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Abstract

Dynamical systems models for controlling multi-agent swarms have demonstrated advances toward resilient, decentralized nav-
igation algorithms. We previously introduced the NeuroSwarms controller, in which agent-based interactions were modeled by
analogy to neuronal network interactions, including attractor dynamics and phase synchrony, that have been theorized to operate
within hippocampal place-cell circuits in navigating rodents. This complexity precludes linear analyses of stability, controllability,
and performance typically used to study conventional swarm models. Further, tuning dynamical controllers by manual or grid-
based search is often inadequate due to the complexity of objectives, dimensionality of model parameters, and computational costs
of simulation-based sampling. Here, we present a framework for tuning dynamical controller models of autonomous multi-agent
systems with Bayesian optimization. Our approach utilizes a task-dependent objective function to train Gaussian process surro-
gate models to achieve adaptive and e�cient exploration of a dynamical controller model’s parameter space. We demonstrate this
approach by studying an objective function selecting for NeuroSwarms behaviors that cooperatively localize and capture spatially
distributed rewards under time pressure. We generalized task performance across environments by combining scores for simula-
tions in multiple mazes with distinct geometries. To validate search performance, we compared high-dimensional clustering for
high- vs. low-likelihood parameter points by visualizing sample trajectories in 2-dimensional embeddings. Our findings show that
adaptive, sample-e�cient evaluation of the self-organizing behavioral capacities of complex systems, including dynamical swarm
controllers, can accelerate the translation of neuroscientific theory to applied domains.
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1. Introduction

Collective biological behaviors of animal groups, includ-
ing swarming, flocking, and schooling behaviors [1–6] have
long inspired robotics and computer science research into prob-
lems of decentralized control and coordination for autonomous
groups of artificial agents [7–12]. In particular, advancing the
autonomous spatial capabilities of multi-agent swarm control
has been a key objective of simulation studies and analyses
of artificial swarms based on dynamical systems models [13].
Complementarily, the impressive recent progress of artificial
intelligence based on deep learning [14] has demonstrated the
importance of adopting key biological inspirations from neuro-
science and the brain. However, it has been unclear how to in-
tegrate complex temporal features of brain dynamics thought to
support crucial mechanisms of neural computation [15]. Thus,
addressing critical questions in autonomous robotics and arti-
ficial intelligence may depend on e�cient exploration and op-
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timization of dynamical systems models with complex inter-
actions among many units. In both domains, major gaps in
state-of-the-art capabilities are highlighted by tasks involving
autonomous spatial navigation and foraging [16–19] in com-
plex, novel, or changing environments.

Bayesian optimization provides a probabilistic framework
for adaptive, sample-e�cient optimization of ‘black box’ mod-
els with moderate dimensionality (up to ⇠20 parameters) and
expensive sample evaluations. In this framework, a task-
dependent objective function signifies the output performance
of the complex underlying model, and the optimizer traces
parameter-space trajectories of candidate points from acquisi-
tion functions operating on a simpler surrogate model. The typ-
ical surrogate model is a Gaussian process that populates the pa-
rameter space of interest with multivariate normal distributions
and which serves as a prior distribution for candidate-point up-
dates [20, 21]. Bayesian optimization with Gaussian process
surrogate models has enabled applications including the hyper-
parameter tuning and optimization of evolutionary algorithms,
multi-modal functions, robotic controllers, and other complex
systems [22–27].

The collective behavioral states of some swarming models
are tractable to linear analysis of stability, density, and clus-
tering properties [28–32]. However, for dynamical systems



that preclude such analysis due to nonlinearity, nonstationarity,
stochasticity, or other complications, the computational bud-
get for parameter exploration or optimization with simulation-
based samples is a limiting factor for translation to engineered
designs. Indeed, standard methods based on gradient descent
have two main drawbacks in this context: they can discover
local optima, but resist exploration of system behaviors for
other purposes; and their basic operation is massively sample-
ine�cient, which can be prohibitive for expensive simulation-
based sample evaluations. Moreover, emergent collective be-
haviors like swarming outstrip conventional agent-based learn-
ing methods based on the restrictive action and policy spaces of
reinforcement learning, particularly for uncertain, changing, or
open-ended tasks.

We previously introduced the NeuroSwarms framework for
modeling emergent high-level navigation and foraging in a
brain-inspired multi-agent metacontroller [33, 34]. Neu-
roSwarms addressed decentralized, distributed control by anal-
ogy to neural circuit dynamics, including oscillations [35–38]
and attractors [39–41], and associative synaptic plasticity [42]
related to rodent spatial cognition; the resulting collective be-
haviors of NeuroSwarms models included swarming, patrol-
ing, and goal-finding in simulated maze environments with
complex, irregular, or fragmented geometry [34]. These be-
haviors enabled NeuroSwarms to complete cooperative mul-
tiple reward-capture tasks without pretraining across distinct
environments [34]. However, the nonlinearities inherent in
NeuroSwarms’ oscillatory phase-coupled self-organization pre-
cluded analytic approaches to global identification, exploration,
or optimization of system behaviors. Thus, this class of dy-
namical systems model can provide insights into key aspects
of brain structure and function that may inspire theoretical
advances as well as new directions for systems engineering
designs. This insight depends crucially on devising a task-
dependent objective function that can guide the e�cient dis-
covery of system behaviors and optimal performance. In this
paper, we demonstrate that Bayesian optimization can utilize
such an objective function to e�ciently and usefully find paths
through otherwise prohibitive model spaces. In particular, we
show that a neurodynamical controller model with emergent
properties can be characterized and tuned using Bayesian op-
timization with Gaussian process surrogate models.

2. Models and methods

2.1. NeuroSwarms model

Monaco et al. (2020) [34] introduced the NeuroSwarms
framework and described a model implementation with 300
agents; baseline wall-avoiding, momentum-carrying motion-
vector updates; maze environments whose geometry occluded
agents’ line-of-sight; interagent communication between mutu-
ally visible agents; cosine-coupling of internal phase variables
driving interagent attraction and repulsion; and 9 key dynam-
ical parameters (Table 1) that had required intensive manual
fine-tuning to balance swarming and reward capture.

Name Range Description
� [10�3, 4] Normalized interagent spatial scale
 [10�3, 4] Normalized reward-approach spatial scale
⌘s [10�3, 4] Recurrent interagent learning rate
⌘r [10�3, 4] Feedforward reward-approach learning rate
!0 [0, 1] Baseline agent oscillation frequency
!I [0, 1] Max. activation-based frequency increase
⌧q [0, 1] Recurrent interagent time-constant
⌧r [0, 1] Feedforward reward time-constant
⌧c [0, 1] Sensory input time-constant
Table 1. Tunable parameters that governed the spatiotemporal dynamics of
the example NeuroSwarms model implementation [34]. ‘Range’ indicates the
limits of the parameter subspace made available for Bayesian optimization. All
other NeuroSwarms parameter values and constants were fixed at the defaults
listed in Table 1 of Monaco et al. (2020) [34].

2.2. Bayesian optimization
Bayesian optimization constructs and performs sequential

optimization on a surrogate model that represents the objec-
tive performance of a more complex model [43–45]. Learn-
ing surrogate models can be beneficial if directly optimizing a
complex model is not computationally tractable given resource
constraints. These surrogate models can then be deployed to
predict the performance of the underlying model at untested
parameter points without requiring a full model simulation of
those parameter values (Fig. 1).

We implemented Bayesian optimization with surrogate mod-
els defined as Gaussian processes [20, 47, 48]. Gaussian pro-
cesses are parametric models that iteratively learn a proba-
bilistic mapping f : X 7! R such that the density estimate
p(yi|xi) = f (xi, yi), where X ✓ Rp is the bounded parameter
subspace being optimized, xi 2 X is a parameter point, and
yi 2 R is an objective function output value [21, 49, 50]; e.g.,
p = 9 NeuroSwarms parameters in this paper. Thus, the un-
derlying ‘black box’ objective function ftrue is assumed to be
distributed according to a Gaussian process,

ftrue ⇠ GPµ,k(X) ,

where µ(·) and k(·) are mean and covariance kernels applied
to an input parameter set, X ⇢ X. The posterior distribution
of a q-sized batch of candidate points X̂ = {x̂1, . . . , x̂q} condi-
tioned on the observed training data D = {(xi, yi)}ni=1 takes the
form of a p-dimensional multivariate normal distribution, i.e.,
P(GP(X)|D) ⇠ N p(µ(X), k(X)).

2.3. Acquisition functions
Bayesian optimization relies on acquisition functions to pro-

vide the candidate parameter points that navigate the underlying
model space. Acquisition functions define a strategy to man-
age the trade-o↵ between exploring the parameter space and
exploiting regions that yielded improvement for previous sam-
ples [51]. An acquisition function can be evaluated on the Gaus-
sian process posterior P(GP(X)|D) by averaging a set of Monte
Carlo (MC) samples, e.g.,

↵̂n(X;D) =
1
n

nX

i=1

a
⇣
Ei
D(X)

⌘
, (1)
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Fig. 1. Computation flow for optimization and simulation-based sampling. A, Step 1: The posterior distribution is computed from the Gaussian process
surrogate model (GP Model) based on the training data D. Step 2: The acquisition function’s Quasi Monte Carlo sampling process uses the posterior distribution
to select new candidate parameters X̂ (Step 3) based on the acquisition function’s estimated objective function value Ŷ (Step 4). Step 5: The NeuroSwarms
model [33, 34] is simulated with candidate parameter points X̂ to generate the observed objective value Y (see B). Step 6: The initial Gaussian process model’s
marginal log-likelihood (MLL) is then calculated and used to optimize the Gaussian process using the L-BFGS-B algorithm [46]. Step 7: The resulting D (from
Step 5) and MLL (from Step 6) update the Gaussian process model for the next iteration of the outer loop. B, Flow diagram of simulation-based candidate-point
evaluation. For each sample (see Step 5 in A), the optimizer executes play-throughs in both the Hairpin (top) and Tunnel (bottom) maze environments. The sample’s
objective value Y is computed as the average of the respective loss values LH and LT (Eq. 3).

where n is the sample count and a(·) is the net utility func-
tion providing objective function output. Thus, ↵̂n is an
expectation of posterior samples ED ⇠ P(GP(X)|D). We
study a pair of MC-based acquisition functions: q-Expected
Improvement (qEI) [52] and Noisy q-Expected Improvement
(qNoisyEI) [53]. We compare qEI and qNoisyEI to random
sampling of candidate parameters. First, similar to ↵̂ (Eq. 1),
qEI calculates an expectation over posterior samples,

qEI(X) ⇡ 1
n

nX

i=1

q
max

j=1

h
Ei

j � Y⇤
i
+
,

where [·]+ indicates linear rectification and Y⇤ is the best ob-
served objective function value. Thus, qEI estimates a noise-
free expected improvement of the posterior with respect to the
best value. Second, qNoisyEI approximates improvement rel-
ative to the expected best objective value conditioned on the
observed MC sampling history Eobs within each batch [54];
simplistically, the constrained batch-sampling performed by
qNoisyEI [53, 55] approximates

qNoisyEI(X;D) ⇡ 1
n

nX

i=1

q
max

j=1

h
Ei

j �max Eobs
i
+
,
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but more detailed treatments of this complex optimization prob-
lem provide critical analyses and caveats [cf. 53–55].

Throughout our study, Bayesian optimization with any of
the three acquisition functions employed 512 MC samples, 30
training epochs (with a batch size of 3), and 8 random training
samples to initialize the Gaussian process surrogate model.

2.4. Objective function

We constructed an objective function to evaluate the perfor-
mance of the example NeuroSwarms model [34] in a time-
pressured cooperative foraging task. The objective function
quantifies how quickly the swarm of agents collectively cap-
ture several spatially distributed rewards in a given maze. Let
ncap(t) be the cumulative number of cooperatively captured re-
wards by time t. A reward is captured if, at any timestep, at
least ns/nr agents were simultaneously colocated within a de-
fined radius from the reward, where ns = 300 agents and nr = 3
and 5 rewards in the Tunnel and Hairpin mazes, respectively.
For a given simulated play-through, this objective function can
be expressed as a loss which is updated at every timestep until
all rewards are captured,

L = �t/
⇣
ntncap(t) + 1

⌘
, (2)

where nt is the total number of time steps. The agent group’s
behavior is time-pressured by t growing continuously until all
rewards are captured. If the swarm is not able to capture all
the rewards in the environment, t will be set to the maximum
number of timesteps allowed for the simulation nt and the loss
will reflect the number of missed rewards. Loss values range
from [�1, 0], with better task performance closer to zero.

To account for the generalizability of spatial task per-
formance across distinct environmental geometries, each
simulation-based sample constitutes play-throughs of both the
Hairpin and Tunnel mazes, respectively providing loss values
LH and LT as calculated in Eq. 2 (see Figure 1B). Thus, the
generalized performance at a given parameter point xi is indi-
cated by the objective value Y , computed as the average

yi(xi)
.
= Y =

LH + LT

2
. (3)

2.5. Gaussian process training

The means and variances of the Gaussian process surrogate
model are updated with each sample evaluation to reflect the
expected values and uncertainty, respectively, of the underly-
ing model’s performance. We use the Bayesian optimization
library BoTorch [50] to implement the outer loop of surrogate
model training based on iteratively updating a Gaussian pro-
cess following initialization with sample dataD. The posterior
distribution P(GP(X)|D) is then sampled from a batched MC
sampling process using an acquisition function to determine the
candidate parameter points X̂ from the subspace bounded by the
ranges listed in Table 1. The candidate points are selected based
on predictive estimates of utility value Ŷ (Fig. 1A) and evaluated
by simulating the NeuroSwarms model to generate loss values
(Eq. 2) and objective function output Y (Eq. 3) (Fig. 1B). Lastly,

the resulting (X̂, Y) tuple is appended to training data D to up-
date the Gaussian process for the next iteration.

The surrogate model hyperparameters were tuned by
first computing the marginal log-likelihood (MLL) of the
Gaussian process applied to observed parameters X and
fitting hyperparameters with the limited-memory Broy-
den–Fletcher–Goldfarb–Shanno algorithm with simple bounds
(L-BFGS-B) [46]. The fitting process provides an updated
MLL for the next optimization step.

2.5.1. Convergence metrics
This hyperparameter tuning process described above was re-

peated until convergence according to two metrics: maximum
posterior variance and minimum candidate dissimilarity. First,
maximum posterior variance for training epoch M was com-
puted following

max Var ( P(GP(xM) | DM ))

to indicate whether the Gaussian process’ posterior variance
was no longer increasing and that training should cease. Sec-
ond, minimum candidate dissimilarity measures the stabiliza-
tion of candidate selection as an inverse cosine similarity; i.e.,
we calculated the metric following

M�1
min
i=1

"
1 � xi · xM

kxik · kxMk

#

to confirm whether epoch M selected for similar neighborhoods
of parameter points as in previous training epochs. These con-
vergence metrics determined hyperparameter convergence and
enabled the resulting Gaussian process surrogate model to e�-
ciently adapt to the NeuroSwarms parameter space.

2.6. Parameter visualization
The low-dimensional representations produced by the uni-

form manifold approximation and projection (UMAP) [56] re-
sult from a locality-preserving embedding that serves to spa-
tially cluster higher-dimensional vectors such as p-dimensional
parameter points. A 2D UMAP projection allows these point
clusters to be simply visualized as images or scatter plots, for
which the x-axis and y-axis constitute an arbitrary coordinate
frame. For UMAP scatter plots, as in Figure 3 and Figure 6,
the marker for each point can be colored for convenient visual
inspection of associated values, including vector elements or
computed output. We use this visual clustering to qualitatively
inspect the parameter-dependence and structure of the Gaussian
process surrogate model by selecting a UMAP data point with,
e.g., high performance indicated by its loss value yi (Eq. 3), and
assessing that point’s other values in the context of its location
and neighborhood relative to UMAP-based clusters.

3. Results and discussion

3.1. Overview
We demonstrate Bayesian optimization methods (see Sec-

tion 2.2) for tuning the parameters of a neuroscience-inspired
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Fig. 2. Convergence metrics and objective function values for acquisition

functions across training. A+B, Training convergence metrics: minimum
candidate dissimilarity (A) and maximum posterior variance (B). C+D, Gaus-
sian process models with corresponding acquisition functions model perfor-
mances as shown by observed objective function histograms (C) and best ob-
served values (D), where values closer to 0 indicate stronger performance.

swarming model, NeuroSwarms [33, 34, 38] (see Section 2.1),
to find cooperative foraging behaviors for capturing multiple
rewards in distinct maze environments under time pressure
(see Section 2.4). We train Gaussian process surrogate mod-
els (see Section 2.5) to characterize the NeuroSwarms param-
eter space using noise-free (i.e., qEI) and observed sampling
history-dependent (i.e., qNoisyEI) acquisition functions (see
Section 2.3). Then we show how the locality-preserving di-
mensionality reduction provided by UMAP embeddings (see
Section 2.6) can be used to evaluate surrogate model structure
to identify critical system behaviors.

3.2. Training the surrogate model for swarming performance

Small variations in the p = 9 dynamical NeuroSwarms pa-
rameters (Table 1) can substantially impact collective behav-
iors. Optimal parameters that allow NeuroSwarms models to
accomplish generalized cooperative foraging may not be lim-
ited to a single set of parameters due to the complexity and
potential degeneracy of emergent collective behaviors in a dis-
tributed multi-agent system. Thus, we constructed a simple
time-pressured objective function to measure the progress of
reward-capture (Section 2.4) and guide Bayesian optimization
using Gaussian process surrogate models (Fig. 1A). We utilized
acquisition functions to sample candidate parameter points and
optimize the Gaussian process’ predictive performance com-
pared to observed NeuroSwarms simulations (Section 2.5). We
evaluated the surrogate models in two environments for each
sample: a Hairpin maze and a Tunnel maze (Fig. 1B). By simul-
taneously assessing mazes with distinct geometries, the surro-
gate model optimization was allowed to find swarming and nav-
igational dynamics resulting in time-e�cient cooperative forag-
ing that may generalize across environments.

We started training with an initial set of 24 randomly
selected parameter points with corresponding simulation re-
sults. Each Gaussian process was trained by an acquisi-
tion function for selecting candidate points: q-batched Ex-
pected Improvement (qEI), q-batched Noisy Expected Im-
provement (qNoisyEI), or random parameter sampling (Sec-
tion 2.3). Gaussian process modeling and training was imple-
mented using BoTorch [50] and optimized with 512 MC sam-
ples over 30 training epochs (Section 2.5). We verified that the
EI-based acquisition functions converged based on metrics of
minimum candidate dissimilarity and maximum posterior vari-
ance (Section 2.5.1). The EI-based acquisition functions ap-
proached zero dissimilarity during training (Fig. 2A). Similarly,
the maximum posterior variance for each surrogate model had
converged by the end of training (Fig. 2B).

We evaluated how e↵ective each acquisition function was
at finding regions of the parameter space that optimize the
NeuroSwarms objective function (Eqs. 2 and 3). Both qEI
and qNoisyEI discovered more parameter points with high-
performance values than random sampling (Fig. 2C). Both
random sampling and the default parameters from Monaco et
al. (2020) [34] were outperformed by the EI-based acquisition
functions. Thus, qEI and qNoisyEI demonstrated the strongest
utility improvement of best observed values during training as
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Fig. 3. UMAP-clustered parameter points selected by the noise-free qEI acquisition function.

the NeuroSwarms parameter space was learned by the corre-
sponding surrogate models (Fig. 2D).

3.3. Evaluating UMAP-clustering of selected parameters

Understanding the results of the above Bayesian optimiza-
tion process requires a visual representation of the parameter
space, yet it can be challenging to represent data with > 3 di-
mensions. We considered that a visualizing parameter points in
lower dimensions could facilitate the discovery of critical sur-
rogate model structures, including clusters of high-performing
parameters that potentially yield distinct behavioral solutions
to the cooperative foraging task. Thus, we used UMAP (Sec-
tion 2.6) to reduce sets of 9-dimensional NeuroSwarms param-
eters (Table 1) into locality-preserving 2D representations. For
qEI-selected parameters, we assigned colors to the resulting 2D
UMAP-clustered data points according to posterior mean esti-
mates of objective values (top, left plot) or individual parameter
values (Fig. 3). The resulting visual representation in Figure 3
shows where the highest utility (i.e., best posterior mean esti-
mate of objective value) data points cluster into groups based
on the values of NeuroSwarms parameters

Given that qEI demonstrated the largest utility improve-
ment (Fig. 2D) and consistently identified high-performing pa-
rameters (Fig. 2C), we consider its UMAP representation for
further analysis. The qEI-based parameter samples formed two
clusters of data points with the highest utility (Fig. 3). In the
(top, left) posterior mean plot, we selected one of these points
from the lower, left cluster and matched it with the numeri-
cal values of its associated parameters, which we subsequently
evaluated in NeuroSwarms simulations.

We simulated the qEI-optimized NeuroSwarms model on
both the Hairpin and Tunnel mazes (see Figure 1B). Trajectory-
trace plots for the Hairpin (Fig. 4, blue traces) depict the move-
ment of each agent that contributed to reward capture through-
out the simulation, up to the timestep at which cooperative cap-
ture of each reward goal was achieved. Likewise, trajectory

traces in orange (Fig. 4) reflect the behavior of the reward-
capturing agents after the reward had been captured. For ex-
ample, the transition from swarming and goal-directed dynam-
ics to post-capture exploration is depicted by the capture of
Reward 3 (R3) in the third row of Figure 4, in which a sub-
set of agents converged on and captured R3 and immediately
dispersed, thus permitting the search for and capture of subse-
quent reward goals. Agents recommenced exploration follow-
ing reward-capture because NeuroSwarms relies on local, line-
of-sight communication between agents, meaning that agent
motion may not be influenced by nearby rewards if they are oc-
cluded by walls of the maze. The qEI-tuned swarms were able
to quickly capture all five rewards on the Hairpin environment
(t = 25.38 s), as shown in Figure 4, whereas the original default
parameters of NeuroSwarms—determined by hand-tuning as
described in our previous work [34]—produced relatively slow
reward capture (t = 41.02 s). Reward-capture speed using the
default parameters was additionally exacerbated in the Tunnel
maze (t = 175.42 s). In contrast, the qEI-tuned swarm captured
all three rewards (Fig. 5) faster than the default swarm captured
two rewards (t = 34.88 s). We attribute the worse performance
of the hand-tuned default parameters to longer dynamical time-
constants and thus slower behavioral responsivity. Thus, com-
pared to manual parameter tuning for each maze environment,
our Bayesian batch-optimization process (Section 2.3; Fig. 1A)
with joint objective sampling (Section 2.4; Fig. 1B) was able to
simultaneously, jointly, and e�ciently discover distinct high-
performing dynamical parameters for multiple mazes.

A key feature of our Bayesian optimizer is that the objec-
tive indirectly quantifies (i.e., as a ‘black box’ model) cooper-
ative foraging without directly modifying NeuroSwarms’ un-
derlying mechanisms. In general, this feature allows a task-
dependent objective to evaluate multi-agent performance in col-
lective tasks involving, e.g., social coordination or distributed
consensus. In contrast to the regular but fragmented geom-
etry of the Hairpin maze (Fig. 4), the Tunnel maze required
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Fig. 4. NeuroSwarms trajectories depicting reward capture in the Hairpin maze. Simulated trajectory-trace plots in the Hairpin environment. The locations
of the five reward goals (labeled R1–R5 in the top, left maze plot) are marked with gold stars.

the swarm to distribute through an irregular geometry to com-
plete the foraging task (Fig. 5). Additionally, whereas agents
were initialized at uniform random locations in the Hairpin
maze, all agents in the Tunnel maze were initialized to points
inside a small disc circumscribed within its Southwest quad-
rant. As a result, the agents rapidly capture R2 (Fig. 5, top row)
and then split into subgroups to capture the remaining two re-
wards (Fig. 5, lower two rows). An additional challenge of the

Tunnel maze is that R3 is initially visible to all agents and closer
than R1, yet the tunnel constricts access to it. Conversely, R1
is initially visible and accessible, yet further away and partially
occluded once agents have converged onto R2’s location. The
fast capture of R1 (t = 5.46 s) vs. R3 (t = 31.78 s) reflects
the characteristic time-scale di↵erences between coordinated
reward-approach trajectories and exploratory swarming trajec-
tories, respectively. Comparing the pre-capture (blue, left) and

7



Fig. 5. NeuroSwarms trajectory-trace plots depicting reward capture in the Tunnel maze. As labeled in the top-left maze plot, the locations of reward goals
R1–R3 are marked with gold stars in the Northwest, Southwest, and Southeast quadrants, respectively.

post-capture (orange, right) trajectories for each reward (Fig. 5),
the agents began using the large opening in the center of the
map only once R2 and R1 were both captured. This behavioral
transition suggests that exploration traded o↵with goal-directed
exploitation by adaptively forming and regrouping subgroups
of agents. Thus, distinct challenges presented by the Tunnel
maze, in concert with our optimizer’s objective function defini-
tion (Section 2.4), may have induced collective behaviors that
can flexibly adapt to diverse foraging problems.

3.4. Exploring the future parameter space
Trained acquisition functions can be used to predict the per-

formance of unobserved regions of the parameter space. To test
predictive selection, we generated 500 samples from the qEI
acquisition function and the posterior distribution of its trained
Gaussian process surrogate model. The qEI sample means from
the posterior (Fig. 6, top-left plot) were similar across most
data points because qEI had adapted to parameter regions with
the highest likelihood of utility improvement. As in the previ-
ous section (3.3), we selected candidate points from these an-

ticipated future qEI parameters to simulate in the Hairpin and
Tunnel mazes, but we chose points that featured mid-range pa-
rameter values, i.e., whose vector elements were not at or near
the range limits of the respective parameter (Table 1). In par-
ticular, we selected parameters where the time-constants were
greater than the minimum of their ranges (1 ms), constituting a
parameter regime that was distinct from clusters of qEI samples
which minimized their respective time-constants in response to
the time-pressure imposed by our objective function (Eq. 2).
We chose these points, with corresponding simulations shown
in Figure 7, to demonstrate the distinct behavioral solutions to
the foraging task that can be discovered by the same acquisition
function and associated surrogate model. Trajectory-trace plots
of reward-capturing agents before and after rewards were coop-
eratively captured on the Hairpin and Tunnel mazes show that
the selected parameters resulted in slower reward capture for the
Hairpin (t = 47.44 s; Fig. 7A) and Tunnel (t = 66.96 s; Fig. 7B)
mazes compared with the optimized parameters in Figure 4
(Hairpin, t = 25.38 s) and Figure 5 (Tunnel, t = 31.78 s). Addi-
tionally, the default parameters from Monaco et al. (2020) [34]
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Fig. 6. Anticipated future qEI-sampled parameter points.

Fig. 7. Example reward-capture trajectories from selected future qEI-sampled NeuroSwarms parameters. Swarm trajectory-trace plots in the Hairpin (A)
and Tunnel (B) mazes using parameters selected for mid-range values (i.e., away from parameter range limits) from predictive (anticipated future) samples generated
by the trained qEI-based surrogate model.

entailed strong reward-approach exploitation (e.g.,  = 6.6), but
weak swarming-based exploration (e.g., � = 2.0). This com-
bination of behavioral forces increased the time-to-capture for
all five rewards. Thus, we attribute slow reward-capture to a
combination of longer dynamical time-constant parameters and
exploration–exploitation mismatches. Moreover, if the energy
budget of agent locomotion (e.g., speed, turning, etc.) were to
be taken into account by the objective function, a slower behav-
ioral repertoire enabled by these parameter regimes could help
to minimize energetic or ine�cient navigational patterns.

4. Concluding remarks

Neuroscience-inspired learning and control methods have
had increased interest in robotics, artificial intelligence, and
multi-agent control. Here, we presented a demonstration of
exploring and visualizing the parameter space of a multi-
agent model with complex dynamical behaviors using sample-
e�cient Bayesian optimization with Gaussian process surro-
gate models. We introduced an objective function for a spatial
cooperative foraging task in NeuroSwarms simulations [34] to
predict reward-capture performance across two distinct maze
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environments. Training the surrogate model was facilitated by
the qEI and qNoisyEI acquisition functions. In particular, qEI
was shown to guide optimizer trajectories towards parameter
regions with high utility improvement, outperforming random
sampling and manual tuning.

By learning UMAP embeddings [56], we demonstrated vi-
sualization of 9-dimensional parameter points to identify and
select high performing clusters of parameters. We illustrated
the identification of parameters that generalized across environ-
ments by jointly evaluating the NeuroSwarms metacontroller in
two distinct maze environments. Overall, our study serves as
an example application of Bayesian optimization of complex
multi-agent models to explore and select for complex behaviors
like goal-directed spatial navigation in a system with distributed
neural control.

As parameter size grows, the computational cost of the ma-
trix inversions required to calculate updated Gaussian process
parameters increases exponentially and eventually outweighs
the gains in adaptive search e�ciency provided by computing
the acquisition function over the surrogate model to advance
the sample trajectory [20]. This limitation on model dimen-
sionality does not, in general, prohibit analysis of complex dy-
namics, particularly in systems of homogeneous particles, but
it would reasonably detract the feasibility of Bayesian opti-
mization for modeling systems with nontrivial heterogeneity in
agent/particle behaviors. Within that moderate limit on model
complexity—e.g., for p up to ⇠20—Bayesian optimization may
facilitate adaptive and e�cient computational exploration of
dynamical parameter spaces, resulting in the identification of
distinct and complex system behaviors.

Future work is needed to develop new controller models and
critical spatial tasks to explore the capabilities of multi-agent
objective functions that adapt e�ciently to the characteristics of
diverse environments (e.g., geometry, distributions of rewards
and sensory cues). We theorize that heterogeneous variation
of swarm spatial structure and intertemporal coordination dy-
namics will be able to support a form of swarm metacognition
that allows adjustment to the available goals in an environment,
without initial knowledge of the goals or their locations. This
approach could extend the flexibility of Bayesian optimization
to operate in diverse environments and adapt e�ciently to tasks
with di�cult or uncertain goals.
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