

# Comparing Energy Demands and Longevities of Membrane-based Capacitive Deionization Architectures

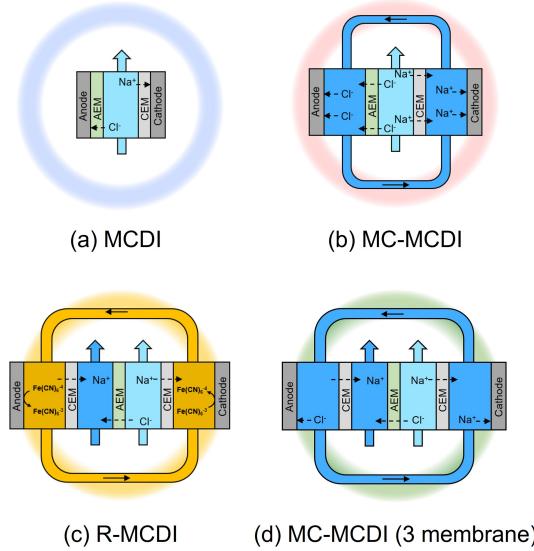
Vineeth Pothanamkandathil and Christopher A. Gorski\*

Department of Civil and Environmental Engineering, The Pennsylvania State University,  
University Park, PA 16802, USA

\*Corresponding author: Email: [gorski@psu.edu](mailto:gorski@psu.edu); Tel: +1 814-865-5673

## 1 ABSTRACT

2 Several capacitive deionization (CDI) cell architectures employ ion-exchange membranes to  
3 control the chemistry of the electrolyte contacting the electrodes. Here, we experimentally  
4 examined how exposing carbon electrodes to either a saline electrolyte or an electrolyte  
5 containing a soluble redox-active compound influenced deionization energy demands and long-  
6 term stability over ~50 hours. We specifically compared the energy demands ( $\text{W}\cdot\text{h}\cdot\text{L}^{-1}$ ) required  
7 to deionize 20 mM NaCl to 15 mM with a 50% water recovery as a function of productivity ( $\text{L}\cdot\text{m}^{-2}\cdot\text{h}^{-1}$ ). Relative to a conventional membrane capacitive deionization (MCDI) cell, flowing saline  
8 electrolyte over the electrodes did not affect energy demands but increased electrode salt  
9 adsorption capacities and capacity retention over repeated cycles. Exposing the electrodes to an  
10 electrolyte containing a redox-active compound, which made the cell behave similarly to an  
11 electrodialysis system, dramatically reduced energy demands and showed remarkable stability  
12 over 50 hours of operation. These experimental results indicate that using a recirculated soluble  
13 redox-active compound in the electrolyte contacting the electrodes to balance charge leads to far


- 15 more energy efficient brackish water deionization than when charge is balanced by the electrodes
- 16 undergoing capacitive charging/discharging reactions.

17 **INTRODUCTION**

18 The deionization of water using electrochemical reactions has emerged as a promising alternative  
19 to reverse osmosis for treating brackish water (total dissolved solids = 500 – 10,000 mg·L<sup>-1</sup>) at small  
20 scales due to its high degree of modularity and potentially low energy demands.(1-9) Within the  
21 literature, two main electrochemical deionization approaches exist. The first deionizes water  
22 primarily via electrode-based reactions in a process called capacitive deionization (CDI), and the  
23 second deionizes water primarily via selective ion transport across ion-exchange membranes in  
24 a process called electrodialysis (ED).(11) Modeling studies have indicated that conventional CDI  
25 systems have substantially higher energy demands than ED,(9, 12) but these results have been  
26 questioned in the literature due to concerns that values fed in the models predicted MCDI  
27 performance metrics that are lower than what are observed in experimental studies.(13-18)

28 While early CDI cells consisted of two capacitive electrodes in direct contact with the  
29 water being deionized,(7, 19-21) modern cells separate the feed water from the electrodes using  
30 ion-exchange membranes, as this modification tends to increase ion selectivity, faradaic  
31 efficiencies, and electrode stabilities.(7, 21-23) This cell design is known as membrane capacitive  
32 deionization (MCDI, **Figure 1**). To further improve the performance of MCDI cells, researchers  
33 have explored additional ways to integrate ion-exchange membranes into cells.(7, 24-42) One  
34 approach is to stack additional membranes between the electrodes, creating a system that  
35 resembles an ED cell.(43-45) This approach decreases energy demands, but increases cell  
36 construction costs, as the ion-exchange membranes are often the most expensive component in a  
37 cell.

38 An alternative approach that does not require more membranes is to expose the electrodes  
 39 to an electrolyte that differs from the water being deionized. Researchers have explored using an  
 40 aqueous electrolyte with a high salinity (i.e., multi-channel membrane capacitive deionization,  
 41 MC-MCDI), suspended capacitive carbon particles (i.e., flow-electrode capacitive deionization,  
 42 F-CDI), and/or soluble redox-active compounds (i.e., redox flow capacitive deionization, R-  
 43 MCDI) (Figure 1).(43-45, 47-53) Using a saline electrolyte can increase the electrodes' salt  
 44 adsorption capacities and/or salt adsorption rates relative to those achieved in MCDI cells, while  
 45 potentially decreasing deionization energy demands.(43, 47) Recirculating the electrolyte and  
 46 flowing it over both electrodes can also facilitate continuous cell operation.(44, 49-53) In some  
 47 cases, the addition of a soluble redox-active compound to the electrolyte decreased energy  
 48 demands.(49, 52) Note that systems using suspended carbon particles or a soluble redox-active



**Figure 1.** Schematic representation of (a) membrane capacitive deionization (MCDI), (b) multi-channel membrane capacitive deionization (MC-MCDI), (c) redox flow capacitive deionization (R-MCDI), and (d) MC-MCDI (three-membrane) architecture. Darker blue represents the concentrating stream, and lighter blue represents the deionizing stream. The yellow stream in (c) represents the presence of a soluble redox-active compound.

49 compound in a recirculated electrolyte begin to, or do, resemble ED cells, as salt is stored in the  
50 electrolyte, not at or in the electrode. In this manuscript, we refer to such cells using their naming  
51 conventions from the literature (i.e., MC-MCDI and R-MCDI), but they could also be described  
52 as modifications of ED.

53 While these new cell architectures have produced compelling salt adsorption capacities,  
54 salt adsorption rates, and/or low energy demands, the experimental results collected in different  
55 studies can rarely be directly compared because they were gathered under different feed water  
56 salinities, deionization rates, and/or deionization extents. Moreover, studies evaluating the  
57 feasibilities of these cell designs rarely reported the systems' stabilities over repeated cycles,  
58 which is important given that CDI cell lifetime is considered an important comparative metric to  
59 consider based on technoeconomic analyses.(17, 55, 56) Therefore, the goal of this work was to  
60 experimentally compare membrane-based cell architectures in terms of energy demand and cell  
61 longevity. We performed the experiments under standardized deionization conditions (i.e.,  
62 deionizing 20 mM NaCl to 15 mM with a 50% water recovery at different productivities). We  
63 compared the performances of a conventional MCDI system with systems in which the electrodes  
64 were exposed to a high salinity electrolyte (akin to MC-MCDI) or an electrolyte containing a  
65 soluble redox-active compound (akin to R-MCDI) (**Figure 1**). The cell designs akin to MCDI and  
66 MC-MCDI contained two ion-exchange membranes (**Figure 1**, panels **a** and **b**). The difference  
67 between these two was the MC-MCDI configuration had two outer channels containing  
68 recirculating 100 mM NaCl, whereas the MCDI configuration placed the membranes in direct  
69 contact with the electrodes. The cell akin to R-MCDI required one additional cation-exchange

70 membrane to prevent the redox-active compound (i.e.,  $[Fe(CN)_6]^{4-}/[Fe(CN)_6]^{3-}$ ) from being  
71 transported from the outer electrolyte channels to the feed water stream (**Figure 1c**). To fairly  
72 compare the R-MCDI and MC-MCDI cells, we tested a three-membrane MC-MCDI cell (**Figure**  
73 **1d**) because stacking ion-exchange membranes is known to decrease energy demands.(57, 58) The  
74 stabilities of the MCDI and MC-MCDI cells were measured by charging and discharging them  
75 over 250 cycles. The stability of the R-MCDI cell was measured by monitoring the cell voltage  
76 under a constant applied current because the cell did not require periodic discharging.

77 **MATERIALS AND METHODS**

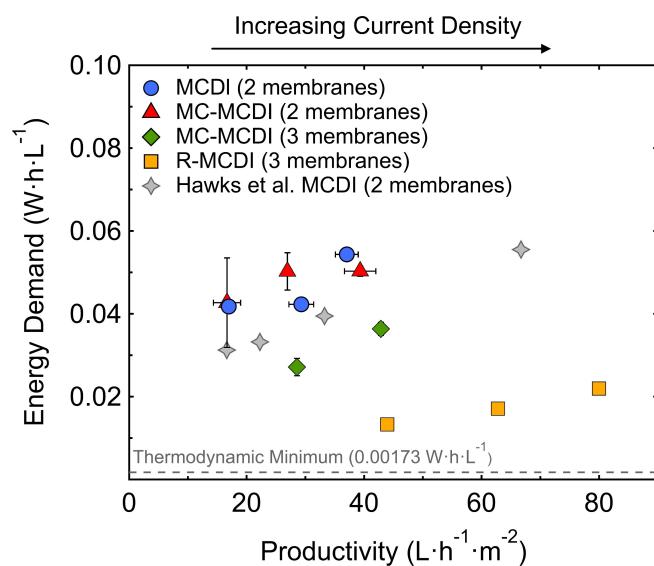
78 All chemicals used in this study had a purity of 99% or higher. All experiments were conducted  
79 using deionized water (resistivity  $\geq 18 \text{ M}\Omega\cdot\text{cm}$  at  $25^\circ\text{C}$ ).

80 **Electrode-current collector assembly:** Activated carbon electrodes (PACMM 203, Material  
81 Methods, Irvine, CA, USA, 7 cm x 3 cm) were adhered to graphite current collectors (7 cm x 3 cm)  
82 to ensure proper contact between the electrode and the current collector. The adhesive was a  
83 slurry composed of conductive material (carbon black; Vulcan XC72R, Cabot, 75 wt% = 60 mg)  
84 and binder (polyvinylidene fluoride, PVDF; Kynar HSV 900, Arkema Inc., 25 wt% = 20 mg)  
85 suspended in 2.5 mL solvent (1-methyl-2-pyrrolidinone, Sigma-Aldrich). An aliquot of slurry (1  
86 mL) which was painted on to the graphite current collector and the activated carbon electrode  
87 was placed on top of it. The electrode-current collector assembly was then dried at  $70^\circ\text{C}$  for 12  
88 hours under vacuum in a vacuum oven. The electrodes were desiccated, then soaked in 100 mM  
89 NaCl solution for 24 hours before conducting deionization experiments.

90 All deionization experiments were performed in a custom fabricated flow-cell (**Section**  
91 **S1**). The cross-sectional area of the electrode exposed to the flow-stream was 21 cm<sup>2</sup> (7 cm x 3 cm).  
92 Procedures used for flow-cell assembly, deionization experiments, and longevity experiments are  
93 provided in **Section S1**. The deionization experiments were conducted in constant current mode.  
94 The voltage windows, flowrates, and applied currents used are in **Table S4**.

95 **Energy demand and productivity calculations:** The deionization performance of the three CDI  
96 architectures were compared based on their volumetric energy demand and throughput  
97 productivity. The volumetric energy demand ( $E_v$ , W·h·L<sup>-1</sup>) was calculated as:

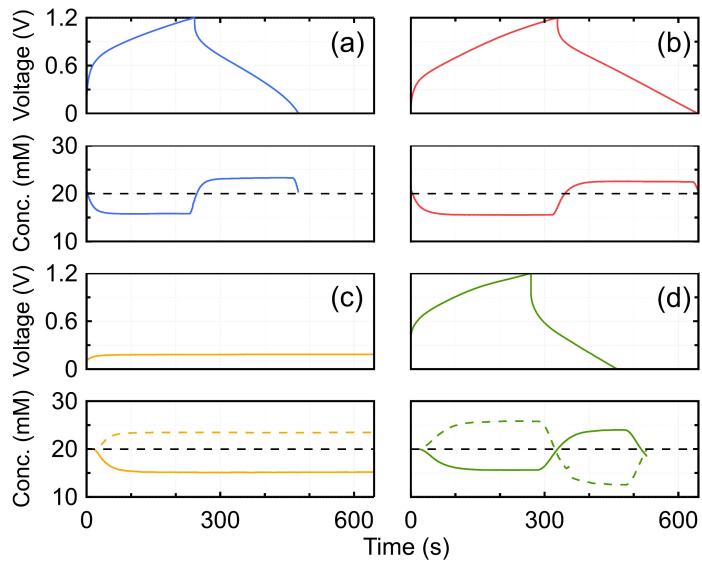
98 
$$E_v = \frac{1}{V_D} \int I \cdot V(t) \cdot dt \quad (1)$$


99 where  $V_D$  was the volume of water deionized over the span of the deionization experiment,  $I$  was  
100 the applied current,  $V(t)$  was the voltage across the cell as a function of time, and  $dt$  was the time  
101 step between two successive  $V(t)$  measurements. Throughput productivity ( $P$ , L·m<sup>-2</sup>·h<sup>-1</sup>) was  
102 calculated as:

103 
$$P = \frac{V_D}{A \cdot t_{total}} \quad (2)$$

104 where  $A$  was the cross-sectional area of the electrode (21 cm<sup>2</sup>) and  $t_{total}$  was the total time taken  
105 for the deionization experiment. Detailed explanation on the procedure for energy demand, salt  
106 adsorption capacity, and productivity calculations are provided in **Sections S2 and S3**.

107 **RESULTS AND DISCUSSION**108 **Energy Demands for Deionization**


109 We determined the volumetric energy demand required to deionize 20 mM NaCl to 15 mM in a  
 110 single pass with a constant applied current for the four cell designs depicted in **Figure 1** under  
 111 multiple flow rate-current density combinations (**Figure 2**). The volumetric energy demand of the  
 112 MCDI and MC-MCDI cells were calculated using eq. 1 assuming complete energy recovery (i.e.,  
 113 100% of the energy released during discharge was recovered). No energy could be recovered from  
 114 the R-MCDI cell because the current direction was never switched. As expected, the volumetric



**Figure 2.** Energy demand versus productivity plot for the four cell architectures tested when deionizing 20 mM NaCl to 15 mM with a water recovery of 50%. Higher current densities were used to collect datapoints further to the right. The Hawks et al. MCDI (2 membranes) data is shown in panel A for comparison.<sup>46</sup> Each data point on the plot represents the average energy demand and productivity calculated based on two sets of experiments collected with fresh electrodes, and the error bars represent the range of values calculated. The MC-MCDI system had 100 mM NaCl solution circulating through the outer channel at the same flowrate as the central desalinating channel. The R-MCDI system had a solution mixture of 50 mM Na<sub>2</sub>SO<sub>4</sub> + 40 mM K<sub>3</sub>[Fe(CN)<sub>6</sub>] + 40 mM Na<sub>4</sub>[Fe(CN)<sub>6</sub>] recirculating through the outer channels at a flowrate of 20 mL·min<sup>-1</sup>.

115 energy demand needed to deionize 20 mM NaCl to 15 mM was larger at higher productivities for  
116 all cell designs, as higher current densities were needed to achieve the required separation in a  
117 shorter time period (**Figure 2**). To benchmark the data collected here, we compared it to data  
118 reported for an MCDI cell deionizing 20 mM NaCl to 15 mM by Hawks et al. Our MCDI cell data  
119 yielded a slightly higher energy demand, which was likely due to our cell having a higher cell  
120 resistance (2.7  $\Omega$  at cycle 50, measured with EIS, see **Figure S7a** in **Section S4**) than what was  
121 reported in the previous study (1.2  $\Omega$ ).

122 In our experiments, the two-membrane MCDI and MC-MCDI cells exhibited similar  
123 energy demand – productivity relationships (**Figure 2**). We attributed the modest differences  
124 between the two datasets to experimental error (i.e., minor differences in the cells each time they  
125 were assembled). The similar energy demands for the two configurations were consistent with  
126 the cells having the same faradaic efficiencies (both  $\sim 100\%$ , data not shown) and comparable cell  
127 resistances (MCDI: 2.7  $\Omega$  at cycle 50, MC-MCDI: 3.8  $\Omega$  at cycle 50; EIS data in **Figure S7**, panels a  
128 and b). The MC-MCDI cell resistance was slightly higher due to the cell having two additional  
129 outer-channels (each  $\sim 0.1$  cm thick) that increased the distance between the two electrodes and  
130 possibly higher membrane resistances due to the larger concentration gradient. The performance  
131 metric that differed between the two cell designs was the salt adsorption capacity (SAC), with the  
132 MC-MCDI cell yielding higher SAC values than the MCDI cell. For example, under an applied  
133 current of 20 mA and flow rate of 3  $\text{mL}\cdot\text{min}^{-1}$ , the SAC of the MC-MCDI cell was  $8.14 \pm 0.01$   
134  $\text{mg}_{\text{NaCl}}/\text{g}_{\text{electrode}}$ , and the SAC of the MCDI cell  $5.65 \pm 0.13 \text{ mg}_{\text{NaCl}}/\text{g}_{\text{electrode}}$ .<sup>(43, 47)</sup> The difference in  
135 SAC values is also apparent in the representative cell voltage plots of each cell, with the MC-



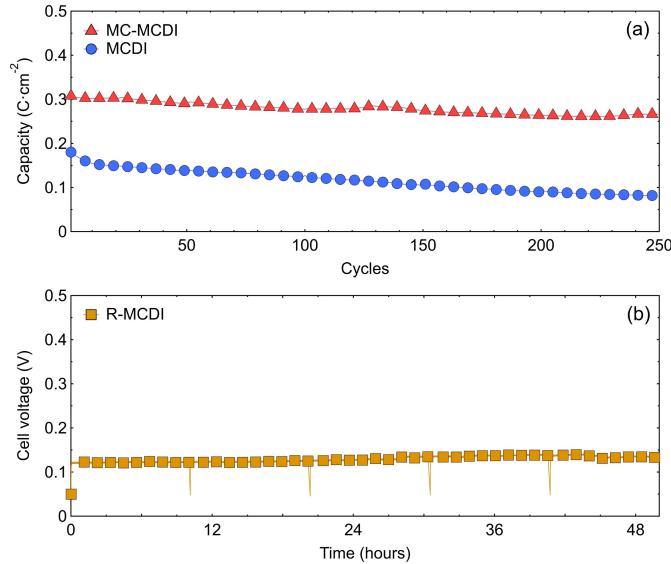
**Figure 3.** Representative plots of cell voltage and effluent concentration are shown as a function of time at a current of 20 mA and flow rate of 3 mL·min<sup>-1</sup> for (a) MCDI (2 membranes), (b) MC-MCDI (2 membranes), (c) R-MCDI (3 membranes), and (d) MC-MCDI (3 membranes).

136 MCDI cell taking longer to reach cutoff voltage (Figure 3, panels a and b). This observation  
 137 indicates that increasing the SAC of an electrode did not decrease the energy required for the  
 138 separation,(58) consistent with a previous derivation finding that energy demand values are  
 139 independent of SAC values.(59) Note that the flow inefficiencies caused by the intermittent  
 140 operation of MCDI and MC-MCDI systems would not have significantly altered the energy  
 141 demands exhibited in Figure 2 as the flow efficiencies calculated based on a previous study by  
 142 Hawks et al. ranged between 0.90 and 0.98 for all conditions in this study.(60)

143 The R-MCDI cell, which had an outer electrolyte containing equal concentrations of  
 144  $\text{Fe}(\text{CN})_6^{3-}$  and  $\text{Fe}(\text{CN})_6^{4-}$ , produced far lower energy demands than the MCDI and MC-MCDI cells  
 145 (Figure 2). This trend was due to two differences between the R-MCDI cell and the (MC-)MCDI  
 146 cells. The first difference was that the R-MCDI cell had one more ion-exchange membrane than  
 147 the MCDI and MC-MCDI cells. The R-MCDI cell required an additional cation-exchange

148 membrane to prevent  $\text{Fe}(\text{CN})_6^{3/4-}$  from leaving the outer electrolyte (**Figure 1c**). The stacking of  
149 ion-exchange membranes in this manner allowed the R-MCDI architecture to (1) operate  
150 continuously, which doubled the productivity of R-MCDI cell compared to two-membrane MCDI  
151 and MC-MCDI architecture, (2) avoided flow inefficiencies that can arise when operating  
152 intermittently,(60) and (3) allowed the cell to operate at lower current densities to achieve the  
153 same productivities. Stacking additional ion-exchange membranes is also known to decrease  
154 energy demands because they increase the number of salt ions transported across the membranes  
155 per electron transferred.(57, 58) To facilitate a fairer comparison between the R-MCDI  
156 architecture and the (MC-)MCDI architectures, we constructed and tested a MC-MCDI cell  
157 having three ion-exchange membranes (**Figure 1d**). The inclusion of the third membrane cell  
158 increased the productivity and decreased the energy demand required to deionize the water  
159 (**Figure 2**). The energy demands for the three membrane MC-MCDI cell was, however, still  
160 substantially higher than the energy demands for the R-MCDI cell, indicating that the higher  
161 energy efficiency of the R-MCDI cell was not solely due to the cell containing a third ion-exchange  
162 membrane which enabled continuous operation.

163 To determine the other key difference between the cells, we evaluated each  
164 configuration's energetic losses. For all the cells, losses arose from cell resistance (i.e., the *IR* drop),  
165 which was a combination of the solution resistances in each channel, membrane resistances, and  
166 Donnan potentials across the ion-exchange membranes at a fixed current. The resistance of the R-  
167 MCDI cell ( $2.9 \Omega$  after 10 hours of operation, **Figure S7c**) was 38% lower than the three membrane  
168 MC-MCDI cell ( $4.7 \Omega$ , **Figure S7d**), indicating that the cell resistances contributed to the difference


169 in energy demands. Apart from the different resistances between the two cell architectures, the  
170 (MC-)MCDI cells also suffered from inefficient energy recovery (i.e., a portion of the energy used  
171 to charge the electrodes was not recovered during discharge). This loss was caused by the IR drop  
172 loss that occurs when the current direction is switched, the occurrence of charge redistribution  
173 within the electrodes, and parasitic faradaic reactions. (43, 61-64) In contrast, the R-MCDI cell  
174 did not have losses associated with imperfect energy recovery because the carbon electrodes did  
175 not undergo capacitive charging/discharging reactions and did not require the direction of  
176 current to be switched. For the R-MCDI cell, there was an additional possible loss associated with  
177 the overpotential required to drive the  $\text{Fe}(\text{CN})_6^{3-4-}$  redox cycling. Our results suggest that the  
178 losses associated with  $\text{Fe}(\text{CN})_6^{3-4-}$  redox cycling were far smaller than the losses associated with  
179 charging and discharging the capacitive carbon electrodes.

180 Overall, the R-MCDI system outperformed both the capacitive electrode-based MCDI  
181 systems in terms of energy demand. In fact, the energy demand for deionization with R-MCDI  
182 was similar to what was recently reported for a simulated full-stack (i.e., 500 cell) ED cell under  
183 similar operating conditions.(9, 65) The previous work estimated an energy demand of 0.013  
184  $\text{W}\cdot\text{h}\cdot\text{L}^{-1}$  when deionizing 1  $\text{g}\cdot\text{L}^{-1}$   $\text{NaCl}$  to 0.7  $\text{g}\cdot\text{L}^{-1}$  with a water recovery of 80% and a productivity  
185 of 20  $\text{L}\cdot\text{m}^{-2}\cdot\text{h}^{-1}$ . We deionized 1.17  $\text{g}\cdot\text{L}^{-1}$   $\text{NaCl}$  to 0.88  $\text{g}\cdot\text{L}^{-1}$  with a water recover of 50%.  
186 Extrapolating the data for R-MCDI from **Figure 2a** to a productivity of 20  $\text{L}\cdot\text{m}^{-2}\cdot\text{h}^{-1}$  yields a similar  
187 energy demand of  $\sim 0.01 \text{ W}\cdot\text{h}\cdot\text{L}^{-1}$ . The similar performances between the simulated full-stack ED  
188 cell and the three-membrane R-MCDI cells used here indicate that the voltage needed to drive  
189 the  $\text{Fe}(\text{CN})_6$  oxidation and reduction reactions at the electrodes is effectively negligible. In other

190 words, the single-stack R-MCDI and full-stack ED cells have similar energy demands under the  
191 conditions studied because the energy demands in both systems are dominated by the ionic  
192 transport across ion exchange membranes and not the electrochemical reactions at the electrodes.  
193 Note that we used  $\text{Fe}(\text{CN})_6^{3-4-}$  as a redox couple based on its use in a past R-MCDI study and its  
194 simplicity.(52) We anticipate that the R-MCDI configuration could be improved by selecting  
195 alternative redox-active compounds with lower toxicities and/or faster electron transfer kinetics  
196 at the electrodes. Collectively, these findings indicate that separation based on ion transport  
197 across ion-exchange membranes, such as R-MCDI and ED, require lower energy demands  
198 compared to electrode-based separation, such as MCDI and MC-MCDI.(9)

199 **Long-term stability**

200 The long-term stabilities of the MCDI and two membrane MC-MCDI cells were evaluated based  
201 on charge storage capacity retention over 250 charge and discharge cycles (i.e., ~50 hours of  
202 constant operation under an applied current of 15 mA). The capacity of the MCDI cell began at  
203  $0.18 \text{ C}\cdot\text{m}^{-2}$  and decayed over 250 cycles to 45% of its initial capacity (**Figure 4a**), consistent with  
204 a longevity study performed on different carbon electrodes that lacked ion-exchange  
205 membranes. In contrast, the MC-MCDI cell had a higher initial capacity ( $0.30 \text{ C}\cdot\text{m}^{-2}$ , **Figure 4a**)  
206 and retained ~87% of its initial capacity over 250 cycles. The higher capacity retention of the  
207 MC-MCDI cell was likely due to the higher salt concentration in the electrolyte, which decreased  
208 the occurrence of parasitic electrode degradation reactions. Note the longevity test on the MC-  
209 MCDI configuration was performed without any binder between the electrode and the current  
210 collector because experiments performed with a binder led to probable binder dissolution that



**Figure 4.** Capacity retention of (a) MCDI and two membrane MC-MCDI over 250 charge and discharge cycles at an applied constant current of 15mA. (b) Variation in cell voltage of R-MCDI system under constant current application (15mA) for 50 hours. The flowrate of the desalinating stream was  $3 \text{ mL}\cdot\text{min}^{-1}$  for all three architectures. 100 mM NaCl solution was circulated in the outer channels at a flowrate of  $3 \text{ mL}\cdot\text{min}^{-1}$  for the MC-MCDI system. A solution mixture of 50 mM  $\text{Na}_2\text{SO}_4$  + 40 mM  $\text{K}_3[\text{Fe}(\text{CN})_6]$  + 40 mM  $\text{Na}_4[\text{Fe}(\text{CN})_6]$  was circulated through the outer channels of the R-MCDI system at a flowrate of  $15 \text{ mL}\cdot\text{min}^{-1}$ .

211 complicated data interpretation (see **Section S5** for details). The absence of a binder did not  
 212 substantially affect the MC-MCDI cell resistance (with binder:  $3.8 \Omega$ , without binder:  $4.2 \Omega$ )  
 213 because the electrode and spacer were tightly packed between the cation exchange membrane  
 214 and current collector to facilitate pressure-based contact (refer to **Section S1** for detailed  
 215 explanation of cell assembly). Note that the binder dissolution did not occur while performing  
 216 the deionization tests and likely was only observed during the longevity tests because of the  
 217 longer experimental time frame (i.e., 50 hours).

218           Unlike the MCDI and MC-MCDI cells, the stability and retention of the R-MCDI cell  
 219 depended on the  $\text{Fe}(\text{CN})_6^{3-/-4-}$  maintaining its structure and being retained in the outer electrolyte  
 220 channels. Therefore, we used the cell-voltage as a proxy for cell stability and  $\text{Fe}(\text{CN})_6^{3-/-4-}$  retention.

221 We measured the cell voltage when a constant current of 15 mA was applied to the flow-cell for  
222 50 hours (**Figure 4b**). The R-MCDI showed a stable cell-voltage of  $0.129 \pm 0.006$  V for the entire  
223 duration of the experiment (**Figure 4b**) indicating negligible  $\text{Fe}(\text{CN})_6^{3/4-}$  loss over 50 hours. A  
224 previous study conducted on an R-MCDI cell also observed negligible crossover of  $\text{Fe}(\text{CN})_6^{3/4-}$   
225 redox couple.(52) From these data, we observed that the R-MCDI cell exhibited stable  
226 performance over 50 hours of continuous operation, while both the MCDI and MC-MCDI cells  
227 exhibited capacity degradation over the same period of time. Note that alternative redox-  
228 compounds can likely be found that exhibit lower crossovers than  $\text{Fe}(\text{CN})_6^{3/4-}$  if the R-MCDI  
229 system were optimized for long-term performance.

230 **IMPLICATIONS**

231 Several new membrane-based CDI architectures have recently been proposed primarily to  
232 decrease deionization energy demands. These approaches often utilize both electrode-based and  
233 ion-exchange membrane-based separations, making them effectively hybrids of CDI and ED.  
234 Among the architectures we tested, the addition of a soluble redox-active compound to the  
235 electrolyte in contact with electrode (R-MCDI) led to the largest decrease in energy demand while  
236 improving system stability. This modification effectively created an ED-like process where the  
237 salt removal capability of the system was decoupled from the salt adsorption capacity of the  
238 electrode. Our findings are consistent with ED being more energy efficient than CDI based on  
239 previous modelling work.(9) Our results indicate that using a recirculated soluble redox-active  
240 compound in the electrolyte contacting the electrodes to balance charge leads to more energy  
241 efficient brackish water deionization than when charge is balanced by the electrodes undergoing

242 capacitive charging/discharging reactions. But, removing ion exchange membranes from CDI  
243 cells substantially increases energy demands.(46, 67) We opine that future work aiming to  
244 increase the viability of MCDI cell architectures that rely on capacitive reactions to store and  
245 release charge from electrodes without the use of redox-active compounds should search for  
246 inexpensive materials to perform ion selective charge transport across membranes that function  
247 in concert with the electrodes.(68-73)

248 **ACKNOWLEDGEMENTS**

249 Financial support for this study was provided by the National Science Foundation (CBET-  
250 1749207). Any opinions, findings, and conclusions or recommendations expressed in this material  
251 are those of the authors and do not necessarily reflect the views of the National Science  
252 Foundation. The authors thank Bruce Logan for providing valuable feedback during the writing  
253 process.

254 **SUPPORTING INFORMATION**

255 Detailed information on flow-cell assemblies, deionization experiments, longevity experiments,  
256 electrochemical impedance spectroscopy experiments, and energy demand analysis.

257

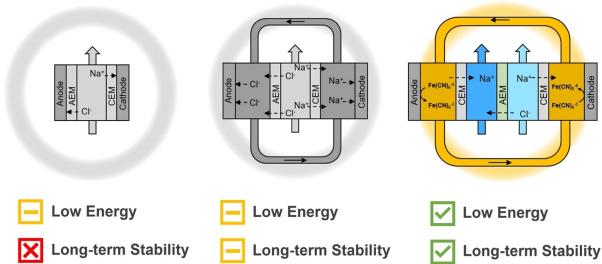
258 **REFERENCES**

- 259 1. Zhao R, Porada S, Biesheuvel PM, van der Wal A. Energy consumption in membrane  
260 capacitive deionization for different water recoveries and flow rates, and comparison with  
261 reverse osmosis. *Desalination*. 2013;330:35-41.
- 262 2. Welgemoed TJ, Schutte CF. Capacitive Deionization Technology<sup>TM</sup>: An alternative  
263 desalination solution. *Desalination*. 2005;183(1):327-40.
- 264 3. Suss ME, Porada S, Sun X, Biesheuvel PM, Yoon J, Presser V. Water desalination via  
265 capacitive deionization: what is it and what can we expect from it? *Energy & Environmental  
266 Science*. 2015;8(8):2296-319.
- 267 4. Porada S, Zhao R, van der Wal A, Presser V, Biesheuvel PM. Review on the science and  
268 technology of water desalination by capacitive deionization. *Progress in Materials Science*.  
269 2013;58(8):1388-442.
- 270 5. Oren Y. Capacitive deionization (CDI) for desalination and water treatment – past, present  
271 and future (a review). *Desalination*. 2008;228(1):10-29.
- 272 6. Landon J, Gao X, Omosebi A, Liu K. Progress and outlook for capacitive deionization  
273 technology. *Current Opinion in Chemical Engineering*. 2019;25:1-8.
- 274 7. Biesheuvel PM, van der Wal A. Membrane capacitive deionization. *Journal of Membrane  
275 Science*. 2010;346(2):256-62.
- 276 8. Anderson MA, Cudero AL, Palma J. Capacitive deionization as an electrochemical means of  
277 saving energy and delivering clean water. Comparison to present desalination practices:  
278 Will it compete? *Electrochimica Acta*. 2010;55(12):3845-56.
- 279 9. Patel SK, Qin M, Walker WS, Elimelech M. Energy Efficiency of Electro-Driven Brackish  
280 Water Desalination: Electrodialysis Significantly Outperforms Membrane Capacitive  
281 Deionization. *Environmental Science & Technology*. 2020;54(6):3663-77.
- 282 10. Biesheuvel P, Bazant M, Cusick R, Hatton T, Hatzell K, Hatzell M, et al. Capacitive  
283 Deionization--defining a class of desalination technologies. *arXiv preprint arXiv:170905925*.  
284 2017.
- 285 11. Strathmann H. Electrodialysis, a mature technology with a multitude of new applications.  
286 *Desalination*. 2010;264(3):268-88.
- 287 12. Patel SK, Ritt CL, Deshmukh A, Wang Z, Qin M, Epsztein R, et al. The relative insignificance  
288 of advanced materials in enhancing the energy efficiency of desalination technologies.  
289 *Energy & Environmental Science*. 2020;13(6):1694-710.
- 290 13. Sharan P, Yoon TJ, Jaffe SM, Ju T, Currier RP, Findikoglu AT. Can capacitive deionization  
291 outperform reverse osmosis for brackish water desalination? *Cleaner Engineering and  
292 Technology*. 2021;3:100102.
- 293 14. Porada S, Zhang L, Dykstra JE. Energy consumption in membrane capacitive deionization  
294 and comparison with reverse osmosis. *Desalination*. 2020;488:114383.

- 295 15. Skuse C, Gallego-Schmid A, Azapagic A, Gorgojo P. Can emerging membrane-based  
296 desalination technologies replace reverse osmosis? *Desalination*. 2021;500:114844.
- 297 16. Pan S-Y, Haddad AZ, Kumar A, Wang S-W. Brackish water desalination using reverse  
298 osmosis and capacitive deionization at the water-energy nexus. *Water Research*.  
299 2020;183:116064.
- 300 17. Hand S, Guest JS, Cusick RD. Technoeconomic Analysis of Brackish Water Capacitive  
301 Deionization: Navigating Tradeoffs between Performance, Lifetime, and Material Costs.  
302 *Environmental Science & Technology*. 2019;53(22):13353-63.
- 303 18. Ramachandran A, Oyarzun DL, Hawks SA, Campbell PG, Stadermann M, Santiago JG.  
304 Comments on "Comparison of energy consumption in desalination by capacitive  
305 deionization and reverse osmosis". *Desalination*. 2019;461:30-6.
- 306 19. Biesheuvel PM, Zhao R, Porada S, van der Wal A. Theory of membrane capacitive  
307 deionization including the effect of the electrode pore space. *Journal of Colloid and Interface  
308 Science*. 2011;360(1):239-48.
- 309 20. Porada S, Weinstein L, Dash R, van der Wal A, Bryjak M, Gogotsi Y, et al. Water Desalination  
310 Using Capacitive Deionization with Microporous Carbon Electrodes. *ACS Applied  
311 Materials & Interfaces*. 2012;4(3):1194-9.
- 312 21. Zhao R, Biesheuvel PM, van der Wal A. Energy consumption and constant current operation  
313 in membrane capacitive deionization. *Energy & Environmental Science*. 2012;5(11):9520-7.
- 314 22. Zhao R, Biesheuvel PM, Miedema H, Bruning H, van der Wal A. Charge Efficiency: A  
315 Functional Tool to Probe the Double-Layer Structure Inside of Porous Electrodes and  
316 Application in the Modeling of Capacitive Deionization. *The Journal of Physical Chemistry  
317 Letters*. 2010;1(1):205-10.
- 318 23. Tang W, He D, Zhang C, Kovalsky P, Waite TD. Comparison of Faradaic reactions in  
319 capacitive deionization (CDI) and membrane capacitive deionization (MCDI) water  
320 treatment processes. *Water Research*. 2017;120:229-37.
- 321 24. Yang J, Zou L, Song H, Hao Z. Development of novel MnO<sub>2</sub>/nanoporous carbon composite  
322 electrodes in capacitive deionization technology. *Desalination*. 2011;276(1):199-206.
- 323 25. Myint MTZ, Dutta J. Fabrication of zinc oxide nanorods modified activated carbon cloth  
324 electrode for desalination of brackish water using capacitive deionization approach.  
325 *Desalination*. 2012;305:24-30.
- 326 26. Yin H, Zhao S, Wan J, Tang H, Chang L, He L, et al. Three-Dimensional Graphene/Metal  
327 Oxide Nanoparticle Hybrids for High-Performance Capacitive Deionization of Saline  
328 Water. *Advanced Materials*. 2013;25(43):6270-6.
- 329 27. Lee J, Kim S, Kim C, Yoon J. Hybrid capacitive deionization to enhance the desalination  
330 performance of capacitive techniques. *Energy & Environmental Science*. 2014;7(11):3683-9.
- 331 28. Omosebi A, Gao X, Landon J, Liu K. Asymmetric Electrode Configuration for Enhanced  
332 Membrane Capacitive Deionization. *ACS Applied Materials & Interfaces*. 2014;6(15):12640-  
333 9.

- 334 29. Li H, Zaviska F, Liang S, Li J, He L, Yang HY. A high charge efficiency electrode by self-  
335 assembling sulphonated reduced graphene oxide onto carbon fibre: towards enhanced  
336 capacitive deionization. *Journal of Materials Chemistry A*. 2014;2(10):3484-91.
- 337 30. Kim S, Lee J, Kim C, Yoon J.  $\text{Na}_2\text{FeP}_2\text{O}_7$  as a Novel Material for Hybrid Capacitive  
338 Deionization. *Electrochimica Acta*. 2016;203:265-71.
- 339 31. Chen B, Wang Y, Chang Z, Wang X, Li M, Liu X, et al. Enhanced capacitive desalination of  
340  $\text{MnO}_2$  by forming composite with multi-walled carbon nanotubes. *RSC Advances*.  
341 2016;6(8):6730-6.
- 342 32. Srimuk P, Kaasik F, Krüner B, Tolosa A, Fleischmann S, Jäckel N, et al. MXene as a novel  
343 intercalation-type pseudocapacitive cathode and anode for capacitive deionization. *Journal  
344 of Materials Chemistry A*. 2016;4(47):18265-71.
- 345 33. Porada S, Shrivastava A, Bukowska P, Biesheuvel PM, Smith KC. Nickel Hexacyanoferrate  
346 Electrodes for Continuous Cation Intercalation Desalination of Brackish Water.  
347 *Electrochimica Acta*. 2017;255:369-78.
- 348 34. Kim S, Yoon H, Shin D, Lee J, Yoon J. Electrochemical selective ion separation in capacitive  
349 deionization with sodium manganese oxide. *Journal of Colloid and Interface Science*.  
350 2017;506:644-8.
- 351 35. Srimuk P, Lee J, Fleischmann S, Choudhury S, Jäckel N, Zeiger M, et al. Faradaic  
352 deionization of brackish and sea water via pseudocapacitive cation and anion intercalation  
353 into few-layered molybdenum disulfide. *Journal of Materials Chemistry A*.  
354 2017;5(30):15640-9.
- 355 36. Chen F, Huang Y, Guo L, Ding M, Yang HY. A dual-ion electrochemistry deionization  
356 system based on  $\text{AgCl}-\text{Na}_0.44\text{MnO}_2$  electrodes. *Nanoscale*. 2017;9(28):10101-8.
- 357 37. Lee J, Srimuk P, Aristizabal K, Kim C, Choudhury S, Nah Y-C, et al. Pseudocapacitive  
358 Desalination of Brackish Water and Seawater with Vanadium-Pentoxide-Decorated  
359 Multiwalled Carbon Nanotubes. *ChemSusChem*. 2017;10(18):3611-23.
- 360 38. Guo L, Mo R, Shi W, Huang Y, Leong ZY, Ding M, et al. A Prussian blue anode for high  
361 performance electrochemical deionization promoted by the faradaic mechanism. *Nanoscale*.  
362 2017;9(35):13305-12.
- 363 39. Cao J, Wang Y, Wang L, Yu F, Ma J.  $\text{Na}_3\text{V}_2(\text{PO}_4)_3@\text{C}$  as Faradaic Electrodes in Capacitive  
364 Deionization for High-Performance Desalination. *Nano Letters*. 2019;19(2):823-8.
- 365 40. Ma X, Chen Y-A, Zhou K, Wu P-C, Hou C-H. Enhanced desalination performance via mixed  
366 capacitive-Faradaic ion storage using  $\text{RuO}_2$ -activated carbon composite electrodes.  
367 *Electrochimica Acta*. 2019;295:769-77.
- 368 41. Singh K, Porada S, de Gier HD, Biesheuvel PM, de Smet LCPM. Timeline on the application  
369 of intercalation materials in Capacitive Deionization. *Desalination*. 2019;455:115-34.
- 370 42. Tang W, Liang J, He D, Gong J, Tang L, Liu Z, et al. Various cell architectures of capacitive  
371 deionization: Recent advances and future trends. *Water Research*. 2019;150:225-51.

- 372 43. Kim C, Lee J, Srimuk P, Aslan M, Presser V. Concentration-Gradient Multichannel Flow-  
373 Stream Membrane Capacitive Deionization Cell for High Desalination Capacity of Carbon  
374 Electrodes. *ChemSusChem*. 2017;10(24):4914-20.
- 375 44. Kim N, Hong SP, Lee J, Kim C, Yoon J. High-Desalination Performance via Redox Couple  
376 Reaction in the Multichannel Capacitive Deionization System. *ACS Sustainable Chemistry*  
377 & Engineering. 2019;7(19):16182-9.
- 378 45. Jeon S-i, Yeo J-g, Yang S, Choi J, Kim DK. Ion storage and energy recovery of a flow-electrode  
379 capacitive deionization process. *Journal of Materials Chemistry A*. 2014;2(18):6378-83.
- 380 46. Hawks SA, Ramachandran A, Porada S, Campbell PG, Suss ME, Biesheuvel PM, et al. Performance metrics for the objective assessment of capacitive deionization systems. *Water*  
381 Research. 2019;152:126-37.
- 382 47. Lee J, Lee J, Ahn J, Jo K, Hong SP, Kim C, et al. Enhancement in Desalination Performance  
383 of Battery Electrodes via Improved Mass Transport Using a Multichannel Flow System. *ACS*  
384 *Applied Materials & Interfaces*. 2019;11(40):36580-8.
- 385 48. He C, Ma J, Zhang C, Song J, Waite TD. Short-Circuited Closed-Cycle Operation of Flow-  
386 Electrode CDI for Brackish Water Softening. *Environmental Science & Technology*.  
387 2018;52(16):9350-60.
- 388 49. Wei Q, Hu Y, Wang J, Ru Q, Hou X, Zhao L, et al. Low energy consumption flow capacitive  
389 deionization with a combination of redox couples and carbon slurry. *Carbon*. 2020;170:487-  
390 92.
- 391 50. Wang J, Zhang Q, Chen F, Hou X, Tang Z, Shi Y, et al. Continuous desalination with a metal-  
392 free redox-mediator. *Journal of Materials Chemistry A*. 2019;7(23):13941-7.
- 393 51. Chen F, Wang J, Ru Q, Aung SH, Oo TZ, Chu B. Continuous Electrochemical Desalination  
394 via a Viologen Redox Flow Reaction. *Journal of The Electrochemical Society*.  
395 2020;167(8):083503.
- 396 52. Chen F, Wang J, Feng C, Ma J, David Waite T. Low energy consumption and mechanism  
397 study of redox flow desalination. *Chemical Engineering Journal*. 2020;401:126111.
- 398 53. Thu Tran NA, Phuoc NM, Yoon H, Jung E, Lee Y-W, Kang B-G, et al. Improved Desalination  
399 Performance of Flow- and Fixed-Capacitive Deionization using Redox-Active Quinone.  
400 *ACS Sustainable Chemistry & Engineering*. 2020;8(44):16701-10.
- 401 54. Yang F, He Y, Rosentsvit L, Suss ME, Zhang X, Gao T, et al. Flow-electrode capacitive  
402 deionization: A review and new perspectives. *Water Research*. 2021;200:117222.
- 403 55. Liu X, Shanbhag S, Bartholomew TV, Whitacre JF, Mauter MS. Cost Comparison of  
404 Capacitive Deionization and Reverse Osmosis for Brackish Water Desalination. *ACS ES&T*  
405 Engineering. 2021;1(2):261-73.
- 406 56. Liu X, Shanbhag S, Natesakhawat S, Whitacre JF, Mauter MS. Performance Loss of Activated  
407 Carbon Electrodes in Capacitive Deionization: Mechanisms and Material Property  
408 Predictors. *Environmental Science & Technology*. 2020;54(23):15516-26.


- 410 57. Kim T, Gorski CA, Logan BE. Low Energy Desalination Using Battery Electrode  
411 Deionization. *Environmental Science & Technology Letters*. 2017;4(10):444-9.
- 412 58. Pothanamkandathil V, Fortunato J, Gorski CA. Electrochemical Desalination Using  
413 Intercalating Electrode Materials: A Comparison of Energy Demands. *Environmental  
414 Science & Technology*. 2020;54(6):3653-62.
- 415 59. Wang L, Dykstra JE, Lin S. Energy Efficiency of Capacitive Deionization. *Environmental  
416 Science & Technology*. 2019;53(7):3366-78.
- 417 60. Hawks SA, Knipe JM, Campbell PG, Loeb CK, Hubert MA, Santiago JG, et al. Quantifying  
418 the flow efficiency in constant-current capacitive deionization. *Water Research*.  
419 2018;129:327-36.
- 420 61. Black J, Andreas HA. Effects of charge redistribution on self-discharge of electrochemical  
421 capacitors. *Electrochimica Acta*. 2009;54(13):3568-74.
- 422 62. Niu J, Conway BE, Pell WG. Comparative studies of self-discharge by potential decay and  
423 float-current measurements at C double-layer capacitor and battery electrodes. *Journal of  
424 Power Sources*. 2004;135(1):332-43.
- 425 63. Pell WG, Conway BE. Voltammetry at a de Levie brush electrode as a model for  
426 electrochemical supercapacitor behaviour. *Journal of Electroanalytical Chemistry*.  
427 2001;500(1):121-33.
- 428 64. Conway BE. *Electrochemical supercapacitors: scientific fundamentals and technological  
429 applications*: Springer Science & Business Media; 2013.
- 430 65. Patel SK, Biesheuvel PM, Elimelech M. Energy Consumption of Brackish Water  
431 Desalination: Identifying the Sweet Spots for Electrodialysis and Reverse Osmosis. *ACS  
432 ES&T Engineering*. 2021;1(5):851-64.
- 433 66. He M, Fic K, Frąckowiak E, Novák P, Berg EJ. Influence of aqueous electrolyte concentration  
434 on parasitic reactions in high-voltage electrochemical capacitors. *Energy Storage Materials*.  
435 2016;5:111-5.
- 436 67. Zhao Y, Wang Y, Wang R, Wu Y, Xu S, Wang J. Performance comparison and energy  
437 consumption analysis of capacitive deionization and membrane capacitive deionization  
438 processes. *Desalination*. 2013;324:127-33.
- 439 68. Zhang X, Zuo K, Zhang X, Zhang C, Liang P. Selective ion separation by capacitive  
440 deionization (CDI) based technologies: a state-of-the-art review. *Environmental Science:  
441 Water Research & Technology*. 2020;6(2):243-57.
- 442 69. Uwayid R, Guyes EN, Shocron AN, Gilron J, Elimelech M, Suss ME. Perfect divalent cation  
443 selectivity with capacitive deionization. *Water Research*. 2022;210:117959.
- 444 70. Hand S, Cusick RD. Emerging investigator series: capacitive deionization for selective  
445 removal of nitrate and perchlorate: impacts of ion selectivity and operating constraints on  
446 treatment costs. *Environmental Science: Water Research & Technology*. 2020;6(4):925-34.
- 447 71. Guyes EN, Shocron AN, Chen Y, Diesendruck CE, Suss ME. Long-lasting, monovalent-  
448 selective capacitive deionization electrodes. *npj Clean Water*. 2021;4(1):1-11.

449 72. Tsai S-W, Hackl L, Kumar A, Hou C-H. Exploring the electrosorption selectivity of nitrate  
450 over chloride in capacitive deionization (CDI) and membrane capacitive deionization  
451 (MCDI). Desalination. 2021;497:114764.

452 73. Kim T, Gorski CA, Logan BE. Ammonium Removal from Domestic Wastewater Using  
453 Selective Battery Electrodes. Environmental Science & Technology Letters. 2018;5(9):578-83.

454

455 **TOC ART**



This work compares different membrane-based CDI architectures to emulate how controlling the environment around the electrode affects the desalination performance of the system with respect to energy demand and stability.

456