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ABSTRACT

This work relies on a compressible biglobal stability approach to describe the wave dynamics in a planar rocket chamber modeled as a
porous channel. At first, the effectiveness of the compressible formulation is demonstrated by reproducing, in the absence of a mean flow,
the Helmholtz frequencies and mode shapes. Next, the unsteady vorticity fluctuations, which intensify near the walls, are shown to be
consistent with those associated with parietal vortex shedding. In this context, the penetration depth of vorticoacoustic waves is found to be
strongly dependent on the penetration number. The latter gauges the cubic power of the injection speed to the product of kinematic
viscosity, chamber half-height, and frequency squared. As for the strictly hydrodynamic modes, they seem to develop at the porous walls and
grow in the core region, where the mean flow velocity is most appreciable. The ensuing modal analysis enables us to predict both longitudinal
and transverse modes for several test cases, thus illustrating the tendency of hydrodynamic modes to intensify at higher injection speeds and
longer chambers. Furthermore, by repeating the analysis with an active mean flow, one finds that successive increases in the injection speed
gradually reduce the predicted frequencies relative to the eigenmodes obtained in a quiescent medium. Finally, recognizing that the spectral
analysis is capable of recovering both longitudinal and transverse modes induced by acoustic and hydrodynamic disturbances, their coupled
interactions, which often lead to specifically amplified frequencies in static tests, are robustly captured, namely, without resorting to any par-
ticular wave decomposition.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0080970

I. INTRODUCTION

Flow instability is commonly observed in various combustors,
rockets, and gas turbine engines, where it is often referred to as
“resonant combustion” or “combustion instability.” Characterized by
internal pressure oscillations that appear at characteristic chamber fre-
quencies, combustion instability is not exclusively associated with the
instability of the combustion process itself. In fact, several equally

On this note, one can refer to Varapaev and Yagodkin,” who may
have been the first to introduce a one-dimensional streamfunction for-
mulation (SFF) to investigate the stability of porous channel flows that
mimic the bulk gaseous motion in rocket motors. Their work is fol-
lowed by several notable studies that may be worth enumerating.
These include Sviridenkov and Yagodkin'l and Beddini,” who explore
the mean flow breakdown and turbularization in an idealized rocket

influential sources exist that can support the transfer of energy into
resonant modes, and these include fluctuations in mass, momentum
and energy fluxes, vorticity generation, unsteady heat transfer, entropy
production, and others." Naturally, one of the principal objectives of
combustion stability quantification has been the understanding of the
various mechanisms that trigger and drive these self-excited oscilla-
tions. Chief among the underlying mechanisms, the study of hydrody-
namic instability and its bearing on chamber acoustics has often
occupied the central stage.”

chamber configuration; it is then followed by the works of Casalis
et al.,” who introduce the local-non-parallel (LNP) approach using a
primitive variable formulation (PVF); Griffond et al.,” who focus on
the incompressible Taylor-Culick flow stability in a semi-infinitely
long porous cylinder;” and Griffond and Casalis, "'’ who consider the
planar counterpart, namely, the stability of the incompressible Taylor
motion in a semi-infinitely long porous channel.'' Complementary
studies include those by Féraille and Casalis,'” who take into account
the effect of particle entrainment on the porous channel flow stability,
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Abu-Irshaid ef al.,"”” who examine the effect of headwall injection on
the incompressible Taylor-Culick profile, and those by Chedevergne
et al,"* who introduce the incompressible biglobal stability approach.
The latter can be viewed as being a major development wherein the
LNP’s spatial emphasis on tracking local, incompressible, and slightly
viscous disturbances is abandoned in favor of a temporal scheme that
can be globally applied. In this vein, and using a vorticity-
streamfunction technique, Chedevergne et al.'” are able to confirm
that direct numerical simulations of the incompressible Taylor-Culick
motion instability agree reasonably well with the oscillatory wave
structure obtained by consolidating the biglobal stability predictions of
the incompressible hydrodynamic waves with those determined ana-
lytically from a vorticoacoustic formulation.'® Follow-on studies by
Casalis and co-workers'”'” continue this line of inquiry and connect
the onset of parietal vortex shedding (PVS) to the presence of simple
wall defects in realistic motor cases. Other investigations of PVS cou-
pling include those by Chakravarthy and Chakraborty”’ and Li et al.”’
In the interim, Bouyges et al.”” manage to characterize the impact of
small deviations from a circular-port, such as those associated with
star-shaped propellant grains, on the resulting flow motion and stabil-
ity. Along similar lines, Elliott and Gibson™’ examine the effect of swirl
on mean flow stability whereas Li et al.” investigate the effect of grid
refinement on the stability of wave structures in a long cylindrical
chamber with porous walls. In the case of a chamber with non-porous
walls, Yeddula and Morgans™ and Shelton and Majdalani*® develop
models to describe the effects of arbitrary varying cross-sectional areas
and temperature profiles on the acoustic mode shapes; the latter is fur-
ther extended to capture the unsteady pressure field in a Rijke tube.

However, most of the aforementioned studies resort to a linear
stability framework in which the incompressible Navier-Stokes equa-
tions are perturbed. As a result, the hydrodynamic modes obtained
from the corresponding eigensolvers do not return the chamber’s
acoustic frequencies. To overcome this limitation, the present article
will focus on the development of a fully compressible biglobal stability
framework that can be applied, using Cartesian coordinates, to the
compressible flow problem in a porous channel. The latter admits a
closed-form analytical solution that can be used as the mean flow.””
One advantage of using a compressible stability formulation stands in
its ability to predict the coupled hydrodynamic and acoustic response
with no need for unsteady flow decomposition at the forefront of the
analysis.””

In fact, most stability analyses subdivide the unsteady flow distur-
bances into three oscillation modes that owe their origins to acoustic,
vortical, and entropy-based sources.” According to the
Helmholtz-Hodge decomposition technique, these distinct fields can
be associated with irrotational, solenoidal, and harmonic oscillations,
with the latter being both curl-free and divergence-free.”” For more
detail on this subject, Ewert and Schréder' provide a judicious over-
view of the different decomposition techniques and their relations to
sound prediction.

In applying the Helmholtz-Hodge decomposition technique to a
fluid disturbance, Chu and Kovasznay”” introduce a subdivision of the
resulting wave structures into three types: pressure, vorticity, and
entropy waves. While the pressure component describes the produc-
tion, propagation, and absorption of acoustic waves, the vorticity and
entropy waves remain connected to the production, convection,
and dissipation of rotational and thermal fluctuations, respectively.

ARTICLE scitation.org/journal/phf

The acoustic wave, typically represented by a traveling pressure wave,
appears most prominently at resonant frequencies. As for the vorticity
and entropy waves, they appear to be complementary in nature
because of their inherent coupling to the acoustic waves either through
the unsteady boundary layer or through the unsteady combustion pro-
cess. These two waves act as pathways for energy to enter or exit the
resonant acoustic modes. Self-excitation can subsequently occur when
vorticity and entropy waves couple with the natural acoustics of the
chamber to the extent of modulating the ongoing energy transfer. On
this note, a Rijke tube can be referred to as a classic representation of a
thermoacoustic device where resonance occurs as a by-product of
entropy and acoustic waves.”” Fundamentally, a Rijke tube consists of
a hollow vertical cylinder with a heat source positioned in its lower
half. In this case, acoustic waves are induced by amplified thermal fluc-
tuations over a wide range of frequencies, including those that excite
the natural frequencies of the enclosure. The resulting instability waves
are termed “thermoacoustic.” In a similar manner, vorticity waves
can couple with the acoustics to generate “vorticoacoustic” waves.
The latter can be triggered by the production and convection of
vorticity. It can, therefore, be seen that PVS waves, which are gen-
erated hydrodynamically, are not contingent on the presence of a
chemically reactive medium.'™'” Yet, of the variety of waves that
can develop in a rocket chamber, our emphasis here will be placed
on the hydrodynamic response of the compressible mean flow
motion, with special attention being given to the much discussed
vorticoacoustic coupling mechanism.

Among the earliest analytical studies associated with vorticoa-
coustic instabilities in injection-driven flowfields, one may cite Hart
and McClure’*” and Culick,” who introduce expressions for the
energy accumulation due to unsteady wave motion in chambers with
sidewall injection. In a series of successive studies, Majdalani and
Roh™ and Fabignon et al.”* manage to provide continual refinements
to the vorticoacoustic formulations developed for geometrically simple
configurations. Along similar lines, Brownlee” conducts several illu-
minating experiments intended at measuring the effects of acoustic
oscillations on the burning rate. He notes that longitudinal waves,
which remain parallel to the injecting surface, can have a substantial
bearing on the production of vorticity. Price” explains that the key
behind this mechanism can be traced back to the vortical and turbu-
lent flow processes, which can be affected by velocity and pressure
fluctuations near the wall. As a matter of fact, elucidating the complex
coupling between unsteady vortical and acoustic waves remains a fun-
damental objective in the combustion stability community.

One way of accounting for the interactions between the shearing
and the compressing processes is to enforce the no-slip boundary con-
dition at the burning surface. Through experimental studies, Brown
et al.” and Dunlap et al.” confirm the oscillatory behavior of the pres-
sure and velocity waves in a porous chamber. It becomes evident, at an
early stage, that the inviscid acoustic field, alone, cannot satisfy the
velocity-adherence requirement. Vorticity must be generated at the
wall to counteract the sweeping motion of the acoustic wave, thus giv-
ing rise to unsteady vorticity. Manifested at resonant states, this pro-
cess controls the manner by which the acoustic field modulates the
vorticity generation to draw energy from the main stream. Vuillot and
Avalon™ use this technique to study the development of the oscillatory
Stokes-like boundary layer above an injecting porous wall. Working
on the same problem, Majdalani"’ ** identifies a key parameter that
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controls the penetration depth of the vorticoacoustic coupling region.
To maintain a constant penetration depth,”’ this parameter provides
the necessary balance between convection and diffusion, the two
mechanisms responsible for the transport of the vorticoacoustic
boundary layer, more properly termed “penetration depth.”
Furthermore, Majdalani’ " evaluates the sensitivity of the vortical
wave to the mean flow injection pattern using asymptotic tools.

Although most of the original formulations have been motivated
by the need to understand solid rocket motor stability, liquid rocket
engines have also exhibited resonant combustion that can be modeled
using similar approaches.” " Owing to their geometric configuration
and direction of injection, transverse acoustic waves tend to produce
steep-fronted shearing amplitudes that can be detrimental to engine
hardware. The term “transverse” refers in this context to the direction
normal to the axis of the engine; the undesirable emergence of such
waves in the F-1/Saturn V engine remains one of the most cited cases
of combustion instability. This engine suffered from intense transverse
oscillations, requiring over 2700 full scale firings and redesigns, includ-
ing the addition of multiple forward baffles, to finally reduce the sever-
ity of reported oscillations to manageable levels.”’ In much the same
way, Clayton and co-workers”'  reported steep-fronted pressure dis-
turbances of high amplitude tangential oscillations in their liquid
rocket testing investigation. Their experimental studies recorded pres-
sure spikes larger than the mean chamber pressure by one order of
magnitude. In the same vein, Ando et al.”* used numerical techniques
to study the transverse wave evolution in a pulse detonation engine.
Their results showed peaks where the transverse waves collided.

It may be safe to say that only a few theoretical studies have
directly targeted the description of transverse vorticoacoustic waves,
with the exception of Maslen and Moore,” Crocco,”® and several of
their co-workers. Most research in this area has remained empirically
based. Using a simplified engine configuration, Haddad and
Majdalani””** have provided analytical approximations for the trans-
verse oscillations in the presence of simple mean flow profiles. Their
methods have relied on asymptotic techniques that leverage the flow
injection Mach number as a perturbation parameter. Along similar
lines, Kovacic et al.”’ have managed to extract the acoustic transverse
modes numerically, thus extending the validity of previous approaches
to include high injection speeds and arbitrary chamber configurations.
Their results have also compared favorably with the limited asymp-
totic solutions developed by Haddad and Majdalani.””**

In this work, a compressible biglobal stability formulation will be
constructed in Cartesian coordinates and then applied to the porous
channel flow problem assuming two-dimensional planar conditions.
The resulting eigenvalue problem will be shown to provide accurate
predictions of the oscillatory frequencies and mode shapes associated
with the two-dimensional Taylor motion, thus helping to reconcile
between hydrodynamic stability projections and other findings in the
literature. These include the ability to reproduce “in one swoop” the
rich structures that accompany vorticoacoustic wave motion, particu-
larly, with no need for unsteady flow decomposition and later recon-
struction. As for the nature of the oscillations themselves, we seek to
capture those that evolve at steady-state operation, notwithstanding
initial flow transients.

The paper is organized as follows. In Sec. II, the compressible
biglobal framework is formulated, starting with a detailed description
of the geometry, underlying assumptions, boundary conditions, and

ARTICLE scitation.org/journal/phf

normalizing variables. The linearized forms of the Navier-Stokes,
energy, and state equations, which prescribe the unsteady disturban-
ces, are also provided, along with a description of the mean flow profile
for the compressible Taylor motion in a porous channel. After repro-
ducing the biglobal stability equations in planar geometry, the numeri-
cal approach used to solve the resulting eigenvalue problem is
presented in Sec. I11. This includes a discussion of the spectral method
that we choose to implement in concert with an N-point Chebyshev
discretization scheme. In Sec. IV, a close examination of the eigensolu-
tions for the vorticoacoustic waves is undertaken both with and with-
out a mean flowfield. In the absence of a mean flow, it is first
hypothesized and then shown that the compressible solver can faith-
fully reproduce the strictly acoustic Helmholtz tones arising in an
impermeable and quiescent channel, namely, with no sidewall injec-
tion. Conversely, in the presence of a mean flow, it is speculated and
then demonstrated that the compressible biglobal framework can gen-
erate a broad spectrum of frequencies and growth rates that not only
reproduce the chamber’s hydrodynamic modes, but also contain the
chamber’s longitudinal, transverse, and mixed vorticoacoustic modes.
In this process, the solution’s sensitivity to the discretization size is
carefully examined to ensure convergence. To further demonstrate
that the framework can adequately resolve the effects of surface
boundaries on the generation of unsteady vorticity, Sec. V is used to
compare the biglobal eigensolutions to analytical predictions of vorti-
coacoustic waves in porous channels including the underlying rota-
tional depths of penetration. The resulting comparison enables us to
ascertain the strong dependence of the numerical solution on the pen-
etration number, a non-dimensional parameter that controls the expo-
nential decay rate of the analytical formulation of the vorticoacoustic
wave. The sensitivity of the solution to various factors is also explored,
including variations in the chamber aspect ratio, mean flow compress-
ibility, viscosity, and wall injection speed. This is followed, in Sec. VI,
by a discussion of the wave structure vis-a-vis comparisons to both
numerical simulations and experimental measurements acquired by
other researchers. Having established that the compressible biglobal
stability framework is capable of producing reliable predictions of vor-
ticoacoustic and hydrodynamic frequencies and mode shapes, several
closing remarks are offered in Sec. V1I.

Il. FORMULATION OF THE COMPRESSIBLE
BIGLOBAL EQUATIONS

A. Geometry

The internal flow corresponds to a rectangular channel with
porous walls through which gas is injected. The permeable walls allow
mass to be introduced in a manner that mimics the injection across
the burning surface of a propellant grain in a simulated slab rocket
motor.”’ Since the scope of this analysis is to predict the instabilities
that evolve after the gases have been produced,”’ a constant V,, is
taken to represent the normal speed across the non-regressing wall. A
schematic diagram of the planar problem is given in Fig. 1 using both
two- and three-dimensional representations. The sketch depicts a
chamber that is bounded by two opposing porous walls, an inert wall
to the left, and an open section to the right. The simulated gaseous
products are injected from the porous walls and accelerated in the
streamwise direction. Assuming symmetry about the midsection
plane, half of the chamber is investigated using a domain that extends
horizontally from x* = 0 to L,, and vertically from y* = 0 to a.
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(d)

FIG. 1. Schematics of a porous channel depicting a simulated, slab rocket flowfield
that is driven by uniform wall injection, V,,, in the presence of unsteady disturban-
ces. Also shown are the primary coordinates, (x*, y*), spatial dimensions, (a, Ly ),
and circular frequency, o;, in (a) two-dimensional and (b) three-dimensional
sketches.

B. Normalization

To parameterize the solution, we begin by converting the govern-
ing equations to non-dimensional forms. This enables us to identify
several non-dimensional parameters that affect the characteristics of
the solution. As we proceed, the flow variables are normalized accord-
ing to

x* y + Cw *
= ==, =—, t=t"—, =——, V=aV",
. a’ Y a z 4 Vwa a4
T L LR 1% L
ll:u—7 p: p 7 p:p—/ T:—7 MW:—W, L:—W
Cw pwcw pw TW Cy a

1

In the above, the asterisk marks dimensional variables and all spatial
coordinates are referenced to 4, the half-height of the chamber. The
flow velocities, denoted here by the vector u, are normalized using
the speed of sound at the wall, c,,, whereas (p, T) are used to denote
the density and temperature normalized by their reference values
at the wall, (p,,, T,). The conservation equations are provided for a
non-reacting fluid, with no internal heat generation or radiation.
Using , ki, Cp and 7y to denote the dynamic viscosity, thermal con-
ductivity, constant pressure specific heat, and ratio of specific heats,
one obtains Re, = p,,c,,a/p,, for the acoustic Reynolds number, and
Pr = cyp,,/k,, for the Prandtl number. The normalized system of
equations becomes ™

% + V- (pu)=0

En (continuity), 2)
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f)(a—u+ﬁvVﬁ):—Vﬁ+ ! Vit V(V-a) (momentum),

ot Re, 3Re,
3)
(oT =\ (0P ) -1
p(8t+uVT)_(/ 1)(8t+UVp + Re, [}
1 2 A
+ PrRe, V*T  (energy), 4)
p= Pr (ideal gaslaw), (5)

b

where @ stands for the mechanical dissipation function.

C. Linearization

A linearized system can be obtained by recognizing the presence
of two unique scales: the first comprising mean flow transients in ¢, and
the second resulting from the oscillatory fluctuations that evolve over a
faster timescale, wt. This two-scale structure allows the decomposition
of the velocity, pressure, density, and temperature, thus leading to a lin-
earized set of equations. All instantaneous quantities can be separated
in terms of a mean flow variable, G, and its unsteady component gi,

g(x7y7 z, t7 CUt) = G(xJ’aZ: t) +g1 (x7yaza tv (Dt) (6)

As alluded to earlier, fluctuations can be further decomposed
into three unsteady fields. The first is the compressible, irrotational
acoustic wave. Being strictly irrotational, this wave does not satisfy the
no-slip condition at the wall, unless the solution is augmented using a
vortical wave. Acting as a viscous correction to the compressible field,
the vortical wave is generally coupled with the acoustic wave to form
the so-called vorticoacoustic wave.”” As for the combined, composite
wave, it manifests itself at the natural frequencies that are prescribed
by the resonant states of the system in the longitudinal or transverse
directions.”””*

In this work, we hypothesize that an additional contributor to the
instantaneous oscillations can be hydrodynamic in nature. Unlike the
vorticoacoustic waves, hydrodynamic fluctuations occur over a spec-
trum of frequencies that are connected to mean flow instability. The
resulting fluctuations may be perceived as being periodic, non-
resonant components of the decomposed field.

1. Unsteady variable decomposition

In the present framework, the equations of motion account for
both compressibility and rotationality; as such, they have the potential
to capture both hydrodynamic and vorticoacoustic waves simulta-
neously. From this perspective, the requirement to decompose the
unsteady variables into their acoustic, vortical, and entropic constitu-
ents is circumvented. Using the standard Cartesian nomenclature for
the velocity field, the separation of the mean flow and its unsteady
components takes the form

i =M,U + u, w=M,W +w,
p=p+p1, p=p+p
At this point, the O(1) mean flow functions, (U,V,W)

= (U, V, W)/M,, are specifically normalized using the wall injection
speed, V,,; this causes the wall Mach number, M, to appear as a

v :MWV+U1,

o 7
T=T+T, @)
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secondary perturbation parameter, while still producing a total mean flow velocity that is normalized by the speed of sound, c,,. After inserting the
instantaneous variables back into Egs. (2)-(5) and collecting terms that operate on similar scales, two sets of equations emerge. The first represents
the nonlinear steady system describing the compressible mean flowfield. The second corresponds to the first-order collection of unsteady equa-
tions. As usual, higher-order terms can be ignored in a linear stability framework. After some algebra, the interaction equations for the fluctuating

variables can be extracted and written as

op,  O(puw) O(pvy) O(pwr) A(Upy)  O(Vpy)  O(Wpy)] Lo
a " ox oy oz M |Tax gy Tap | 0 (continuity), (®)
_[0wy Ouy oU Ouy ou Ouy oU
ou ou ou oU
M, — + M>U—+ M>V—+ M>2W—

+p1< ot + M, U g + M,V dy + M, W 82)
o 8])1 1 821/11 82141 82141 1 (92141 8201 62W1
- _§+ Re, (axz + 0y? + 072 3Re, \ Ox2 +8y8x+8x62 (x-momentum), ©)
_ 81)1 81)1 oV 801 ov 8v1 oV
p{WJFMW(U%JF”l%J“VG_yJFUla_yJF WE+W1§>:|

+p, (M 8—V+M2U8—V+M2V0—V+M2W8—V

Pr{™ o v Ox vy v Oz

- 8p1 1 621)1 821)1 62171 1 82141 821)1 8Zw1
=~ ke (W o2 oz 3Re \ ovay + e + 9oz (y~momentum), (10)

ﬁ{%+MW(U%+ulaa—v:+Vaa—u;+vlaa—zv+w%+wlaa_‘fﬂ
+P1(Mw%—Y+MiU%—Y+M@V%—‘;V+M§/W%—VZ)
P (B B ) v (B B ) o
p %—FMW(U%-FZ—Z;W+Vaa—?+g—§v1+w%+%—:wl>:|
+p1(Mw%—f+MiUZ—Z+M§V‘Z—;F+M;W%—Z)

oM, (25— o
+ e +

Ox Ox 6—y<9y+ Eaz_‘—@_y@y—i_aax

OUdv  OVOw  OVOn OWOw OVOw OWOu  OWOow
dy Ox Ox Oy 0z dz dy dy 0z dy Oy 0z Ox Ox

(y71)[ (8U8u1 OV OWIwi  0Udw OV

OUOm  OWOw  OUOwi )\ 4 (0UOm  OVOvi  OW Owi
0z 0z Ox 0z Oz Ox 3\0x Ox Oy Oy 0z Oz

6U61)1 0V(9u1 8U8W1 OW% 6V8W1 (9W801

et B Sl W AR A A St 12
Ox Oy Oy Ox * Ox 0z + 0z Ox 0Oy 0Oz * 0z Oy )} (energy), (12)
and
yp1 =pT + Tp, (idealgaslaw). (13)
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2. Stability criteria

According to the theory of dynamical systems, a flow is considered
to be stable if all perturbations about the mean flow decay over time.””
From this perspective, stability becomes intertwined with the temporal
evolution of perturbations. Mathematically, the flow will be stable if

Hul(xvyv z, t)||> ”l‘l (x,y,z, t)”» le(x,)@ 2, t)“

— 0 ast— oco.
le (%52, t)”? HTI (%52, t)”» ||p1(x7y, zZ, t)H

(14)

This criterion will be used at the basis of the upcoming stability analysis.

D. Mean flowfield

In selecting a suitable mean flow, our strategy is to adopt a
known solution that satisfies the steady flow equations. For the

(1 1
Y = xsin (Eny) T

scitation.org/journal/phf

rectangular channel configuration, a two-dimensional profile is avail-
able.”” Being closed-form, its flow variables can be readily incorpo-
rated into the present framework and later encoded into any
numerical solver with essentially no computational overhead.
Moreover, the solution consists of a compressible, fully two-
dimensional profile, which satisfies the fundamental assumptions
made in this study: the compressibility needed to capture the acoustic
propagation and the two-dimensionality needed to identify both longi-
tudinal and transverse fluctuations.

In their work, Maicke and Majdalani27 use perturbation tools to
derive a closed-form approximation that describes the mean flowfield
up to the point where fully choked conditions are reached. Their varia-
bles are expanded using a regular Rayleigh-Janzen expansion with
respect to M2, Their solution, which can be readily incorporated into
the present framework, is summarized below for the unitary stream-
function and velocity components,

2 x sin (%ny) {m*x*3 + cos (my)] + 3[7 — cos (ny)] } + O(MZ),

1 1
U(x,y) = og X cos (E ny) [48 + M}, (5n*x* — 27) — 3M(n*x* — 3)cos (ny)] + O(M}), (15)

V(x,y) = [-1+ M%(n*x* +7) + M%(n*x?

As for the thermodynamic properties, we have

1
M [12 — 392 4 mixt

2. 2.2
X
wlt 384

_ 1 1
p(x,y) *;—g

+ 24 cos (ny) + (12 + 37°x%)cos (Zny)] +0(M°),
(16)

1 1
T(xy) =1 - gM (= 1) - 30

Mi(y—1
a2 M = 1)

x (12 — 397%x* 4 4n*x* + 24 cos ()
+ (12 + 37*x*)cos (271)/)} +0(M?), (17)
and

1 1
plry) =1 - SMImtx — M} [12 — 39722
+ txt (1 — 6y + 6y*) + 24 cos (1)

+(12 + 37°x%)cos (Zny)} +O(MS). (18)

E. Compressible biglobal equations

The biglobal approach is based on a two-dimensional spatial
ansatz of the form,

g = glx,y)em==n, (19)

— 1)cos (my)]sin (%ny) +0(M2).

where g; represents any first-order unsteady disturbance in the
velocity, vorticity, or thermodynamic variables; these include w4
— u(x7y)ei(nszt)’ v = U(_x’y)ei(nz—wt)7 Q= Q(_x’}/)ei(nz:ﬂuf)7 P
_ p(x,y)e"(”zf‘“’), P = ‘O(XJ/)ei(nzfa)t)7 T, = T(x’y)ei(nszt)’ etc.
Moreover, the generic function g(x, y) refers to the spatial eigensolu-
tion in the two primary dimensions, namely, the longitudinal and
transverse directions; # denotes the mode number in the third span-
wise dimension; and @ = @, + i®w; stands for the complex frequency.
The latter encapsulates both the circular frequency, w,, and the wave’s
temporal growth rate, ;. In principle, the wave amplitudes will decay
with the passage of time so long as @; < 0. As such, ®; can be used at
the basis of the temporal stability criterion described briefly in Sec.
I1C2. The corresponding modal form, given by Eq. (19), no longer
restricts the spatial mode shape to be strictly sinusoidal in any one of
the two principal directions x or y. However, Eq. (19) still assumes a
periodic motion in the secondary z-direction with a mode number of
n. With this ansatz in hand, the biglobal form for each unsteady vari-
able can be inserted into the linearized form of the Navier-Stokes,
energy, and state equations, thus leading to the following formidable
set:
. _(Ou Ov dp dp op

—imp +p(—+—+mw) +—u+—v+—zw

Ox Oy Ox dy 0
My [p( L DL OWN L 592 O | =0
1P\ ox dy 0z Ox Oy P =
(continuity), (20)
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ax " Tz ax "oy T oz oy &YJ:
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Concerning boundary conditions, one can suppress all three
velocity components at the physical boundaries and set a non-
reflective extrapolation condition at the outflow section.'* This is done
to facilitate the smooth convection of vortices at the downstream sec-
tion.””  As for the pressure disturbances, one may follow Poinsot and
Lelef *° by specifying a reflective condition on p that promotes acoustic
wave reflections. This is done by imposing n - Vp = 0 on all bound-
aries. Temperatures and densities can be similarly specified by taking
n-VT =n-Vp = 0atall boundaries.

lll. NUMERICAL APPROACH

This section provides a brief summary of the numerical approach
and eigensolver setup.

A. Choice of a spectral method

Wave propagation problems require both high spatial and tempo-
ral resolutions that are particularly important for computing hydrody-
namic modes that exhibit small scale vortex structures. A proper
solution will therefore require a high order, numerically stable
approach to properly capture the oscillatory nature of both vorticoa-
coustic and hydrodynamic waves. In this vein, a spectral collocation
method is relied upon to provide a distinct advantage over other discre-
tization techniques. Since this work is focused on analyzing a simple

planar geometry, the use of a spectral method can be fairly effective
even when taken over relatively coarse grids.

Our spectral approach is based on a global discretization of
the solution that is capable of achieving a high order approxima-
tion. The resolution of this approximation is made realizable
through either of two conventional approaches: Galerkin and collo-
cation methods. On the one hand, the residual of the approximat-
ing function in the Galerkin approach must be orthogonal to the
basis function. For the present problem with six unknowns, inner
products can become laborious to the extent of diminishing the
possibility of a successful outcome. On the other hand, the residual
in a collocation method vanishes at a given set of points, which
happen to be the zeroes of the interpolating polynomials; this ren-
ders the solution exact at these specific locations. Given the finite
geometry of the porous channel flow domain, the choice of basis
functions can be narrowed down to either Chebyshev or Legendre
polynomials. Both types of polynomials yield identical rates of con-
vergence and are expressible over the [—1, 1] interval. However, the
maximum pointwise error of a Legendre series exceeds that of the
Chebyshev series of the same order.”” As such, it has become cus-
tomary in the combustion stability community, including the pre-
sent work, to adopt Chebyshev polynomials as the basis functions
for the spectral decomposition effort.'’
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B. Chebyshev polynomials

With its non-uniformly spaced collocation points, Chebyshev
polynomials hold unique advantages when compared to equally
spaced grid points, such as Fourier spectral methods, which can be
susceptible to the Gibbs phenomenon, or Lagrange interpolation poly-
nomials, which can experience the Runge phenomenon.”” The
Chebyshev polynomials satisfy the differential equation

(1—)T (&) — T (&) + N* Ty 1 (&) =0,  (26)

whose solution can be represented as
Tx_1(&) = cos [(N - 1)arccos(§)]. (27)

As in Fourier analysis, one can expand a given function in terms of
Chebyshev polynomials in lieu of trigonometric functions. This expan-
sion enables us to approximate the function to a desired degree N. In
this work, the discrete polynomial approximation of a function f(x) at
the collocation points ¢; is expressed as

N
Puf(én) = Y f(E)M(9). (28)
i1
Note that the weight function 4;(&) for Chebyshev interpolation takes
the form®’
i(1-¢& T, (0)
]u,‘ é = —1 P Py N-1
(&) =1 (cc,) [d,-(N 1)°
=
& = cos T,
with N-1 (29)
0 = arccos (&),
where

2, i=1 or N,

di = . (30)
1 otherwise.

The foregoing discretization scheme results in a system of N equations

with N unknowns, which needs to be solved simultaneously in order

to retrieve the values of fat the collocation points.

C. Pseudo-spectral derivatives

Compared to finite difference methods, collocation techniques
are generally attractive because of the enhanced accuracy of their dif-
ferentiation schemes. Since the residual of the approximating function
vanishes at the collocation points, the derivative is rendered locally
exact at all Chebyshev points. Within this construct, the differentiation
of a polynomial approximation given by Eq. (28) can be written as

Dnf(En) = [Paf(én)]'= Zf(@)zz(cf). 31)

As seen from Eq. (31), the calculation of derivatives requires the inter-
mediate evaluation of 2, the derivative of the weight function. The lat-
ter can be calculated beforehand and stored in the pseudo-spectral
differentiation matrix D. Then, with the differentiation matrix in
hand, the derivative of a function can be readily expressed as

scitation.org/journal/phf

fx = Dnfy- (32)

In this manner, given a finite number of collocation points N, the dif-
ferentiation matrix can be fully resolved. Higher-order derivatives can
be determined straightforwardly by raising the matrix to the corre-
sponding power.

D. Eigenvalue problem

The partial differential equations entailed in the present formula-
tion give rise to a generalized eigenvalue problem of the form

where @ and f; define the eigenvalue and solution eigenvector, while
Ajj and Bj; denote the operator matrices. The term “generalized” stems
from the matrix Bj;, which returns the identity matrix in an eigenvalue
problem containing a single matrix only.

It may be helpful to recall that, being formulated in a two-
dimensional context, additional treatment is needed in resolving partial
differential equations. Among the first steps taken in rearranging
bounded problems, a variable transformation is applied to map the solu-
tion over the interval [—1, 1] in each direction. In a problem with two
spatial variables, x and y, the general transformations can be taken as
and 7= w7 (34)

Vb —)c
where A, B, C, and D mark the boundaries of the domain. The corre-
sponding derivatives become

0 20 0 2 0

and dy  yp—ycon
At this juncture, the domain can be meshed using a two-dimensional
grid on directionally independent Chebyshev points. To compute the
operator matrix, the technique consists of building a single operator
matrix from a two-dimensional collocation. This is made possible
through the Kronecker product. More specifically, the Kronecker
product of two matrices, A; and By, generates a block matrix compris-
ing a;;B;j terms that can be aligned according to

_ 2x— (xp+xa)
B XB — XA

(35)

Ox  xp — x4 OF

an Bjj
Ag@By=| . | (36)
auBy - ajBy

aljB,]

In fact, the Kronecker product can be used to define the pseudo-
spatial differentiation matrices. The derivatives with respect to x take
the form (Dy) ® (Iy) while derivatives with respect to y take the form
(In) ® (Dy). To calculate higher-order derivatives, the differentiation
matrix (Dy) is simply raised to the corresponding power.

In this work, each operator matrix is conveniently subdivided
into sets that reproduce the coefficients of five dependent variables in
five equations. Note that both the pressure variable and the state equa-
tion can be eliminated by direct substitution. Once the density and
temperature are found, the pressure can be straightforwardly deduced
from the state equation. Moreover, each subset encompasses the corre-
sponding variable multipliers evaluated at each grid point. For exam-
ple, given N x N collocation points, the operator matrices A;; and B;
will consist of 25N* elements. In the interest of clarity, a graphical rep-
resentation of the operator matrices is provided below:
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cont. — | Acu|Acw|Acw|Acp|Acr

x-mom. — | Ayy|Axy|Axw|Axp |AxT

Ajj= y-mom. — | Ay, |Ayy|Ayw|Ayp|Ayr
zzmom. — | Ay, | Ay |Azw|Azp |AT
energy — Ae,u Ae,u Ae,w Ae,p Ae,T ]

cont. — Bc,u Bcv Bc,w Bcp Bc,T

x-mom. — | By, |Byy|Bew|Brp|Bxr

B;j = y-mom. — | By, |By,|Byw|By,|Byr
z-mom. — | B, |B.,|B.w|B.p|B.r
energy — -Be,u Be,v Be,w Be,p Be,T_

Before leaving this section, we note that a more detailed descrip-
tion of the numerical scheme and the intermediate steps leading to the
coefficients of the operator matrices for Eqs. (20)-(24) is provided by
Akiki.”’ They are also outlined in Chap. 5 of White and Majdalani."’

IV. VORTICOACOUSTIC WAVE MODELING

In this section, the results from the present formulation are com-
pared and validated against well-established solutions that happen to
be available both in the longitudinal and transverse directions of prop-
agation. The prevailing direction of propagation depends on the type
of problem, geometrical dimensions, and other physical parameters.
The ability to solve for both the longitudinal and transverse modes
simultaneously enables us to compare their modal growth rates for the
same enclosure. It also facilitates performing parametric trade studies
of simulated slab motors where the influence of several key parameters
on the oscillatory motion can be evaluated.

A. Acoustic wave representation

The decomposition of the oscillatory component of the flowfield
has been implemented in stability analyses based on the method used
by Chu and Kovasznay.” Introduced briefly in Sec. I, this decomposi-
tion reduces the governing equations into three simplified sets. The
first set describes the production, propagation, and absorption of pres-
sure waves, whose compression and expansion lead to the onset of
acoustic waves. The second set captures the production, convection,
and dissipation of vorticity fluctuations. Finally, the entropy wave
stems from the production, convection, and diffusion of heat. This
decomposition offers valuable insight into the physical nature of the
problem.’

Understanding the coupling between acoustic and vortical wave
motions has been shown to be possible and contingent upon a proper
representation of the flow near the wall, specifically, by enforcing the
no-slip requirement.'”'” At the outset, the surface-driven vortical
waves become coupled to the strictly acoustic motion, independently
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of the additional rotational contributions associated with hydrody-
namic flow breakdown. Being independent of resonant modes, these
vortical waves, which remain unaccounted for in the asymptotically
derived vorticoacoustic formulations,'’~*” will be referred to as hydro-
dynamic waves. In addition to its ability to capture the hydrodynamic
wave structures, the present framework obviates the need to decom-
pose the oscillatory component of the flowfield at the forefront of the
analysis. As a result, it can reliably capture the vorticoacoustic and
hydrodynamic waves while taking into account their possible
interactions.

Although it may be speculated that the compressible formulation
captures acoustic waves, the framework can be tested by exploring a
basic case. Let us consider the one-dimensional acoustic wave
equation,

82p1
ot

The analytical solution to Eq. (37) for a simple channel can be com-
pared to the present eigensolution under the same quiescent condi-
tions. The purpose of this simplified case is to verify that the
framework can reliably predict the acoustic waves and their theoretical
Helmbholtz frequencies. In practice, these frequencies and mode shapes
are influenced by the mean flow, which is fully accounted for in the
present formulation. However, because well-known benchmark cases
that describe the resonant acoustic frequencies with mean flow effects
are not widely available, it is helpful to first establish the effectiveness
of the present scheme at reproducing the expected modes. To concen-
trate on pure acoustic waves, the solver is initialized for a channel with
a length to half-height ratio of L = L,,/a = 5 in a flow with no wall
injection.

Forthwith, our computations are seen to capture the full spec-
trum of frequencies appearing in the chamber over the entire range of
spatial and temporal scales associated with turbulence generation.
Numerically, the resulting frequencies are found to coincide with the
theoretically predicted resonant frequencies for a closed rectangular
chamber where the Hertzian frequency is given by

2 2
O -

Here, | and m appear as positive integers representing the wave num-
bers in the longitudinal and transverse directions, respectively. The
ensuing wave structures follow the expected sinusoidal forms, as
shown in Fig. 2 for the pressure; the latter has been conveniently nor-
malized by its maximum amplitude.

- AV, =0. (37)

C

flm:%

B. Eigenvalues in porous channel and slab motor
flow simulations

Using the compressible Taylor flow given by Eq. (15), the solver
can be used to extract a spectrum of eigenvalues that contain both real
and imaginary components for a specific set of parameters. As stated
earlier, the real part, ®,, represents the frequency of oscillations for
each eigenmode, and the imaginary part, w;, determines the stability
growth rate. As usual, unstable modes are identified by a positive w;.
In the present simulations of the porous channel flow configuration,
the tangential mode number is taken to be n =0, thus imposing no
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FIG. 2. Pressure waveforms in the axial direction for the first four longitudinal modes with no mean flow. Results correspond to (a) /=1, (b) /=2, (c) /=3, and (d) [=4.

changes in the z direction. In what follows, Fig. 3 is used to illustrate
the spectrum of frequencies that are obtained for a simulation with
M,, = 0.05 and Re, = 2000 in a chamber with an aspect ratio of 5.
The graph reports a collection of acoustic frequencies with the first few
longitudinal modes labeled as L1-L4. Also shown are the first few

0.1
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,
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FIG. 3. Frequency spectrum for a slab motor using the compressible eigensolver at
a wall Mach number of M,, = 0.05.

transverse modes, labeled as T1-T4, with trailing lines stemming from
each. The latter represent the corresponding mixed modes. The modes
appearing at the bottom left corner of the graph can be identified as
being the hydrodynamic modes; these are known to propagate at
much lower frequencies. In this basic case, the hydrodynamic modes
remain temporally damped with deceasing growth rates. Section VI
discusses these particular modes in more detail.

Since the vertical axis represents the temporal growth rate, the
graph can be split into stable and unstable regions. In this case, only
two eigenmodes undergo temporal amplification and are thus consid-
ered unstable. These are the first and second transverse modes, T1-T2,
which correspond to wave propagation that is perpendicular to the
porous wall. Compared to the theoretical acoustic frequencies calcu-
lated from Eq. (38), we find the frequencies to be slightly shifted to the
left. More precisely, the frequencies predicted by the numerical solver
are found to be consistently lower than their Helmholtz values
obtained in a quiescent medium. The deviations from the Helmholtz
values can be attributed to the effect of the mean flow, which only
increases at higher speeds and in longer chambers. In practice, this
slight shift in the frequencies is also observed in various experiments,
including those reported by Casalis and Vuillot,”" and in other geo-
metric configurations.””
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C. Solution sensitivity to N

Given that the precision of the numerical solver is controlled to
some extent by the number of collocation points, it is helpful to exam-
ine the sensitivity of the solution to the parametric value N. When
using Chebyshev polynomials, at least 7 points per wavelength are
needed on average to ensure convergence.”” For example, to obtain
converged results for up to the tenth oscillation mode in each direc-
tion, N needs to be larger than 5 wavelengths and so we take
N > 51~ 15.71. Table I displays the relative error in the numerical
results compared to classic theory. For consistency, our computations
are performed for a basic case with L =5 and no mean flow. Note that
Table I catalogs the longitudinal acoustic frequencies only. This com-
parison confirms that the results for N = 15 are accurate up to mode 7.
Starting at mode 8, the error starts to grow beyond 3.7%. Although the
error grows non-monotonically, it remains rather small. Now when
the collocation points are increased to N=20, the results become
accurate up to mode 11. To be conservative, the remaining simulations
are performed with N=60, a value that leads to a well-resolved two-
dimensional mesh consisting of 3600 grid points. We find that increas-
ing N further does not affect the results in the range of frequencies of
interest, namely, up to the twentieth mode. As for the unsteady,
Stokes-like boundary layer at the wall, decreasing the wall Mach num-
ber at a fixed value of Re, (or viscosity) leads to a reduction in the pen-
etration depth. This in turn would require a larger value of N to
resolve the rapid changes that occur in the vicinity of the wall. In this
vein, a very large value of N can become computationally prohibitive,
and the alternative option can be to decrease M,, while increasing Re,
or L. In Sec. V' C, we show that the depth of penetration of unsteady
vorticity remains essentially unchanged when the penetration number,
Mj = Re,M3¢2 [ (w'?a*) = Re,M3 2 /(4n*a>f?), is held constant.”’

Finally, in what concerns the choice of the characteristic
Reynolds number, our Re, differs from the wall injection Reynolds
number, Re, = p,, Vya/u,, which is widely used in the hydrody-
namic stability community.'*'” The two parameters are related
through the wall Mach number, namely, Re,, = M,,Re,. For example,
using (M,,, Re,) combinations of (0.05, 2000) or (0.025, 20 000) will
lead to Re,, values of 100 and 500, respectively. Similar ranges are used
by Boyer et al.'>"” Recalling that the present simulation is focused on

TABLE I. Comparison between the longitudinal frequencies predicted by the present
eigensolver and a classic Helmholtz solver in a channel with L =5.

N=15 N=20

Mode Theoretical Numerical  Error  Numerical  Error

1 0.6283 0.6283 0.0000% 0.6283 0.0000%
2 1.2566 1.2566 0.0000% 1.2566 0.0000%
3 1.8850 1.8850 0.0000% 1.8850 0.0000%
4 2.5133 2.5132 0.0040% 2.5133 0.0000%
5 3.1416 3.1416 0.0000% 3.1416 0.0000%
6 3.7699 3.7670 0.0769% 3.7699 0.0000%
7 4.3982 4.3990 0.0182% 4.3982 0.0000%
8 5.0265 4.8390 3.7302% 5.0275 0.0199%
9 5.6549 5.3830 4.8082% 5.6459 0.1592%
10 6.2832 6.2832 0.0000% 6.2832 0.0000%
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a cold-flow setup, an even smaller value of Re, is obtained when
reducing the wall Mach number further to 0.003 at a fixed value of
Re, = 2000. Hence, for M,, = 0.003, which is characteristic of solid
rocket motors, simulating a small wall Reynolds number of 100 would
require the use of Re, = 33333. The latter would demand a large
value of N that could possibly exceed the user’s hardware capabilities.
Practically, however, this situation should not be concerning because
wall Reynolds numbers that are characteristic of solid rocket motors
often exceed Re, = 2000. In what follows, the effects of different
parameters on the retrieved eigenmodes and eigensolutions will be sys-
tematically examined and compared “whenever possible,” to predic-
tions from other available models and experiments.

V. PARAMETRIC STUDIES AND COMPARISONS

A. Chamber aspect ratio and mean flow effects
on frequency

We begin by exploring the effect of varying the aspect ratio on
the spectral frequencies. We note, at the outset, that by increasing the
chamber length-to-half-height L, the acoustic frequency is decreased
while the streamwise velocity is correspondingly increased; as such,
the effect of the mean flow on the frequency is enhanced with succes-
sive increases in chamber length for a fixed injection Mach number.
To isolate the effect of the mean flow itself, the viscosity, and hence the
acoustic Reynolds number, as well as the injection Mach number at
the wall, are held constant at 2000 and 0.007, respectively.

Figure 4 displays the dimensional frequency spectra for three
aspect ratios of L= 10, 25, and 50. Here, solid circles are used to
denote modes of hydrodynamic nature, while solid triangles are used
to identify the vorticoacoustic modes that resonate with the acoustic
modes. The purely acoustic or Helmholtz frequencies in an identical
chamber with impermeable walls are superimposed using vertical
dashed lines. A cursory comparison of the three cases in question con-
firms the strong dependence of the vorticoacoustic frequencies on the
mean flow. Going from Figs. 4(a) to 4(c), the hydrodynamic frequen-
cies may be seen to remain essentially unchanged. However, the vorti-
coacoustic frequencies shift to lower values in longer chambers where
the mean flow velocity is permitted to grow proportionately larger.
This result is not surprising: it is well established from a simple mass
balance that the mean flow will increase linearly with the length of the
chamber due to mass being added uniformly along the porous walls.”
In contrast, the effect of increasing L on the hydrodynamic frequencies
appears to be weak. This may be expected by virtue of the primary
mode of initiation of hydrodynamic waves being from shear layer
instabilities, and not from coupling with the fast traveling acoustic
waves; only the latter prove to be strongly dependent on the chamber’s
geometric characteristics. More specifically, as we alternate from
Figs. 4(a) to 4(c), the hydrodynamic modes do not seem to shift, unlike
their vorticoacoustic counterparts, which appear at the chamber’s
resonant frequencies and will, therefore, change with the geometry.

Interestingly, the present simulations and Fig. 4 help to confirm
the suitability of the outflow boundary conditions imposed on the
time-dependent velocity and, by extension, vorticity fields. In theory,
unsteady vortices can convect through the open section without affect-
ing the motion upstream. This condition is satisfied because the modal
frequencies remain independent of the location assigned to the outflow
boundary, be it x =10, 25, or 50. As for the stability companion, the
growth rate ; continues to move (with L) closer to the unstable
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region, thus leading to lower stability margins in longer chambers.
This behavior is consistent with the mean flow character because lon-
ger chambers allow more mass to be introduced and accelerated in the
axial direction. In summary, the compressible eigensolver predicts a
monotonic decline in stability growth rates and a small, albeit persis-
tent decrease in vorticoacoustic frequencies as L is increased.

B. Mean flow effect on the acoustic
pressure waveform

Before undertaking comparisons to existing models that do not
take into account the effects of the mean flow on the acoustic mode
shapes, it may be helpful to examine the behavior of the latter in the
presence of wall injection. Given that the unsteady vorticity waves are
driven at the boundaries by the sweeping acoustic motion, any spatial
distortion of the acoustic mode shapes will have a direct bearing on

140 160 180

the intimately coupled vorticoacoustic waveform. By turning the wall
injection speed on and off, it is possible to verify through the com-
pressible eigensolver that the presence of a non-negligible mean flow
will indeed shift the acoustic pressure oscillations away from their
well-established sinusoidal shapes.

One benefit of solving the complete set of biglobal equations
for the coupled disturbances is the ability to predict the actual pres-
sure waveform associated with a given vorticoacoustic mode with-
out imposing any restrictions on the pressure distribution. In fact,
analytical formulations of vorticoacoustic waves have not yet man-
aged to incorporate the skewness effect that the mean flow can
impart on the standing pressure or velocity mode shapes.” ** In
existing asymptotic approximations, a purely sinusoidal form of the
acoustic pressure is assumed. In practice, this proves to be a rea-
sonable first approximation only, as we illustrate below using a typ-
ical test case.
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For a case of L =50, M,, = 0.007, and Re, = 2000, we readily
extract the unsteady pressure eigensolution for the first vorticoacoustic
mode. We then display its temporal evolution in Fig. 5 at eight equally
spaced timelines corresponding to t = 0,47,37, ...,Z 1, where 7 stands
for the cyclical period. For the sake of comparison, the standing pres-
sure waveform based on classic acoustic theory is superimposed in
Fig. 5 using a dashed curve. When the two models are compared, the
motion of the compressible eigensolution may be seen to slightly devi-
ate from the strictly sinusoidal motion of a standing wave. The time-
dependent sloshing behavior that ensues does not appear when wall
injection is suppressed. As such, the distortion can be strictly attrib-
uted to the convective mean flow effect on the acoustic mode shape.
So far, these flow-induced deviations in the mode shapes have eluded
analytical approximations as they could only be predicted by solving
the compressible equations of motion computationally.

ARTICLE scitation.org/journal/phf

C. Comparisons to analytical vorticoacoustic
waveforms

Another avenue for verification can be pursued by comparing
the velocity eigensolutions predicted from the compressible biglobal
stability formulation to a closed-form asymptotic approximation for
the vorticoacoustic wave in a porous channel undergoing internal
pressure oscillations.”” ** In the asymptotic work, the unsteady field is
subdivided into two distinct fluctuations in a manner that is consistent
with the Helmholtz-Hodge decomposition process:' an inviscid, irro-
tational, compressible disturbance and a viscous, rotational, incom-
pressible correction that is generated at the boundaries by the
sweeping pressure oscillation. Then using perturbations in the normal-
ized pressure amplitude and wall Mach number, the time-dependent
rotational wave is determined based on the coupling at the boundaries
with a simple standing acoustic waveform for the compressible
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disturbance evaluated at the chamber’s Helmholtz frequencies. The
resulting analytical solution for the oscillatory axial velocity, given by
Eq. (3.38) in Majdalani,”” employs a Wentzel-Kramers-Brillouin
(WKB) expansion to obtain

uy(x,y,t) = isin (wyx)exp (—iwgt) — iexp (—iwgt)
« exp Ba f () - VP — 9] dz}
<F§ - 4i85)‘1‘<F+ m)i

F> —4i0 ) \ Fy + \/FZ — 4iS5

X sin {wlx(F +VF? — 4i8) / (Fo + \/m)}

+ 0(9), (39)
where
1 ; l
557:/17%/7 wlzwzﬂv 0:F(1)7
Re, p,V,a Cw L, (40)
and S= “ia = ZLfa.
Vi \%%

Here, S denotes the Strouhal number and F(y) represents the mean
flow characteristic function; as shown by Berman,” a self-preserving
motion in porous channels with constant cross sections can be
expressed as

U(xvy) = {XF/()/), —F()’)}- (41)

For a direct comparison, a simple incompressible mean flow pro-
file can be chosen, such as F(y) = y or F(y) = sin (3 7y), which lead
to the porous channel’s irrotational and rotational mean flow profiles,
respectively. These are given by’

{ Ux,y) =x

(irrotational),
Vixy)=-vy

Ux,y) = %nx cos (% ny) (42)

or (rotational).

V(x,y) = —sin (% Tcy)

L p— Re,=20000 | M,=0.0232
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(a) Compressible eigensolver
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Interestingly, the irrotational motion corresponds to the planar
flow analog of the incompressible Hart-McClure profile,”""* which
preceded the use of Taylor’s rotational profile'’ in rocket stability
calculations,””"" including those incorporating the effects of particle
entrainment,'” grain taper,”* and headwall injection.”

It may be instructive to also note that, based on Eq. (39), a char-
acteristic parameter, Mj = Re, M} c2,/(w?*a?), is found to control the
penetration depth of the rotational wave oscillations measured from
the sidewall. In essence, Mj controls the exponential decay rate of the
wave amplitude as y — 0. Following the theory of time-dependent
laminar flows,”® the penetration depth is defined to be the distance
from the wall to the point where 99% of the rotational wave amplitude
would have vanished.”” When Mj is fixed, the penetration depth
remains essentially unchanged.” For example, by varying both the
Reynolds number and the wall Mach number in such a way to pre-
serve Mj, a similar penetration depth of the axial velocity fluctuations
is obtained for the three cases illustrated in Fig. 6. In fact, the identifi-
cation of the penetration depth control parameter Mj may be viewed
as a compelling example of the valuable insight that can be gained
from the complementary asymptotic expansion of this problem."
However, the latter remains restricted to simple geometries and
incompressible mean flowfields.

To make further headway, the vorticoacoustic wave is computed
and compared in Fig. 7 using two cases that explore the effects of vary-
ing the Reynolds and wall injection Mach numbers. We recall that
these two parameters control the injection velocity and viscous effects,
which directly impact the unsteady boundary-layer thickness, as dis-
cussed in Sec. V C. Here, the computed and theoretical approxima-
tions of the oscillatory axial velocity are shown in Fig. 7(a) for
Re, = 2000 and M,, = 0.05, and then in Fig. 7(b) for Re, = 10 000
and M,, = 0.04. All calculations are carried out midway through the
chamber at x=2.5, namely, at the acoustic velocity node, assuming
pressure oscillations at the first harmonic frequency. Forthwith, a qual-
itative assessment of the plots reflects a fair agreement, particularly in
the similarity of the wave shape and spatial periodicity. However, dis-
tinctive differences can be seen in both the amplitude and the penetra-
tion depth of the wave. These differences can be directly attributed to
the effect of the mean flow, which causes the frequency to shift below
its Helmholtz value, and the mode shape to deviate from its standing
sinusoidal form. Both of these variations occur because the frequency

1
0.5+ YA
u 0 | :'. ::,
0.5 :

! e
] penetration depth
0 0.2 0.4 0.6 0.8 1

(b) Asymptotic solution*?

FIG. 6. Axial velocity fluctuations evaluated using (a) the compressible eigensolver and (b) the asympiofic solution given by Eq. (39). In all featured cases, the product Re,M? is held constant along
with the aspect ratio, i.e., the frequency and the speed of sound. Measurements are taken halfway through the motor at x= 2.5 and, whenever possible, reslts are nomalized by their peak values.
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(b) Re, = 10000; M, = 0.04

FIG. 7. Comparisons of the unsteady axial velocity profiles in the transverse direction for two different cases of (a) Re, = 2000 with M,, = 0.05 and (b) Re, = 10000 with
v = 0.04. Measurements are taken halfway through the motor at x=2.5. The results are shown using both the compressible biglobal eigensolver (—) with a finite mean
flow and the asymptotic solution for the vorticoacoustic wave (— —-) driven by pressure oscillations at pure Helmholtz frequencies.

of oscillation happens to be a primary controlling factor in determin-
ing the penetration number and, as such, the penetration depth. Since
Mj stays inversely proportional to ;?, higher frequency oscillations
are anticipated to promote a shallower propagation of the vorticoa-
coustic boundary layer. Moreover, given that successive increases in
the mean flow velocity will serve to lower the frequency, the vorticoa-
coustic boundary layer will be expected to slightly increase in size and
extend deeper into the chamber, as predicted by the compressible
biglobal solver, when a more appreciable mean flow is prescribed.
Recalling that the asymptotic model in Eq. (39) does not capture the
frequency shift caused by mean flow variations, it may be safely argued
that these effects are more accurately represented by the compressible
eigensolver and the solid lines in Fig. 7.

D. Wave structure in compressible and incompressible
mean flowfields

In former biglobal stability investigations of the flowfield in simu-
lated rocket chambers, >’ incompressible models have been rou-
tinely used to represent the mean flow profile. Since the present
eigensolver is fully compressible, it would be helpful to examine its
sensitivity to small deviations in the mean flow description.
Specifically, it would be instructive to determine whether the use of an
incompressible mean flow as the basic motion is sufficient, or whether
adopting a compressible model is warranted. This task can be accom-
plished by comparing the spectra corresponding to an incompressible
versus a compressible mean flow profile. In the case of the former, a

porous channel solution may be traced back to Taylor."" Despite its
simplicity, Taylor’s profile is implemented in the context of solid
rocket motor instability first by Varapaev and Yagodkin® and, later, by
Beddini,” Couton et al,”’ Avalon et al,”® Kourta,” Griffond and
Casalis,”"” Féraille and Casalis,'” Venugopal et al,”’ and many others.
It can be reproduced from the normalized mean flow streamfunction,

Y = xsin (% ny) . (43)

Alternatively, a compressible form of the Taylor profile can be
adopted. Based on a Rayleigh-Janzen expansion in the wall injection
Mach number (squared), one actually gets”

Y = xsin (%ny) - 4—18Mvzvxsin (%ny)
x {m*x*[3 + cos (my)] + 3[7 — cos (ny)] }. (44)

In this work, using these two profiles as comparators, simulations are
performed assuming M,, = 0.05 and Re, = 2000, with a length to
half-height ratio of 5. Although typical wall Mach numbers for solid
rocket motors revolve around O(107?), a value of M,, = 0.05 is delib-
erately chosen to enhance the effects of compressibility. Nonetheless,
based on the modal spectra reported in Fig. 8, only small differences in
the eigenfrequencies and stability growth rates may be observed; par-
ticularly, a minor reduction in both , and w; is realized when density
variations are permitted. These differences suggest that the retention
of dilatational properties in the mean flow will have a slight stabilizing

0.4

. compressible
unstable region incompressible
7777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777 FIG. 8. Frequency spectra resulting from
@; 05 i., . Aaa L. ihin ] computations based on both a compress-
l . . . . N O SaT s e e i ible and an incompressible mean flow pro-
" - - L file at M,, = 0.05.
PPN
0457 i
-0.47 % B 4
;'“‘ e, At 4 * A . . :
0 2 4 ) 6 8 10

Phys. Fluids 34, 024106 (2022); doi: 10.1063/5.0080970
© Author(s) 2022

34, 024106-15


https://scitation.org/journal/phf

Physics of Fluids ARTICLE

effect. It will also lead to a slight decrease in frequency, thus further
justifying the deviations observed in Fig. 7 between the asymptotic and
compressible biglobal predictions. In practice, however, these devia-
tions can be ignored when M,, = O(1073) or smaller.

Using the same basic properties and midway through the cham-
ber, Figs. 9(a)-9(d) compare typical axial velocity and vorticity distri-
butions stemming from both profiles for the first vorticoacoustic
mode. The nearly indiscernible plots help to ascertain that compress-
ibility in the mean flowfield has a negligible effect on the unsteady
velocity and vorticity fields. We recall that Maicke and Majdalani”’
show that compressibility effects become more noticeable in the down-
stream sections of long porous ducts. Practically, they become only
discernible beyond 40% of the critical length L; of a porous channel,
where L, is sufficiently large to induce sonic conditions in the absence
of a converging-diverging nozzle. For this reason, we also display in
Figs. 9(b)-9(d) the axial and vorticity profiles at the aft-end of the
domain. Despite the increased disparity between the two curves in the
downstream direction, the differences between them remain relatively
small. Then, given the short length L in these particular cases in rela-
tion to the critical (sonic) length L, the need to account for compress-
ibility in the mean flow seems to be secondary, at least insofar as
M,, < 1 and entropy effects are not considered.

0.8

0.4

compressible
0T ----- incompressible

0.6 0.8 1

(a) Axial velocity at mid-length

(c) Vorticity at mid-length

scitation.org/journal/phf

In this vein, and since no compressible flow study is complete
without due consideration of heating effects, the unsteady entropy in
this problem can be estimated from a perturbation of the thermody-
namic equations. In their dimensional form, these can be written as

2
~ - ~ % 1 ~«
dp' = pds* + Edp* and AT =—T"d5" +—
S p %

dp*. (45)

Letting 5™ =5"/c,, Eq. (45) can be readily normalized and expanded
using Egs. (1), (7) and (19). The fluctuating component of the entropy
can be subsequently retrieved, namely,

si=p1—p; and s=p—p. (46)

By way of illustration, s-profiles are evaluated for both the com-
pressible and incompressible mean flowfields and shown in Fig. 10 at
two axial locations. Unlike the behavior of the velocity and vorticity
profiles, these two cases exhibit substantial differences. This behavior
can be attributed to the transfer of energy between the base flow and
the unsteady disturbances. We recall that the energy used in the com-
pression and expansion processes in the steady field manifests itself
through fluctuations in the density and temperature. This characteri-
zation is consistent with the Helmholtz-Hodge decomposition that

(b) Axial velocity at aft-end

(d) Vorticity at aft-end

FIG. 9. Transverse variations of (a) and (b) the unsteady axial velocity waves and (c) and (d) the vorticity waves at two axial stations using both compressible (—) and

incompressible (- — —) mean flow profiles at M,, = 0.05.
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(a) Entropy at mid-length
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(b) Entropy at aft-end

FIG. 10. Transverse variations of the unsteady entropy waves at two axial stations corresponding to (a) x=2.5 and (b) x =5 using both compressible (—) and incompress-

ible (- ——) mean flow profiles at M,, = 0.05.

enables us to split the unsteady disturbances into an irrotational
(acoustic) fluctuation and a solenoidal (vortical) counterpart. As
shown by Chu and Kovasznay,”’ entropy variations will accompany
pressure fluctuations as a result of energy dissipation (or absorption)
at the walls. Moreover, the diffusion of hot spots, which is caused by
entropy fluctuations, will only generate a weak velocity disturbance,
which is necessary to satisfy the conservation of mass when density is
varied. For the case of an incompressible base flow, entropy fluctua-
tions become more concentrated halfway between the midsection
plane and the wall, and vanish categorically along the midsection

plane. They may be ascribed to the flow turning effect,”” which is
locally intensified and captured through the density variations that are
still permitted in the unsteady component of the present formulation.
Because entropy fluctuations are significantly influenced by com-
pressibility, contour plots for both cases are provided in Fig. 11. These
graphs help to identify the areas where entropy production is most
concentrated for the case of an incompressible fluid. Moreover, for a
fully compressible motion, the gradual increase in dilatational effects
as the flow advances downstream is visually demonstrated, thus con-
firming the results of Maicke and Majdalani.”’ Because of the

0.6
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FIG. 11. Isocontours of entropy waves
using (a) Taylor's incompressible mean
flow and (b) Taylor's compressible mean
flow’” at My, = 0.05.

(b) Compressible mean flow
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appreciable differences, particularly in the density and temperature
fluctuations caused by dilatational effects in the mean flow profile,
only compressible base flows will be considered hereafter.

E. Effect of viscosity

The effect of viscosity on the unsteady variables can be explored
by computing the eigensolutions at three characteristic Reynolds num-
bers while maintaining the same injection speed. Our chosen parame-
ters consist of M,, = 0.03 and three acoustic Reynolds numbers of Re,
= 200, 1000, and 2000. We recall that Re, is based on the speed of
sound at the wall irrespective of the injection speed. As such, changing
the Reynolds number and maintaining the same thermodynamic con-
ditions at the wall implies a change in viscosity.

Forthwith, Fig. 12 displays the frequency spectra for the three cases
at hand. The spectral data helps to identify two sets of modes rather dis-
tinctly, namely, those of acoustic and those of hydrodynamic origins.
With respect to the acoustic modes, their oscillation frequencies remain
virtually unaltered for all three cases. However, their growth rates can be
seen to increase with successive increases in the acoustic Reynolds num-
ber, which is inversely proportional to the kinematic viscosity. From a
physical perspective, this behavior suggests that the system will gradually
become less stable as viscosity is decreased. Unsurprisingly, viscous dis-
sipation may be viewed as a source of damping that has a rather stabiliz-
ing effect on wave propagation. As for the hydrodynamic modes, they
remain strongly dependent on the rotationality of the flow, which is fur-
ther promoted by increasing levels of viscosity. As a result, the hydrody-
namic frequencies shift leftward while becoming more stable with
successive increases in viscosity.

The damping role of viscosity can also be inferred from Fig. 13,
where the axial velocity profiles are showcased in the normal direction
for the first vorticoacoustic mode. In undertaking this comparison, all
wave amplitudes obtained from our linear eigensolver are normalized
by their peak values. Qualitatively, the damping rate can be gauged by
the number of spatial undulations, which increase as the acoustic
Reynolds number is raised, starting with a single undulation at
Re, = 200 and incrementing to three fluctuations at Re, = 2000. Also
noteworthy is the gradual increase in the penetration depth of vorti-
coacoustic waves with successive reductions in viscosity, namely, as

0.5
unstable region Re,= - 200
1000
2000
Tl ™
R e
- \_G.' ..
; 10 15
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FIG. 12. Frequency spectra at three different viscosities and therefore acoustic
Reynolds numbers of Re, = 200, 1000, and 2000 while holding the wall injection
constant at M,, = 0.03.
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FIG. 13. Axial velocity fluctuations at three decreasing viscosities corresponding to
acoustic Reynolds numbers of Re, = 200, 1000, and 2000. Here, the wall injection
Mach number is held at M,, = 0.03.

Re, is increased at a fixed value of Mj. The resulting trend is fully con-
sistent with the asymptotic behavior of Eq. (39).

Given the direct connection between velocity gradients and vor-
ticity computations, similar effects may be seen to extend to the iso-
vorticity contours depicted in Fig. 14. These are calculated for the first
vorticoacoustic mode at M,, = 0.03 and three decreasing levels of
fluid friction corresponding to Re, = 200, 1000, and 2000. As usual,
vorticity magnitudes are derived from the appropriate gradients of
both axial and normal components of the fluctuating velocities.

The first characteristic that may be inferred from this comparison
relates to the number of vortices that ripple across the domain. For the
case of Re, = 200 in Fig. 14(a), it may be observed that only one main
vortex is generated at the wall, which then dissipates rather quickly
without penetrating deeply into the chamber. When viscosity is
reduced to Re, = 1000 and 2000 in Figs. 14(b) and 14(c), multiple
vortices are formed and transported more prominently across the
chamber. This behavior can be attributed to the convective effect of
the mean flow on the unsteady disturbances.

F. Effect of wall injection

To study the effect of varying the injection speed on the unsteady
variables, three different cases are simulated. These correspond to
M,, = 0.01, 0.03, and 0.05 at a Reynolds number of Re, = 2000. Here
too, the eigenmodes for the three cases are extracted and presented in
Fig. 15. In order to examine the effects of the wall injection Mach
number on flow stability, the temporal growth rates are closely com-
pared. Interestingly, we find that, at the higher injection speeds, longi-
tudinal modes tend to exhibit lower growth rates, in contrast to the
transverse modes, which experience increased growth rates. It can be,
therefore, argued that a higher M,, can stabilize the longitudinal modes
but destabilize the transverse and hydrodynamic modes. However, as
far as the actual oscillation frequencies are concerned, they may be
seen to shift slightly leftward to lower values. Nonetheless, the shift
observed in Fig. 15 remains minimal and will be examined in more
detail in Sec. V1.

To further examine the effect of M,, on the wave structure, iso-
vorticity contour graphs are produced for the first vorticoacoustic
mode and then presented in Fig. 16 at three increasing values of
the wall Mach number. At the lowest injection speed considered in
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FIG. 14. Isocontours of vorticity waves for
the first (longitudinal) vorticoacoustic
mode at M,, = 0.03 and three increasing
viscosities corresponding to acoustic
Reynolds numbers of (a) Re, = 200, (b)
1000, and (c) 2000.
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FIG. 15. Frequency spectra at three increasing wall injection Mach numbers of
M, = 0.01, 0.03, and 0.05.

Fig. 16(a), only one rotating vortex structure can be seen to develop
and remain confined to the vicinity of the sidewall. However, as the
injection speed is gradually raised in Figs. 16(b) and 16(c), the vortex
structures seem to intensify and extend deeper into the chamber. This
behavior may be viewed as being consistent with the acoustic
boundary-layer transport mechanisms affecting this problem. In this
context, the underlying diffusion and convection mechanisms remain
strongly controlled by the kinematic viscosity and the injection speed,
respectively. Presently, the viscosity, and thus dissipation, remain con-
stant for the three cases in question. The comparison also illustrates
how the vorticity-laden boundary layer can be transported by way of
mean flow convection. To control the level of transport and depth of
penetration of wall-generated vorticity waves, a balance between con-
vection and dissipation is clearly needed. This balance is prescribed
analytically by the penetration number,”” which is discussed in more
detail in Sec. V C.
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FIG. 16. Iso-vorticity contours at increas-
ing wall Mach numbers of (a) M,, = 0.01,
(b) 0.03, and (c) 0.05.
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VI. HYDRODYNAMIC WAVE STRUCTURE

In the context of biglobal stability analysis, the term
“hydrodynamic” is often used to denote a non-resonant, periodically
fluctuating field variable. On the one hand, the corresponding wave
type is mainly caused by mean flow breakdown and the generation of
vorticity during the mean flow transitioning into a turbulent field. On
the other hand, the mechanism of parietal or surface vortex shedding“’
stands among the chief contributors to the development and triggering
of resonant-state oscillations or, more precisely, excited vorticoacoustic
waves. In the present framework, the corresponding waves are cap-
tured using a compressible, time-dependent viscous model, namely,
one that accounts for both hydrodynamic and vorticoacoustic waves
with no prior requirement for flow decomposition.

To proceed with this effort, the fully compressible modes will be
resolved and then compared to their theoretical and experimental

counterparts obtained in other investigations, such as those conducted
at the Office National d’Etudes et de Recherches Aérospatiales
(ONERA). More specifically, after applying a filter that eliminates spu-
rious modes, our theoretical predictions will be compared to both
computational and experimental measurements that are indepen-
dently obtained by researchers at ONERA. In fact, led by Casalis and
co-workers, the French Aerospace Laboratory has been at the forefront
of modeling idealized rocket chambers using both one-dimen-
sional”'*'*"" and two-dimensional hydrodynamic stability theo-
ries." ' >"”** By way of verification, our compressible stability findings
will be compared to those reported in two pertinent studies by Casalis
and co-workers'”'? as well as others.””"”*** In the former, compara-
tive data will be excerpted from an incompressible solver that can be
robustly relied upon to capture the hydrodynamic waves.'”'” In the
latter, experimental measurements acquired from a porous channel
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flow apparatus named, “Veine d’Essai de la Couche Limite Acoustique”
(VECLA), will be used to validate our spectral predictions.””"”*%*

A. Comparison to nhumerical stability simulations

We begin by comparing the filtered modes obtained from the
compressible biglobal solver to those produced from an incompress-
ible (finite element) code developed by Boyer et al.'*'” In their work,
Boyer et al.'”"” investigate the implications of minor wall defects at
the grain surface of a simulated solid propellant on the generation of
hydrodynamic disturbances. The latter are characterized alongside the
effects of varying the Reynolds number on the predicted frequencies
and growth rates. We recall that, although the solver in question is
based on the biglobal stability approach, it differs from the present
framework in its reliance on the linearized form of the incompressible
Navier-Stokes equations.

For the sake of illustration, eigenvalues are extracted for the case
of a chamber aspect ratio of L = 8, an acoustic Reynolds number of
Re, = 2000, a wall Mach number of M,, = 0.003, and an injection
speed of V,, = 1 m/s. The comparison is provided in Fig. 17, where the
stability growth rate w; is displayed against the oscillatory frequency
@,. Note that the results from the present solver are designated by solid
circles while those from Boyer et al.'*'” are represented by hollow tri-
angles. Overall, the comparison suggests a favorable agreement
between the two models in pinpointing the oscillation frequencies,
notwithstanding the small discrepancies that affect their temporal
growth rates. Another difference can be detected in the high frequency
range where the compressible framework produces a fewer number of
modes than the incompressible solver. Upon closer examination, these
underlying disparities can be actually attributed to two main factors.

First, it may be speculated that the dilatational energy that is con-
sumed by the compressible waves that are particular to the present
framework can lead to fewer modes than projected otherwise by an
incompressible framework. Since the compression process absorbs
energy, it is likely that only a subset of the incompressible modes will
manifest themselves in a compressible medium. Conversely, a highly
resolved incompressible framework will have a tendency to overpre-
dict the number of modes by generating spurious modes, especially in
the treatment of compressible motion.

Second, it may be argued that the number of modes generated by
an eigensolver will remain somewhat dependent on the number of col-
location points N that is used in the discretization process. To confirm
that the number of modes at higher frequencies can be affected by the
grid resolution, results can be extracted at gradually increasing num-
bers of collocation points. In the numerical solver, one finds that
increasing the number of collocation points does not affect the
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frequency spectrum in the practical (low frequency) range of interest.
It does, however, continue to provide additional eigenmodes in the
high frequency range. Clearly, the improved resolution that can be
achieved using an even larger number of collocation points enhances
the framework’s effectiveness at capturing the smaller spatial and tem-
poral scales that typically accompany higher frequency disturbances.
When all of these factors are accounted for to justify the deviations
seen in Fig. 17, the foregoing comparison becomes corroborative of
the ability of a compressible biglobal framework to reproduce, given a
sufficient resolution, the hydrodynamic modes ascribed to a conven-
tional incompressible solver.

Before leaving this topic, it may be instructive to pause and dis-
cuss the amplified mode that appears leftward of the theoretical acous-
tic chamber frequency in Fig. 17. Here, the Helmholtz frequency is
identified on the graph using a vertical dashed line whereas the ampli-
fied mode is labeled “1L,” being related to the first longitudinal acous-
tic mode. In practice, this mode emerges as a by-product of the
coupling that takes place between shear layer instabilities in the flow
and chamber acoustics, i.e., a mechanism that can lead to the trigger-
ing of the first vorticoacoustic mode. This mode differs from the theo-
retical acoustic frequency, although a less amplified hydrodynamic
mode that is closer to the Helmholtz value also exists (at the bottom
right).

In another study by the same group, Casalis et al.'” provide two-
dimensional contour plots for the streamwise and normal velocities
using a similar configuration to ours. In Figs. 18 and 19, snapshots of
their data are presented side-by-side with the wave patterns extracted
from the compressible eigensolver. Graphically, the results exhibit a
striking resemblance in the wave structure and the approximate posi-
tions of their peaks and troughs. Bearing in mind that the waves are
periodic in time, the foregoing comparison may be viewed as provid-
ing a qualitative verification of the waveforms associated with the
hydrodynamic modes.

Along similar lines, unsteady velocities are extracted for a repre-
sentative case with Re, = 2000, M,, = 0.05, and L=>5. The corre-
sponding velocity vector plots are shown in Fig. 20 for the third and
fifth hydrodynamic modes. These plots display distinct patterns of
vortex structures, particularly in the downstream section of the chan-
nel, that share similar qualitative features to those produced by Casalis
and co-workers.

B. Comparison to experimental measurements

In searching for usable experimental data, two cold-flow experi-
mental apparatuses developed by Avalon et al.**** come to mind: the
porous channel flow configuration introduced as VECLA in Sec. VI,

FIG. 17. Comparison between the stability
1 spectra obtained from the present
eigensolver and the finite element predic-
tions of Boyer et al.'® Here L=8,
Re, = 2000, and M,, = 0.003.
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0 1 2 3 4 5 6 7 8 9 10 FIG. 18. Qualitative comparison of isocon-
tours of radial velocity waves by (a)
Casalis et al.'” at the specific frequency of
r /My, = 39.55 [data excerpted from
Fig. 2(a) of their cited work] and (b) the
present eigensolver at the corresponding
eigenmode of /M, = 40.5 using L =8

(a) Casalis, Boyer, and Radenac!”

and M,, = 0.003.
(b) Compressible eigensolver
0 1 2 3 i 5 6 7 8 9 10 FIG. 19. Qualitative comparison of isocon-
tours of axial velocity waves by (a)
(a) Casalis, Boyer, and Radenac'’ Casalis et al.'” at /M, = 39.55 [based

on data presented in Fig. 2(a) of Ref. 17]
and (b) the present eigensolver at the
specific eigenmode of w,/M, = 40.5
using L =8 and M,, = 0.003.

(b) Compressible eigensolver
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(b) 5th hydrodynamic mode

and the so-called “Veine Axisymétrique pour Limiter le Développement
des Oscillations” (VALDO). Although other experimental facilities
exist,””® VECLA and VALDO provide the advantage of being specifi-
cally designed to investigate the effects of parietal vortex shedding on
pressure oscillations in both planar and axisymmetric chamber config-
urations. Both facilities simulate the gaseous mass injection along a
solid propellant grain by forcing air into a chamber through a uni-
formly porous wall made of sintered aluminum.

In this section, the experimental measurements reported by
Casalis and Vuillot”" in the context of a VECLA investigation will be
qualitatively compared to simulation data retrieved from the com-
pressible eigensolver. The corresponding VECLA apparatus consists of
a rectangular parallelepiped whose height can be modified. Air injec-
tion is maintained through the lower perforated surface while the
upper wall is kept impermeable, thus mimicking the midsection plane

of a channel with two opposing porous walls. The measurement of
instantaneous velocities is subsequently carried out at any location
within the chamber using hot wire anemometers. The experimental
setup resembles the present model except for the upper impervious
wall, which corresponds to the plane of symmetry in the present for-
mulation. This condition can be reproduced by simply modifying the
boundary conditions on the unsteady variables and adjusting the
mean flowfield.

Although various experimental results from the VECLA facility
exist, the two representative cases selected here correspond to distinct
chamber heights of 10 and 20 mm, respectively. The length of the
nozzleless chamber is maintained at 580 mm and the wall injection
speed is set at 1.36 m/s. Instantaneous velocity measurements are then
taken at a distance of 1 mm away from the solid wall using a hot wire.
The signal is typically treated and decomposed into a mean value and
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a fluctuating component. A Fourier transform is finally applied to the
latter in an effort to characterize the spectral dependence of the fluctu-
ating velocity. These findings are reflected through the power spectral
density (PSD) plots displayed using a solid line in Fig. 21.

In mirroring the experimental conditions, two cases of the nonre-
active gaseous injection in a nozzleless chamber are simulated using a
length-to-height ratio of L =29 and 58, respectively. A suitable wall
injection Mach number is set at 0.004, as it corresponds to the injec-
tion speed used in the experiments. When these values are incorpo-
rated into the compressible biglobal solver, the associated spatial and
temporal scales become retrievable from the eigenvalues and eigenvec-
tors. Moreover, to obtain the signal corresponding to the instanta-
neous velocity measured by the hot wire probe, some processing of the
results is required. Knowing that the governing equations are linear by
nature, any linear combination of the eigenvectors also leads to a valid
solution. Consequently, in order to fully reconstruct the spectrum
found in the signal, the eigenvectors provided by the solver can be con-
solidated. This can be accomplished by evaluating the weighted sum of
the modal contributions using

Nr

ui(x,y,z,t) = Z Wi (x, y)el =),
k=0

(47)

where 1 denotes the mode number and Ny represents the total num-
ber of eigenvalues. However, this technique requires a resolution of the
weighting functions, {Wj; k=0,1,2,...}, which are not known
beforehand. Typically, the weights W) can be computed by evaluating
the solution at the initial state when ¢ = 0. Presently, the initial state of
the unsteady flow consists of a small perturbation that manifests itself
at all possible spatial and temporal scales. Since our interest remains
focused on capturing the amplified frequencies and their growth rates
(notwithstanding their actual amplitudes), this issue becomes immate-
rial, especially that the wave amplitudes remain arbitrary in a linear
solver. Furthermore, because the velocity is measured at one point for
a given duration of time, the growth rate itself becomes a major

0.8

0.6

0.4

0.2
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contributor to the extent that a simple approximation of the function
proves sufficient to extract the amplified frequencies in these simula-
tions. Without loss of generality, we therefore set Wy = 1 while carry-
ing out our modal computation.

In this manner, based on the collective modal content, ampli-
fied frequencies are readily extracted and displayed in Fig. 21(a)
using dashed lines; these are provided side-by-side with the exper-
imental results that are retraced using a solid line. Additionally,
theoretically calculated Helmholtz frequencies are inserted using
vertically dotted lines. These acoustic frequencies are calculated
according to Eq. (38), which depends mainly on the geometric
characteristics of the chamber. As one may infer graphically, the
present formulation captures multiple amplifications that corre-
spond rather favorably to the experimental measurements. These
also agree with the longitudinal harmonic frequencies of the cav-
ity. Overall, this case helps to support the hypothesis that the
amplified frequencies are acoustically driven and that the hydro-
dynamic modal contributions remain minimal.

The second case corresponds to a much larger length-to-height
ratio. The attendant chamber elongation provides the means for a
stronger mean flow and, by the same token, parietal vortex shedding.
Results from this case are displayed in Fig. 21(b) along with the experi-
mental and theoretical acoustic measurements. The compressible
computations are found to predict quite accurately the amplified fre-
quencies measured in the experiments. Although these do not pre-
cisely coincide with the pure acoustic tones, they do correspond to
actual vorticoacoustic modes with slightly shifted frequencies. This
comparison also stands as a clear example of the importance of incor-
porating mean flow effects when analyzing acoustic fields in high-
speed flows. Evidently, a high-fidelity mean flow profile will be useful
to produce accurate and reliable simulations. At present, the sample
comparisons to experimental measurements may be viewed as being
supportive of the notion that a compressible eigensolver can accurately
predict the chamber’s amplified frequencies while providing insight
into the nature of the vorticoacoustic modes.

FIG. 21. Amplified frequencies based on
experimental measurements reported by
Casalis and Vuillot’' and computations
generated by the present eigensolver for
(@) L=29 and (b) L =58.
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C. Unsteady vorticity comparisons

Evidently, it would be helpful to differentiate the contributions of
hydrodynamic modes from those of vorticoacoustic modes on flow
instability and breakdown structures. This can indeed be accomplished
in Fig. 22 by undertaking a comparison between results that employ
only vorticoacoustic modes and those that also include hydrodynamic
modes. To this end, Fig. 22(a) is used to depict the vorticity contours
generated from the linear superposition of the first 30 vorticoacoustic
modes. These encompass longitudinal, transverse, and mixed modes
affiliated with the chamber’s harmonics. Graphically, one can identify
a clear concentration of vortices near the wall, which appear to be of
the vortex shedding parietal type. In essence, these vortices are gener-
ated near acoustic frequencies and then convected downstream by vir-
tue of the mean flow motion. In fact, this particular behavior
corresponds to what Vuillot™ refers to as the coupling between vortex
shedding and the acoustics of the chamber. The graph provides a par-
ticularly illuminating visual depiction of how acoustic motion, propa-
gating at the speed of sound, can modulate the frequency of the vortex
shedding process, to draw energy from the mean flowfield.

To isolate the effects of hydrodynamic modes, we now move to
superimpose the eigensolutions for 50 hydrodynamic modes in addi-
tion to the 30 vorticoacoustic modes used earlier. The corresponding
vorticity fluctuations are then computed and presented in the contour
plots of Fig. 22(b). Apart from the vortices that develop near the wall,
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(b) Effect of 30 vorticoacoustic and 50 hydrodynamic modes

FIG. 22. Iso-vorticity contours of superposed modes corresponding to (a) 30 vorti-
coacoustic modes and (b) 30 vorticoacoustic and 50 hydrodynamic modes using
M, = 0.05.
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as in Fig. 22(a), we draw the reader’s attention to the particular vortical
structures that emerge in the core region and continue to grow as the
aft end of the chamber is approached. Since hydrodynamic modes are
caused by mean flow breakdown, they tend to intensify with the mean
flow speed. In this vein, a closer look at the mean flow can help to jus-
tify the appearance of these structures.

In deriving the compressible Taylor profile in a porous channel,
Maicke and Majdalani’’ discuss in detail the mean flow evolution,
which reaches its maximum in the midsection plane. Therein, the flow
speed increases progressively as the flow advances downstream.
Consistently with these theoretical findings and the behavior of Eq.
(43), the hydrodynamically generated vortices in Fig. 22(b) appear to
be most prominent in the core region of the chamber, where the mean
flow component is most significant, and become even more apprecia-
ble in the downstream direction.

VII. CONCLUSION

One of the long-standing challenges in modeling the oscillatory
motion in the presence of an injection-driven flowfield stands in prop-
erly characterizing the interactions that occur between the acoustic
and mean flow structures, especially at the walls, and the attendant
coupling with the vortical waveforms that evolve inside the chamber.
It is well known that the rotational part of the wave can serve as the
mechanism by which energy may be transferred from the mean flow-
field for the purpose of feeding the vorticoacoustic oscillations.
Typically, this coupling is accomplished by insisting on the vortical
wave observing the velocity-adherence condition at the wall to the
extent of producing an acoustically generated vortical field.

In this work, by solving the fully compressible and viscous equa-
tions of motion, the intrinsic coupling of the aforementioned waves is
systematically captured. The modal decomposition enables us to
resolve a wide range of temporal and spatial scales, including those
evolving from low to high speed. When visualizing the frequency spec-
trum, the coupled modes distinguish themselves quite compellingly
from the rest of the group by a clear amplification of their stability
growth rates. These carefully identified vorticoacoustic modes appear
near the natural harmonics of the cavity in a manner that is quite simi-
lar to what is observed in real firings. Granted that the bulk fluid
motion carries the energy responsible for flow breakdown and self-
excitation, the underlying frequency shifts are attributable, in part, to
the inclusion of mean flow effects in a fully compressible framework.
In this context, the presence of a mean flow slightly alters the acoustic
mode shapes, which are traditionally assumed to be purely sinusoidal
standing waves of the Helmholtz type.

Overall, it is gratifying that the vorticoacoustic waveforms pre-
dicted by the compressible eigensolver compare favorably with existing
analytical approximations;™” these have been effective at identifying a
characteristic parameter that controls the penetration depth of
unsteady vorticity waves."’ By balancing the convective and dissipative
terms, the non-dimensional parameter, Mj = V3 /(avw??), oversees
the two mechanisms responsible for the transport of the rotational
boundary-layer disturbances across the mean flow."” While the theo-
retical formulation enables us to gain deeper insight into the physical
aspects of the problem, the present approach helps to extend our
framework to more elaborate flow configurations with irregular
boundaries with no need for flow decomposition at the forefront of
the analysis.
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In what concerns hydrodynamic breakdown and shear layer
instabilities, it appears that a sufficiently refined compressible
framework is capable of promoting an accurate resolution of most
temporal and spatial scales. Consequently, the present formulation
enables us to predict the modes of oscillation that are not solely
related to the acoustics of the chamber. In effect, some are directly
influenced by the actual characteristics of the mean flow itself.
Comparisons with incompressible stability studies help to corrobo-
rate that the present solver can capture the aforementioned modes,
which may become important when combustion models are
appended to the solver’s capabilities. Moreover, our results seem to
favorably compare to experimental, albeit limited, cold-flow data
acquired using the VECLA facility at ONERA; therein, the biglobal
stability findings appear to outperform the LNP predictions in
locating the amplified frequencies in the chamber. In essence,
using cold-gas injection, the facility in question records velocity
fluctuations from which the characteristic oscillatory frequencies
can be deduced. According to our comparisons, their amplified fre-
quencies seem to be vorticoacoustic in nature. In hindsight, these
observations and physical insights have only become possible
because of the fully compressible coupling that has been achieved
between vortical and acoustic waves.

Finally, let us recall that the formulation of the vorticoacoustic
wave strongly depends on the proper satisfaction of the no-slip
requirement at the wall. While the overarching concept leads to an
accurate representation of velocity profiles with small viscosity, pres-
sure waves remain essentially unaffected. In this work, interesting new
characteristic properties of the pressure disturbances are unraveled.
More specifically, the direct coupling between acoustic and vorticity
fields has enabled us to predict pressure waves that exhibit spatial
shifting with respect to the routinely assumed sinusoidal form. Similar
interactions caused by hydrodynamic fluctuations also affect the distri-
bution of unsteady vorticity. These give rise to vortical structures near
the midsection plane that become more appreciable in the aft region
of the chamber. Since the latter constitutes the segment with the high-
est mean flow velocity, these structures can be associated with the early
development of turbulence.
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