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ABSTRACT

In this work, an exact inviscid solution is developed for the incompressible Euler equations in the context of a bidirectional, cyclonic
flowfield in a right-cylindrical chamber with a hollow core. The presence of a hollow core confines the flow domain to an annular swirling
region that extends into a toroid in three-dimensional space. The procedure that we follow is based on the Bragg–Hawthorne framework and
a judicious assortment of boundary conditions that correspond to a wall-bounded cyclonic motion with a cylindrical core. At the outset, a
self-similar stream function is obtained directly from the Bragg–Hawthorne equation under the premises of steady, axisymmetric, and invis-
cid conditions. The resulting formulation enables us to describe the bidirectional evolution of the so-called inner and outer vortex motions,
including their fundamental properties, such as the interfacial layer known as the mantle; it also unravels compact analytical expressions for
the velocity, pressure, and vorticity fields, with particular attention being devoted to their peak values and spatial excursions that accompany
successive expansions of the core radius. By way of confirmation, it is shown that removal of the hollow core restores the well-established
solution for a fully flowing cylindrical cyclone. Immediate applications of cyclonic flows include liquid and hybrid rocket engines, swirl-
driven combustion devices, as well as a multitude of heat exchangers, centrifuges, cyclone separators, and flow separation devices that offer
distinct advantages over conventional, non-swirling systems.

VC 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0087621

I. INTRODUCTION

Cyclonic flows manifest themselves over a wide range of spa-
tial and temporal scales that extend from astrophysical motions to
laboratory-induced helical patterns. Among various atmospheric
events, swirling storm systems can be observed in meteorological
phenomena such as tornadoes, dust devils, typhoons, hurricanes,
and tropical cyclones, if only to name a few. These naturally occur-
ring cyclonic events remain predominantly unconfined and either
unidirectional or bipolar, as opposed to swirling flows reproduced
in a laboratory, which occasionally appear in a bounded, bidirec-
tional setting. Furthermore, laboratory-induced vortices have been
shown to possess distinct advantages over traditional flows in sev-
eral technological applications, and these range from industrial
cyclone separators to propulsive devices, such as the Vortex
Injection Hybrid Rocket Engine (VIHRE) conceived by Knuth

et al.1 and the Vortex Combustion Cold-Wall (VCCW) engine
developed by Chiaverini et al.2

In fact, the list of so-called vortex-fired combustion devices
extends to a multitude of technological concepts. These include, but
are not limited to, the Vortex Combustion Ramjet,3 the Vortex
Combustion Combined Cycle (VCCC) engine,4 the Cool-Wall Vortex
Combustion Chamber (CWVCC),5–7 the MAELSTROM-G25
thruster,8 and the VR-3A Vision Engine, which have been chiefly
developed by Chiaverini and co-workers at Orbital Technologies
Corporation (ORBITECTM).9–11 Over time, these concepts have grad-
ually evolved into a volumetrically efficient spheroidal model intended
for upper stage propulsive applications by Sierra Space Corporation.
More specifically, they have paved the way for the development of a
compact, convectively film-cooled and highly efficient VR35K-A
VORTEXVR engine; the latter is characterized by wall-tangential
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injection and the presence of a cyclonic flowfield that resembles the
internal motion of cyclone separators.12–14

From a practical standpoint, the advantages that accompany
swirl-induced motions have been leveraged to modulate bluff body
flow separation, which is often encountered in combustion cham-
bers.15,16 In this context, the so-called Trapped Vortex Combustor has
been shown to be highly effective at improving flame stability, reduc-
ing pressure losses, and controlling the emission characteristics of gas
turbine engines. Examples include the Step-Swirl Gas-Turbine
Combustor by Durbin et al.,17 the Trapped Vortex Combustor by
Katta and Roquemore,18 the Plasma-Assisted Tornado Combustor by
Matveev,19 the Triple Vortex Combustor by Matveev et al.,20 and the
Hybrid Solar Receiver Combustor (HSRC) by Long et al.21

In both hydrocyclones and VIHRE-VCCW engine concepts, the
bidirectional motion is produced by two co-rotating and counter-
flowing streams that are driven by a tangentially injected fluid. The
incoming stream spirals around and sweeps the outer wall in one axial
direction before bouncing off the apex of the cavity, reversing direc-
tion, and returning through the inner vortex region at a faster angular
speed.

Among the multiple uses of a bidirectional vortex configuration,
cyclone separators stand apart among the most ubiquitous. The corre-
sponding cylindrically or conically shaped containers are frequently
relied upon in the mineral and petrochemical processing industries to
separate particles of varying sizes and densities. For example, in oil
refinery plants, large cyclonic separators provide an attractive alterna-
tive to the use of heavy-duty filters for gas–oil extraction. In catalytic
cracking, they can be helpful at accelerating the segregation of catalytic
particles from reacting gaseous mixtures. In cement processing, they
can be employed as integral components of kiln preheating and, in
sawmills, they may serve to eliminate sawdust from extracted air. They
may be similarly employed to separate greasy deposits caused by pro-
longed air ventilation in exhaust fume hoods.

In wastewater and sewage treatment plants, a hydrocyclone may
be effectively used to separate solid waste from water. To accomplish
this, the sediment-laden water is typically swirled toward the bottom of
the container, where, by virtue of gravity and inertia, denser particles are
removed from the mixture and collected at what is referred to as the
“spigot.” The lighter sediment and remaining water are then siphoned
back through the low pressure core region in an upward spiral that is
channeled through what is often dubbed the “vortex finder.”

What is most relevant to the present investigation is, perhaps, the
development of an air core within the inner vortex region, which is a
characteristic feature of many hydrocyclones. According to Gupta
et al.,22 the presence of a low pressure region along the central axis of
fluid rotation often leads to the suction of air into the chamber at the
base or apex, where an opening is invariably used to dispose of the
heavy underflow. The introduction of air into the inner vortex can nat-
urally result in the institution of a hollow core that persists along the
entire length of the vortex chamber. In actuality, Neesse and Dueck23

suggest that even with a sealed apex, an air core can still develop
because of the inevitable trace amounts of air that may be entrained in
the feed system. Due to the low pressure condition along the axis of
the chamber, the air may then coalesce into bubbles which, when col-
lected along the center of the unit, give rise to a hollow core. This
behavior is further confirmed through non-reactive gaseous simula-
tions of right-cylindrical cyclonic chambers with various outlet sizes

and curvatures.24 Therein, the development of a re-entrant backflow
region that begins at the outlet section and then creeps into the cham-
ber has been verified computationally and attributed to a combination
of geometric characteristics and outflow properties.24 It has also been
validated experimentally by Khan.25

From a practical standpoint, the inception of a hollow core can
drastically influence the separation efficiency of hydrocyclones as well
as the flow patterns that accompany the resulting steady-state motion.
The need to elucidate the relations that exist between the core diame-
ter, flow development, and separation efficiency has, in fact, spurred
on several theoretical studies of mainly non-reactive fluid mixtures.
According to the approach taken by Davidson,26 an iterative analytical
formulation for the air core radius may be provided in terms of the
axial and tangential velocities, thus permitting the user to maximize
the volume flow rate through the chamber outlet for a fixed pressure
head. This study also recognizes that the core diameter must be deter-
mined through either experimentation or computation, or else treated
as a variable parameter that may be left unspecified during the course
of the investigation. Then, based on a numerical simulation approach
by Evans et al.,27 it has been shown that the separation efficiency may
be improved by altogether prohibiting the air core from developing,
and that air core prevention may be achieved by inserting a solid rod
into the core region. Another air core suppression technique by Luo
et al.28 consists of sealing the apex with water. However, although
these techniques may be effective in certain types of cyclone separa-
tors, they are unlikely to remain viable in the context of a swirl-driven
rocket chamber. For this reason, the emergence of a hollow core, along
with its impact on flow properties, continue to represent a fundamen-
tally unexplored area of investigation for the VCCW and VIHRE
configurations.

While analytical models of bidirectional vortices with hollow
cores remain fairly limited, some noteworthy research has been con-
ducted on the bidirectional motion in fully flowing conical and cylin-
drical chambers. A few examples include the work by Ying and
Chang,29 Bloor and Ingham,30 as well as Davidson,31 and those by
Alekseenko et al.,32,33 Concha,34 Cortes and Gil,35 Shtern and
Borissov,36 and Barber and Majdalani,10 namely, where the salient fea-
tures of the flow are described in both cylindrical and conical chamber
configurations. One may also find relevant the work of Battaglia
et al.37 on external fire whirls, and those by Vyas and Majdalani38 and
Majdalani,11 who come across fundamentally different classes of invis-
cid Trkalian, Beltramian, and essentially complex-lamellar cyclonic
motions in cylindrical chambers. At the time of this writing, the search
for theoretical models of wall-bounded cyclonic motions continues as
reflected in the Beltramian and basically complex-lamellar profiles
developed for hemispherical chamber configurations.12–14

The present investigation continues to tread the same line of
research inquiry into the character of wall-bounded cyclonic fields
in cylindrical configurations by focusing on the implications of a
uniformly distributed hollow or solid core. Unlike other formula-
tions that have appeared in the literature, our derivation will be
initiated from the axisymmetric Bragg–Hawthorne equation
(BHE) in a frictionless environment; the underlying assumptions
will enable us to specify the total pressure head and angular
momentum relations at the forefront of the analysis. Then using a
judicious choice of boundary conditions, a closed-form analytical
solution will be obtained whence the formerly constructed model
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by Vyas and Majdalani38 will be identically restored by simply sup-
pressing its core radius. We also note that throughout this work,
the inner core radius will be treated as a variable parameter in
order to investigate the connection between the size of the hollow
core and the principal flow attributes.

II. PROBLEM FORMULATION
A. Geometry and flow conditions

The geometric configuration under investigation consists of a
right-cylindrical chamber of length L, an inner core radius of c, and an
outer radius of a, as illustrated in Fig. 1(a). In the case of a rigid inner
core boundary, such as a tubular insert, the annular region bounded
between �r ¼ c and a forms either a rectangular or square toroid,
depending on the proportions between ða� cÞ and L. As usual, the
use of cylindrical polar coordinates, ð�r ; h;�zÞ, which are anchored at
the base of the chamber, helps to define spatial orientations. In order
to mimic the presence of a nozzle attachment or a vortex finder, a sin-
gle outlet with a radius of b is positioned at �z ¼ L. In this setup, the
working fluid is directed into the chamber just upstream of the outlet
and tangentially to the sidewall (at �r ¼ a) with an average velocity of
U. Owing to the intense centrifugal pressure forces that this motion
engenders, the flow is compelled to spiral around the annulus and tra-
verse the length of the chamber twice before exiting. The ensuing bipo-
lar motion gives rise to two well-demarcated zones that are separated
by a spinning interfacial layer called “mantle.” The bidirectional nature
of this motion may be attributed to its incorporation of an outer vortex
loop between �r ¼ a and the mantle, with a negative axial velocity
(spinning toward �z ¼ 0), and an inner vortex loop between �r ¼ c and
the mantle, with a positive axial velocity (spinning toward �z ¼ L). In
this configuration, the flow reverses axial direction while approaching
the headwall at �z ¼ 0. For further clarity, a three-dimensional sketch
of the solution domain and coordinate system is provided in Fig. 1(a)
along with a three-dimensional rendering of the annular domain and
labeled regions in Fig. 1(b).

B. Fluid dynamic equations and assumptions

Essential to this study is the steady, axisymmetric, inviscid, and
incompressible relation coined by different authors as the
Squire–Long, the Long–Squire, and, more commonly perhaps, the
Bragg–Hawthorne equation (BHE).39–41 Despite its rare mention in
mainstream fluid mechanics textbooks,42–45 the BHE framework has
been shown to be surprisingly effective at disclosing useful approxima-
tions for helical flows in a variety of phenomenological applica-
tions.9–14 In its most basic form, the BHE framework assumes steady,
isentropic, and axisymmetric conditions, where the total pressure head
�H as well as the tangential angular momentum �B become sole func-
tions of the stream function �w, with 2p�B representing the circulation.
This simplification facilitates the selection of suitable relations for �B
and �H that enable the user to transform the problem into a tractable
partial differential equation. More specifically, in a polar-cylindrical
reference frame, the Bragg–Hawthorne equation can be expressed, as
shown in detail by Hicks46 or White and Majdalani,45 using

@2�w
@�r2

� 1
�r
@�w
@�r

þ @2�w
@�z2

¼ �r 2
d�H

d�w
� �B

d�B

d�w
: (1)

In seeking a solution for Eq. (1), one may recognize that, under the
stated assumptions, the angular momentum is conserved; one may
also use a form for the stagnation head that results in a linear equation
that is identical to that obtained by Vyas and Majdalani.38 As such, �B
and �H can be selected in accordance with

�Bð�wÞ ¼ B0 ¼ aU ;
d�B

d�w
¼ 0; (2)

�Hð�wÞ ¼ H0 �
1
2
H2

1
�w
2
;

d�H

d�w
¼ �H2

1
�w; (3)

where B0, H0, and H1 refer to pure constants. We recall that U denotes
the tangential injection velocity over a finite area Ai near the �z ¼ L
endwall section. In the absence of friction, this value at the injection

FIG. 1. We show (a) the coordinate sys-
tem and basic geometric parameters as
well as (b) the corresponding labeled
regions of a cylindrically-cyclonic motion
that is constrained between an inner core
radius c and an outer wall at a.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 043603 (2022); doi: 10.1063/5.0087621 34, 043603-3

VC Author(s) 2022

https://scitation.org/journal/phf


site persists along the length of the chamber; the corresponding mass
flow rate can be integrated over a finite inlet area as defined by Eq. (6)
of Sec. IIC. Furthermore, the conditions associated with Eqs. (2)
and (3) result in the same governing partial differential equation for
the stream function used by Culick,47 specifically

@2�w
@�r2

� 1
�r
@�w
@�r

þ @2�w
@�z2

þ H2
1�r

2�w ¼ 0: (4)

Interestingly, the much cited Taylor–Culick flow profile for simpli-
fied, right-cylindrical, internally burning solid rocket motors may
be recovered from Eq. (4) as a special case.47

C. Boundary conditions

The boundary conditions may be taken to fundamentally mirror
those prescribed in the context of a bidirectional vortex with no hollow
core.38 This can be accomplished by retaining most conditions except
for those that apply at the core. By moving the constraints that are for-
merly enforced at the centerline to a finite radius c, the resulting set of
requirements translates into

(a) no axial flow at the headwall or fore-end closure: �uzð�r ; 0Þ ¼ 0;
(b) a vanishing radial velocity at the inner core boundary:

�urðc;�zÞ ¼ 0;
(c) a vanishing radial velocity at the outer sidewall boundary:

�urða;�zÞ ¼ 0;
(d) a mass balance between the incoming and outgoing flow

rates: 2p
Ð b
c �uzða; LÞ�r d�r ¼ UAi ¼ �Qi.

Here, �Qi represents an inlet volume flow rate prescribed by the
tangential injection velocity U over a finite inlet area Ai as discussed
previously. This parameter captures the sensitivity of the model to
changes in mass inflow. In the interest of simplicity, the foregoing con-
ditions may be further rearranged and conveniently expressed in terms
of the stream function by putting

1
�r
@�w
@�r

����
ð�r ;0Þ

¼ 0;
1
�r
@�w
@�z

����
ðc;0Þ

¼ 0;
1
�r
@�w
@�z

����
ða;0Þ

¼ 0; (5)

and
ðb
c

1
�r
@�w
@�r

����
ð�r ;LÞ

�r d�r ¼ UAi

2p
: (6)

Now that the problem is fully defined, one can proceed to extract a
solution for Eq. (4) that stands in compliance with Eqs. (5) and (6).

III. AN EXACT EULER SOLUTION
A. Stream function

In view of the linearity of Eq. (4), one may substitute the separa-
ble form �wð�r ;�zÞ ¼ f ð�rÞgð�zÞ and collect,

1
f ð�rÞ f 00ð�rÞ � 1

�r
f 0ð�rÞ þH2

1�r
2f ð�rÞ

� �
¼ � €gð�zÞ

gð�zÞ ¼
0 type 0ð Þ;
þ�2 type Ið Þ;
��2 type IIð Þ;

8><
>:

(7)

where primes and dots imply differentiation with respect to �r and �z ,
respectively. For the remainder of this analysis, our attention will be
focused on the type 0 case because it corresponds to the simplest par-
tial solution that can be made to satisfy the physical requirements
associated with the model at hand; we get

�w ¼ k1�z þ k2ð Þ k3 sin
1
2
H1�r

2

� �
þ k4 cos

1
2
H1�r

2

� �� �
: (8)

At this stage, the boundary conditions in Eqs. (5) and (6) may be
directly applied. Beginning with a vanishing axial flow at �z ¼ 0, we
obtain

k2H1 k3 cos
1
2
H1�r

2

� �
� k4 sin

1
2
H1�r

2

� �� �
¼ 0; 8�r : (9)

Here, H1 ¼ 0 leads to the trivial outcome of a zero axial velocity
throughout the chamber; instead, k2 ¼ 0 must be chosen for the con-
dition to hold at any radial location. Next, we may ensure that no flow
crosses the inner core boundary, be it a streamline or an impermeable
surface, by requiring that

k1 k3 sin
1
2
H1c

2

� �
þ k4 cos

1
2
H1c

2

� �� �
¼ 0: (10)

With k2 ¼ 0, the use of k1 ¼ 0 must be avoided lest a trivial solu-
tion is precipitated in the form of �w ¼ 0. The alternative is to spec-
ify k4 using

k4 ¼ �k3 tan
1
2
H1c

2

� �
: (11)

To make further headway, one may substitute Eq. (11) into Eq. (8)
and evaluate the radial velocity at �r ¼ a in such a manner as to secure
the impermeable sidewall condition. This operation leaves us with

H1 ¼
2np

a2 � c2
; (12)

where n controls the number of flow reversals and, therefore, internal
mantles.14,48,49 Since the subject of multiple mantles falls outside the
scope of this study, we restrict the present analysis to a single, internal
flow reversal by taking n¼ 1. The corresponding stream function
becomes

�w ¼ �w0�z sin
p�r 2

a2 � c2

� �
� tan

pc2

a2 � c2

� �
cos

p�r2

a2 � c2

� �� �
: (13)

Note that the lumped constant �w0 � k1k3 may be deduced from the
mass balance relation in Eq. (6). By equating the outflow to the inflow,
one recovers

�w0 ¼
UAi

2pL
csc

p b2 � c2ð Þ
a2 � c2

� �
cos

pc2

a2 � c2

� �
: (14)

This enables us to consolidate all pertinent terms and write

�w ¼ UAi

2pL
�zcsc

p b2 � c2ð Þ
a2 � c2

� �
cos

p�r2

a2 � c2

� �
cos

pc2

a2 � c2

� �

� tan
p�r2

a2 � c2

� �
� tan

pc2

a2 � c2

� �� �
: (15)

B. Normalization

Through the process of normalization, not only will the
expression for the stream function in Eq. (15) be significantly
reduced, but the main geometric and physical group parameters in
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this problem will be unraveled as well. Here, we use the sidewall
radius a and the tangential inlet velocity U as reference values to
normalize all of the remaining variables. We take

r ¼ �r
a
; z ¼ �z

a
; l ¼ L

a
; b ¼ b

a
; a ¼ c

a
; B ¼

�B
Ua

; (16)

ur ¼
�ur

U
; uz ¼

�uz

U
; uh ¼

�uh

U
; w ¼

�w
Ua2

;

and Qi ¼
�Qi

Ua2
¼ Ai

a2
¼ 1

r
:

(17)

Following these substitutions, Eq. (15) collapses into

w ¼ jz
sin gðr2 � a2Þ

� �
sin gðb2 � a2Þ

� � ; g � p
1� a2

; j � 1
2prl

; (18)

where the modified swirl number r ¼ a2=Ai and inflow parameter j,
which are discussed in detail by Vyas and Majdalani,38 resurface natu-
rally. The corresponding velocities become

ur ¼ � 1
r
@w
@z

¼ � 1
r
jcsc g b2 � a2

	 
� �
sin

�
g
	
r2 � a2


�
; (19)

uh ¼
B
r
¼ 1

r
; (20)

and

uz ¼
1
r
@w
@r

¼ 2zgj csc g b2 � a2
	 
� �

cos
�
g
	
r2 � a2


�
: (21)

By way of verification, it may be seen that the special case of an infini-
tesimal core radius of c¼ 0, which corresponds to the limiting configu-
ration of a right-cylindrical chamber with no hollow core, may be
readily recovered by setting a¼ 0. One obtains

u ¼ � j
r
sin ðpr2Þ
sin ðpb2Þ

er þ
1
r
eh þ 2pjz

cos ðpr2Þ
cos ðpb2Þ

ez; (22)

which matches, as it should, the profile by Vyas andMajdalani.38

IV. RESULTS AND DISCUSSION

To better understand the behavior of the mean flow solution,
it is helpful to characterize its fundamental features. These begin
with the mantle position and velocity field, both of which vary with
the core diameter and chamber aspect ratio. Additionally, the
streamlines associated with this motion will be useful to visualize,
along with both pressure and vorticity fields. In this process, the
peak or absolute extrema of each of these flow variables will be
identified and evaluated whenever possible.

A. Mantle location

The termmantle (or spinning wheel) refers to the interfacial layer
that stands between the so-called updraft and downdraft, to use
cyclonic flow terminology. Along this interface, the axial velocity is
compelled to vanish as the flow switches polarity while moving radially
inwardly from the outer, annular vortex, to the inner, core vortex. As
such, mantle development in right-cylindrical chambers may be
viewed as a distinguishing property of all bidirectional motions. Under
incompressible conditions, theoretical analyses predict an axially

invariant mantle location that is defined by r ¼ b� at uz¼ 0. For
example, Vyas and Majdalani38 find a mantle at b� ¼ 0:707 for a
mean flow profile with no hollow core. In a higher energy demanding
flowfield of the Beltramian type, the mantle shifts inwardly to
b� ¼ 0:628.11 The duality of these mantle positions seems to be con-
nected to the type of motion that develops, be it a generalized
Beltramian profile satisfying r� x� u ¼ 0, or a strictly Beltramian
field observing x� u ¼ 0. In fact, the theoretical predictions of
approximately 0.63 and 0.71 match quite favorably the classical experi-
mental findings of 0.62 and 0.72 reported by Smith.50,51

By setting r ¼ b� and suppressing the axial velocity in Eq. (21),
the theoretical location of the mantle may be deduced from

2zgj csc g b2 � a2
	 
� �

cos g b�2 � a2
	 
� �

¼ 0: (23)

Equation (23) may be solved straightforwardly for b� as a function of
a ¼ c=a; one gets

b� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

2

r
� 0:707

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

p
: (24)

In what follows, Fig. 2(a) will be used to illustrate the sensitivity
of the mantle to variations in a. Although the plot covers the entire
range of 0 � a < 1, practical values of a seldom exceed 0.4. Evidently,
a¼ 0 leads to the initial mantle value of 1=

ffiffiffi
2

p
, which reproduces its

counterpart in a cyclonic chamber with no hollow core.38

Furthermore, a shifted radial coordinate x may be introduced in the
form of

x ¼ �r � c
a� c

¼ r � a
1� a

; (25)

where x represents a rescaled radius relative to the width of the annu-
lus, i.e., the radial fraction at a given position relative to the usable
width of the annular region. This fraction, in turn, enables us to specify
precisely at the mantle location, x� ¼ ðb� � aÞ=ð1� aÞ, as the net
width of the inner vortex region relative to the width of the annulus.
As illustrated in Fig. 2(b), x� varies from 0.707 at a¼ 0 to a theoretical
x� ¼ 0:5 at the impractical value of a ! 1. In this fictitious configura-
tion, the inner and outer radial fractions become evenly split as the
hollow core is extended over the entire radius, thus reducing the annu-
lus to an infinitesimally thin segment (or line) at the sidewall. In prac-
tice, however, as long as 0 � a � 0:4, the inner vortex segment will
remain thicker than its outer counterpart, with 0:6026 � x� � 0:7071.
Moreover, it may be readily shown that areas occupied by the inner
and outer vortex regions in an r-h plane remain equal, 8a, with the
dimensional areas being expressible by

Ainner ¼ Aouter ¼
1
2
pa2ð1� a2Þ: (26)

Interestingly, this equal sharing of inner and outer flow areas proves to
be another basic property of this motion.

B. Helical velocity vector field

To mitigate unnecessary collisions in the exit plane,38 the open
fraction at the base can be equated to the mantle radius. This arrange-
ment leads to a smooth outflow as the inner vortex courses its way out
of the chamber through its main opening at z¼ l. To avoid undesirable
flow obstructions at the outlet, b will be equated to the mantle radius
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b� for the remainder of this study. In fact, the process of substituting
Eq. (24) into Eq. (21) reduces the radial and axial velocities to the com-
pact expressions

ur ¼ � 1
r
j sin gðr2 � a2Þ

� �
and uz ¼ 2gjz cos gðr2 � a2Þ

� �
:

(27)

1. Axial velocity distribution

We begin by exploring the behavior of the axial velocity through
the radial distribution of an axially invariant form of Eq. (27) in
Fig. 3(a). This is accomplished by first renormalizing uz with jz and
then plotting the resulting expression over the chamber radius at four
evenly spaced values of a, namely, a¼ 0, 0.25, 0.5, and 0.75. The turn-
ing nature of the flow is captured in Fig. 3(a), where each uz curve is
seen to switch polarity by crossing the mantle-defining horizontal axis
at a value that is consistent with Eq. (24). It should be noted that, by
virtue of the inviscid nature of the foregoing analysis (which is
required to produce an exact solution), the no-slip conditions at both
the inner and outer chamber boundaries are relaxed. In the presence
of viscosity, one expects the axial velocity to dip sharply at either
extremity to the extent of vanishing eventually both at r ¼ a (in the
case of a solid inner wall) and r¼ 1 at the sidewall. Conversely, for the
strictly inviscid case, the peak axial velocity, which occurs at either

boundary (positive at r ¼ a and negative at r¼ 1), may be determined
from ðuzÞmax ¼ 2gjz. Along similar lines, to isolate the effect of an
expanding core radius on the peak axial velocity, ðuzÞmax is renormal-
ized by jz and written as function of a, viz.,

ðuzÞmax

jz
¼ 2p

1� a2
; a 2 0; 1Þ:½ (28)

This expression for the axially invariant peak velocity in the stream-
wise direction is illustrated in Fig. 3(b), where Eq. (28) may be seen to
vary from a minimum value of 6.283 in the case of a¼ 0, to 7.480 at
a ¼ 0:4. As the annular segment is further narrowed, the axial speed
is quickly accelerated to permit the transport of the same amount of
fluid through a narrower passage. This explains the superlative value
of 33.069, which is reached at a ¼ 0:9 along with the unbounded
growth that accompanies a ! 1, as the annular flow area is com-
pressed into a line. The gradual increase in ðuzÞmax with increasing a
can also be inferred from Fig. 3(a).

2. Radial velocity distribution

The radial velocity given by Eq. (27) may be seen to be axially
invariant. As such, it may be fully characterized in Fig. 4 by capturing
its radial variation at four equispaced values of a along with the varia-
tion of its peak magnitude as the core radius is increased from 0 to 1.

FIG. 2. Sensitivity of (a) the mantle location and (b) the net annular fraction of the inner vortex to variations in the dimensionless core radius a.

FIG. 3. Renormalized axial velocity distribution versus (a) r for a¼ 0 (——), 0.25 (– – –), 0.5 (������), and 0.75 (— � —) along with (b) its peak value at the edge of the hollow
core for a 2 ½0; 1Þ.
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In contrast to the behavior of uz, the peak radial velocity decreases
with successive increases in a. This may be attributed to the dimin-
ished usable space between the core radius and the sidewall, which
forces the axial velocity to increase while simultaneously suppressing
the intensity of the radial motion. Moreover, this behavior can be visu-
alized in Fig. 4(b), where numerical and two approximate solutions
are shown (see the Appendix for more details). For values of a greater
than 0.3, a linear approximation proves sufficient. Practically, the loca-
tion of the peak radial velocity rmin may be determined from the van-
ishing radial gradient of ur. By differentiating ur with respect to r and
setting the result equal to zero, one obtains

2pr2min � ð1� a2Þ tan gðr2min � a2Þ
� �

¼ 0: (29)

The sensitivity of rmin to a is illustrated in Fig. 5(a) side-by-side
with xmin in Fig. 5(b), where the net fraction of the annulus at the
point of maximum absolute ur is displayed. In both Figs. 5(a) and
5(b), the numerical result is shown along with the analytical and linear
approximations using dashed and chained lines, respectively (see the
Appendix). In comparison to the mantle character, the peak radial
velocity occurs at rmin ¼ xmin ¼ 0:6091 in the case of a¼ 0; it shifts to
xmin ¼ 0:5255 at a ¼ 0:4, and then asymptotes to the same mantle
locus of 0.5 when the width of the annulus is shrunk according to
a ! 1.

3. Crossflow velocity

In addition to the peak ðurÞmin, which occurs at rmin, another
bidirectional flow property consists of the crossflow velocity, which
may be evaluated at r ¼ b�. Physically, ðurÞcross denotes the speed at
which fluid transport takes place from the outer annulus to the inner
vortex along the length of the mantle. For the generalized Beltramian
profile developed here, the radial crossflow proves to be a simple con-
stant that may be readily determined from

ðurÞcross ¼ �j

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2

1þ a2

r
¼ � j

b�
: (30)

It can thus be seen that larger values of ðurÞcross occur when b� and, in
turn, a diminish, with the maximum crossflow being realized in the
case of a¼ 0. Furthermore, ðurÞcross increases with successive increases
in j, namely, when the magnitude of the swirl velocity is reduced rela-
tive to its axial and radial counterparts. According to Eq. (18), such a
condition is approached when ðrlÞ, the product of the swirl number
and the chamber aspect ratio is reduced. Finally, since ðurÞcross repre-
sents the sole mechanism by which mass may be transferred from the
outer vortex to the inner region, a simple integration along the length
of the mantle may be used to verify that mass conservation is secured.
This can be accomplished by first evaluating and confirming that

FIG. 4. Renormalized radial velocity distribution versus (a) r for a¼ 0 (——), 0.25 (– – –), 0.5 (������), and 0.75 (— �—) along with (b) its peak value within the annular segment
for a 2 ½0; 1Þ.

FIG. 5. Spatial variation of (a) the peak radial velocity locus and (b) corresponding usable chamber width fraction for a 2 ½0; 1Þ.
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2pb�
ðl
0
jurðb�; zÞjdz ¼ 2pjl ¼ Qi: (31)

Clearly, the integration of the distributed mass flow rate across the
mantle interface, which extends over the entire chamber length, repro-
duces the flow entering the domain at z¼ l. In other words, all mass
entering the chamber at the base of the cyclonic chamber must cross
the mantle at some point.

4. Tangential velocity distribution

Finally, the tangential velocity component given by Eq. (20)
proves to be identical to the result obtained by Vyas and Majdalani,38

which is developed in the absence of a hollow core. However, since
r 2 ½a; 1	; uh remains finite except for the case of a¼ 0. In view of the
inviscid assumption, uh does not vanish at the inner core boundary,
sidewall, or headwall. In this case, accounting for viscous effects will be
required to capture the no-slip condition in the azimuthal direction at
the headwall, as well as the inner and outer walls.

C. Vector field and corresponding streamlines

In order to better visualize the evolving cyclonic flowfield,
streamlines that capture the bidirectionality of the motion are pro-
vided in Fig. 6 using a representative value of a ¼ 0:25 and six
decreasing chamber aspect ratios. Using r-z planar slices and an off-
swirl inflow parameter of j¼ 1, results are shown in Figs. 6(a)–6(f)
over a range of non-dimensional chamber lengths corresponding to
l ¼ 3; 2; 1; 0:75; 0:5, and 0.25. Although a unit value of j is used, these
two-dimensional vector lines remain rather universal. They may be
shown to be independent of the off-swirl parameter because both ur
and uz, whose relative proportion controls the behavior of the solution
in the r-z plane, are equally multiplied by j. Besides the vector fields,

which clearly display the radially inward flow across the mantle inter-
face (chained lines), we also depict the boundaries of the hollow core
(broken lines), whose presence becomes further accentuated with suc-
cessive decreases in l. Interestingly, one recovers in Fig. 6(d) the case of
a square-shaped toroid; this situation occurs because the non-
dimensional usable radius at a ¼ 0:25, which is evaluated simply from
ða� cÞ=a ¼ 0:75, matches the non-dimensional chamber height of
l¼ 0.75. In fact, a square-shaped toroid may be realized anytime
1� a ¼ l, such as in the obvious case of a ¼ 0:5 and l¼ 0.5.

To further explore the sensitivity of the solution to variations in
the hollow core fraction, vector lines corresponding to six equispaced
values of a are provided in Fig. 7. These may be viewed as being repre-
sentative of the streamline curvatures for a ¼ 0; 0:1; 0:2; 0:3; 0:4; and
0.5, irrespective of j. Also shown are the inner core and mantle inter-
faces, with the latter being given by Eq. (24). Accordingly, the radius of
the mantle may be seen to shift radially outwardly with successive
expansions of the inner core radius. In fact, it may be readily con-
firmed that the chained line shifts closer to the middle of the usable
flow domain within the annular region as a is further incremented.
Based on Eq. (25), one can track the mantle fraction within the flow
annulus using

x� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2 þ 1Þ=2

p
� a

1� a
¼ 1ffiffiffi

2
p þ 1ffiffiffi

2
p � 1

� �
a

þ 3

2
ffiffiffi
2

p � 1
� �

a2 þ Oða3Þ; (32)

where the Maclaurin series expansion restores the well-known mantle
fraction of 1=

ffiffiffi
2

p
in the absence of a hollow core. This limiting case is

reflected in Fig. 7(a), which depicts the quasi complex-lamellar profile
given by Eq. (22). Conversely, a Taylor series expansion of x� that
assumes a large inner core fraction returns

FIG. 6. Side views of the generalized Beltramian streamlines for six different chamber aspect ratios corresponding to (a) l¼ 3, (b) 2, (c) 1, (d) 0.75, (e) 0.5, and (f) 0.25. The
broken and chained lines represent the flow domain and mantle boundaries, respectively. These are taken for a ¼ 0:25; a < r � 1, and 0 � z � l.
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x� ¼ 1
2
� a� 1

8
þ 1
16

ða� 1Þ2 þ O ða� 1Þ3
� �

: (33)

Equation (33) helps to ascertain that x� ! 1=2 for the infeasible case
of a ! 1, which renders the cyclonic motion impossible to develop.
One is practically drawn to this condition even at a ¼ 0:5 in Fig. 7(f),
where b� ¼ 0:7906 and x� ¼ 0:5811. Although the midpoint fraction
is not yet reached, further expansions of the inner core radius continue
to reposition the mantle interface such that a nearly even split of the
annular segment is eventually achieved between the inner and outer
vortex regions. For example, the use of a ¼ 0:8 leads to b� ¼ 0:9055
and x� ¼ 0:5277.

Having explored the behavior of the vector field in the r-z plane,
it may be helpful at this point to shift attention to the swirling charac-
ter of the solution. This may be accomplished in Fig. 8 using polar sli-
ces at different values of j. Due to the underlying axisymmetry, one
way to realize the r-hmotion is to envision superimposing the tangen-
tial angular speed associated with uh in a manner that causes the pla-
nar streamlines described in Figs. 6 and 7 to revolve around the
chamber’s axis of rotation.

Noting that the streamline patterns in the r-h plane are pre-
scribed by the relative contributions of ur and uh , and recalling that
these remain, in turn, controlled by their proportionality constant j,
the latter becomes a key characteristic parameter. In fact, its bearing
on the swirling vector field may be readily inferred from Fig. 8; therein,
the solution is visualized using a fixed core radius of a ¼ 25% and
four successive values of j ¼ 1; 2; 5; and 10 that span one order of
magnitude between Figs. 8(a) and 8(d). Also shown is the mantle
intersection with the polar plane (chained line), which demarcates the
inner and outer swirling regions.

Based on these graphs, several observations can be made. First, as
the off-swirl parameter j is incremented, it may be realized that the
magnitudes of ur and uz increase in relation to uh. As a result, the vec-
tor lines become progressively more reflective of the inward radial
transport, with markedly diminished swirling attributes, except near
the centerline. This may be ascribed to the fact that, as r ! 0, the free
vortex form of uh will rapidly overtake the motion by eclipsing the val-
ues of ur and uz, irrespective of j. This behavior is perhaps to be
expected in the absence of viscous corrections that typically give rise to

FIG. 7. Side views of the generalized Beltramian streamlines for six equispaced chamber core fractions corresponding to (a) a¼ 0, (b) 0.1, (c) 0.2, (d) 0.3, (e) 0.4, and (f) 0.5.
The broken and chained lines represent the flow domain and mantle boundaries, respectively. These are taken for l¼ 1, a < r � 1, and 0 � z � l.

FIG. 8. Top views of the generalized Beltramian streamlines in a horizontal r-h plane for a ¼ 25%, l¼ 1, and an off-swirl parameter of (a) j¼ 1, (b) 2, (c) 5, and (d) 10. The
broken and chained lines represent the inner core and mantle lines, respectively.
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a forced vortex motion in the vicinity of the centerline. Because of the
precipitous rise of uh near the chamber axis, a bathtub vortex may be
seen to develop as r ! 0 for all values of j. In contrast, when j is
increased, a vector field that is progressively more dominated by radial
transport may be seen to evolve as the sidewall is approached.

D. Pressure distribution

The pressure distribution can be recovered from the dimension-
less conservation of momentum equation. One gets

@p
@r

¼ 1
r3
f1þ j2ð sin2½g

	
r2 � a2



	 � gr2 sin ½2g

	
r2 � a2



	Þg

and

@p
@z

¼ 4g2j2z: (34)

At this juncture, partial integration can be used to retrieve

Dp ¼ � 1
2r2

1þ 1
2
j2 8g2z2r2 þ 1� cos 2g

	
r2 � a2


h i� 
� �
; (35)

where Dp ¼ p� p0 may be confirmed to be strongly influenced by
the leading-order term,�1=ð2r2Þ, notwithstanding the core expansion

radius or z. The resulting behavior may be further inferred from the
radial evolution of the pressure drop, which is illustrated in Fig. 9 both
at z¼ 0 and z¼ 5. This is accomplished using a relatively large value
of j ¼ 0:2. By comparing Fig. 9(a) and Fig. 9(b), the differences
between the pressure drops taken at four distinct values of a may be
perceived as being insignificant. The quasi-frozen behavior of Dp may
be traced back to Eq. (35), where a appears in the termmultiplying j2,
and which happens to be too small to retain in most practical applica-
tions. The role of j may thus be viewed as that of offsetting the effect
of core expansion on the headwall pressure that accompanies succes-
sive increases in a. This canceling effect remains true for an apprecia-
ble distance down the bore and only begins to diverge for large aspect
ratios with l 
 5. Interestingly, so long as a > 0; Dp will reach a finite
value at the inner boundary because of the hollow core.

In similar fashion, the radial and axial pressure gradients are
showcased in Fig. 10. As with the pressure distribution in Fig. 9, the
radial gradient can be approximated by @p=@r � 1=r3 for practical
values of j and a. This proves once more to be virtually insensitive to
the inner core radius a, axial station z, and inflow parameter j, unless
these values become fairly large. In order to exaggerate the effects of a
changing inner core radius and thus artificially magnify imperceptible
deviations graphically, an unusually large value of j¼ 1 is employed
in Fig. 10(a). Consequently, some deviations are observed as a is

FIG. 9. Pressure drop at (a) z¼ 0 (headwall) and (b) z¼ 5 using four characteristic values of a and j ¼ 0:2.

FIG. 10. Variations of the normalized radial and axial pressure gradients with respect to (a) radial and (b) axial coordinates using four characteristic values of a ¼ 0; 0:25; 0:5,
and 0.75.
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incremented from 0 to 1. Finally, when attention is turned to the axial
pressure gradient in Fig. 10(b), a dependence on the inner core radius
a may be observed along with a linear variation of the pressure drop
in the streamwise direction irrespectively of the radial location. Such
behavior may be corroborated by the corresponding relation in
Eq. (34).

E. Vorticity distribution

The mean flow vorticity may be readily calculated from
x ¼ r� u which, for the generalized Beltramian model, leaves us
with a single non-vanishing term; we get

xr ¼ xz ¼ 0 and xh ¼ 4g2jrz sin gðr2 � a2Þ
� �

: (36)

The evolution of the vorticity may be surmised from Fig. 11(a), where
x ¼ xh is first renormalized by jz to make it axially invariant and
then showcased at four equispaced values of a. Based on this graph, a
maximum can be seen to occur between r ¼ a and 1, with a skewness
toward the sidewall at the outskirt of the mantle. To better characterize
the radial location of ðxhÞmax, its locus ~rmax may be retrieved from

sin gð~r2max � a2Þ
� �

þ 2g~r2max cos gð~r 2max � a2Þ
� �

¼ 0: (37)

The root of Eq. (37) may be readily computed and presented in
Fig. 11(b), where the shifting of ~rmax and, correspondingly, the fraction

of the usable width ~xmax, are depicted as functions of a. Here, ~xmax

starts at a value of 0.7646, which exceeds the mantle location of
0.7071; it then decreases rather linearly to a value of 0.6619 at a ¼ 0:4,
where the mantle shifts to 0.6026; finally, it asymptotes to a value of
unity at the sidewall. Conversely, the annular fraction ~xmax that
accompanies ðurÞmax diminishes rapidly from 0.609 to 0.5255 at
a ¼ 0:4 and continues nonlinearly to a value of 0.5 as a ! 1. We
recall that the latter corresponds to a limiting singular case for which
the hollow core will occupy the entire chamber to the extent of pre-
venting any cyclonic motion from forming.

Besides a numerical outcome for Eq. (37), a closed-form asymp-
totic expression for ~rmax may be constructed. This may be accom-
plished by first identifying the basic leading-order solution that
corresponds to a¼ 0, specifically

sinXð0Þ þ 2Xð0Þ cosXð0Þ ¼ 0; X � p~r2max: (38)

This simple form enables us to confirm that ~r ð0Þmax � 0:764 596. In this
vein, using the method of successive approximations, the root’s depen-
dence on amay be captured by letting

XðaÞ ¼ Xð0Þ þ gðaÞXð1Þ þ � � � ; (39)

where Xð0Þ � 1:836 597 2. Finally, assuming gðaÞ ¼ a�2 and
substituting Eq. (39) into Eq. (37), one retrieves, for 0 < a < 0:5,

Xð1Þ ¼ 1
4B

(
2 cotA� 2a2BXð0Þ þ a2B cotA� a4B cotAþ a2 cscA

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8B sinA 2Xð0Þ cosAþ sinA� a2 sinA½ 	

a2
þ 2

a2
þ B� Ba2

� �
cosA� 2BXð0Þ sinA

� �2s )
(40)

with

A ¼ Xð0Þ � pa2

1� a2
and B ¼ 1

a2ð1� a2Þ : (41)

A visual comparison of the asymptotic approximation, ~rmax

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XðaÞ=p

p
, and its corresponding ~xmax are displayed in Fig. 11(b)

along with the numerically obtained values over a practical range of a.
These show excellent agreement up to a � 0:5.

FIG. 11. Renormalized vorticity distribution in the radial direction using (a) four characteristic values of a and including (b) the sensitivity of vorticity’s peak location to wide var-
iations in 0 � a < 1.
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At this juncture, with the vorticity in hand, the Lamb vector,
‘ ¼ x� u, may be evaluated and expressed as

‘ ¼ 8g3rz2j2csc gðb2 � a2Þ
� �

cos gðr2 � a2Þ
� �

sin gðr2 � a2Þ
� �

er

þ4g2zj2csc gðb2 � a2Þ
� �

sin 2 gðr2 � a2Þ
� �

ez: (42)

Based on Eq. (42), it may be readily verified thatr� ‘ ¼ 0, thus con-
firming the generalized Beltramian character of this motion. Along
similar lines, the helicity density, h, which denotes the inner product
of the velocity and vorticity vectors,52 may be determined from

h ¼ u � x ¼ 4g2jz sin gðr2 � a2Þ
� �

: (43)

Interestingly, the helicity density reaches a local maximum along the
mantle interface, where the vanishing of the axial velocity causes the
remaining velocity components (ur and uh) as well as the vorticity vec-
tor to lie within the same r-h plane.

Despite the helical nature of this motion and its rotation about
the z�axis, the absence of axial vorticity may be ascribed to the irrota-
tional nature of the tangential velocity, which drives the evolution of
the mean flow vorticity in the r-z plane. In fact, the present solution
may be viewed as the combination of a non-swirling complex-lamellar
flowfield (with h ¼ 0) and an irrotational vortex exhibiting a tangen-
tial velocity that is solely responsible for the axially revolving motion.
In this case, the generation of vorticity can be directly linked to the
axial and radial velocity gradients, which are inherent to the bidirec-
tional vortex motion, and not to the shearing process per se.

Before leaving this section, it may be helpful to clarify that a gen-
eralized Beltramian motion of this type has also been referred to in the
literature as being quasi complex lamellar,11,12,38 and this may be
attributed to its incorporation of most essential characteristics of a
complex-lamellar field. Since the axial and radial velocities are deduced
from a stream function formulation of Euler’s momentum equation,
namely, the BHE transformation, one may realize that the tangential
velocity is imposed rather separately in a manner to keep uh decoupled
from the stream function. When examining the resulting model from
this perspective, it can be seen that the complex-lamellar profile pre-
scribed by the stream function is simply rotated about the central axis
at an angular speed that is prescribed by the irrotational tangential
velocity. It then becomes a simple exercise to verify that the two-
component (ur , uz) motion established in the r-z plane satisfies the
complex-lamellar criterion of u � x ¼ 0, thus justifying the naming
attribution attached to this particular solution.

V. CONCLUSIONS

In this work, an exact incompressible solution is developed in the
context of an inviscid bidirectional vortex in a right-cylindrical cham-
ber with a hollow core. The presence of a hollow core may be insti-
gated by a variety of factors that include the presence of a vortex finder
or a tubular insert in industrial systems; it may be also caused by the
onset of flow stratification or air entrapment within the core region of
certain chemical and propulsive devices. Although the present analysis
extends former work by Vyas and Majdalani,38 the approach that we
pursue begins with the Bragg–Hawthorne equation as opposed to the
vorticity transport equation used previously. Nonetheless, regardless of
the road taken, the same governing equation is recovered under the
proper assumptions for B and H given by Eqs. (2) and (3). Another
distinguishing feature that may be worth mentioning is that the

present flowfield proves to be of the generalized Beltramian type and,
by virtue of its ability to incorporate a hollow core internally, it may be
viewed as a generalization of the analogous problem with no hollow
core. It should be further noted that, in seeking a simple outcome,
only one partial solution satisfying the problem’s solvability condition
is considered here, thus leading to the most compact expression that is
still capable of securing the problem’s fundamental constraints. In
future work, a broader formulation may be pursued by summing up
all viable eigen solutions in a linear superposition that aims at extend-
ing the model’s applicability to more elaborate inlet and outlet bound-
ary conditions.

In the presence of a hollow core, our findings indicate that the
peak axial velocity will invariably increase with successive expansions
of the core radius, namely, in observance of mass conservation. By the
same token, the peak radial velocity will diminish with incremental
reductions in the radial distance between the core boundary and the
sidewall. Furthermore, the mantle, which proves to be a defining prop-
erty of bidirectional fields, is shown to possess a simple dependence on
the non-dimensional core radius a. Accordingly, the projected flow
areas of the inner and outer swirling regions remain equally divided by
the mantle interface even with a changing core diameter. As for the
tangential velocity, its inviscid form proves to be consistent with that
of an irrotational vortex.38 In the present formulation, however, uh
remains finite so long as a > 0 over a discrete range of r 2 ½a; 1	. As
for the pressure, it is confirmed that variations in the hollow core
diameter have minimal impact on Dp, and that visible deviations will
only occur at high aspect ratios and impractically large values of the
inflow parameter j. Finally, and consistently with previous formula-
tions, the radial and axial components of vorticity are seen to vanish
identically, while leaving only one azimuthal term whose peak vorticity
magnitude is realized in the outer vortex region irrespectively of a.

Having arrived at a compact representation of the bidirectional
vortex with a hollow core in a frictionless environment, it is possible to
extend the analysis by incorporating the effects of viscous boundary
layers along the walls. The incumbent analysis will require the use of
small perturbation techniques, such as matched-asymptotic expan-
sions, to derive judicious approximations that are capable of satisfying
the problem’s velocity adherence requirements. Such work, along with
similar treatment of the Beltramian flow analogue, will be the subject
of forthcoming analysis.
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APPENDIX: CHARACTERISTICS OF THE PEAK RADIAL
VELOCITY

As mentioned in Sec. IV B 2, closed-form expressions may be
derived for the peak radial velocity and its location. First, the peak
radial velocity may be approximated by

ðurÞmin � � 1:508 786j
1þ 0:514 711a2 � 0:228 724a2 ln a

; (A1)

where the denominator clearly grows with a. As a becomes larger
than 0.3, the peak radial velocity becomes expressible through a lin-
ear relation of the form

ðurÞmin � 1:589 752� 0:6a: (A2)

Along similar lines, the location of the peak radial velocity may be
extracted from the transcendental root of Eq. (29); this may be
approximated by

rmin � 0:609 106ð1þ 0:641 045a2 � 0:487 191a2 ln aÞ; (A3)

over the full range of a 2 ½0; 1Þ. For a > 0:3, the behavior becomes
so linear that it may be captured by

rmin � 0:468 248aþ 0:527 029: (A4)

In a similar manner, approximations for xmin can be obtained,
specifically

xmin �
0:609 106 1þ 0:338 101aþ 0:549 163a2 � 0:248 789a3ð Þ

1þ a
(A5)

along with a two-term expression in the linear range where

xmin � 0:531 081� 0:031 743a; a > 0:6: (A6)
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