
AbRelaTEs model since the AbRelaTEs model also considers the attributes of the patients
as discussed above. Similarly, in panel (b), even though the log odds are generally higher
in the treatment group using the logistic regression model, the log odds computed from the
logistic regression model are underestimated/overestimated for some patients. In addition,
the treatment group can be recommended for patients sharing similar attributes based on
the log odds using the AbRelaTEs model.

Figure 1. Log odds of two simulated examples are plotted for the AbRelaTEs model and logistic
regression model. The simulated example in panel (a) considers treatment effects and covariate
effects. The simulated example in panel (b) considers treatment effects, covariate effects and an
interaction effect between the covariate and treatment.
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The purpose of the two simulated examples is to show that the AbRelaTEs model
provides enhanced interpretations and more significant results that the logistic regression
may fail to capture. In addition, it is clear from the toy examples that the term δj is proposed
to detect the relative treatment effects. Our model’s applicability and interpretability
will be further discussed and presented with some real data examples in the numerical
analysis section. In the subsequent section, we will present the theoretical guarantees of
the estimation procedure in our model setting.

3. Estimation and Asymptotic Theory

In this section, we provide some additional discussions on the AbRelaTEs model
for estimation purposes. Subsequently, we present the maximum likelihood estimation
procedure and discuss the asymptotic properties in our model setup.

Different treatment effect representations can be applied to represent whether a patient
is in the treatment or control group. For instance, consider the case of two treatment groups;
the treatment group can be represented by 1 if the patient is in the treatment group and
by −1 if the patient is in the control group. Alternatively, the treatment group can be
represented by 1 if the patient is in the treatment group and otherwise 0. Since treatment
effects are measured differently in the AbRelaTEs model, the control group’s constraint
can be differently set for the absolute and relative treatment effects. However, using the
same representation has an advantage. Here, we simply provide some discussions of the
parameter δj and show our model’s versatility by different specifications of the treatment
variables. In this paper, we only considered and focused on the parameter δj being the
relative treatment effect. Additionally, regardless of the choice of representing the treatment
groups, the interpretations are similarly made for each treatment group at the patient level
as discussed in Section 2.2.

We denote τ = (τ1, τ2, ..., τg−1)
′ and δ = (δ1, δ2, ..., δg−1)

′ as (g− 1)× 1 vectors of the
absolute and relative treatment coefficients and let θ = (µ, τ′, β′, δ′)′ be a (2g + p− 1)× 1
parameter vectors. In this paper, we set the gth group as the control group. The theoretical
guarantees can be established using the setting discussed in the previous section for the
parameters τj and δj. The log-likelihood function l(θ) using the model (2) is given by

l(θ) =
g

∑
j=1

nj

∑
i=1

{
Yij(µ + τj + X ′ijβ)(1 + δj)− log{1 + exp[(µ + τj + X ′ijβ)(1 + δj)]}

}
. (10)

The maximum likelihood estimator θ̂ is obtained by optimizing the log-likelihood function:

θ̂ = arg max
θ

l(θ). (11)

For parameter estimation and theoretical purposes, we expressed the model (2) in a
matrix form. We denote by Tij = (Ti,1, Ti,2..., Ti,(g−1))

′ as a (g− 1)× 1 vector containing the
treatment group information of i-th patient, e.g., if the i-th patient is in treatment group 1,
the vector is shown as (1, 0, ..., 0)′ and τ = (τ1, ..., τg−1)

′ is the corresponding coefficient vec-
tor. Similarly, we let Rij = (Ri,1, Ri,2..., Ri,(g−1))

′ be a (g− 1)× 1 vector containing the treat-
ment group information for the relative term and δ = (δ1, ..., δg−1)

′ is the corresponding co-
efficient vector. We define T∗ij (δ) = (Ti,1(1 + R′ijδ), Ti,2(1 + R′ijδ)..., Ti,(g−1)(1 + R′ijδ))

′ and
X∗ij(δ) = (Xi,1(1 + R′ijδ), Xi,2(1 + R′ijδ), ..., Xi,p(1 + R′ijδ))

′. Additionally, we let Wij(δ) =

(1+ R′ijδ, T∗
′

ij (δ), X∗
′

ij (δ))
′ be a (g+ p)× 1 vector and β∗ = (µ, τ′, β′)′ be the corresponding

coefficient vector. Let θ0 = (β∗
′

0 , δ′0)
′ = (µ0, τ′0, β′0, δ′0)

′ be the true parameter vector and Θ
be the parameter space of θ0. We let φ(u) be defined by φ(u) = exp(u)/(1 + exp(u)) and
Zij = (W ′

ij(δ0), V ′ijβ
∗
0Ri,1, V ′ijβ

∗
0Ri,2, ..., V ′ijβ

∗
0Ri,(g−1))

′ be a (2g + p − 1) × 1 vector where
Vij = (1, T ′ij, X ′ij)

′. To establish the asymptotic properties of the maximum likelihood
estimator, we need the following assumptions.
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(A1) Define C = (−1, 1). θ0 is an interior point of an open set in the parameter space
Θ ⊆ Rg+p ×Cg−1.

(A2) For all i and l = 1, 2, ..., p, E|Xil |k < ∞ for k = 1, 2, 3, 4.
(A3) E(Wij(δ0)W ′

ij(δ0)) and E{φ(W ′
ij(δ0)β∗0)[1−φ(W ′

ij(δ0)β∗0)]ZijZ′ij} are positive definite
matrices.

The assumptions (A1)–(A3) are commonly seen in the proofs of consistency and
asymptotic normality of the maximum likelihood estimator. We adjusted the assumptions
to fit our model setup.

Theorem 1. (Consistency) Under assumptions (A1)–(A3), as nj → ∞ and n → ∞, we have
θ̂→p θ0.

Theorem 2. (Asymptotic Normality) Under assumptions (A1)–(A3), as nj → ∞ and n → ∞,
we have:

√
n(θ̂− θ0)→D N(0, [I(θ0)]

−1),

where I(θ0) is the expected Fisher information at θ0 and the expression is given in the Appendix A.

Remark 1. In addition, since the AbRelaTEs model is a generalization of the logistic regression, it
preserves other desirable properties: it can be shown that the AbRelaTEs model is identifiable and
belongs to a full-rank exponential family with the assumptions.

4. Numerical Analysis

We will present the estimation procedure for the simulation and real data analyses in
this section. Firstly, the first partial derivatives of the log-likelihood function in (10) with
respect to parameters µ, τ, β and δ are given by

∂l(θ)
∂µ

=
g

∑
j=1

nj

∑
i=1

{
Yij(1 + R′ijδ)−

exp(W ′
ij(δ)β∗)

1 + exp(W ′
ij(δ)β∗)

(1 + R′ijδ)
}

, (12)

∂l(θ)
∂τj

=

nj

∑
i=1

{
YijTi,j(1 + R′ijδ)−

exp(W ′
ij(δ)β∗)

1 + exp(W ′
ij(δ)β∗)

Ti,j(1 + R′ijδ)
}

, (13)

∂l(θ)
∂βk

=
g

∑
j=1

nj

∑
i=1

{
YijXik(1 + R′ijδ)−

exp(W ′
ij(δ)β∗)

1 + exp(W ′
ij(δ)β∗)

Xik(1 + R′ijδ)
}

, (14)

∂l(θ)
∂δj

=

nj

∑
i=1

{
YijV ′ijβ

∗Ri,j −
exp(W ′

ij(δ)β∗)

1 + exp(W ′
ij(δ)β∗)

V ′ijβ
∗Ri,j

}
, (15)

for j = 1, 2, ..., g − 1 and k = 1, 2, ..., p. Based on the Equations (12) and (15), there are
no closed form solutions for the MLE θ̂. We applied the Newton–Raphson method to
obtain the estimates. At (t + 1)-th iteration, the estimates θ̂(t+1) are computed using the
following equation:

θ̂(t+1) = θ̂(t) − H−1(θ̂(t))s(θ̂(t)), (16)

where s(θ) is the score function in Equations (12)–(15) and H(θ) is the second derivatives
of the log-likelihood function (10). The iterations using Equation (16) are performed until
convergence is attained.

In some cases, the optimal values of the parameters δ might fall outside the interval
(−1, 1) in the optimization procedure. To overcome the issue, we conduct a reparameteri-

zation as δj =
eηj−1
1+eηj where δj is a monotone increasing function of ηj, and we solve ηj in

the optimization.
Furthermore, the estimation procedure above is highly dependent on the initial values

of the parameters. If there are two treatment groups, we propose the following estimation
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procedure. We first split the parameter space of δ1, which ranges from −1 to 1, into equally-
spaced smaller grids, and we estimate the coefficient parameters β∗ for each grid value of
δ1. The coefficient parameters are then estimated using the Newton–Raphson method. At
(t + 1)-th iteration, the estimates β̂∗(t+1) are computed using the following equation:

β̂∗(t+1) = β̂∗(t) − H−1(β̂∗(t))s(β̂∗(t)). (17)

The iterations using Equation (17) are performed until convergence is attained. Subse-
quently, the log-likelihood (10) is evaluated at θ̂ = (β̂∗

′
, δ̂1)

′. The values of δ1 and β∗, which
maximize the log-likelihood function, are selected as the estimates for δ̂1 and β̂∗.

The proposed estimation procedure not only removes the need to choose an initial
value for δ1 but also searches through a fair number of δ1 values and selects the solution
which maximizes (10). This approach is similar to a grid-search approach that is widely
adopted in the threshold or change-point regression literature. It is useful to search for the
solution when there is no closed-form solution for the parameter with acceptable computa-
tional costs when performing the grid-search approach for one parameter—however, the
computational costs for the grid search procedure increase as the number of treatments
increases. Therefore, if the number of treatments is more than 2, we apply the estimation
procedure as described in Equation (16).

In the next subsection, we will present some simulation examples to evaluate the
AbRelaTEs model’s performance.

Simulation

In this section, some simulation studies are conducted to assess the performance of
the AbRelaTEs model. We considered a similar data structure as in our real data examples
where there are two treatment groups (treatment and control)—each group having a similar
number of patients/participants. We compared the performances of the AbRelaTEs model
and logistic regression model in terms of their estimation and classification rates.

To compare the classification rates of the AbRelaTEs model and logistic regression
model, we produced 1000 data simulated with n = 1000 using different parameter values.
Subsequently, the sensitivity and specificity for 1000 different simulations were computed
for each model and the results are displayed using box plots. The first two covariates xi1
and xi2 are independently simulated from a normal distribution with a mean of 0 and a
variance of 1. The third covariate xi3 is simulated from a Bernoulli distribution. We also
include the interaction term between the treatment effects and the first covariate ti1xi1. The
coefficient parameters are simulated from a uniform distribution from −2.5 to 2.5 (β j,0 ∼
Uniform(−2.5, 2.5) for j = 1, 2, 3, 4). The absolute and relative treatment effect parameters
are simulated using τ1,0 ∼ Uniform(0, 2) and δ1,0 ∼ Uniform(−0.7, −0.3) with τ2,0 = −τ1,0
and δ2,0 = −δ1,0. In addition, we produced another simulation with δ1,0 ∼ Uniform (0.3,
0.7) and all other settings remain unchanged.

The simulation procedure is similar to the classical logistic regression model. Firstly,
the success probability shown below is computed using the specified settings for the
parameter values. For each patient/participant i in the treatment group, the success
probability is:

πij =
exp[(µ0 + τj,0 + x′ijβ0)(1 + δj,0)]

1 + exp[(µ0 + τj,0 + x′ijβ0)(1 + δj,0)]
.

The binary response variable is generated from Bernoulli experiments with success
probability πij. Once the binary responses are generated for each patient/participant,
the coefficients are estimated using the estimation procedure we described earlier in this
section. The sensitivity and specificity for the 1000 data simulated from different parameter
values are then computed for each model.

Subsequently, we present the simulation settings for estimation purposes. The number
of variables considered in our model setup is p = 4. The covariates xij are independently
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simulated from a normal distribution with a mean of 0 and a variance of 1 (xij ∼ N(0, 1)).
The coefficients for the covariates are set to β0 = (−0.5, 0.5,−0.5, 0.5)′. We considered both
absolute and relative treatment effects where the coefficients of the absolute and relative
treatment effects are set to τ1,0 = −1, τ2,0 = 0 and δ1,0 = −0.5, δ2,0 = 0. Additionally, we
also considered δ1,0 = −0.3, 0.3, 0.5 as other parameter settings remain unchanged. The
number of observations was set to n = 300, 500, 700, 1000. The simulation and estimation
procedures were similarly performed as described above. In total, 1000 simulation runs
were conducted for each of the settings. The averages of the estimated coefficients, standard
deviations, standard errors and coverage probabilities were reported for both models.
Similar quantities were computed and reported for the classical logistic regression.

We also tested our model performance by simulating data from the logistic regression
model with τ1,0 = −1, τ2,0 = 0 and β0 = (−0.5, 0.5,−0.5, 0.5)′ with all other settings
remain unchanged. In addition, we also considered the case when the absolute treatment
effect was not significant and the relative treatment effect was significant. We set τ1,0 = 0
as all other settings remain unchanged.

Furthermore, we presented simulation results to demonstrate the performance of the
AbRelaTEs model when interaction effects exist. Two covariates and two interaction terms
were considered with coefficients set to β0 = (−0.5, 0.5,−0.5, 0.5)′. The interaction terms
considered are the interaction effects between the treatment effects and covariates, that
are ti1xi1 and ti1xi2 using the notations introduced in Section 3. The interaction terms are
included in the covariate matrix in model (2) by the design of the matrix. The absolute and
relative treatment effects are similarly set to τ2,0 = −τ1,0 and δ2,0 = −δ1,0.

Based on Figures 2 and 3, the box plots show that the sensitivity and specificity
are overall higher for the AbRelaTEs model based on the first quartiles, medians and
third quartiles with similar variabilities between the AbRelaTEs and logistic regression
models, suggesting that the AbRelaTEs model produces results with improved sensitivity
and specificity when the relative treatment effects exist in the simulated datasets. The
findings are reasonable since both models are based on the logistic regression model for
binary classification which is the same type of classifier to achieve the optimal separation
between two classes. Moreover, the relative treatment effects in the AbRelaTEs model
helps improve the results for some data points in a certain range for continuous variables
or of similar values for discrete variables (i.e., individualized effects), resulting in generally
better sensitivity and specificity rates for the AbRelaTEs model, which were discussed in
previous sections.

Figure 2. Box plots are displayed based on the sensitivity in panel (a) and specificity in panel
(b) computed for the AbRelaTEs and logistic models over 1000 datasets simulated using different
parameter values with δ1,0 simulated from a uniform distribution from −0.7 to −0.3.
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Figure 3. Box plots are displayed based on the sensitivity in panel (a) and specificity in panel
(b) computed for the AbRelaTEs and logistic models over 1000 datasets simulated using different
parameter values with δ1,0 simulated from a uniform distribution from 0.3 to 0.7.

The results are shown in Table 1 for the case of τ1,0 = −1, δ1,0 = −0.3 whereas
the results are given in the supplementary file for the cases of δ1,0 = −0.5, 0.3, 0.5. The
optimization is mainly based on the Newton–Raphson algorithm in model (17). The code
can be obtained from the authors upon request or downloaded from Github. Based on the
results in Table 1, the mean estimate for δ1 improves and approaches −0.3 as n increases
from 300 to 1000. It was also observed that the standard deviation and standard error
for the relative effect term decreases as the sample size increases. Similarly, the average
estimate, standard deviation, and standard error improve for τ1 as n increases. For other
coefficients, the average estimates are already closed to the specified coefficients β0 =
(−0.5, 0.5,−0.5, 0.5)′ when n = 500 whereas the standard deviations and standard errors
improve as the sample size increases. On the other hand, the estimates for the coefficients
using the logistic regression model are similar for all sample sizes. One interesting finding
is that the coverage probability for the absolute effect term τ1 decreases from 0.690 to 0.279
for the logistic regression model as the sample size increases. This significant observation
suggests that the logistic regression model might fail to capture or explain the absolute
treatment effect when the relative treatment effect is significant as the sample size increases.
We will further explore this aspect in the real data examples. Similar findings were also
observed for the cases δ1,0 = −0.5, 0.3, 0.5.

In addition, Table 2 shows that the AbRelaTEs model performance is comparable to
that of the logistic regression model when δ1,0 = 0 (i.e., no relative treatment effects). It
was observed that the average estimate for δ1 significantly improves as the sample size
increases with improved standard deviation and standard error. The coefficient estimates
obtained from the AbRelaTEs model were seen to be comparable to the logistic regression
model even when n = 300. The standard deviations and standard errors improve as the
sample size increases. Similar findings are observed for the case of τ1,0 = 0 (i.e., no absolute
treatment effects) and δ1,0 = −0.5,−0.3, 0, which are shown in the supplementary file.
The coverage probability of the treatment effect using the logistic regression decreases as
the magnitude of the relative treatment effect increases, which suggests that the logistic
regression model might fail to capture any treatment effects if the relative treatment effect
is significant. These findings suggest that the AbRelaTEs model can also model datasets
when the relative treatment effect is not significant. This will also further be shown and
discussed using the MEPARI-2 dataset in the real data analysis part.
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Table 1. Estimate, standard deviation (SD), standard error (SE), and coverage probability (CP) when
τ1,0 = −1 and δ1,0 = −0.3 with 1000 simulation runs for the AbRelaTEs model and logistic regression.

AbRelaTEs Model Logistic Regression Model
n Parameter Estimate SD SE CP Estimate SD SE CP

300 δ1 −0.266 0.272 0.274 0.937 - - - -
τ1 −1.100 0.517 0.501 0.933 −0.737 0.195 0.190 0.690
β1 −0.514 0.178 0.173 0.949 −0.430 0.132 0.134 0.920
β2 0.532 0.179 0.176 0.945 0.444 0.134 0.133 0.920
β3 −0.509 0.171 0.173 0.957 −0.428 0.134 0.135 0.909
β4 0.516 0.182 0.174 0.944 0.432 0.140 0.136 0.908

500 δ1 −0.274 0.215 0.206 0.945 - - - -
τ1 −1.079 0.381 0.359 0.941 −0.752 0.152 0.146 0.588
β1 −0.509 0.136 0.131 0.949 −0.429 0.104 0.102 0.885
β2 0.504 0.134 0.133 0.944 0.425 0.104 0.103 0.876
β3 −0.508 0.141 0.132 0.935 −0.427 0.108 0.104 0.879
β4 0.509 0.134 0.133 0.949 0.429 0.103 0.102 0.893

700 δ1 -0.273 0.183 0.172 0.942 - - - -
τ1 −1.023 0.292 0.283 0.941 −0.731 0.126 0.123 0.418
β1 −0.502 0.115 0.111 0.936 −0.426 0.090 0.088 0.840
β2 0.502 0.108 0.110 0.952 0.427 0.083 0.086 0.875
β3 −0.506 0.121 0.113 0.938 −0.430 0.094 0.087 0.848
β4 0.509 0.115 0.112 0.948 0.431 0.092 0.087 0.857

1000 δ1 −0.297 0.144 0.139 0.943 - - - -
τ1 −1.039 0.248 0.239 0.947 −0.732 0.108 0.102 0.279
β1 −0.508 0.094 0.092 0.951 −0.427 0.073 0.072 0.824
β2 0.506 0.095 0.093 0.945 0.425 0.073 0.073 0.823
β3 −0.505 0.092 0.094 0.957 −0.424 0.071 0.071 0.802
β4 0.510 0.091 0.093 0.954 0.427 0.071 0.070 0.828

Table 2. Estimate, standard deviation (SD), standard error (SE), and coverage probability (CP) when
τ1,0 = −1 and δ1,0 = 0 with 1000 simulation runs for the AbRelaTEs model and logistic regression.

AbRelaTEs Model Logistic Regression Model
n Parameter Estimate SD SE CP Estimate SD SE CP

300 δ1 0.035 0.302 0.338 0.928 - - - -
τ1 −1.063 0.367 0.370 0.959 −1.013 0.211 0.203 0.946
β1 −0.515 0.164 0.163 0.950 −0.507 0.138 0.141 0.955
β2 0.531 0.164 0.165 0.950 0.524 0.141 0.142 0.958
β3 −0.512 0.157 0.162 0.964 −0.506 0.140 0.141 0.960
β4 0.519 0.168 0.164 0.946 0.512 0.147 0.142 0.954

500 δ1 0.034 0.253 0.258 0.944 - - - -
τ1 −1.048 0.275 0.275 0.960 −1.026 0.159 0.157 0.948
β1 −0.510 0.127 0.122 0.948 −0.508 0.111 0.107 0.953
β2 0.506 0.124 0.121 0.949 0.504 0.107 0.109 0.952
β3 −0.509 0.129 0.120 0.946 −0.505 0.111 0.108 0.951
β4 0.509 0.125 0.123 0.944 0.507 0.109 0.108 0.947

700 δ1 0.028 0.211 0.216 0.959 - - - -
τ1 −1.017 0.228 0.225 0.943 −1.005 0.129 0.131 0.951
β1 −0.504 0.108 0.103 0.947 −0.504 0.095 0.092 0.944
β2 0.503 0.100 0.101 0.959 0.503 0.087 0.090 0.965
β3 −0.506 0.112 0.107 0.945 −0.505 0.097 0.091 0.934
β4 0.509 0.106 0.104 0.945 0.509 0.094 0.092 0.948

1000 δ1 0.007 0.177 0.176 0.943 - - - -
τ1 −1.026 0.192 0.189 0.951 −1.006 0.109 0.110 0.955
β1 −0.509 0.089 0.086 0.949 −0.505 0.077 0.075 0.946
β2 0.506 0.088 0.087 0.951 0.502 0.075 0.073 0.951
β3 −0.505 0.087 0.089 0.952 −0.502 0.076 0.077 0.962
β4 0.509 0.085 0.081 0.952 0.505 0.074 0.078 0.965

The performance of the AbRelaTEs model is desirable when interaction effects exist
as shown in Table 3. On the other hand, the estimates of the coefficients for the treatment
effects, covariates, and interaction effects are similar for varying sample sizes. The coverage
probabilities for the treatment effect in the logistic regression model are also similar which
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are approximately 94% for different sample sizes and the coefficient estimates for the
treatment effect are similar to the coefficient estimates for the absolute treatment effect in the
AbRelaTEs model. However, as the sample size increases, the coverage probabilities for the
covariates and interaction terms substantially decrease from 66% to approximately 20%. In
Table 4, the AbRelaTEs model outperforms the logistic regression model when interaction
effects exist with the relative treatment effect being 0.5—as observed in Table 4. The
coefficient estimates are similar for the treatment effects, covariates, and interaction effects
for different sample sizes using the logistic regression model. The coverage probabilities for
the parameters decrease as the sample size increases. The coverage probability decreases
from approximately 82% to 40% as the sample size increases from 300 to 1000. These
suggest that the logistic regression model is able to capture the absolute treatment effect
but the performance is poor in capturing the covariates and interaction effects for a larger
sample size when δ1,0 = −0.5 and the logistic regression model is poor in capturing the
absolute treatment effect when δ1,0 = 0.5. For a smaller magnitude of the relative treatment
effects, the performance of the logistic regression is reasonable.

Table 3. Estimate, standard deviation (SD), standard error (SE), and coverage probability (CP) when
τ1,0 = −1 and δ1,0 = −0.5 with 1000 simulation runs for the AbRelaTEs model and logistic regression
with two covariates and two interaction terms.

AbRelaTEs Model Logistic Regression Model
n Parameter Estimate SD SE CP Estimate SD SE CP

300 δ1 −0.512 0.145 0.147 0.956 - - - -
τ1 −1.030 0.145 0.143 0.950 −0.995 0.140 0.137 0.949
β1 −0.594 0.397 0.377 0.958 −0.295 0.147 0.135 0.669
β2 0.587 0.365 0.366 0.958 0.295 0.145 0.137 0.658
β3 −0.595 0.388 0.377 0.957 −0.296 0.141 0.139 0.670
β4 0.588 0.363 0.366 0.962 0.295 0.138 0.139 0.681

500 δ1 −0.512 0.130 0.127 0.947 - - - -
τ1 −1.020 0.124 0.123 0.952 −0.987 0.121 0.118 0.939
β1 −0.575 0.291 0.281 0.958 −0.297 0.122 0.120 0.587
β2 0.569 0.310 0.283 0.950 0.296 0.124 0.121 0.580
β3 −0.573 0.290 0.281 0.954 −0.295 0.123 0.123 0.552
β4 0.569 0.311 0.283 0.952 0.295 0.129 0.120 0.573

700 δ1 −0.498 0.089 0.089 0.953 - - - -
τ1 −1.011 0.084 0.086 0.954 −0.985 0.084 0.083 0.943
β1 −0.522 0.161 0.156 0.950 −0.292 0.088 0.082 0.304
β2 0.526 0.159 0.155 0.955 0.295 0.083 0.081 0.305
β3 −0.524 0.157 0.158 0.953 −0.295 0.084 0.085 0.331
β4 0.527 0.161 0.155 0.951 0.296 0.087 0.084 0.332

1000 δ1 −0.506 0.076 0.080 0.959 - - - -
τ1 −1.004 0.077 0.076 0.956 −0.977 0.075 0.074 0.938
β1 −0.523 0.142 0.140 0.957 −0.291 0.076 0.074 0.210
β2 0.528 0.136 0.141 0.956 0.295 0.073 0.072 0.205
β3 −0.523 0.138 0.142 0.959 −0.292 0.073 0.071 0.194
β4 0.525 0.137 0.141 0.960 0.293 0.075 0.073 0.208

From these simulation examples, we showed that the AbRelaTEs model outperforms
the logistic regression under no interaction/with interaction effect settings. We note that δj
should not be interpreted as interaction effects as used in the classical logistic regression
models based on our theoretical arguments and numerical results (i.e., it is truly a relative
effect indicator). In addition, we also demonstrated that the AbRelaTEs model was able
to estimate the parameters simulated by the logistic regression (i.e., no relative treatment
effect). In addition, the estimates produced by the logistic regression model will result
in incorrect log odds and odds ratio as the model is incapable of capturing the relative
treatment effects, as shown in the simulation results. Consequently, decision making
and developing an optimal treatment plan based on the log odds and odds ratio will be
challenging. These simulation examples suggest that the AbRelaTEs model can be used as
a new benchmark model, as mentioned in the previous section. In the subsequent section,
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we will show that the AbRelaTEs model is able to capture significant treatment effects
through either the absolute or relative or both ways.

Table 4. Estimate, standard deviation (SD), standard error (SE), and coverage probability (CP) when
τ1,0 = −1 and δ1,0 = 0.5 with 1000 simulation runs for the AbRelaTEs model and logistic regression
with two covariates and two interaction terms.

AbRelaTEs Model Logistic Regression Model
n Parameter Estimate SD SE CP Estimate SD SE CP

300 δ1 0.503 0.147 0.147 0.956 - - - -
τ1 −1.043 0.178 0.173 0.948 −0.852 0.139 0.142 0.818
β1 −0.530 0.235 0.233 0.956 −0.622 0.159 0.159 0.905
β2 0.519 0.225 0.235 0.959 0.607 0.154 0.158 0.926
β3 −0.523 0.236 0.231 0.951 −0.619 0.155 0.159 0.905
β4 0.518 0.237 0.232 0.943 0.612 0.156 0.158 0.902

500 δ1 0.505 0.133 0.127 0.936 - - - -
τ1 −1.030 0.146 0.148 0.955 −0.843 0.120 0.122 0.741
β1 −0.525 0.193 0.199 0.957 −0.622 0.128 0.137 0.898
β2 0.518 0.197 0.195 0.953 0.615 0.137 0.135 0.883
β3 −0.525 0.193 0.194 0.952 −0.622 0.133 0.136 0.905
β4 0.523 0.201 0.197 0.953 0.619 0.139 0.137 0.868

700 δ1 0.506 0.089 0.089 0.954 - - - -
τ1 −1.015 0.102 0.103 0.951 −0.836 0.083 0.085 0.518
β1 −0.503 0.134 0.130 0.952 −0.605 0.094 0.094 0.820
β2 0.511 0.127 0.128 0.957 0.612 0.092 0.095 0.807
β3 −0.513 0.131 0.127 0.950 −0.610 0.093 0.095 0.804
β4 0.513 0.127 0.129 0.950 0.613 0.092 0.096 0.812

1000 δ1 0.501 0.079 0.080 0.955 - - - -
τ1 −1.004 0.091 0.091 0.957 −0.830 0.075 0.076 0.394
β1 −0.500 0.117 0.112 0.947 −0.601 0.084 0.084 0.804
β2 0.506 0.118 0.113 0.956 0.606 0.085 0.083 0.771
β3 −0.503 0.110 0.112 0.953 −0.603 0.079 0.082 0.800
β4 0.504 0.113 0.113 0.955 0.604 0.082 0.084 0.799

5. Real Data

We present the statistical analyses of four different datasets using our model and the
classical logistic regression model. We aimed to show the flexibility and interpretability
aspects of the AbRelaTEs model in handling different clinical trials datasets with detailed
analyses. In addition, it is also important to note that the AbRelaTEs model is capable of
capturing the treatment effects of a randomized controlled trial through either the relative
or the absolute treatment effect terms, which we will show through four real data examples
in the following subsections. Table 5 shows the three possible outcomes of whether a
treatment effect is significant in the AbRelaTEs model.

Table 5. Possible combinations if a treatment effect is significant using the AbRelaTEs model.

Absolute Treatment Effect Relative Treatment Effect

Significant Non significant
Non significant Significant

Significant Significant

5.1. Sepsis Data

This section will explore a randomized controlled trial on the use of synbiotics as
a treatment for sepsis. The occurrence of sepsis is due to systemic inflammation and
circulatory compromise by means of infection. Sepsis is a leading cause of death in
infants with a 5–60% fatality rate [19]. Currently, there are no efficient ways to prevent
sepsis. A dataset was obtained from a randomized controlled trial study conducted
on 4556 rural Indian newborns [20]. The infants were randomized into the synbiotic
group (2278) and placebo (2278). Among the 4556 infants, 4326 completed the study.
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Synbiotics are combinations of prebiotics and probiotics (Lactobacillus plantarum plus
fructooligosaccharide) in the trial. The primary outcome of interest is the combination of
sepsis and death.

The covariates that are significant in our analysis are birth weights (in grams) and
sex. The weight variable is transformed using a reciprocal transformation. The estimation
results based on the AbRelaTEs model and logistic regression model are shown in Table 6.
The results show that the variables are all significant for the logistic regression model
except for the variable birth weight. On the other hand, only the absolute treatment effect
term is not significant in our model, while other covariates are significant. This illustrates
that the relative treatment effect is significant for the data. Table 7 displays our model’s
estimation results after removing the absolute treatment effect term. The results show
that the relative treatment effect term and the covariates are significant. There is one
difference in the coefficient sign of the relative treatment effect term we will address in the
interpretation part.

Table 6. Estimation results from the AbRelaTEs model and the classical logistic regression for
sepsis data.

Variables AbRelaTEs Model Logistic Regression Model

Coefficient Standard Error p-Value Coefficient Standard Error p-Value

Relative Effect −0.827 0.253 0.001 - - -
Intercept - - - −2.545 0.510 <0.0001

Absolute Effect −14.257 24.235 0.556 −0.553 0.122 <0.0001
Birth Weight −7.034 0.322 <0.0001 −0.036 1.359 0.979

Sex 0.406 0.147 0.0005 0.429 0.122 0.0004

Table 7. Estimation results from the AbRelaTEs model after removing the absolute treatment effect.

Variables AbRelaTEs Model

Coefficient Standard Error p-Value

Relative Effect 0.240 0.059 <0.0001
Birth Weight −6.755 0.274 <0.0001

Sex 0.225 0.105 0.033

The log-odds of infants having sepsis or death change by (−6.755) ∗ (1 + 0.240) =
−8.376 (synbiotic) and −6.755 (control) for every unit increase in weight. The odds of
having sepsis or death in infants are exp(0.225 ∗ (1 + 0.240)) = 1.322 (synbiotic) and
exp(0.225) = 1.252 (control) higher for the male infants than the female infants. We now
interpret the results by comparing them between treatment effects. After computing the
odds ratios for each weight and gender, the odds ratios are consistently smaller than 1,
which shows that the treatment is effective for all weight groups and both genders. The
interpretation is also consistent with that of the logistic regression model, even though the
treatment effect appears as a relative term in our model. Furthermore, after removing the
absolute treatment effect, the positive coefficient sign of the relative effect term without the
absolute treatment term implies that there is a multiplier effect on the log-odds uniformly
for all infants receiving the treatment. Additionally, the sensitivity and specificity for the
AbRelaTEs model are 60.5% and 50.7% while the sensitivity and specificity are 39.4% and
75.6% for the logistic regression model. Both interpretations and results for these data
show that the AbRelaTEs model not only gives interpretations that are consistent with
the logistic regression model but also shows that the birth weight variable is actually a
significant predictor under our framework. On the other hand, the sensitivity of 39.4%,
which is smaller than 50%, calculated from the logistic regression, is problematic as it leads
to conclude that synbiotics are not effective and that the interpretation can be wrong.
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5.2. MEPARI-2 Data

In this subsection, we will explore a randomized controlled trial on meditation or
exercise for an acute respiratory infection prevention (MEPARI-2) dataset [21]. It is of
interest to investigate whether interventions such as meditation and exercise help reduce
acute respiratory infection (ARI) outcomes and whether self-reported psychosocial scores
from the participants are associated with ARI outcomes. Out of 413 participants enrolled
in the study, there were 389 data points after removing the participants with missing
information and incomplete data during the study.

Based on the estimation results in Table 8, the exercise group was found to be signifi-
cant and the meditation group was removed from the model since it was not significant.
The results show that the relative treatment effect term was not significant in the AbRelaTEs
model with a high p-value. In addition, the coefficient estimates for the treatment group,
age, self-reported psychosocial scores, and interaction terms are closed to the estimates
from the logistic regression model. This shows that the AbRelaTEs model produces results
that are similar to the logistic regression model when the relative treatment effect term
is not significant, and the absolute treatment effect is significant. We also note that the
coefficients, standard errors, and p-values are the same after we remove the relative treat-
ment effect term from our model. The sensitivity and specificity for both models are the
same which are 56.8% and 59.5%, respectively. Moreover, since the interpretations under
this scenario will be similar to the interpretations using the logistic regression model by
interpreting each predictor’s effects, we will not discuss it further.

Table 8. Estimation results from the AbRelaTEs model and the classical logistic regression using the
MEPARI2 dataset.

Variables AbRelaTEs Model Logistic Regression Model

Coefficient Standard Error p-Value Coefficient Standard Error p-Value

Relative Effect 0.011 0.509 0.983 - - -
Intercept - - - - - -

Absolute Effect −1.263 0.596 0.034 −1.262 0.594 0.034
Age −0.019 0.011 0.068 −0.019 0.009 0.034

MASS −0.036 0.225 0.872 −0.033 0.143 0.819
SF12 0.228 0.174 0.190 0.225 0.097 0.021

MASS × Exercise 0.305 0.139 0.028 0.306 0.133 0.021
Note: MASS × Exercise is the interaction term between massand exercise group.

5.3. Influenza Data

In this subsection, we investigated a flu vaccination dataset [22]. Vaccination is
essential in preventing the infection and transmission of influenza viruses. To investigate
the effect of vaccinating children in the household environment, 796 households were
enrolled in this study and randomized into the vaccination group (479 households) or
control group (317 households) with at least one child. Since there are adults who are not
vaccinated assigned to the treatment group and adults who are vaccinated in the control
group, we focused on the effect of vaccination on children. The response variable of interest
is whether the individual is infected or not.

The covariates that we found to be significant and include in our analysis are round
(1,2,3) and the HAI titer level (0,1,2). The estimation results for our model and the logistic
regression model are given in Table 9. The p-values are not significant for the treatment
effect (in logistic regression) and round (in AbRelaTEs model). The results based on the
AbRelaTEs model show the relative, absolute treatment effects and HAI titer level are
significant. Since there are three rounds of sera collections in the study, we retained the
variable as it indicates the period of time the data are collected though it is not significant.

For every increase in HAI titer level, the children’s log-odds have an influenza change
by −0.59 ∗ (1− 0.242) = −0.447 for the vaccinated group and decreases by 0.59 for the
control group. After computing the overall effects, it was found that the vaccinated
treatment was beneficial for all HAI titer levels across different rounds. In addition,
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the sensitivity and specificity for the AbRelaTEs model are 62.5% and 64.6% while the
sensitivity and specificity for the logistic regression model is 33.9% and 74.4%. Therefore,
vaccination is highly recommended for all children based on the results. Again, a sensitivity
of 33.9% calculated from the logistic regression may be meaningless.

Table 9. Estimation results from the AbRelaTEs model and the classical logistic regression for the flu
vaccination data.

Variables AbRelaTEs Model Logistic Regression Model

Coefficient Standard Error p-Value Coefficient Standard Error p-Value

Relative Effect −0.242 0.117 0.039 - - -
Intercept - - - −1.661 0.379 <0.0001

Absolute Effect −1.596 0.435 0.0002 −0.516 0.319 0.106
Round −0.280 0.192 0.144 −0.272 0.164 0.097

HAI titer level −0.590 0.256 0.021 −0.534 0.204 0.009

5.4. COVID-19 Data

Our following statistical analysis was to explore a randomized controlled trial on
the use of the hydroxychloroquine drug on the novel coronavirus disease (COVID-19).
There have been many studies on the novel coronavirus disease 2019 (COVID-19) since its
outbreak. To date, there are still many ongoing types of research with continued efforts
to find effective antiviral treatments for patients with COVID-19. The dataset considered
for our analysis was obtained from one of the studies on hydroxychloroquine [23]. The
purpose of the study was to investigate whether hydroxychloroquine can prevent symp-
tomatic infection after SARS-CoV-2 exposure. A total of 821 patients with occupational
or household exposure to people with confirmed COVID-19 infection were enrolled in
the study. The patients were randomized into hydroxychloroquine and placebo within
four days of exposure. The primary outcome of the study was the incidence of laboratory-
confirmed COVID-19 infections. The predictors considered for the analysis are treatments
(hydroxychloroquine and placebo), age, and weight. Additionally, other independent
variables include data on patients having symptoms (cough, shortness of breath, difficulty
breathing, fever, chills, rigors, myalgia, headache, sore throat, new olfactory, taste disorders,
and diarrhea). After removing patients with missing information, there were 746 patients
for the statistical analysis. The number of patients for each variable in each treatment is
presented in Table 10.

Table 10. Number of patients with symptoms/outcomes in different treatments.

Variables Hydroxychloroquine (n = 378) Placebo (n = 368)

Laboratory-confirmed diagnosis 10 9
Patients with symptoms 55 58

The estimation results using the classical logistic regression model and the AbRelaTEs
model are presented in Table 11. In addition, the weight variable is transformed using a
reciprocal transformation (weight∗ = 1/(weight/500)) where weight∗ is the transformed
variable. The scaling factor is used here so that the magnitude of the estimated coefficient is
not large. BMI is not available as the height data are not available. The results show that the
absolute treatment effect is not significant using the classical logistic regression model and
all predictors except age and number of symptoms are also not significant. These logistic
regression-based results suggest that the hydroxychloroquine treatment is not significant in
predicting the probability that a patient who has COVID-19 infection. They are consistent
with other earlier and recent studies on the hydroxychloroquine drug [24–26] which show
that the hydroxychloroquine treatment has no clinical benefits or does not prevent illness
compatible with COVID-19 [23]. In contrast to our analysis, the aforementioned studies
analyzed the data using statistical methods such as survival models, hazard/risk ratios and



Entropy 2021, 23, 1517 19 of 32

Fisher’s exact test which is not directly comparable in our case. However, compared with
the fitted AbRelaTEs model, the resulting p-values associated with logistic regression in
Table 11 are doubtful; they lack interpretability, which raises questions concerning whether
the logistic regression model is correctly specified and has sufficient detecting power to
detect the predictors’ effectiveness.

Table 11. Estimation results from the AbRelaTEs model and the classical logistic regression for
COVID-19 data.

Variables AbRelaTEs Model Logistic Regression Model

Coefficient Standard Error p-Value Coefficient Standard Error p-Value

Relative Effect −0.513 0.149 0.0005 - - -
Intercept - - - −2.353 1.610 0.144

Absolute Effect −3.279 1.462 0.024 0.406 0.397 0.306
Age −0.099 0.025 <0.001 −0.059 0.027 0.030

Weight∗ −0.947 0.369 0.010 −0.033 0.390 0.932
No. of symptoms 0.833 0.213 <0.001 0.552 0.086 <0.001

Symptoms × Treatment 0.463 0.204 0.022 0.116 0.082 0.158
Note: Symptoms × Treatment is the interaction term between the COVID-19 symptoms and treatments.
Weight∗ is the transformed weight variable.

We will now interpret the results of our model shown in Table 11. The interpretations
of the treatment effects can be made in two ways—between and within treatment groups.
For within treatment groups, the effect of each covariate is illustrated and discussed using
the odds. For a unit increase in age, the log-odds of people having COVID-19 change by
−0.099 ∗ (1− 0.513) = −0.048 (hydroxychloroquine) and −0.099 ∗ (1 + 0.513) = −0.150
(placebo). The log-odds changes are −0.947 ∗ (1− 0.513) = −0.461 (hydroxychloroquine)
and −0.947 ∗ (1 + 0.513) = −1.433 for a unit increase in weight∗, respectively. Again,
the significance of the age and weight is due to the effectiveness of hydroxychloroquine
relative to placebo. Furthermore, the log-odds of people contracting COVID-19 increased
by (0.833 + 0.463) ∗ (1− 0.513) = 0.631 (hydroxychloroquine) and (0.833− 0.463) ∗ (1 +
0.513) = 0.560 (placebo) for every additional number of symptoms. The odds presented for
each treatment are not directly comparable between two treatments. The effects of between
treatment effects are discussed later.

With regard to the between treatment group interpretations, all covariates are consid-
ered when making comparisons between the treatment groups. The interpretations are
made using the overall effects for a group of patients in certain age and weight groups with
or without symptoms (individualized effects). We first made interpretations for patients
who did not show any symptoms. The odds ratios for patients were compared between the
hydroxychloroquine and placebo groups to identify patients of the age group and weight
range which would benefit from the treatment. For instance, the odds ratio for patients
with no symptoms can be computed as follows:

Odds(hydroxychloroquine)
Odds(placebo)

=
exp{(−3.279− 0.099age− 0.947weight∗)(1− 0.513)}
exp{(3.279− 0.099age− 0.947weight∗)(1 + 0.513)} , (18)

where Odds(hydroxychloroquine) and Odds(placebo) are the odds of having COVID-19
for patients receiving the respective treatments. We note that the results are not evident
and certain as to which treatment group consistently outperforms the other for all age
and weight groups. It is also worth noting that the hydroxychloroquine treatment is only
beneficial for certain age and weight groups which are our goal to identify here. The
hydroxychloroquine treatment is more effective if the odds ratio is less than 1 and is less
effective if the odds ratio is greater than 1. The odds ratios are shown in Table 12 for
selective age, weight variable, and symptoms since the odds ratios of other age, weight,
and symptom groups can be similarly computed. For instance, for patients who do not have
any symptoms with the age of 30 and weight (pounds) between 139 and 385, the odds ratio
is between 0.106 and 0.991. The odds ratio is between 0.114 and 0.921 for patients who have
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one symptom with the same age and weight between 145 and 385. We will first interpret
the results for patients who do not show any symptoms. The odds of having COVID-19 are
lower for patients receiving hydroxychloroquine treatment with ages ranging from 18 to 25
and weight above 122 pounds. The hydroxychloroquine treatment has a lower odds than
the placebo in contracting the disease for patients who weigh more than 139 pounds and in
the age group of 25–30 with no symptoms. Furthermore, patients who are in the age range
of 30–40 and weigh at least 198 pounds have a lower odds ratio. Finally, for patients aged
between 40 and 50 that weigh more than 335 pounds, the odds of contracting COVID-19
are lower for the hydroxychloroquine treatment group.

Subsequently, we will interpret the results for patients who show one symptom. Pa-
tients who are in the age group of 18–25 and weigh more than 105 pounds have lower odds
of contracting COVID-19 in the hydroxychloroquine treatment. The odds of contracting the
disease are lower for patients in the age range between 25 and 30 and those with weights
above 145 pounds receiving hydroxychloroquine treatment. The odds are lower for the
hydroxychloroquine treatment group within the age groups of 30–40 and 40–50, who are at
least 202 pounds and 348 pounds in the respective age group. Similar interpretations can
be made for patients who show up to ten symptoms (2, 3, . . . , 10). It is also important to
note that a more accurate weight range can be obtained for a given age so that the effects of
the hydroxychloroquine treatment can be further explored. We consider a reasonable age
range for easier interpretations as a group and identify the corresponding weight range
where the hydroxychloroquine treatment is deemed beneficial.

Figure 4 illustrates the estimated probabilities of having COVID-19 computed using
the estimated coefficients from the AbRelaTEs model against the covariates in the model
(treatments, age, weight and number of symptoms) for each patient in the dataset. The com-
parisons and discussions made above based on the odds are similarly observed in Figure 4.
The interpretations based on the odds of contracting the disease are similar to the estimated
probabilities that a patient is infected. However, the figure provides additional insights. It
is observed that there are two separate groups of patients undergoing hydroxychloroquine
treatment based on the estimated probabilities. The separation is more apparent when
looking at the plot for treatments, age, and weight. Further investigation shows that the
group of patients with higher estimated probabilities experience all ten symptoms while
another group of patients with lower estimated probabilities of contracting COVID-19
show fewer symptoms. These suggest the fact that the hydroxychloroquine treatment
helps lower the probability of having COVID-19 with fewer symptoms. Furthermore,
the sensitivity and specificity for the AbRelaTEs model are 78.9% and 86.2% while the
sensitivity and specificity are 73.7% and 90.1% for the logistic regression model. Based
on the significant results and interpretations, since the treatment is beneficial for a certain
group of people but not for every patient, they should consult a medical doctor before
taking the drug.

5.5. Discussion

The AbRelaTEs model not only produces significant treatment effects with better
interpretability through the real data examples but the model can also be applied to other
medical data in epidemiology. When using other medical data in epidemiology such as
in the case-control or cohort studies, it is often of interest to model the exposure and the
response by including other risk factors. The exposure in such studies can be captured
by either the absolute or relative “exposure” effect terms in the AbRelaTEs model. If the
absolute exposure effects are significant and relative exposure effects are not significant,
the interpretations are similar to the logistic regression. On the other hand, if both terms
are significant, the interpretations can be made based on “between” and “within” exposure
effects together with the risk factors. Compared to other multivariable methods such
as the logistic regression, the main advantage of the AbRelaTEs model is that it allows
researchers to interpret results based on each exposure specific to each risk factor so that a
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subgroup of individuals with exposure and a specific risk factor can be identified as having
lower/higher risk in relation to the response of interests.

Figure 4. Estimated probabilities for each patient for hydroxychloroquine treatment and placebo.

Similar to the logistic regression, the odds ratio can be reported for the AbRelaTEs
model. In addition, a more detailed odds ratio can be computed and tabulated as in
Table 12 to report which subgroups of individuals/patients could benefit the most from or
be least affected by the exposure/treatments.

With the four real data examples we presented, we summarize the essential findings of
the treatment effects that we discussed in the previous subsections in Table 13 and include
more details, e.g., covariates, response, treatment effects, to provide an overview of the
results of the four real datasets for the AbRelaTEs and logistic regression models in Table 14.
This shows that significant treatment effects are better explained in terms of absolute or
relative or both ways with increased flexibility in the AbRelaTEs model. In addition, we also
showed that the treatment effects can also be interpreted using individualized information
for each patient/participant. In contrast, the widely used multivariable methods were not
able to detect these features.

The synbiotic treatment was found to be beneficial for all infants with sepsis using the
AbRelaTEs model. The birth weights and gender of infants were found to be significant
variables in predicting sepsis. It was found that infants receiving the synbiotic treatment
have lower odds of having sepsis as compared to the control group as weight increases.
Furthermore, the odds were higher for male infants as compared to female infants for the
synbiotic and control groups.
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Table 12. Computed odds ratio between the hydroxychloroquine treatment and placebo based on
different covariate information. The weight variable is shown based on the original scale.

Age Weight (Pounds) No. of Symptoms Odds Ratio

18 103–385 0 0.031–0.991
20 108–385 0 0.038–0.977
25 122–385 0 0.064–0.970
30 139–385 0 0.106–0.991
35 163–385 0 0.177–0.986
40 198–385 0 0.294–0.968
45 246–385 0 0.489–0.998
50 335–385 0 0.814–0.983

18 105–385 1 0.034–0.973
20 110–385 1 0.041–0.966
25 124–385 1 0.069–0.977
30 145–385 1 0.114–0.921
35 167–385 1 0.190–0.986
40 202–385 1 0.316–0.990
45 255–385 1 0.525–0.992
50 348–385 1 0.874–0.999

Table 13. Summary outcomes of the treatment effects using COVID-19, influenza, sepsis, and
MEPARI-2 datasets.

Dataset Absolute Treatment Effect Relative Treatment Effect

MEPARI-2 Significant Non significant
Sepsis Non significant Significant

COVID-19 and influenza Significant Significant

Table 14. Summary outcomes of the treatment effects and covariates using COVID-19, influenza,
sepsis, and MEPARI-2 datasets for the AbRelaTEs model and logistic regression model.

Dataset Response Variables AbRelaTEs Logistic Regression

MEPARI-2 Acute respiratory infection

Relative treatment Non significant ∗ -
Absolute treatment Significant Significant

Age Significant Significant
MASS Non significant Non significant
SF-12 Significant ∗ Significant

MASS × Exercise Significant Significant

Influenza Influenza among children

Relative treatment Significant -
Absolute treatment Significant Non significant

Round Non significant Non significant
HAI titer level Significant Significant

Sepsis Deaths or sepsis in infants

Relative treatment Significant -
Absolute treatment - Significant

Birth weight Significant Non significant
Sex Significant Significant

COVID-19 COVID-19 infections

Relative Treatment Significant -
Absolute treatment Significant Non significant

Age Significant Significant
Weight Significant Non significant

No. of symptoms Significant Significant
Symptoms × Treatment Significant Non significant

Note: An aster in the table means the model is reduced to the classical logistic regression. The relative treatment
effect is not significant in the AbRelaTEs model for the MEPARI-2 dataset. The data are fitted using the AbRelaTEs
model without the relative treatment effect. The results are the same as using the logistic regression model.

Acute respiratory infection can be improved by engaging in more physical activities
(exercise group). It was found that the odds of having ARI decrease as age increases and
the MASS score increases. On the other hand, the odds of having ARI increase as the SF12
score increases.
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Additionally, the flu vaccination is recommended for children based on the AbRelaTEs
model. A higher HAI titer level was also found to lower the odds of contracting a flu.

For the COVID-19 dataset, the hydroxychloroquine treatment, symptoms, age, and
weight were found to be significant using the AbRelaTEs model. The odds of contracting
COVID-19 decrease as the age and weight∗ increase. Furthermore, a higher number of
symptoms is related to increased odds of having COVID-19. The hydroxychloroquine
treatment for COVID-19 was found to be beneficial for specific groups of patients with
certain symptoms, age, and weight, resulting in the treatment being suitable as a precision
medicine (see Table 12). Therefore, people should consult a medical doctor before taking
the drug.

6. Conclusions

In this paper, a more general logistic regression was proposed to model randomized
controlled trials, which allows us to compare different treatment effects absolutely and
relatively due to the AbRelaTEs model’s flexibilities. Our model maintains the CIPS
properties as mentioned in the introduction and is highly flexible in modeling randomized
controlled trials’ data with absolute or relative or both effects. To identify the treatment
effects, we observed the absolute and relative treatment effects. The absolute treatment
effect τj is an overall treatment effect while the relative treatment effect δj is a treatment
effect relative to the baseline control group. If τj 6= 0, there is an absolute treatment effect.
There is a relative treatment effect if δj 6= 0. In both cases, the treatment groups are effective.
In addition, the signs of the treatment effects are important. If we investigate whether
a drug is effective in curing a disease, then significant absolute treatment effect with a
positive sign implies that the drug is effective. On the other hand, if we investigate whether
a treatment is effective in lowering the likelihood of being infected by a disease, a significant
absolute treatment effect with negative sign signifies that the treatment is effective. In
both cases, δj can be positive or negative as the effectiveness of the treatment for patients
depends on the patients’ attributes which are the individualized effects. Furthermore, the
epidemiologists can compute a score based on (µ+ τj + X ′ijβ)(1+ δj). We can use a score of
0 as a benchmark, i.e., a probability threshold of 0.5. If (µ + τj + X ′ijβ)(1 + δj) > 0, then the
treatment groups are viewed as effective. If (µ + τj + X ′ijβ)(1 + δj) < 0, then the treatment
groups are viewed as ineffective. If the probability threshold is taken to a different value
other than 0.5, the cut-off value 0 should also be changed accordingly.

Furthermore, the AbRelaTEs model can be interpreted in two ways—“between” and
“within” treatment effects. When interpreting the “within” treatment effects, each individ-
ual predictor’s effects can be interpreted. Additionally, the “between” treatment effects
allow us to make interpretations using the information of all covariates from each pa-
tient/participant in the data. The overall effects of a patient or a certain group of people
sharing the same attributes known as the individualized effects are then compared between
treatments. This enables us to make recommendations if a treatment is suitable for the
general public or a specific group of people, allowing us to determine whether or not a
treatment can be treated as a precision medicine.

In addition, the AbRelaTEs model has several advantages if we consider using a
logistic regression model with treatment-specific coefficients β j for Xij given in model (19):

logit(πij) = µ + τ∗j + X ′ijβ j (19)

for i = 1, 2, ..., nj and j = 1, 2, ..., g.
There will be three additional difficulties for such a general framework (19): (1) τ∗j

may not be significant due to treatment-specific coefficients for Xij; (2) for medical data
(i.e., clinical trials), X ′ijs are often measured at the baseline, and X ′ijβ are used as baseline
characteristics in order to test whether the treatment indicator τ∗j is significant or not. In a
logistic regression model with treatment-specific coefficients, β js can be very different, and
the interpretations of µ and τ∗j can be difficult; and (3) the estimation of β js can be difficult.
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In addition, it is not feasible to define an overall relative effect for the treatment j. In
contrast, in the AbRelaTEs model, we only need to estimate the relative treatment effect δj,
and all interpretations presented in this paper are valid. Furthermore, the AbRelaTEs model
can be viewed as a bridge between the classical logistic regression model for medical data
and the logistic regression model with treatment-specific coefficients for each predictor.

Similarly, the interpretations on the “between” and “within” group effects can be
made when analyzing medical data in epidemiological studies (e.g., case-control studies
or cohort studies) using the AbRelaTEs model. The groups of individuals or people with
different exposure status or degree of exposure in epidemiology are used to study the
absolute and relative group effects in the AbRelaTEs model. The main advantage of the
AbRelaTEs model in analyzing such data is to better interpret the effects of the exposure
levels on the response variable specific to each category in the risk factors, which is known
as the “individualized” effect as discussed in the previous sections.

In addition, we showed that our model is capable of modeling the absolute and relative
treatment effects through simulation examples. Moreover, it was also shown through
four real-world randomized controlled trials data that our model is highly interpretable,
resulting in better understandings of the treatment effects. In addition, it is also established
that the model preserves desired theoretical properties such as consistency and asymptotic
normality under regularity conditions. These properties suggest that the AbRelaTEs
model can be used as a new benchmark model for modeling randomized controlled trials.
The AbRelaTEs model which considers the treatment effects can be further extended to
accommodate two-way effects.

Finally, our model can be extended to response variables being continuous or semi-
continuous, and predictors being high dimensional. We can also specify the relative effect
indicators δj to be functions of predictors. We will consider these topics in the future
research.
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Appendix A

Appendix A.1. Proofs of Theorem 1

We let the notation Uij denote Yij|Xij and f (Uij|θ) be the likelihood function for each
i, j given below:

f (Uij|θ) =
( exp[W ′

ij(δ)β∗]

1 + exp[W ′
ij(δ)β∗]

)Yij( 1
1 + exp[W ′

ij(δ)β∗]

)1−Yij

. (A1)
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Taking log of the likelihood function (A1) gives us:

log f (Uij|θ) =
{

YijW ′
ij(δ)β∗ − log{1 + exp[W ′

ij(δ)β∗]}
}

. (A2)

From the main text, the log-likelihood function can then be rewritten using (A2) as

l(θ) =
g

∑
j=1

nj

∑
i=1

log f (Uij|θ).

Before we show the consistency results, we let Qn(θ) be defined as

Qn(θ) =
1
n

g

∑
j=1

nj

∑
i=1

log f (Uij|θ). (A3)

Note that dividing the log-likelihood by n does not change the optimization in the main
text but this allows us to easily obtain the consistency results. By assumptions (A2) and
(A3), parameter identification is satisfied. Using the notations defined in the main text:

| log φ(W ′
ij(δ)β∗)|} = | log φ(0) + λ(W ′

ij(δ̃)β̃∗)W ′
ij(δ)β∗|

≤ | log φ(0)|+ λ(W ′
ij(δ̃)β̃∗)|W ′

ij(δ)β∗|

≤ | log 2|+ {1 + C|W ′
ij(δ̃)β̃∗|}|W ′

ij(δ)β∗|

≤ | log 2|+ {1 + C||Wij(δ)||2||β∗||2}||Wij(δ)||2||β∗||2

where φ(u) = eu/(1+ eu), λ(u) = φ′(u)/φ(u) and φ′(u) is the first derivative with respect
to u. The first equality is by mean value theorem. The second inequality is by triangular
inequality. Third inequality is by continuity of λ(u) and last inequality is by Cauchy–
Schwartz. By assumptions (A1) and (A2), the expectation of the moments and parameters
are bounded. Similarly, log{1− φ(W ′

ij(δ)β∗)} is also bounded and Yij is bounded too. By
Lemma 2.2 in Newey and McFadden [27], Q0(θ) has a unique maximum at θ0.

By weak law of the large number, we have point-wise convergence:

Qn(θ) =
1
n

g

∑
j=1

nj

∑
i=1

log f (Uij|θ)→p E(log f (Uij|θ)) = Qo(θ).

Additionally, note that log f (Uij|θ) is concave. By Theorem 2.7 in Newey and McFad-
den [27], θ̂→p θ0.

Appendix A.2. Proofs of Theorem 2

Condition (i) of Theorem 3.3 in Newey and McFadden [27] is satisfied by assumption
(A1); (ii) is satisfied since the likelihood function is twice continuously differentiable; (iii) is
satisfied since the moments and parameters are bounded by assumptions (A1) and (A2);
(iv) is satisfied by assumption (A3). By differentiating (A2) twice, we obtain the hessian
matrix shown below. The expectations of the moments and parameters are all bounded
by assumptions (A1)–(A2) so condition (v) is satisfied. By Theorem 3.3 in Newey and
McFadden, [27] we establish

√
n(θ̂− θ0)→D N(0, [I(θ0)]

−1), where I(θ0) is the expected
Fisher information at θ0.

The first partial derivatives of the log-likelihood are:

∂l(θ)
∂µ

=
g

∑
j=1

nj

∑
i=1

{
Yij(1 + R′ijδ)−

exp(W ′
ij(δ)β∗)

1 + exp(W ′
ij(δ)β∗)

(1 + R′ijδ)
}

,
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∂l(θ)
∂τj

=

nj

∑
i=1

{
YijTi,j(1 + R′ijδ)−

exp(W ′
ij(δ)β∗)

1 + exp(W ′
ij(δ)β∗)

Ti,j(1 + R′ijδ)
}

,

∂l(θ)
∂βk

=
g

∑
j=1

nj

∑
i=1

{
YijXik(1 + R′ijδ)−

exp(W ′
ij(δ)β∗)

1 + exp(W ′
ij(δ)β∗)

Xik(1 + R′ijδ)
}

,

∂l(θ)
∂δj

=

nj

∑
i=1

{
YijV ′ijβ

∗Ri,j −
exp(W ′

ij(δ)β∗)

1 + exp(W ′
ij(δ)β∗)

V ′ijβ
∗Ri,j

}
,

for j = 1, 2, ..., g− 1 and k = 1, 2, ..., p.
The second partial derivatives of the log-likelihood are:

∂2l(θ)
∂µ2 =

g

∑
j=1

nj

∑
i=1

{
−

exp(W ′
ij(δ)β∗)

[1 + exp(W ′
ij(δ)β∗)]2

(1 + R′ijδ)
2
}

,

∂2l(θ)
∂µ∂τj

=

nj

∑
i=1

{
−

exp(W ′
ij(δ)β∗)

[1 + exp(W ′
ij(δ)β∗)]2

Ti,j(1 + R′ijδ)
2
}

,

∂2l(θ)
∂µβk

=
g

∑
j=1

nj

∑
i=1

{
−

exp(W ′
ij(δ)β∗)

[1 + exp(W ′
ij(δ)β∗)]2

Xik(1 + R′ijδ)
2
}

,

∂2l(θ)
∂µ∂δj

=

nj

∑
i=1

{
YijRi,j −

[V ′ijβ
∗Ri,j(1 + R′ijδ)

1 + exp(W ′
ij(δ)β∗)

+ Ri,j

] exp(W ′
ij(δ)β∗)

1 + exp(W ′
ij(δ)β∗)

}
,

∂2l(θ)
∂τ2

j
=

nj

∑
i=1

{
−

exp(W ′
ij(δ)β∗)

[1 + exp(W ′
ij(δ)β∗)]2

T2
i,j(1 + R′ijδ)

2
}

,

∂2l(θ)
∂τj∂βk

=

nj

∑
i=1

{
−

exp(W ′
ij(δ)β∗)

[1 + exp(W ′
ij(δ)β∗)]2

Ti,jXik(1 + R′ijδ)
2
}

,

∂2l(θ)
∂τj∂δj

=

nj

∑
i=1

{
YijTi,jRi,j −

[ (V ′ijβ∗Ri,j)Ti,j(1 + R′ijδ)

1 + exp(W ′
ij(δ)β∗)

+ Ti,jRi,j

] exp(W ′
ij(δ)β∗)

1 + exp(W ′
ij(δ)β∗)

}
,

∂l(θ)
∂βk∂βk′

=
g

∑
j=1

nj

∑
i=1

{
−

exp(W ′
ij(δ)β∗)

[1 + exp(W ′
ij(δ)β∗)]2

XikXik′(1 + R′ijδ)
2
}

,

∂2l(θ)
∂βk∂δj

=

nj

∑
i=1

{
YijXikRi,j −

[ (V ′ijβ∗Ri,j)Xik(1 + R′ijδ)

1 + exp(W ′
ij(δ)β∗)

+ XikRi,j

] exp(W ′
ij(δ)β∗)

1 + exp(W ′
ij(δ)β∗)

}
,
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∂2l(θ)
∂δ2

j
=

nj

∑
i=1

{
−

exp(W ′
ij(δ)β∗)

[1 + exp(W ′
ij(δ)β∗)]2

(V ′ijβ
∗Ri,j)

2
}

.

The elements of the expected fisher information matrix at θ are easily obtained for
terms without Yij. Here, we will only show the elements of the expected Fisher information
matrix for terms involving Yij:

−E
(

∂2l(θ)
∂µ∂δj

)
= E

{ exp(W ′
ij(δ)β∗)

[1 + exp(W ′
ij(δ)β∗)]2

V ′ijβ
∗Ri,j(1 + R′ijδ)

}
,

−E
(

∂2l(θ)
∂τj∂δj

)
= E

{ exp(W ′
ij(δ)β∗)

[1 + exp(W ′
ij(δ)β∗)]2

(V ′ijβ
∗Ri,j)Ti,j(1 + R′ijδ)

}
,

−E
(

∂2l(θ)
∂βk∂δj

)
= E

{ exp(W ′
ij(δ)β∗)

[1 + exp(W ′
ij(δ)β∗)]2

(V ′ijβ
∗Ri,j)Xik(1 + R′ijδ)

}
,

Using the notations defined in the main text Zij = (W ′
ij(δ0), V ′ijβ

∗
0Ri,1, ..., V ′ijβ

∗
0Ri,(g−1))

′

be a (2g + p − 1) × 1, we can rewrite the expected Fisher information in the following
matrix form:

I(θ) = E{φ(W ′
ij(δ0)β∗0)[1− φ(W ′

ij(δ0)β∗0)]ZijZ′ij}. (A4)

Table A1. Estimate, standard deviation (SD), standard error (SE), and coverage probability (CP)
when τ1,0 = −1 and δ1,0 = −0.5 with 1000 simulation runs for the Absolute and Relative Treatment
Effects model and logistic regression.

Absolute and Relative Treatment Effects Model Logistic Regression Model
n Parameter Estimate SD SE CP Estimate SD SE CP

300 δ −0.476 0.236 0.232 0.944 - - - -
τ −1.268 0.574 0.568 0.922 −0.533 0.190 0.182 0.270
β1 −0.516 0.186 0.182 0.954 −0.372 0.128 0.130 0.824
β1 0.534 0.188 0.184 0.948 0.385 0.130 0.131 0.844
β1 −0.508 0.179 0.181 0.957 −0.371 0.129 0.130 0.817
β1 0.517 0.190 0.183 0.944 0.374 0.136 0.131 0.818

500 δ −0.479 0.189 0.175 0.943 - - - -
τ −1.139 0.422 0.414 0.929 −0.549 0.146 0.140 0.118
β1 −0.509 0.144 0.139 0.951 −0.371 0.102 0.101 0.723
β2 0.504 0.140 0.136 0.947 0.368 0.101 0.009 0.729
β3 −0.509 0.148 0.139 0.938 −0.370 0.105 0.100 0.727
β4 0.510 0.141 0.138 0.942 0.371 0.101 0.100 0.741

700 δ −0.484 0.153 0.145 0.943 - - - -
τ −1.059 0.310 0.292 0.942 −0.529 0.119 0.118 0.025
β1 −0.502 0.119 0.116 0.940 −0.367 0.085 0.083 0.636
β2 0.502 0.113 0.116 0.953 0.369 0.080 0.084 0.634
β3 −0.507 0.125 0.116 0.934 −0.372 0.091 0.082 0.643
β4 0.511 0.121 0.117 0.944 0.372 0.088 0.083 0.633

1000 δ −0.499 0.122 0.118 0.940 - - - -
τ −1.061 0.241 0.221 0.946 −0.531 0.105 0.098 0.007
β1 −0.508 0.098 0.096 0.951 −0.369 0.070 0.069 0.522
β2 0.507 0.100 0.097 0.952 0.367 0.070 0.072 0.514
β3 −0.505 0.096 0.095 0.960 −0.366 0.069 0.071 0.520
β4 0.511 0.096 0.097 0.954 0.370 0.069 0.070 0.541
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Table A2. Estimate, standard deviation (SD), standard error (SE), and coverage probability (CP)
when τ1,0 = −1 and δ1,0 = 0.3 with 1000 simulation runs for the Absolute and Relative Treatment
Effects model and logistic regression.

Absolute and Relative Treatment Effects Model Logistic Regression Model
n Parameter Estimate SD SE CP Estimate SD SE CP

300 δ 0.340 0.346 0.411 0.938 - - - -
τ −1.056 0.314 0.320 0.966 −1.255 0.224 0.218 0.797
β1 −0.516 0.154 0.155 0.958 −0.573 0.147 0.148 0.934
β2 0.527 0.155 0.157 0.956 0.588 0.149 0.149 0.922
β3 −0.516 0.148 0.155 0.967 −0.574 0.149 0.148 0.936
β4 0.522 0.156 0.156 0.953 0.580 0.153 0.149 0.924

500 δ 0.340 0.291 0.315 0.949 - - - -
τ −1.043 0.237 0.241 0.968 −1.266 0.171 0.168 0.677
β1 −0.511 0.119 0.115 0.956 −0.572 0.116 0.113 0.904
β2 0.507 0.116 0.116 0.958 0.569 0.112 0.112 0.918
β3 −0.510 0.121 0.116 0.949 −0.571 0.116 0.114 0.922
β4 0.510 0.117 0.114 0.953 0.572 0.113 0.113 0.910

700 δ 0.330 0.242 0.263 0.956 - - - -
τ −1.017 0.194 0.198 0.957 −1.242 0.137 0.140 0.596
β1 −0.505 0.102 0.098 0.947 −0.568 0.101 0.095 0.890
β2 0.506 0.095 0.099 0.956 0.568 0.092 0.096 0.906
β3 −0.506 0.105 0.097 0.941 −0.569 0.101 0.097 0.893
β4 0.509 0.100 0.100 0.954 0.574 0.099 0.096 0.881

1000 δ 0.312 0.212 0.216 0.955 - - - -
τ −1.024 0.167 0.167 0.960 −1.245 0.113 0.117 0.438
β1 −0.508 0.083 0.084 0.946 −0.569 0.080 0.081 0.866
β2 0.507 0.084 0.083 0.954 0.569 0.080 0.079 0.867
β3 −0.507 0.083 0.083 0.951 −0.568 0.079 0.079 0.876
β4 0.508 0.080 0.082 0.947 0.570 0.077 0.080 0.881

Table A3. Estimate, standard deviation (SD), standard error (SE), and coverage probability (CP)
when τ1,0 = −1 and δ1,0 = 0.5 with 1000 simulation runs for the Absolute and Relative Treatment
Effects model and logistic regression.

Absolute and Relative Treatment Effects Model Logistic Regression Model
n Parameter Estimate SD SE CP Estimate SD SE CP

300 δ 0.530 0.338 0.455 0.946 - - - -
τ −1.053 0.272 0.298 0.981 −1.394 0.228 0.227 0.625
β1 −0.519 0.148 0.151 0.963 −0.612 0.154 0.151 0.897
β2 0.528 0.148 0.153 0.965 0.625 0.154 0.152 0.891
β3 −0.519 0.144 0.150 0.964 −0.611 0.154 0.152 0.906
β4 0.525 0.150 0.152 0.958 0.619 0.160 0.153 0.887

500 δ 0.527 0.292 0.348 0.948 - - - -
τ −1.047 0.214 0.228 0.975 −1.404 0.171 0.175 0.344
β1 −0.513 0.113 0.114 0.962 −0.609 0.118 0.116 0.862
β2 0.510 0.110 0.112 0.960 0.606 0.114 0.117 0.876
β3 −0.513 0.115 0.112 0.959 −0.608 0.118 0.115 0.860
β4 0.514 0.113 0.113 0.962 0.609 0.117 0.117 0.865

700 δ 0.536 0.265 0.297 0.952 - - - -
τ −1.016 0.181 0.188 0.943 −1.379 0.138 0.146 0.222
β1 −0.505 0.098 0.096 0.946 −0.604 0.103 0.097 0.819
β2 0.506 0.092 0.096 0.960 0.604 0.095 0.097 0.826
β3 −0.508 0.103 0.097 0.942 −0.607 0.105 0.098 0.811
β4 0.509 0.096 0.097 0.952 0.610 0.101 0.098 0.794

1000 δ 0.511 0.235 0.244 0.956 - - - -
τ −1.022 0.156 0.158 0.961 −1.379 0.114 0.122 0.102
β1 −0.507 0.080 0.082 0.954 −0.605 0.082 0.084 0.765
β2 0.508 0.082 0.081 0.954 0.605 0.083 0.083 0.761
β3 −0.507 0.080 0.080 0.953 −0.604 0.081 0.084 0.764
β4 0.508 0.078 0.081 0.950 0.606 0.080 0.082 0.759
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Table A4. Estimate, standard deviation (SD), standard error (SE), and coverage probability (CP)
when τ1,0 = 0 and δ1,0 = −0.5 with 1000 simulation runs for the Absolute and Relative Treatment
Effects model and logistic regression.

Absolute and Relative Treatment Effects Model Logistic Regression Model
n Parameter Estimate SD SE CP Estimate SD SE CP

300 δ −0.478 0.236 0.227 0.939 - - - -
τ 0.034 0.550 0.545 0.943 0.008 0.184 0.176 0.943
β1 −0.518 0.187 0.181 0.950 −0.373 0.131 0.128 0.819
β2 0.528 0.189 0.183 0.952 0.375 0.133 0.129 0.810
β3 −0.508 0.179 0.181 0.957 −0.367 0.128 0.128 0.804
β4 0.519 0.187 0.182 0.955 0.372 0.132 0.129 0.809

500 δ −0.481 0.184 0.171 0.939 - - - -
τ −0.008 0.317 0.307 0.947 −0.005 0.147 0.135 0.930
β1 −0.508 0.140 0.138 0.951 −0.367 0.100 0.099 0.704
β2 0.506 0.138 0.136 0.948 0.366 0.098 0.098 0.731
β3 −0.510 0.145 0.137 0.940 −0.369 0.099 0.099 0.725
β4 0.509 0.142 0.138 0.945 0.366 0.100 0.099 0.715

700 δ -0.482 0.143 0.143 0.956 - - - -
τ −0.009 0.237 0.240 0.954 −0.004 0.117 0.114 0.940
β1 −0.503 0.119 0.116 0.943 −0.367 0.085 0.082 0.613
β2 0.501 0.113 0.115 0.956 0.366 0.081 0.081 0.628
β3 −0.507 0.123 0.115 0.946 −0.369 0.090 0.082 0.614
β4 0.512 0.118 0.116 0.949 0.371 0.084 0.083 0.636

1000 δ −0.500 0.118 0.116 0.956 - - - -
τ −0.005 0.205 0.200 0.950 −0.003 0.103 0.095 0.933
β1 −0.507 0.099 0.095 0.947 −0.366 0.068 0.070 0.497
β2 0.509 0.100 0.098 0.949 0.366 0.070 0.069 0.500
β3 −0.506 0.094 0.097 0.951 −0.363 0.068 0.068 0.492
β4 0.509 0.099 0.097 0.950 0.365 0.071 0.069 0.506

Table A5. Estimate, standard deviation (SD), standard error (SE), and coverage probability (CP)
when τ1,0 = 0 and δ1,0 = −0.3 with 1000 simulation runs for the Absolute and Relative Treatment
Effects model and logistic regression.

Absolute and Relative Treatment Effects Model Logistic Regression Model
n Parameter Estimate SD SE CP Estimate SD SE CP

300 δ −0.264 0.269 0.266 0.933 - - - -
τ 0.013 0.293 0.289 0.946 0.007 0.184 0.179 0.942
β1 −0.519 0.175 0.172 0.947 −0.434 0.133 0.133 0.920
β2 0.524 0.178 0.174 0.957 0.435 0.136 0.132 0.903
β3 −0.509 0.170 0.171 0.955 −0.425 0.130 0.132 0.901
β4 0.518 0.176 0.173 0.958 0.431 0.134 0.132 0.908

500 δ −0.273 0.211 0.201 0.932 - - - -
τ −0.011 0.217 0.208 0.941 −0.007 0.148 0.137 0.935
β1 −0.508 0.134 0.131 0.948 −0.426 0.104 0.102 0.875
β2 0.506 0.130 0.130 0.944 0.425 0.099 0.101 0.885
β3 −0.509 0.136 0.132 0.942 −0.426 0.101 0.103 0.894
β4 0.508 0.134 0.131 0.949 0.425 0.101 0.101 0.876

700 δ −0.282 0.169 0.167 0.949 - - - -
τ −0.003 0.168 0.170 0.956 −0.002 0.118 0.116 0.945
β1 −0.503 0.112 0.111 0.945 −0.423 0.087 0.084 0.832
β2 0.500 0.107 0.111 0.954 0.420 0.082 0.083 0.846
β3 −0.506 0.117 0.110 0.942 −0.425 0.091 0.085 0.833
β4 0.511 0.111 0.110 0.950 0.428 0.085 0.085 0.845

1000 δ −0.297 0.141 0.136 0.951 - - - -
τ −0.004 0.146 0.142 0.952 −0.003 0.101 0.097 0.942
β1 −0.507 0.094 0.091 0.947 −0.424 0.071 0.070 0.797
β2 0.508 0.095 0.092 0.950 0.424 0.071 0.073 0.798
β3 −0.506 0.089 0.093 0.953 −0.421 0.070 0.072 0.795
β4 0.508 0.095 0.092 0.941 0.423 0.072 0.071 0.787
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Table A6. Estimate, standard deviation (SD), standard error (SE), and coverage probability (CP)
when τ1,0 = 0 and δ1,0 = 0 with 1000 simulation runs for the Absolute and Relative Treatment Effects
model and logistic regression.

Absolute and Relative Treatment Effects Model Logistic Regression Model
n Parameter Estimate SD SE CP Estimate SD SE CP

300 δ 0.038 0.295 0.327 0.937 - - - -
τ 0.006 0.204 0.199 0.941 0.004 0.185 0.183 0.941
β1 −0.521 0.165 0.159 0.943 −0.515 0.141 0.139 0.951
β2 0.524 0.161 0.162 0.957 0.517 0.138 0.137 0.965
β3 −0.512 0.158 0.159 0.952 −0.507 0.137 0.137 0.954
β4 0.518 0.162 0.161 0.956 0.512 0.139 0.137 0.951

500 δ 0.036 0.248 0.251 0.936 - - - -
τ −0.005 0.154 0.147 0.951 −0.005 0.148 0.141 0.934
β1 −0.510 0.122 0.123 0.955 −0.508 0.106 0.104 0.957
β2 0.506 0.121 0.122 0.947 0.505 0.102 0.105 0.957
β3 −0.508 0.125 0.121 0.947 −0.506 0.105 0.102 0.955
β4 0.507 0.125 0.122 0.941 0.505 0.107 0.105 0.943

700 δ 0.026 0.211 0.209 0.952 - - - -
τ −0.002 0.121 0.122 0.956 −0.002 0.119 0.118 0.954
β1 −0.504 0.104 0.103 0.952 −0.502 0.090 0.089 0.947
β2 0.501 0.099 0.102 0.957 0.500 0.085 0.087 0.959
β3 −0.506 0.108 0.102 0.943 −0.505 0.093 0.088 0.935
β4 0.510 0.103 0.103 0.949 0.509 0.087 0.089 0.952

1000 δ 0.008 0.178 0.171 0.944 - - - -
τ −0.001 0.105 0.102 0.955 −0.002 0.102 0.099 0.944
β1 −0.507 0.088 0.087 0.953 −0.503 0.074 0.075 0.956
β2 0.508 0.088 0.086 0.947 0.505 0.073 0.074 0.951
β3 −0.505 0.083 0.085 0.957 −0.501 0.071 0.072 0.962
β4 0.508 0.087 0.084 0.951 0.504 0.075 0.074 0.949

Table A7. Estimate, standard deviation (SD), standard error (SE), and coverage probability (CP)
when τ1,0 = −1 and δ1,0 = −0.3 with 1000 simulation runs for the Absolute and Relative Treatment
Effects model and logistic regression with treatment effects, covariate effects, and interaction effects.

Absolute and Relative Treatment Effects Model Logistic Regression Model
n Parameter Estimate SD SE CP Estimate SD SE CP

300 δ −0.310 0.147 0.145 0.951 - - - -
τ −1.031 0.145 0.143 0.948 −1.035 0.144 0.141 0.950
β1 −0.549 0.235 0.217 0.962 −0.400 0.157 0.145 0.869
β2 0.532 0.213 0.214 0.963 0.387 0.147 0.146 0.881
β3 −0.545 0.226 0.217 0.968 −0.395 0.152 0.147 0.868
β4 0.538 0.213 0.214 0.963 0.393 0.147 0.145 0.868

500 δ −0.310 0.129 0.126 0.947 - - - -
τ −1.016 0.124 0.123 0.950 −1.022 0.124 0.122 0.947
β1 −0.540 0.179 0.175 0.973 −0.398 0.124 0.125 0.850
β2 0.532 0.190 0.179 0.966 0.392 0.129 0.123 0.844
β3 −0.536 0.180 0.177 0.959 −0.394 0.127 0.124 0.832
β4 0.534 0.197 0.179 0.946 0.394 0.138 0.126 0.828

700 δ −0.300 0.086 0.088 0.958 - - - -
τ −1.011 0.084 0.086 0.950 −1.021 0.086 0.085 0.944
β1 −0.511 0.119 0.116 0.948 −0.389 0.092 0.087 0.741
β2 0.518 0.117 0.117 0.965 0.395 0.085 0.088 0.751
β3 −0.515 0.116 0.116 0.963 −0.394 0.088 0.087 0.756
β4 0.518 0.119 0.117 0.966 0.396 0.087 0.088 0.769

1000 δ −0.305 0.076 0.079 0.957 - - - -
τ −1.004 0.076 0.076 0.958 −1.014 0.077 0.076 0.951
β1 −0.512 0.105 0.103 0.959 −0.389 0.080 0.077 0.676
β2 0.517 0.103 0.105 0.970 0.394 0.078 0.075 0.723
β3 −0.513 0.101 0.104 0.969 −0.390 0.075 0.076 0.714
β4 0.516 0.103 0.104 0.964 0.393 0.079 0.078 0.696
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Table A8. Estimate, standard deviation (SD), standard error (SE), and coverage probability (CP)
when τ1,0 = −1 and δ1,0 = 0 with 1000 simulation runs for the Absolute and Relative Treatment
Effects model and logistic regression with treatment effects, covariate effects, and interaction effects.

Absolute and Relative Treatment Effects Model Logistic Regression Model
n Parameter Estimate SD SE CP Estimate SD SE CP

300 δ −0.003 0.143 0.146 0.953 - - - -
τ −1.033 0.150 0.148 0.946 −1.025 0.145 0.145 0.949
β1 −0.532 0.172 0.167 0.950 −0.519 0.160 0.153 0.943
β2 0.529 0.171 0.168 0.951 0.516 0.159 0.152 0.942
β3 −0.531 0.169 0.169 0.961 −0.519 0.154 0.154 0.954
β4 0.528 0.168 0.168 0.963 0.516 0.154 0.153 0.953

500 δ −0.004 0.130 0.126 0.945 - - - -
τ −1.019 0.126 0.127 0.945 −1.014 0.123 0.124 0.947
β1 −0.526 0.141 0.142 0.954 −0.515 0.128 0.132 0.959
β2 0.516 0.145 0.144 0.954 0.506 0.133 0.130 0.948
β3 −0.525 0.146 0.144 0.953 −0.514 0.133 0.131 0.952
β4 0.523 0.153 0.143 0.944 0.513 0.141 0.131 0.929

700 δ 0.001 0.087 0.088 0.961 - - - -
τ −1.012 0.088 0.089 0.957 −1.009 0.087 0.087 0.952
β1 −0.508 0.098 0.096 0.951 −0.504 0.094 0.091 0.938
β2 0.512 0.094 0.099 0.953 0.509 0.089 0.092 0.957
β3 −0.512 0.097 0.097 0.954 −0.509 0.091 0.093 0.954
β4 0.514 0.098 0.098 0.947 0.510 0.092 0.092 0.947

1000 δ −0.001 0.077 0.079 0.957 - - - -
τ −1.004 0.080 0.079 0.948 −1.002 0.079 0.078 0.948
β1 −0.507 0.088 0.086 0.949 −0.504 0.083 0.081 0.953
β2 0.511 0.088 0.087 0.959 0.508 0.083 0.080 0.954
β3 −0.505 0.082 0.086 0.958 −0.502 0.077 0.082 0.965
β4 0.508 0.086 0.087 0.960 0.505 0.081 0.082 0.959

Table A9. Estimate, standard deviation (SD), standard error (SE), and coverage probability (CP)
when τ1,0 = −1 and δ1,0 = 0.3 with 1000 simulation runs for the Absolute and Relative Treatment
Effects model and logistic regression with treatment effects, covariate effects, and interaction effects.

Absolute and Relative Treatment Effects Model Logistic Regression Model
n Parameter Estimate SD SE CP Estimate SD SE CP

300 δ 0.302 0.149 0.146 0.944 - - - -
τ −1.034 0.161 0.160 0.952 −0.938 0.140 0.143 0.929
β1 −0.528 0.183 0.181 0.952 −0.592 0.158 0.159 0.929
β2 0.514 0.178 0.180 0.958 0.576 0.156 0.157 0.943
β3 −0.520 0.182 0.179 0.962 −0.586 0.155 0.158 0.925
β4 0.517 0.184 0.180 0.951 0.581 0.156 0.157 0.932

500 δ 0.302 0.132 0.126 0.945 - - - -
τ −1.026 0.138 0.138 0.945 −0.932 0.124 0.124 0.907
β1 −0.523 0.151 0.153 0.962 −0.591 0.131 0.137 0.920
β2 0.514 0.154 0.155 0.962 0.581 0.134 0.137 0.920
β3 −0.523 0.155 0.151 0.945 −0.590 0.136 0.134 0.918
β4 0.522 0.161 0.152 0.938 0.587 0.141 0.135 0.903

700 δ 0.303 0.086 0.089 0.960 - - - -
τ −1.013 0.094 0.096 0.956 −0.923 0.084 0.087 0.866
β1 −0.505 0.104 0.104 0.952 −0.576 0.092 0.094 0.892
β2 0.510 0.101 0.103 0.963 0.581 0.091 0.095 0.883
β3 −0.512 0.104 0.103 0.953 −0.582 0.093 0.094 0.878
β4 0.512 0.105 0.105 0.952 0.583 0.094 0.095 0.878

1000 δ 0.300 0.076 0.079 0.967 - - - -
τ −1.005 0.087 0.085 0.943 −0.918 0.078 0.077 0.798
β1 −0.502 0.094 0.091 0.948 −0.573 0.084 0.083 0.868
β2 0.507 0.093 0.092 0.949 0.577 0.083 0.083 0.859
β3 −0.503 0.090 0.091 0.954 −0.573 0.081 0.085 0.882
β4 0.504 0.091 0.092 0.959 0.574 0.082 0.084 0.871
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