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ABSTRACT

In this work, the K�arm�an–Pohlhausen (KP) momentum-integral approach based on optimized fourth-order (MX4) polynomial approxima-
tions of the velocity and temperature profiles is applied to a classical benchmark problem, namely, that of a cylinder in crossflow with a vari-
able pressure gradient. This enables us to extract closed-form expressions for both hydrodynamic and thermal boundary-layer parameters
and then compare the newly found solutions to their counterparts obtained using Pohlhausen’s cubic (KP3) and quartic (KP4) polynomials.
As usual, the farfield around the cylinder is modeled using potential flow theory and the momentum-integral analysis is paired with Walz’s
empirical expression for the momentum thickness, which is based on a wide collection of experiments. This procedure permits retrieving
explicit relations for the pressure-sensitive KP3, KP4, and MX4 velocity profiles across the boundary layer; one also obtains accurate approxi-
mations for the pressure distribution around the cylinder as well as an improved prediction of the separation point, namely, to within 0.87%
of the actual location. In this process, refined estimates are produced for several characteristic parameters whose distributions are found to be
in favorable agreement with experimental measurements and numerical simulations. These include the disturbance, momentum, and
displacement thicknesses as well as the skin friction, pressure, and total drag coefficients. Finally, the thermal analysis is undertaken using both
isothermal and isoflux boundary conditions. For each of these cases, closed-form analytical solutions are obtained for the local Nusselt number
distribution around the cylinder, and these distributions are found to exhibit noticeably reduced errors relative to their classical values.

VC 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0096780

I. INTRODUCTION

Modern boundary-layer analysis may be traced back to a highly
impactful 1904 paper by Prandtl1 in which a reduced partial differen-
tial set of the Navier–Stokes equations is provided for the treatment
of viscous flow problems. Four years later, this significant develop-
ment in aerodynamics is succeeded by a brilliantly constructed simi-
larity solution for flow over a flat plate by Prandtl’s first doctoral
student, Blasius.2 Then, in 1921, a seemingly straightforward exten-
sion to Prandtl’s equations is conceived in the form of an integral for-
mulation, again this time, by two of Prandtl’s most celebrated
students. After its introduction through two sequential papers by
von K�arm�an3 and Pohlhausen,4 the so-called K�arm�an–Pohlhausen

(KP) momentum-integral approach may be seen to quickly gain pop-
ularity within the aerodynamics, fluid mechanics, and propulsion
communities. In hindsight, this may be attributed to its versatility,
simplicity, and effectiveness at capturing both laminar and turbulent
boundary layers in a variety of phenomenological problems. In fact,
given its broad applicability range, this method is presently featured
in several textbooks on the subject including those by Oleinik and
Samokhin,5 Schetz and Bowersox,6 Pritchard and Mitchell,7

Schlichting and Gersten,8 and White and Majdalani;9 it is also cited
or used at the basis of several interesting studies such as those by
Cantwell,10 Khan, Culham, and Yovanovich,11 Bujurke and
Jagadeeswar,12 and others. More contemporaneously, it has been

Phys. Fluids 34, 063107 (2022); doi: 10.1063/5.0096780 34, 063107-1

VC Author(s) 2022

Physics of Fluids ARTICLE scitation.org/journal/phf

https://doi.org/10.1063/5.0096780
https://doi.org/10.1063/5.0096780
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0096780
http://crossmark.crossref.org/dialog/?doi=10.1063/5.0096780&domain=pdf&date_stamp=2022-06-30
https://orcid.org/0000-0002-1414-6516
https://orcid.org/0000-0001-9129-8292
mailto:rma0030@auburn.edu
mailto:joe.majdalani@auburn.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1063/5.0096780
https://scitation.org/journal/phf


relied upon to predict the viscous drag in modern computational
schemes based on potential flow solvers and surface vorticity panel
codes such as FlightStreamVR by DiMaggio et al.13

To begin, it may be instructive to note that, from a procedural
standpoint, K�arm�an’s momentum-integral approach is predicated on
the availability of suitable representations of the velocity profile in the
nearfield. In fact, the systematic construction of a viable profile is
addressed quite elegantly in a 1921 companion paper by Pohlhausen.4

For this reason, the overarching method is presently referred to as
“KP,” namely, in recognition of both contributors, whose centennial
articles we celebrate.

Pohlhausen’s idea is simple. By postulating reasonable boundary
conditions that can be applied at the extremities of a viscous region,
velocity profiles of increasing orders can be methodically developed.
These are often termed P2, P3, and P4, in reference to their quadratic,
cubic, or quartic orders.14 Naturally, higher-order approximations are
capable of satisfying a larger number of postulated conditions. Most per-
plexingly, however, as Pohlhausen’s polynomial orders are elevated,
their ability to predict basic boundary-layer characteristics has been
shown to deteriorate. Instead of producing a reduced error at succes-
sively increasing orders, a magnification in the error is realized.7–9 For
example, the errors in predicting the displacement thickness and shape
factor for planar flow over a flat plate increase from 4.7% and 7.2% to
12% and 17% when P4 is used in lieu of P3.9 Effectively, to overcome
the inexplicable increase in error, several other methods are later devel-
oped and these include two comparable formulations by Walz15 and
Thwaites.16 The latter consist of semi-empirical integral relations that
predict the momentum thickness directly from the velocity profile in
the farfield region irrespective of the flow developing in the nearfield. As
such, these alternative techniques provide no particular detail on the
velocity or temperature profiles across the viscous or thermal layers.

In actuality, due to the findings reported in a recent study by
Majdalani and Xuan,17 the paradoxical error behavior undermining
Pohlhausen’s polynomials is rationally explained. This is accomplished
by demonstrating that one of the postulated boundary conditions by
Pohlhausen, which drastically affects polynomials of order four and
higher, is rather imprecise, being markedly dissimilar from its numeri-
cally computed value. It is then shown that, by relaxing the second-
order curvature requirement postulated by Pohlhausen on the velocity
at the edge of the viscous layer, a substantially improved quartic poly-
nomial representation is achieved.17 More specifically, this is accom-
plished by replacing the deficient condition with an optimal slope at
the wall to the extent of reducing the predictive error accrued in the
KP formulation by one full order of magnitude.

Having demonstrated the effectiveness of this novel approach in
modeling the motion over a flat plate with a zero pressure gradient,17

it is the purpose of this work to extend its application to another
canonical problem, namely, that of a circular cylinder in crossflow.18

In this geometric setting, the decreasing and then increasing flow area
normal to the uniform stream past the nose section of the cylinder
leads to a pressure gradient that must be accounted for. From a practi-
cal perspective, the analysis of flow past a cylinder remains of tremen-
dous academic interest due, partially, to its ubiquitous coverage in
textbooks on the subject5–9 and, partially, to its frequent designation as
a benchmark problem in the development of new computational tech-
niques.19 In fact, the characterization of flow development around
bluff bodies in general and circular cylinders, in particular, remains an

active area of research that continues to attract dedicated experimen-
tal20–23 and computational24–33 studies.

Naturally, the spatial variations of the pressure gradient and far-
field velocity around the cylinder give rise to additional complexities in
the momentum equation relative to the flat-plate problem at zero angle
of incidence.17 The present extension from a flat plate to a cylinder in
crossflow using an optimized quartic polynomial approximation is
therefore essential to pursue in order to ascertain the manner by which
the presence of a pressure gradient can be judiciously handled. This will
be attempted while taking into account the results obtained by Khan,
Culham, and Yovanovich34 for the boundary-layer treatment of a cylin-
der in crossflow. The latter is carried out using Pohlhausen’s quartic
velocity profile3 in conjunction with the method of Walz15 to extract
analytical expressions for a variety of viscous and thermal boundary-
layer properties. To prove its effectiveness, an optimized quartic polyno-
mial, which is based on a slightly refined momentum-integral formula-
tion,17 will be introduced and shown to outperform in its predictive
capability both cubic (KP3) and quartic (KP4) Pohlhausen polynomials.

From an organizational standpoint, the article is divided into two
main sections augmenting the present introduction and concluding
material of Sec. IV. The first part focuses on the hydrodynamic
momentum analysis of the viscous boundary-layer structure over a
cylinder in crossflow. This is undertaken in Sec. II using
K�arm�an–Pohlhausen’s both cubic (KP3) and quartic (KP4) flow pro-
files as well as an improved quartic (MX4) polynomial approximation
of the nearfield.17 In all three cases, the farfield is represented by the
classic potential flow solution and all results are compared to existing
numerical and experimental measurements. In this process, the
momentum-thickness estimation is retrieved from the well-established
integral formulation by Walz.15 Results based on the MX4 solution are
then shown to be the most precise at forecasting the disturbance, dis-
placement, and momentum thicknesses as well as the separation point
along the rear portion of the cylinder. Because of its unique character-
istics relative to its counterparts, the MX4 solution is also seen to pre-
dict the most accurate location of the maximum skin friction
coefficient along the surface. In the second part, the main focus is
shifted to the thermal boundary-layer and heat transfer analyses of the
same problem using both isothermal and isoflux surface conditions.
This is undertaken in Sec. III where both traditional KP3 and KP4, as
well as the improved polynomial approximation MX4, are imple-
mented in conjunction with the Reynolds analogy, namely, to charac-
terize the thermal boundary-layer structures and corresponding
Nusselt number relations. The underlying effort is performed for a
total assortment of six cases that consider three different KP3, KP4,
andMX4 temperature profiles and both isothermal and isoflux surface
conditions. Here too, all predictions are compared to one another and
to existing empirical correlations. In this process, the closed-form ana-
lytical expressions associated with the improved MX4 profile are
shown to be the most accurate at estimating the thermal characteristics
irrespective of whether a constant wall temperature or heat flux condi-
tion is prescribed.

II. HYDRODYNAMIC ANALYSIS
A. Problem formulation and governing equations

We consider a two-dimensional circular cylinder of diameter D
and infinite width, which is surrounded by an incompressible
Newtonian fluid approaching at uniform axial speed U1 and
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temperature T1. As depicted in Fig. 1(a), x stands for the circular arc
distance measured tangentially along the surface of the cylinder, y refers
to the normal distance at any station x, / denotes the azimuthal angle
measured counterclockwise from the front stagnation point at the nose
of the cylinder, and dðxÞ represents the boundary-layer disturbance
thickness. Using the subscript “sep” to abbreviate the term “separation,”
our domain of interest ranges from / ¼ 0� at x¼ 0 to the point of sep-
aration at / ¼ /sep or xsep ¼ /sepD=2. The potential flow solution for
the farfield, which extends beyond the edge of the viscous layer, can be
suitably represented by UðxÞ ¼ 2U1 sin/, as illustrated in Fig. 1(b);9

therein, the characteristic streamlines of the inviscid outer solution are
outlined. In the nearfield, one may follow Prandtl1 by implementing an
order-of-magnitude scaling analysis through which terms of lower
order can be systematically dismissed. Using standard notation, the
reduced set of Navier–Stokes equations, which form the backbone of
the substantially simplified boundary-layer equations, can be written as

@u
@x

þ @v
@y

¼ 0 ðcontinuityÞ; (1)

u
@u
@x

þ v
@u
@y

¼� 1
q
dp
dx

þ �
@2u
@y2

ðwall-tangential x-momentum equationÞ; (2)

dp
dy

¼ 0 ðwall-normal y-momentum equationÞ; (3)

u
@T
@x

þ v
@T
@y

¼ a
@2T
@y2

ðenergy equationÞ; (4)

where ðq; p;TÞ and (u, v) denote the density, pressure, temperature,
and both axial and normal velocity components within the boundary-
layer region, whereas � and a stand for the viscous and thermal diffu-
sivity coefficients, respectively.

Four years after the advent of these equations, and pursuant
to Prandtl’s milestone achievement, Blasius2 manages to extract
a nearly exact shape-preserving similarity solution for the
incompressible motion over a flat plate at zero incidence. By dem-
onstrating that the second-order viscous diffusion term in the
wall-normal direction trumps its counterpart in the wall-
tangential direction, and through the use of a brilliant similarity
transformation, Blasius reduces Eqs. (1)–(3) to a third-order

differential equation that can be solved numerically. For the read-
er’s convenience, this equation may be expressed in terms of the
normalized velocity profile, FðnÞ � u=U , when written as

F000F0 � F002 þ 1
2
a2F02F ¼ 0;

with Fð0Þ ¼ F00ð0Þ ¼ 0; and Fð1Þ ¼ 1;
(5)

where n � y=d denotes the normalized boundary-layer coordinate in
lieu of the Blasius similarity variable (see the Appendix A for detail).
In 1921, an alternative integral technique to these equations is intro-
duced by von K�arm�an,3 thus leading to the momentum-integral for-
mulation, particularly, whose centennial we recognize in this Special
Collection. The latter is actually applied straightforwardly in a com-
panion article by Pohlhausen4 to showcase its effectiveness at captur-
ing the various boundary-layer properties for flow over a flat plate.
This is carried out in conjunction with the use of polynomial approxi-
mations to represent the velocity profile across the viscous region. In
short, as detailed by Schlichting and Gersten,8 the incompressible
form of the momentum-integral equation can be written as

Cf

2
� sw

qU2
¼ 1
U2

@

@t
Ud�ð Þ þ dh

dx
þ 2hþ d�ð Þ 1

U
dU
dx

ðmomentum-integral equationÞ; (6)

where Cf , sw , d
�, and h stand for the skin friction coefficient, wall shear

stress, displacement thickness, and momentum thickness, respectively.
The last two properties along with their ratio, which returns the shape
factorH � d�=h, can be evaluated from

d� �
ð1
0

U � u
U

dy � d
ð1
0
ð1� FÞdn (7)

and

h �
ð1
0

u
U
U � u
U

dy � d
ð1
0
Fð1� FÞdn; (8)

with

H �

ð1
0

U � u
U

dyð1
0

u
U
U � u
U

dy
�

ð1
0
ð1� FÞdnð1

0
Fð1� FÞdn

: (9)

FIG. 1. Side-by-side schematics of (a) an
infinitely long cylinder in a crossflow config-
uration identifying the growing disturbance
thickness and principal coordinates in the
presence of uniform flow in the farfield with
speed U1 and temperature T1, and (b)
streamlines corresponding to the idealized,
slip-permitting, potential solution denoting
the farfield region.
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Given our interest in pursuing steady-state solutions, we may elimi-
nate the time-dependent terms in Eq. (6) and continue our analysis by
referring to

Cf

2
¼ dh

dx
þ 2þ Hð Þ h

U
dU
dx

ðsteadymomentum-integral equationÞ:

(10)

B. Flow regime and boundary conditions

In the laminar boundary-layer regime, the local Reynolds number
Rex may be assumed to be reasonably small, specifically, not exceeding
the transitional range of 105–106 (see Chopra and Mittal35). Moreover,
in the presence of a uniform crossflow velocity, the viscous disturbance
thickness begins to grow from its thinnest value at the stagnation point
(/ ¼ 0�) to a maximum height that occurs at separation. As illustrated
in Fig. 1(a), the latter takes place along the aft portion of the cylinder.
Then, considering the typically small size of the boundary-layer thick-
ness compared to the cylindrical radius, the flow bending effect may be
neglected in a leading-order approximation. As such, the tangential
motion along the curved surface may be likened to that of its axial
counterpart over a flat plate.36 This simple analogy enables us to employ
the same set of flow profiles devised by Pohlhausen4 and others to
model the velocity distribution within the boundary-layer region using
the KP approach.3 Some of these formulations are reviewed by
Majdalani and Xuan17 and partly cataloged by Pritchard and Mitchell.7

In short, the guessed profiles consist of several piecewise approxima-
tions that are intended to mimic the behavior of the Blasius solution
over the 0 � y � d interval and that become fixed at unity over the
semi-infinite domain, d < y < 1. In the absence of a pressure gradi-
ent, three of these profiles are of particular interest here. These consist
of Pohlhausen’s cubic and quartic profiles4

u
U

¼ 3
2
y
d
� 1
2
y3

d3
ðP3Þ and

u
U

¼ 2
y
d
� 2

y3

d3
þ y4

d4
ðP4Þ; (11)

which are often referred to as P3 and P4, in reference to their polyno-
mial orders:14 they satisfy either four or five of the basic boundary con-
ditions postulated by Pohlhausen.4 Using similar arguments to those
made by Pohlhausen,4 and by avoiding a prematurely imposed bound-
ary condition on the normal shear-stress gradient evaluated at the
edge of the boundary layer, a rationally optimized quartic profile is
derived by Majdalani and Xuan.17 Again, for the case of zero angle of
incidence over a flat plate, one gets

u
U

¼ 5
3
y
d
� y3

d3
þ 1
3
y4

d4
ðM4Þ: (12)

As shown in Table I, which compares the boundary-layer proper-
ties predicted by P3, P4, and M4 to those ascribed to Blasius,2 one can
confirm that, with an error that does not exceed 1.7% over the entire
0 � y � d interval in any of the fundamental properties, M4 outper-
forms its polynomial counterparts in approximating the traditional
Blasius estimates. These include both displacement and momentum
thicknesses (d�, h), shape factor H, disturbance thickness d, and skin
friction coefficient Cf . By contrast, the P3 and P4 profiles lead to
appreciably larger peak errors of 9% and 17%, respectively. In fact, by
comparing P3 and P4 estimates, it may be seen that P3 outperforms
P4 in predicting the non-dimensional displacement and momentum

thicknesses, whose errors increase from 9.0% and 4:7% to 13% and
12%, respectively, when P3 is replaced by P4. Moreover, the overall L2
error, which is defined relative to the Blasius solution, increases from
0.034 to 0.054 when Pohlhausen’s cubic polynomial is superseded by
its quartic form. Here too, the overall L2 � 0:008 error that accompa-
nies M4 proves to be lower by one full order of magnitude.

Upon further scrutiny, what causes Pohlhausen’s fourth-order
polynomial P4 to deteriorate in predictive capability relative to P3 or
M4, despite its ability to secure five boundary conditions instead of
four, can be attributed to its incorporation of an overly constraining
physical requirement.17 In the interest of clarity, it may be instructive
to revisit the five constraints that each of Pohlhausen’s polynomials
seeks to satisfy progressively with each successive order. These encom-
pass the velocity adherence condition both at the wall and boundary-
layer edge, the vanishing of the shear stress at the edge of the viscous
layer, the axial momentum balance at the wall, and, finally, the vanish-
ing of the normal gradient of the shear stress at the edge of the viscous
layer. Mathematically, these physical requirements translate into

uðx; 0Þ ¼ 0 or Fð0Þ ¼ 0

ðinner wall velocity adherenceÞ; ð13Þ
uðx; dÞ ¼ UðxÞ or Fð1Þ ¼ 1

ðouter edge velocity adherenceÞ; ð14Þ
@u
@y

����
y¼d

¼ 0 or F0ð1Þ ¼ 0

ðnegligible outer edge shear stressÞ; ð15Þ
@2u
@y2

����
y¼0

¼ 1
l
dp
dx

¼ �U
�

dU
dx

or F00ð0Þ ¼ �K

ðwall shear-stress gradientÞ; ð16Þ
@2u
@y2

����
y¼d

¼ 0 or F00ð1Þ ¼ 0

ðouter edge shear-stress gradientÞ; ð17Þ

where Pohlhausen’s pressure parameter, which represents a non-
dimensional pressure gradient, is given by

K � � d2

lU
dp
dx

¼ d2

�

dU
dx

ðPohlhausen’s pressure parameterÞ:

(18)

Note that the fourth condition, Eq. (16), ensures that the axial
momentum balance is observed at the wall, wherein the pressure gra-
dient may be exchanged with the farfield velocity gradient by way of
Euler’s equation.9 However, as shown in previous work,17 the fifth
constraint in Eq. (17) proves to be rather imprecise at the edge of d.
Despite the negligible shear stress at the edge of the viscous layer, its
normal gradient continues to change.

To better understand this elusive inconsistency, it is helpful to
compare the behavior of the polynomial approximations under consid-
eration to those of the Blasius solution at the endpoints of the viscous
layer. This is accomplished in Table II where the normalized velocity
function F ¼ u=U and its derivatives with respect to the normalized
boundary-layer coordinate n are compared to their precisely computed
values from the exact Blasius equation. As one can immediately see, the
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assumption of F00ð1Þ ¼ 0 for a flat plate with no pressure gradient devi-
ates from the exact Blasius value of –0.709 by one order of magnitude.
Moreover, M4 provides the closest estimate for the Blasius connection
parameter, slope, or constant, F0ð0Þ ¼ 1:630, relative to P3 and P4;
these, alternatively, yield 1.5 and 2.0, respectively. Clearly, P4 leads to
the largest velocity slope disparity at the wall, which helps to justify its
tendency to overshoot the Blasius solution relative to P3 or M4. On the
other hand, the improved accuracy associated with M4 may be attrib-
uted to its ability to observe Pohlhausen’s four essential boundary condi-
tions that are consistent with the Blasius estimates, while judiciously
avoiding the fifth requirement that deviates from its Blasius counterpart.
Finally, it may be useful to note that Pohlhausen’s simplifying assump-
tion of u¼U instead of u ¼ 0:99U [or Fð1Þ ¼ 1 instead of 0.99] in
Table II equally affects all piecewise approximations. Only the Blasius
solution returns the defining value of 99%, as one expects at y ¼ d.

C. Velocity profiles for nonzero pressure gradients

The foregoing observations explain, at least in part, why
Pohlhausen polynomials of order four and higher, which incorporate
the fifth condition [Eq. (17)], tend to deteriorate relative to their
lower-order forms. Conversely, those that discount the fifth condition
tend to be generally more accurate.17 Bearing these factors in mind,
one may proceed by applying the KP approach to the problem

involving a variable U(x) and, therefore, a non-vanishing pressure gra-
dient in the farfield region. Using KP3, KP4, and MX4 in reference to
the pressure-sensitive polynomials, one obtains, after some algebra
(see Appendix B), the following expressions:

F nð Þ¼

3
2
n�1

2
n3þ1

4
K n�2n2þn3
� �

KP3ð Þ;

2n�2n3þn4þ1
6
K n�3n2þ3n3�n4
� �

KP4ð Þ;
5
3
n�n3þ1

3
n4þK

83
400

n�1
2
n2þ151

400
n3� 17

200
n4

� �
ðMX4Þ:

8>>>>>><
>>>>>>:

(19)

In what follows, the same analysis will be repeated using the three rep-
resentative profiles whose solutions for flow over a flat plate with a variable
pressure gradient will be collectively conveyed to a cylinder in crossflow.

D. Momentum-integral analysis of a cylinder
in crossflow

In the presence of a variable pressure gradient,K proves to be a key-
stone parameters on which most properties of interest depend. At this
point in the analysis, however, the distribution of K around the cylinder
remains unknown. As such, the first essential step becomes that of deter-
mining the pressure distribution along the surface of the cylinder. This

TABLE I. Characteristic boundary-layer predictions and corresponding errors relative to the Blasius solution using three piecewise-analytic velocity profiles.6–8

Profile F
y
d

� �
� u

U
d�

d
h
d

H ¼ d�

h
d
x

ffiffiffiffiffiffiffi
Rex

p
Cf

ffiffiffiffiffiffiffi
Rex

p d�

x

ffiffiffiffiffiffiffi
Rex

p
L2 error

P3 3
2
y
d
� 1
2
y3

d3
0.375 0.139 2.692 4.641 0.646 1.740 0.034

Error 9:0% 4:7% 4:0% 7:2% 2:6% 1:1%

P4 2
y
d
� 2

y3

d3
þ y4

d4
0.300 0.118 2.554 5.836 0.685 1.751 0.054

Error 13% 12% 1:4% 17% 3:2% 1:8%

M4 5
3
y
d
� y3

d3
þ 1
3
y4

d4
0.350 0.134 2.618 4.993 0.668 1.748 0.008

Error 1:7% 0:52% 1:1% 0:13% 0:53% 1:6%

Blasius2 Eq. (5) [1908 numerics] 0.344 0.133 2.59 5:000a 0.664 1.72

aAlthough the 1908 value of 5.0 is still used, a more precise modern computation yields 4.9099895.17

TABLE II. Comparison of the endpoint values of P3, P4, and M4 to the traditional Blasius values. All derivatives are taken with respect to n ¼ y=d.

Profile FðnÞ ¼ u=U F(0) F0ð0Þ F00ð0Þ F(1) F0ð1Þ F00ð1Þ

P3 3
2
n� 1

2
n3 0 1.500 0 1.000 0 �3.000

P4 2n� 2n3 þ n4 0 2.000 0 1.000 0 0:000

M4 5
3
n� n3 þ 1

3
n4 0 1.667 0 1.000 0 �2.000

Blasius2 Eq. (5) [2020 numerics] 0 1.630 0 0.990 0.0904 �0.709
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may be accomplished by combining the definition of K from Eq. (18)
and the farfield velocity distribution, U(x), to retrieve a relation linking
the disturbance thickness d to the spatial location. One gets

d2ð/Þ ¼ �
Kð/Þ
dU=dx

and so
dð/Þ
D

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kð/Þ

4ReD cos/

s
; (20)

where ReD � U1D=�. Note that Eq. (20) does not directly depend on
the assumed velocity profile FðnÞ, but rather on the farfield velocity
distribution, U(x), which controls the pressure gradient. Consequently,
this relation remains valid for all profiles. Bearing this in mind and
using Eq. (8) in conjunction with each of the three velocity profiles in
the nearfield, the momentum thickness h can be readily evaluated and
written in terms ofK and d, namely,

h
d
¼
ð1
0
Fð1� FÞdn

¼

1
280

39� 1
2
K� 1

6
K2

� �
KP3ð Þ;

1
63

37
5
� 1
15

K� 1
144

K2

� �
KP4ð Þ;

1
2520

3032
9

� 1159
300

K� 29791
40000

K2

� �
ðMX4Þ:

8>>>>>>><
>>>>>>>:

(21)

Then, since dð/Þ is prescribed by Eq. (20), it may be wholly eliminated
from Eq. (21). This enables us to express h solely in terms ofKð/Þ and
/, specifically,

hð/Þ
D

ffiffiffiffiffiffiffiffi
ReD

p

¼

1
280

39� 1
2
K� 1

6
K2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K

4 cos/

s
KP3ð Þ;

1
63

37
5
� 1
15

K� 1
144

K2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K

4 cos/

s
KP4ð Þ;

1
2520

3032
9

� 1159
300

K� 29791
40000

K2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K

4 cos/

s
ðMX4Þ:

8>>>>>>>>>>><
>>>>>>>>>>>:

(22)

At this juncture, it proves helpful to recall the elegant transforma-
tion produced byWalz15 and fitted to a substantial body of experimental
measurements; the resulting formulation is known for providing a
straightforward integral relation between the momentum thickness and
the farfield solution irrespective of the nearfield velocity profile. Being
based on empiricalmeasurements rather than viscousmodels of the near-
field velocity,8 onemay estimate themomentum thickness directly from

h2 � 0:47�
U6

ðx
0
U5dx: (23)

Practically, one may replace U(x) by the potential flow velocity distri-
bution and switch the integration variable from x to /; after minor
rearrangements, Eq. (23) returns

hð/Þ
D

ffiffiffiffiffiffiffiffi
ReD

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:1175

sin6/

8
15

� cos5/
5

þ 2 cos3/
3

� cos/

� �s
: (24)

Being solely dependent on / and generally applicable to any
assumed velocity in the boundary-layer region, Eq. (24) provides the
closure relation needed to solve this problem. One may proceed
by equating the right-hand side of Eq. (24) to the respective right-
hand side of Eq. (22) for each of the three candidate functions. This
enables us to retrieve an expression for K as a function of / (see
Appendix C). Finally, being limited to a laminar regime, it may be rec-
ognized that the validity of the solutions just obtained will cease
beyond the point of separation. For this reason, it is essential to deter-
mine the range of K leading up to / ¼ /sep. The latter can be evalu-
ated at the point where the laminar shear stress at the wall vanishes,
i.e., s � ð@u=@yÞjy¼0 ¼ 0. Thus, by suppressing the first derivative of
the normalized velocity at the wall (a quantity that we have labeled as
“s” in previous work17), the critical value of K may be determined.
One finds

sðKÞ ¼

3
2
þ 1
4
Ksep ¼ 0 KP3ð Þ;

2þ 1
6
Ksep ¼ 0 KP4ð Þ;

5
3
þ 83
400

Ksep ¼ 0 ðMX4Þ:

8>>>>>><
>>>>>>:

(25)

The separation values are readily identified to be Ksep ¼ �6 (KP3),
–12 (KP4), and �8:0321 (MX4). As indicated earlier, having a direct
correlation of the form K ¼ Kð/Þ in hand, one may set Kð/sepÞ ¼
Ksep and deduce the separation angle for each of the assumed profiles
as well as the critical pressure gradient at the point of separation. For
the reader’s convenience, the separation angles that accompany these
models are evaluated and summarized in Table III along with the
accrued errors relative to the numerical projection of /sep ¼ 105�

reported by �Zukauskas and �Ziug�zda.37 The latter employs a modifica-
tion of the finite-difference method of Patankar and Spalding38 where
a partial derivative solution of the linear differential equations of
motion is substituted for the original finite-difference approach.
Accordingly, the partial differential equations representing continuity
and axial momentum are discretized using forward differences and
then solved using an explicit marching technique to calculate u and v
until Cf is suppressed at the point where ð@u=@yÞjy¼0 ¼ 0.

Interestingly, the same compact MX4 profile, which has been
previously shown to outperform other polynomial approximations at
the same order or lower, namely, in predicting boundary-layer charac-
teristics for flow over a flat plate,9 continues to provide the most accu-
rate estimate of the separation point for flow over a cylinder. By
exhibiting a mere relative error of 0.87%, the pressure-augmented
MX4 profile given by Eq. (19) may be viewed as being practically
equivalent to the numerical simulations conducted by �Zukauskas and
�Ziug�zda.37 As for KP3 and KP4, their projections also seem to be fair,

TABLE III. Separation angle using three different velocity profiles with the corre-
sponding errors relative to numerical prediction of /sep ¼ 105� reported by
�Zukauskas and �Ziug�zda.37

Profile KP3 KP4 MX4

Separation angle 103.56� 107.71� 105.91�

Error 1.37% 2.58% 0.87%

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 063107 (2022); doi: 10.1063/5.0096780 34, 063107-6

VC Author(s) 2022

https://scitation.org/journal/phf


although the error entailed in the KP4 model is almost twice that of
KP3. Such a perplexing outcome could have been anticipated by recog-
nizing that KP4 is compelled to satisfy a rather imprecise boundary
condition in Eq. (17), particularly, which stands at the root of the
Pohlhausen paradox.17

To further complement the tabulated values, the angular distribu-
tions of Pohlhausen’s pressure parameterKð/Þ as well as a normalized
form of the hydrodynamic disturbance thickness d

ffiffiffiffiffiffiffiffi
ReD

p
=D are pro-

vided in Fig. 2 as functions of the azimuthal angle /. These are sup-
plied for each of the velocity profiles using solid (KP3), broken (KP4),
and chained (MX4) lines. Unsurprisingly, these profile-dependent
angular variations show strong similarities, especially between MX4
and KP3, which remain the two most accurate models. As for KP4, its
disparities are quite visible in both Figs. 2(a) and 2(b). Based on Part
(a), the pressure parameter may be seen to range from K0 ¼ 6:075
(MX4), 6.274 (KP3), and 7.215 (KP4) at the front stagnation point
down to Ksep ¼ �8:0321, �6, and �12, respectively. Based on Part
(b), one confirms that the largest boundary-layer thicknesses in all
models are realized at the point of separation and that d at the front
stagnation point is not zero, but rather finite. Graphically, one may
estimate starting values of d

ffiffiffiffiffiffiffiffi
ReD

p
=D � 1:232 (MX4), 1.252 (KP3),

and 1.343 (KP4) at the nose of the cylinder and ending values of 2.681,
2.411, and 3.123, respectively. Subsequently, using the boundary-layer
thickness d, the normalized displacement thickness d�=d can be evalu-
ated and displayed, as shown in Fig. 3(a). The normalized

displacement thickness follows a closely similar increasing trend to
that of d; both are characterized by slow variations between the front
stagnation point at / ¼ 0� and halfway to separation at approximately
53�. These are followed by progressive steepening as the separation
point is approached. More specifically, one can see that the initial val-
ues of d�=d vary, in descending order, from 0.262 (MX4) to 0.244
(KP3), and then to 0.240 (KP4). As for the peak displacement values
that occur at separation, KP3 is seen to supersede MX4 (starting at
around 60�) to reach a maximum value of 0.488 (KP3), whereas MX4
and KP4 reach 0.464 and 0.398, respectively. Along similar lines, the
maximum value of the momentum shape factor H at the front stagna-
tion point in Fig. 3(b) starts at 1.873 (MX4), 1.746 (KP3), and 1.714
(MX4); it then decreases to a minimum that is reached just before the
separation point; the minimum shape factor obtained for each profile
is thus found to be 1.468 (KP3), 1.323 (MX4), and 1.099 (KP4). As
such, all three profiles predict d� > h or H> 1 over the entire physical
range, in full conformance to boundary-layer theory.

At this juncture, it may be instructive to note that h, which is
determined through Eq. (24) from the Walz formulation, increases
progressively with successive increases in /, especially when used in
conjunction with the farfield potential flow velocity. Moreover, the
momentum thickness’s rate of increase actually exceeds the growth rate
of the displacement thickness, d�, as/ is incremented. At the outset, the
shape factor may be seen to decrease while traveling around the cylin-
der. Interestingly, both the normalized displacement thickness and

FIG. 2. Profile-dependent angular variations of (a) the non-dimensional pressure gradient parameter K as well as (b) the normalized hydrodynamic disturbance thickness
d
ffiffiffiffiffiffiffiffi
ReD

p
=D.

FIG. 3. Profile-dependent angular variations of (a) the normalized local displacement thickness d�=d and (b) the dimensionless momentum shape factor H ¼ d�=h relative to the
numerical simulations of Chopra and Mittal.35
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momentum shape factor associated with KP3 start below those of MX4
and then switch order at / � 60�, thus leading to lower values of
MX4-based d� and H relative to KP3 at separation. As for KP4,
its predictions undershoot those of MX4. As a result, MX4 properties
such asK, d, d�, andH in both Figs. 2 and 3may be seen to serve as the
middle ground by falling strictly between their KP3 and KP4 values at
separation. This behavior may be attributed to the initial velocity slope
ofMX4 being bracketed by the slopes of KP3 andKP4, as per Eq. (25).

E. Viscous boundary-layer characteristics

Having determined the normalized pressure distributions for
each model from stagnation to separation, other characteristic proper-
ties may be readily inferred. For example, the local skin friction coeffi-
cient Cf may be deduced from the non-dimensional ratio of the wall
shear stress and the dynamic pressure. As usual, one can put

Cf ¼
sw

1
2 qU

2
1

¼
l @u=@yð Þjy¼0

1
2qU

2
1

: (26)

By inserting each of the individual velocity profiles into Eq. (26) and
rearranging, the local skin friction may be straightforwardly retrieved.
One gets

Cf
ffiffiffiffiffiffiffiffi
ReD

p
¼

8
3
2
þ 1
4
K

� �
sin/

ffiffiffiffiffiffiffiffiffiffiffi
cos/
Kð/Þ

s
KP3ð Þ;

8 2þ 1
6
K

� �
sin/

ffiffiffiffiffiffiffiffiffiffiffi
cos/
Kð/Þ

s
KP4ð Þ;

8
5
3
þ 83
400

K

� �
sin/

ffiffiffiffiffiffiffiffiffiffiffi
cos/
Kð/Þ

s
ðMX4Þ:

8>>>>>>>>>>><
>>>>>>>>>>>:

(27)

It may be instructive to note that, as onemay have anticipated, the
first-order derivative or slope of the velocity profile at the wall, which is
given by Eq. (25), appears in the local skin friction coefficient rather
explicitly, as it does in several other flow properties. This reaffirms the
influential role that the slope plays in controlling the momentum-
integral solution. Furthermore, since Eq. (27) is solely dependent on /,
Cf may be characterized in Fig. 4(a) as a function of/ up to the separa-
tion point. Therein, the skin friction coefficient associated with each of

the models is reproduced and compared to the numerical predictions
of Sch€onauer39 as well as the series approximation provided by
Terrill;40 the former relies on an implicit finite difference method for
treating laminar, incompressible, stationary boundary layers over
impermeable cylinders using Crocco’s differential equation.

Forthwith, it may be seen that the chained MX4 line stays in fair
agreement with the computations performed by both Sch€onauer39 and
Terrill,40 especially as the separation point is approached in Fig. 4(a).
The enhanced agreement is portrayed further in Table IV, where MX4
can be ascertained to predict the lowest L2 error of the three profiles
under consideration as compared to the aforementioned results of
Sch€onauer39 and Terrill.40 Graphically, one may also identify that the
maximum skin friction coefficient ðCf Þmax takes on the values of
6.1063 (MX4), 6.1500 (KP3), and 6.1758 (KP4) at the particular angles
of /max ¼ 57:53�, 56.23�, and 58.04�, respectively. Here too, the
momentum-integral predictions seem to agree rather well with
Sch€onauer’s computations, which yield a ðCf Þmax � 6:494 at /max
� 56:95�, as well as Terrill’s predictions of ðCf Þmax � 6:383 at /max
� 57:3�. In comparison with Sch€onauer’s and Terrill’s, the MX4 over-
predicts the locus of ðCf Þmax by only 1.02% and 0.40%, respectively.

At this juncture, having fully determined the local Cf behavior,
one may proceed to calculate the total friction exerted over the cylin-
der; this can be achieved by integrating the local skin friction coeffi-
cient over the attached segment of the cylinder. The resulting friction
drag coefficient may be calculated from9

CDf ¼
ð/sep

0
Cf sin/ d/: (28)

In the above, we note that the integration bounds on / do not
cover the entire back of the cylinder. Instead, they range from zero at
stagnation to /sep at separation. Recognizing that Cf suddenly drops

FIG. 4. Profile-dependent variations of (a) the normalized local skin friction coefficient Cf
ffiffiffiffiffiffiffiffi
ReD

p
as a function of / relative to numerical predictions by both Sch€onauer39 and

Terrill.40 Also shown is (b) the total drag coefficient CD as a function of ReD relative to experimental measurements by Wieselsberger41 side-by-side with numerical simulations
by Takami42 as well as D’Alessio and Dennis.43

TABLE IV. L2 error for the local skin friction Cf
ffiffiffiffiffiffiffiffi
ReD

p
relative to the numerical results

of Sch€onauer39 and Terrill40 using three different velocity profiles.

Profile KP3 KP4 MX4

L2 error (Sch€onauer) 1.195 1.186 0.958
L2 error (Terrill) 1.057 1.166 0.822
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to zero when the flow detaches, one does not expect an appreciable
contribution of the shear stress over the rear portion of the cylinder.
Solving Eq. (28) for the respective profiles and rearranging, one
obtains

CDf

ffiffiffiffiffiffiffiffi
ReD

p
¼

5:5230 KP3ð Þ;
5:7963 KP4ð Þ;
5:6259 ðMX4Þ:

8><
>: (29)

Another figure of merit consists of the pressure or form drag
coefficient; this property takes into account the existence of a higher
pressure along the front portion of the cylinder as opposed to the
lower pressure forming along its rear portion. The normalized pres-
sure difference and, in turn, the non-dimensional local pressure coeffi-
cient may be evaluated from44

CP ¼ Dp
1
2 qU

2
1

¼ 2 1� cos 2/ð Þ þ 8
ReD

1� cos/ð Þ: (30)

Since the relations used to derive Eq. (30) depend solely on the
farfield velocity, the resulting expression for CP remains valid for any
assumed profile. As with the local skin friction and associated drag
coefficients, the pressure drag CDp can be determined by integrating
CP over the entire area of interest. As before, the bounds of integration
start from the frontal stagnation point and extend all the way to sepa-
ration. Algebraically, one computes

CDp ¼
ð/sep

0
CP cos/ d/: (31)

At first glance, Eq. (31) may appear to be invariant with respect
to the assumed velocity profile; however, since each profile leads to a
different separation point, dissimilarities in the pressure drag predic-
tion can be expected. One gets

CDp ¼

1:2249þ 1:4587
ReD

KP3ð Þ;

1:1526þ 1:2604
ReD

KP4ð Þ;

1:1860þ 1:3546
ReD

ðMX4Þ:

8>>>>>>><
>>>>>>>:

(32)

Now that both CDf and CDp
are in hand, the total drag coefficient may

be deduced. One obtains

CD ¼ CDf þ CDp ¼

1:2249þ 1:4587
ReD

þ 5:5230ffiffiffiffiffiffiffiffi
ReD

p KP3ð Þ;

1:1526þ 1:2604
ReD

þ 5:7963ffiffiffiffiffiffiffiffi
ReD

p KP4ð Þ;

1:1858þ 1:3538
ReD

þ 5:6259ffiffiffiffiffiffiffiffi
ReD

p ðMX4Þ:

8>>>>>>><
>>>>>>>:

(33)

Forthwith, the dependence of CD on the Reynolds number is illus-
trated in Fig. 4(b) for each of the guessed functions. This is carried out
over a range of 4 < ReD < 105, where the rapid depreciation of CD is
demonstrated in the fully laminar range from 4.3 at ReD ¼ 4 to a value
of 1.3 at ReD ¼ 103. Beyond this point, the drag coefficient appears to
asymptote very slowly to a value of about 1.2 as transition is

FIG. 5. Spatial variation of the non-dimensional tangential velocity u/U at several distinct values of K that range from stagnation to separation according to (a) KP3, (b) KP4,
and (c) MX4. Part (d) provides a comparison of all three profiles at separation.
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approached. Note that the analytical results are accompanied by experi-
mental measurements due to Wieselsberger.41 The latter are based on
wind tunnel tests conducted on a cylinder in crossflow using air as the
working fluid and a wide range of diameters. They are also compared
to numerical predictions by Takami42 as well as D’Alessio and
Dennis.43 In these works, Takami42 relies on an iterative finite-
difference technique to tackle the cylinder in crossflow over a range of
Reynolds numbers, whereas D’Alessio and Dennis43 decompose the
solution domain into an inner region where boundary-layer character-
istics are resolved and an outer region where wake flow phenomena are
modeled.

F. Topology of the wall-tangential and wall-normal
velocity profiles

Finally, with u ¼ UF in hand, one may use continuity to deduce
the normal component of velocity v as shown in detail in Appendix D.
One may then proceed to characterize the variation of both u/U and
v/U with the pressure parameter or, alternatively, /. The former is
illustrated in Figs. 5(a)–5(c) where the non-dimensional component
u/U is displayed at several distinct values of K for each of the three
profiles. These range from the peak adverse pressure gradient Ksep at
separation to the largest allowable pressure gradient K0 at the front
stagnation point. In the interest of clarity, all three profiles at separa-
tion are gathered and further compared side-by-side in Fig. 5(d).

Therein, one may note the vertically tangential slope at y¼ 0, which
clearly reflects the vanishing shear stress requirement at the wall,
ð@u=@yÞjy¼0 ¼ 0. One may also infer that the shear stress associated
with the MX4 profile continues to serve as a compromise between its
KP3 and KP4 values, which either undershoot or overshoot the local
shear stress, respectively.

As for the behavior of the normal velocity v
ffiffiffiffiffiffiffiffi
ReD

p
=U1, which

is formulated in Appendix D, it is displayed in Figs. 6(a)–6(c) at sev-
eral equispaced angles taken in 20� increments around the cylinder
and ranging from the stagnation point at / ¼ 0� to the back of the
cylinder, where / ¼ 100�. For the sake of completeness, the normal
velocity profiles at their separation angles are collected and dis-
played side-by-side in Fig. 6(d). Interestingly, the change in v from
the wall to the edge of the boundary layer broadens as one moves
further away from the front stagnation point toward separation,
thus illustrating the gradual increase in vmax around the cylinder.
Graphically, it can be seen that the normal velocity, which occurs at
the separation point, attains a maximum value of vmax ¼ 13:060
(MX4), 12.798 (KP4), and 10.108 (KP3), in descending order.
Interestingly, despite KP4 predicting higher values of v over the vast
majority of the boundary-layer thickness, it is exceeded by MX4
near the edge of the boundary layer, specifically, in the top 10% of d.
As a result, MX4 may be seen to predict the highest vmax of the three
profiles at separation, with KP3 providing the most conservative
values of v everywhere.

FIG. 6. Spatial variation of the non-dimensional normal velocity v
ffiffiffiffiffiffiffiffi
ReD

p
=U1 at several distinct values of / that range from stagnation to near separation according to (a) KP3,

(b) KP4, and (c) MX4. Part (d) provides a comparison of all three profiles at separation.
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III. THERMAL ANALYSIS
A. Thermal configurations and temperature profiles

Having showcased the effectiveness of the KP approach based on
rationally optimized polynomial approximations at predicting viscous
boundary-layer characteristics, one may invoke the Reynolds analogy
to extend this procedure to the heat transfer analysis of thermal
boundary layers, specifically, for flow past a cylinder. The latter can be
achieved by coupling the momentum-integral formulation with the
energy balance equation given by Eq. (4). The main objective of the
thermal analysis will be to model the thermal layer in the process of
determining a Nusselt number correlation that is suitable for predict-
ing convective heat transfer from the surface of the cylinder. To do so,
two canonical thermal configurations will be considered, as depicted
schematically in Fig. 7. In the first, isothermal case, the surface of the
cylinder will be maintained at a uniform wall temperature (UWT); in
the second, isoflux case, the cylinder will be subjected to a uniform
wall flux (UWF). In both situations, the temperature of the wall Tw
will be taken to exceed T1; thus leading to two cases of freestream
heating. Accordingly, Tw will remain spatially invariant in the UWT
configuration and, conversely, the wall heat flux per unit area qw will
be held constant in the UWF configuration. As usual, the edge of the
thermal boundary layer will be situated at y ¼ dT , where dT denotes
the thermal layer thickness.9 At such a distance, the temperature
would have practically reached its freestream value and the normal

gradients of the temperature in the y-direction would have nearly van-
ished. Using kf to designate the fluid’s thermal conductivity, the
boundary conditions for the ensuing two-pronged problem can be
expressed as

y ¼ 0;
T ¼ Tw uniformwall temperature; UWTcaseð Þ;
@T
@y

¼ � qw
kf

uniformwall flux; UWF caseð Þ;

8<
:

(34a)

and, for both cases,

y ¼ dT ; T ¼ T1 with
@T
@y

¼ 0: (34b)

Based on the Reynolds analogy and the technique used recently
by Majdalani and Xuan,17 a total of six thermal profiles may be
defined, particularly, two for each of the KP3, KP4, and MX4 models
depending on whether isothermal or isoflux requirements are
imposed. In summary, one may define nT � y=dT and obtain, under
isothermal conditions, the following reduced temperature
distributions:

T � T1
Tw � T1

¼

1� 3
2
nT þ 1

2
n3T KP3; UWTð Þ;

1� 2nT þ 2n3T � n4T KP4; UWTð Þ;

1� 5
3
nT þ n3T � 1

3
n4T MX4; UWTð Þ:

8>>>>><
>>>>>:

(35)

Similarly, under isoflux conditions, one recovers

T � T1
qwdT=kf

¼

2
3

1� 3
2
nT þ 1

2
n3T

� �
KP3; UWFð Þ;

1
2

1� 2nT þ 2n3T � n4T
� �

KP4; UWFð Þ;

3
5

1� 5
3
nT þ n3T � 1

3
n4T

� �
MX4; UWFð Þ:

8>>>>>>><
>>>>>>>:

(36)

In the interest of clarity, Eqs. (35) and (36) are illustrated side-by-side
in Fig. 8. Graphically, one may readily infer that the MX4-based tem-
perature profile (chained line) remains bracketed, for both UWT and
UWF configurations, by the KP3 (solid) and KP4 (broken) lines,
which slightly overshoot and undershoot its value at any vertical

FIG. 8. Profile-dependent spatial variation of the reduced temperature distribution within the thermal boundary layer for (a) uniform wall temperature (UWT) and (b) uniform
wall flux (UWF) thermal configurations.

FIG. 7. Schematics of the viscous and thermal boundary layers, d and dT , for the
two fluid heating scenarios corresponding to either a curved surface at uniform wall
temperature (UWT) or heat flux (UWF).
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distance from the wall, respectively. Although these thermal distribu-
tions are based on the Reynolds analogy for flow over a flat plate, the
small size of dT in comparison to the curvature of a typical cylinder in
crossflow may be used to justify the present extension.9

B. Isothermal momentum-integral analysis

As shown in Appendix E, the integrodifferential form of the
energy balance relation for the isothermal case can be expressed as

@

@x

ðdT
0

T � T1ð Þu dy ¼ �a
@T
@y

����
y¼0

; (37)

where, as before, a represents the thermal diffusivity. By
substituting the velocity profiles from Eq. (19) as well as the tem-
perature profiles from Eq. (35) into Eq. (37), one retrieves, after
some simplifications

dT
@

@x
UðxÞdTf

3
2
þ 1
4
K

� �� 	
¼ 15a KP3ð Þ; (38)

dT
@

@x
UðxÞdTf 2þ 1

6
K

� �� 	
¼ 30a KP4ð Þ; (39)

and

dT
@

@x
UðxÞdTf

5
3
þ 83
400

K

� �� 	
¼ 75

4
a MX4ð Þ; (40)

where f � dT=d captures the thermal-to-viscous ratio of boundary-
layer thicknesses. In practice, f < 1 when the Prandtl number, Pr,
is found to exceed unity. In fact, Majdalani and Xuan17 show that
f ¼ Pr�1=3 þ OðPr�1Þ provides an excellent approximation so long as
Pr > 0.3; as such, higher-order corrections for f ¼ Pr�1=3 may be
safely discounted. A similar assumption will be later adopted in the
isoflux analysis, since switching to the UWF condition does not alter
the order of f.

At this juncture, integrating the energy balance expressions of
Eqs. (38)–(40) with respect to x enables us to retrieve closed-form rela-
tions for the normalized dT as a function of the azimuthal angle /.
After some effort, we obtain

�dTð/Þ �
dTð/Þ
D

Re1=2D Pr1=3

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15
Ð /
0

3
2þ 1

4K
� �

sin/d/

4 3
2þ 1

4K
� �2

sin2/

ffiffiffiffiffiffiffiffiffiffiffi
K

cos/

s
3

vuut KP3ð Þ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15
Ð /
0 2þ 1

6K
� �

sin/d/

2 2þ 1
6K

� �2 sin2/
ffiffiffiffiffiffiffiffiffiffiffi
K

cos/

s
3

vuut KP4ð Þ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
75
Ð /
0

5
3þ 83

400K
� �

sin/d/

16 5
3þ 83

400K
� �2 sin2/

ffiffiffiffiffiffiffiffiffiffiffi
K

cos/

s
3

vuut MX4ð Þ;

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

(41)

where �dTð/Þ denotes the normalized group parameter that combines
the thermal boundary-layer thickness with D, ReD, and Pr. Moreover,
in terms of the thermal conductivity of the surrounding fluid kf , the
local heat transfer coefficient can be written as36

hð/Þ ¼ �
kf

Tw � T1

@T
@y

����
y¼0

¼ �
kf

dTð/Þ
d T � T1ð Þ= Tw � T1ð Þ½ �

dnT

����
nT¼0

: (42)

After substituting the modeled temperature distributions from Eq.
(35) into Eq. (42), the profile-specific local heat transfer coefficient can
be determined using

hð/ÞdTð/Þ ¼

3
2
kf KP3ð Þ;

2kf KP4ð Þ;
5
3
kf ðMX4Þ:

8>>>>><
>>>>>:

(43)

At this point, rearranging Eq. (41) and substituting it into Eq. (43)
enables us to construct the local Nusselt number correlation for each
of the three thermal profiles. We get

NuDð/Þjisothermal

Re1=2D Pr1=3
¼

3
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 3

2þ 1
4K

� �2 sin2/
15
Ð /
0

3
2þ 1

4K
� �

sin/d/

ffiffiffiffiffiffiffiffiffiffi
cos/
K

r
3

vuut KP3ð Þ;

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 2þ 1

6K
� �2sin2/

15
Ð /
0 2þ 1

6K
� �

sin/d/

ffiffiffiffiffiffiffiffiffiffi
cos/
K

r
3

vuut KP4ð Þ;

5
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16 5

3þ 83
400K

� �2 sin2/
75
Ð /
0

5
3þ 83

400K
� �

sin/d/

ffiffiffiffiffiffiffiffiffiffi
cos/
K

r
3

vuut MX4ð Þ;

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

(44)

where NuD � hD=kf represents the diameter-based Nusselt
number.

C. Isoflux momentum-integral analysis

In similar manner, the energy balance statement for the isoflux
case can be used to write

@

@x

ðdT
0

T � T1ð Þudy ¼ qw
qcp

; (45)

where q and cp refer to the density and constant pressure specific
heat of the working fluid. To make further headway, the fluid’s
physical properties can be taken to be constant, an assumption
that is often made in the treatment of incompressible laminar
flow with no internal heat generation. This enables us to further
simplify Eq. (45) into

@

@x
UðxÞd2Tf

3
2
þ 1
4
K

� �� 	
¼ 15

�

Pr
KP3ð Þ; (46)

@

@x
UðxÞd2Tf 2þ 1

6
K

� �� 	
¼ 30

�

Pr
KP4ð Þ; (47)

and

@

@x
UðxÞd2Tf

5
3
þ 83
400

K

� �� 	
¼ 75

4
�

Pr
MX4ð Þ: (48)

Finally, one may integrate Eqs. (46)–(48) with respect to x; the result-
ing expressions may be readily rearranged, normalized, and simplified
into the following relations for the local dT :

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 063107 (2022); doi: 10.1063/5.0096780 34, 063107-12

VC Author(s) 2022

https://scitation.org/journal/phf


�dTð/Þ ¼
dTð/Þ
D

Re1=2D Pr1=3

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15/

8 3
2 þ 1

4K
� �

sin/

ffiffiffiffiffiffiffiffiffiffiffi
K

cos/

s
3

vuut KP3ð Þ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15/

4 2þ 1
6K

� �
sin/

ffiffiffiffiffiffiffiffiffiffiffi
K

cos/

s
3

vuut KP4ð Þ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
75/

32 5
3 þ 83

400K
� �

sin/

ffiffiffiffiffiffiffiffiffiffiffi
K

cos/

s
3

vuut ðMX4Þ:

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

(49)

For the reader’s convenience, Eqs. (41) and (49) are displayed side-by-
side in Fig. 9(a) for the isothermal and isoflux models. As usual, the
MX4-based thermal boundary layer (chained line) remains bounded
between the KP3 (solid) and KP4 (broken) lines except at the back of
the cylinder, prior to separation, specifically for / 	 93:5� and 98:2�

for the UWT and UWF configurations, respectively. Everywhere else,
the MX4-based �dT remains closest to the KP3 model approximation,
which slightly underestimates its local values.

At this stage, having fully characterized the thermal boundary
layer, the local heat transfer coefficient may be evaluated and written in
terms of the wall heat flux using Newton’s law for cooling. One can put

h /ð Þ ¼ qw
T /ð Þ � T1

: (50)

Then, by consolidating Eq. (49) with Eq. (50), a local Nusselt
number correlation may be constructed under isoflux conditions. One
gets

NuDð/Þjisoflux
Re1=2D Pr1=3

¼

3
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 3

2þ 1
4K

� �
sin/

15/

ffiffiffiffiffiffiffiffiffiffiffi
cos/
K

r
3

s
KP3ð Þ;

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 2þ 1

6K
� �

sin/

15/

ffiffiffiffiffiffiffiffiffiffiffi
cos/
K

r
3

s
KP4ð Þ;

5
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32 5

3þ 83
400K

� �
sin/

75/

ffiffiffiffiffiffiffiffiffiffiffi
cos/
K

r
3

s
ðMX4Þ:

8>>>>>>>>>>><
>>>>>>>>>>>:

(51)

Using air with Pr � 0:71, both UWT and UWF cases of Nusselt
number correlations, given by Eqs. (44) and (51), are illustrated as a

function of / in Figs. 10(a) and 10(b) using the three analytical models
in hand. They are also compared to empirical data reported by Kreith,
Manglik, and Bohn36 as well as Giedt.45 We recall that the empirical
relations obtained heretofore are formulated by consolidating the
equations of motion and energy in concert with experimentally mea-
sured constants. Graphically, one may infer that although all formula-
tions follow the same monotonically decreasing trend in NuD=

ffiffiffiffiffiffiffiffi
ReD

p
,

the closest curves to the empirically acquired values correspond to the
MX4 model. This is followed by the KP3 and KP4 formulations, with
the latter exhibiting the largest deviations over the physical range of /.
In fact, under both UWT and UWF conditions, the MX4-based ther-
mal formulation predicts the most conservative values of the Nusselt
number throughout the vast majority of the angular range relative to
its KP3 and KP4 counterparts. The underlying behavior leads to a
closer overall agreement with empirical measurements,36,45 which
translates, in turn, into a lower L2 error. This is readily shown in Table
V where the L2 error based on each of the three analytical models is
evaluated and compared to the data by Kreith, Manglik, and Bohn36

under both isothermal and isoflux conditions. For the resulting 6 cases,
one finds 1.324 (KP3), 1.681 (KP4), and 1.183 (MX4) under UWT
conditions, and 1.658 (KP3), 1.959 (KP4), and 1.471 (MX4) under
UWF conditions. As one may have been anticipated, the MX4 model
is accompanied by the lowest overall error, particularly, for the UWF
case. This is followed by the KP3 and KP4 errors in ascending order;
the ensuing behavior may be viewed as being consistent with the
Pohlhausen paradox observed in flat-plate analysis.17 Here too, the
KP3 model outperforms its higher-order KP4 approximation.
Moreover, and for all cases considered, the thermal profiles used in
conjunction with the UWT assumption seem to slightly outperform
their UWF counterparts. An intriguing yet somewhat foreseeable reali-
zation in Figs. 10(a) and 10(b) corresponds to the steep decrease after
/ ¼ 90�; this sharp drop may be attributed to the sudden shift from a
favorable to an adverse pressure gradient as the flow crosses the top of
the cylinder. The presence of an adverse pressure gradient triggers
rapid changes in boundary-layer characteristics that eventually lead to
separation. In hindsight, a similarly abrupt transition may be seen to
affect the hydrodynamic properties described in Figs. 2–6 past the 90�

angle.

IV. CONCLUDING REMARKS

The traditional K�arm�an–Pohlhausen (KP) momentum-integral
approach for boundary-layer analysis is widely used but noted for

FIG. 9. Profile-dependent angular variations of �dT � ðdT=DÞRe1=2D Pr1=3 for the two thermal configurations: (a) UWT’s Eq. (41) and (b) UWF’s Eq. (49).
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deteriorating at increasing orders of the Pohlhausen polynomial repre-
senting the velocity profile in the nearfield.9 Rather paradoxically,
increasing (rather than decreasing) errors are realized when using
fourth and higher-order Pohlhausen polynomials, often leading to dis-
crepancies in boundary-layer estimates that are of order 10%–20%. To
overcome this perplexing deficiency, other methods have been meticu-
lously devised including those mirrored by Walz15 and Thwaites.16

However, unlike K�arm�an–Pohlhausen’s technique, these alternative
methods compute the momentum thickness with a fair degree of accu-
racy; however, they provide no information about the topology of the
flowfield inside the viscous region. On the centennial anniversary of
the 1921 momentum-integral approach, the underlying deficiency is
finally explained and resolved using a dedicated study by Majdalani
and Xuan.17 Therein, the root of the disparity is clarified and attrib-
uted to an overly constraining second-order derivative of the axial
velocity that is prescribed (too early) by Pohlhausen4 at the outer edge
of the boundary layer. By relaxing this condition, a much improved
formulation is readily achieved.

In this work, the K�arm�an–Pohlhausen momentum-integral
approach is shown to be highly effective at predicting the viscous
and thermal boundary-layer characteristics associated with the fre-
quently cited benchmark problem of flow over a stationary cylinder
at steady state. This is especially true when the KP approach is used
in concert with a novel polynomial representation of the velocity
and, through the use of the Reynolds analogy, the temperature pro-
file in the nearfield. Dubbed MX4 in the foregoing analysis, this pro-
file is shown to outperform its predecessors, specifically
Pohlhausen’s KP3 and KP4 profiles, which have been widely used
throughout the literature. In comparison with the latter, the MX4
profile leads to more accurate predictions of the separation point at
the back of the cylinder as well as the point of maximum shear.
These special points are evaluated analytically and shown to

produce 0:87% and 1.02% relative errors that fall well within the
uncertainty associated with typical experimental measurements.
The KP-MX4 approach also leads to better predictions of the ther-
mal boundary-layer characteristics and Nusselt number formula-
tions under both uniform wall temperature and heat flux
conditions.

In practice, despite the presence of pressure gradients, the use of
MX4 in lieu of KP4 leads to better overall estimates of both skin friction
and pressure drag coefficients and, therefore, total drag. Furthermore,
although other integral techniques by Walz15 and Thwaites16 can pre-
dict the skin friction coefficient based on a momentum thickness evalu-
ation, their integral expressions are solely dependent on the farfield
velocity U(x). As such, they provide no characteristic information that
helps to elucidate the nature of the velocity or thermal profiles across
the viscous or thermal boundary layers. In fact, their extrapolation of
the momentum thickness may be traced back to a reasonable fit to
experimental measurements. By contrast, the present approach can be
paired with the KP formulation to predict the boundary-layer charac-
teristics all the way from the surface of the cylinder to the farfield.
These include accurate reconstructions of the actual velocity and tem-
perature distributions in the nearfield that directly affect the remaining
boundary-layer properties. The parameters that accompany higher-
order polynomial approximations of the present approach can also be
adjusted to accommodate any sets of measurements or numerical simu-
lations of the flow around the cylinder with a variable pressure gradient.
Reducing the error further is therefore possible, as shown by Majdalani
and Xuan.17 So long as the deficient curvature condition at the edge of
the boundary layer is judiciously avoided, the analytical predictions
obtained through this technique seem to be virtually equivalent to
numerical simulations of the same problem. For this reason, it is hoped
that the K�arm�an–Pohlhausen momentum-integral approach will con-
tinue to be employed in conjunction with rationally optimized polyno-
mial approximations, such as the MX4 profile, in future investigations
involving other canonical problems and both hydrodynamic and ther-
mal analyses.

ACKNOWLEDGMENTS

This work was supported partly by the National Science
Foundation, through Grant No. CMMI-1761675, and partly by the
Hugh and Loeda Francis Chair of Excellence, Department of
Aerospace Engineering, Auburn University.

FIG. 10. Profile-dependent angular variations of the normalized Nusselt number NuD=
ffiffiffiffiffiffiffiffi
ReD

p
as a function of / assuming air (Pr ¼ 0.71) under both (a) isothermal (UWT) and

(b) isoflux (UWF) conditions; also shown are empirical predictions according to Giedt45 as well as Kreith, Manglik, and Bohn.36

TABLE V. L2 errors of the local Nusselt number NuD=
ffiffiffiffiffiffiffiffi
ReD

p
for three different veloc-

ity profiles and both isothermal (UWT) and isoflux (UWF) conditions relative to empir-
ical measurements by Kreith et al.36

Profile KP3 KP4 MX4

L2 error (UWT) 1.324 1.681 1.183
L2 error (UWF) 1.658 1.959 1.471
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APPENDIX A: ALTERNATIVE FORM OF THE BLASIUS
EQUATION

The purpose of this section is to reformulate the Blasius
equation in terms of FðnÞ ¼ u=U and derivatives of n, instead of
the characteristic function f ðgÞ ¼ w=

ffiffiffiffiffiffiffiffiffiffiffi
2�xU

p
and derivatives of

g, where w and g ¼ y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U=ð2�xÞ

p
represent the Blasius stream

function and similarity variable, respectively, and n ¼ y=d
denotes the fractional distance within the boundary layer.2 This
transformation is performed to better reconcile between the
velocity profiles used in the K�arm�an–Pohlhausen momentum-
integral approach, which are expressed in terms of FðnÞ, and the
velocity distribution computed from the Blasius equation
through the derivative function FðgÞ ¼ df =dg. Assuming viscous
motion over a flat plate with a zero pressure gradient, the tradi-
tional Blasius equation and its boundary conditions can be writ-
ten as9

d3f
dg3

þ f
d2f
dg2

¼ 0 with f ð0Þ ¼ df ð0Þ
dg

¼ 0; and
df ð1Þ
dg

¼ 1:

(A1)

To begin, a straightforward differentiation with respect to g
yields

d4f
dg4

þ f
d3f
dg3

þ df
dg

d2f
dg2

¼ 0: (A2)

Note that the characteristic function f may be expressed in terms of
its derivatives by rearranging the Blasius equation into

f ¼ � d3f =dg3

d2f =dg2
: (A3)

Since FðnÞ can only be written in terms of the derivative of f ðgÞ, it
is beneficial to eliminate f from the second member of Eq. (A2)
using Eq. (A3). After a simple rearrangement, one gets

d4f
dg4

d2f
dg2

þ df
dg

d2f
dg2

 !2

þ d3f
dg3

 !2

¼ 0: (A4)

As emphasized by Majdalani and Xuan,17 the two independent
parameters g and n can be connected using

n ¼
ffiffiffi
2

p

a
g and

dn
dg

¼
ffiffiffi
2

p

a
; (A5)

where a ¼ d
ffiffiffiffiffiffiffi
Rex

p
=x ¼ 4:9099895 � 4:91 denotes a characteristic

constant of the boundary-layer thickness.17 Then, using primes to
denote differentiation with respect to n, the chain rule may be used
to relate the derivatives of f ðgÞ and FðnÞ. One collects

d2f
dg2

¼ dF
dg

¼ dF
dn

dn
dg

¼
ffiffiffi
2

p

a
F0; F0 � dF

dn
; (A6)

d3f
dg3

¼ 2
a2

F00 and
d4f
dg4

¼ 2
ffiffiffi
2

p

a3
F000: (A7)

It can thus be seen that the backward substitution of Eqs. (A6) and
(A7) into Eq. (A4) leads to the alternative form in terms of the nor-
malized boundary-layer coordinate:

F000F0 � F002 þ 1
2
a2F02F ¼ 0;

with Fð0Þ ¼ F00ð0Þ ¼ 0; and Fð1Þ ¼ 1:
(A8)

We thus arrive at another third-order, nonlinear differential equa-
tion that is conveniently cast in terms of the normalized velocity
function FðnÞ. Note that the first and third boundary conditions
convey directly from the basic requirements used by Blasius2 for
wall adherence and freestream recovery in the farfield. However,
given that f ð0Þ ¼ 0 becomes impractical to use, the second condi-
tion, F00ð0Þ ¼ 0, may be retrieved from Pohlhausen’s fourth bound-
ary condition given by Eq. (16). The latter represents the shear-
stress gradient at the wall that can be connected to the pressure gra-
dient prescribed by the farfield velocity via Euler’s momentum
equation. A straightforward numerical solution of the normalized
velocity F, given by Eq. (A8), as well as its first two derivatives, is
provided in Fig. 11(a). Therein, it is also compared to its analytical
approximations given by the three velocity profiles, P3, P4 and M4,
which exclude a pressure-gradient correction. Clearly, M4 displays
the closest agreement with the exact Blasius distribution and is fol-
lowed by P3 and P4, respectively.

APPENDIX B: PRESSURE-SENSITIVE VELOCITY
PROFILES

In order to specify the unknown polynomial coefficients that
can be used to construct the piecewise analytic velocity profiles
across the boundary-layer region, four of Pohlhausen’s fundamental
boundary conditions given by Eqs. (13)–(16) may be applied to a
generic quartic polynomial of the form

FðnÞ ¼ c0 þ snþ c2n
2 þ c3n

3 þ c4n
4: (B1)

Condition 1 (no slip condition at the wall), Fð0Þ ¼ 0:
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c0 þ sð0Þ þ c2ð0Þ2 þ c3ð0Þ3 þ c4ð0Þ4 ¼ 0; or c0 ¼ 0: (B2)

Condition 2 (matching the freestream velocity at the boundary-
layer edge), Fð1Þ ¼ 1:

sþ c2 þ c3 þ c4 ¼ 1; or c2 ¼ 1� s� c3 � c4: (B3)

Condition 3 (negligible shear at the boundary-layer edge),
F0ð1Þ ¼ 0:

F0ðnÞ ¼ sþ 2c2nþ 3c3n
2 þ 4c4n

3;

or

F0ð1Þ ¼ sþ 2c2 þ 3c3 þ 4c4 ¼ 0:

(B4)

The last two expressions enable us to eliminate c2 and write
c3 ¼ s� 2� 2c4. This leaves us with the fourth requirement.
Condition 4 (pressure gradient in the farfield), F00ð0Þ ¼ �K:

F00ðnÞ ¼ 2c2 þ 6c3nþ 12c4n
2; F00ð0Þ ¼ 2c2 ¼ �K;

and so

c2 ¼ � 1
2
K:

(B5)

This value of c2 may be readily substituted into the expression
found through Condition 2 to retrieve c3 ¼ 1� sþ 1

2K� c4. Then,
by combining c3 with the expression found through condition 3, we
get c4 ¼ 2s� 3� 1

2K and c3 ¼ 4� 3sþ K. We thus arrive at

FðnÞ ¼ sn� 1
2
Kn2 þ ð4� 3sþ KÞn3

þ 2s� 3� 1
2
K

� �
n4 quarticð Þ; (B6)

and, using only Conditions 1, 2, and 4, we find, alternatively,

FðnÞ ¼ sn� 1
2
Kn2 þ 1� sþ 1

2
K

� �
n3 cubicð Þ: (B7)

At this juncture, since flow detachment at separation implies
F0ð0Þ ¼ 0, one is left with

s ¼ s0 þ s1Ksep ¼ 0 or Ksep ¼ � s0
s1
; (B8)

where a two-term expansion of the velocity slope at the wall is used. In
the absence of a pressure gradient, s0 may be readily determined to be

3/2 (KP3), 2 (KP4), and 5/3 (MX4).17 The last constant, s1, may be
obtained from Eq. (15) (KP3) and Eq. (17) (KP4), thus leading to s
¼ 3=2þ K=4 (KP3) and s ¼ 2þ K=6 (KP4). As for the rationally
optimized quartic profile, one obtains s1 in such a manner to minimize
the L2 error across the viscous domain.17 As shown by White and
Majdalani,9 one obtains s ¼ 5=3þ ð83=400ÞK. We finally arrive at

F nð Þ¼

3
2
n�1

2
n3þ1

4
K n�2n2þn3
� �

KP3ð Þ;

2n�2n3þn4þ1
6
K n�3n2þ3n3�n4
� �

KP4ð Þ;

5
3
n�n3þ1

3
n4þK

83
400

n�1
2
n2þ151

400
n3� 17

200
n4

� �
MX4ð Þ;

8>>>>>>><
>>>>>>>:

(B9)

with

Ksep ¼
�6 KP3ð Þ;
�12 KP4ð Þ;
�8:0321 ðMX4Þ:

8><
>: (B10)

APPENDIX C: ANGULAR VARIATION
OF THE POHLHAUSEN PRESSURE PARAMETER

This section provides the polynomial approximations that
enable the user to solve for K directly as a function of / for each of
the three profiles under consideration. One gets

Kð/Þ ¼ 6:273919þ 0:395242/� 8:422234/2 þ 48:651031/3

� 185:610093/4 þ 412:865334/5 � 565:752359/6

þ 482:671630/7 � 249:799142/8 þ 71:813531/9

� 8:811819/10 KP3ð Þ; (C1)

Kð/Þ ¼ 7:214982þ 1:883475/� 32:958116/2 þ 218:289016/3

� 789:364671/4 þ 1661:397226/5 � 2146:640907/6

þ 1724:723478/7 � 840:031463/8 þ 227:019743/9

� 26:129896/10 KP4ð Þ; (C2)

and

FIG. 11. Numerical solution of (a) an equivalent formulation of the Blasius equation given by Eq. (A8) directly for the normalized velocity FðnÞ ¼ u=U across the boundary-layer region,
including its first and second derivatives F0 and F00 . Also shown in Part (b) is the normalized Blasius velocity FðnÞ next to its polynomial approximations given by Eqs. (11) and (12).
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Kð/Þ ¼ 6:074946þ 1:656599/� 29:794450/2 þ 197:292144/3

� 723:411948/4 þ 1545:684314/5 � 2026:622929/6

þ 1652:001660/7 � 816:173724/8 þ 223:698442/9

� 26:104890/10 MX4ð Þ: (C3)

APPENDIX D: NORMAL VELOCITY FORMULATION

Beginning with the continuity relation given by Eq. (1),
substituting u ¼ FðnÞUðxÞ, and rearranging, one gets

v ¼ � @

@x

ðy
0
u dy ¼ � @

@x

ðy
0
UðxÞFðnÞdy: (D1)

As opposed to flat-plate analysis at zero incidence, flow over
a cylinder, which is accompanied by a non-zero pressure gradi-
ent, leads to a varying farfield velocity U(x). This warrants the
use of Leibniz’s integral rule that enables us to reduce Eq. (D1)
into

v ¼ �
ðy
0

dUðxÞ
dx

FðnÞ þ UðxÞ dFðnÞ
dx

� 	
dy: (D2)

Due to FðnÞ not being explicitly a function of x but rather
n ¼ y=dðxÞ, a chain rule can be used to recover its derivative with
respect to x. This requires setting dy ¼ ddn and

dFðnÞ
dx

¼ dF
dn

dn
dx

¼ dF
dn

d y=dðxÞ½ �
dx

¼ � y

dðxÞ2
F0ðnÞ ddðxÞ

dx
: (D3)

The foregoing relations can be substituted back into Eq. (D2) to
obtain an expression for v that can be readily integrated with
respect to n for an arbitrary farfield velocity U(x) and boundary-
layer profile FðnÞ. One recovers

v ¼
ðn
0

nUðxÞF0ðnÞ ddðxÞ
dx

� dUðxÞ
dx

FðnÞdðxÞ
� 	

dn: (D4)

APPENDIX E: ENERGY BALANCE EQUATIONS

This section details the derivation of the integrodifferential
energy balance equations starting from Eq. (4). As shown by White
and Majdalani,9 the wall heat flux qw can be modeled within the
thermal boundary layer by putting

qw � @

@x

ðdT
0

qcpuðT � T1Þdy

" #
¼ �kf

@T
@y

����
y¼0

; (E1)

� dT
@

@x

ðdT
0

uðT � T1Þdy

" #
¼ �a

@T
@nT

����
nT¼0

; (E2)

where nT ¼ y=dT and dy ¼ dTdnT . In order to introduce the nor-
malized velocity and temperature profiles, straightforward algebraic
manipulations can be used to obtain:

dT
@

@x
UðxÞ

ðdT
0

u
UðxÞ

T � T1
Tw � T1

� �
dy

" #
¼ �a

d
T � T1
Tw � T1

� �
dnT

��������
nT¼0

:

(E3)
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