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In this work, the Kármán–Pohlhausen (KP) momentum-integral approach based on optimized fourth-
order (MX4) polynomial approximations of the velocity and temperature profiles is applied to a classical
benchmark problem, namely, that of a cylinder in crossflow with a variable pressure gradient. This enables
us to extract closed-form expressions for both hydrodynamic and thermal boundary-layer parameters and
then compare the newly found solutions to their counterparts obtained using Pohlhausen’s cubic (KP3) and
quartic (KP4) polynomials. As usual, the farfield around the cylinder is modeled using potential flow theory
and the momentum-integral analysis is paired with Walz’s empirical expression for the momentum thickness,
which is based on a wide collection of experiments. This procedure permits retrieving explicit relations
for the pressure-sensitive KP3, KP4, and MX4 velocity profiles across the boundary layer; one also obtains
accurate approximations for the pressure distribution around the cylinder as well as an improved prediction
of the separation point, namely, to within 0.87% of the actual location. In this process, refined estimates are
produced for several characteristic parameters whose distributions are found to be in favorable agreement
with experimental measurements and numerical simulations. These include the disturbance, momentum, and
displacement thicknesses as well as the skin friction, pressure, and total drag coefficients. Lastly, the thermal
analysis is undertaken using both isothermal and isoflux boundary conditions. For each of these cases, closed-
form analytical solutions are obtained for the local Nusselt number distribution around the cylinder, and these
distributions are found to exhibit noticeably reduced errors relative to their classical values.

Nomenclature

𝐶𝐷 total drag coefficient
𝐶𝐷𝑝

pressure drag coefficient
𝐶 𝑓 , 𝐶𝐷 𝑓

local and total skin friction drag coefficient
𝑐𝑝 constant pressure specific heat
𝐶𝑝 pressure coefficient
𝐷 cylinder diameter
ℎ convective heat transfer coefficient
𝑘 𝑓 fluid thermal conductivity
𝑁𝑢𝐷 Nusselt number
𝑝 pressure
𝑃𝑟 Prandtl number
𝑞 heat flux density per unit area
𝑅𝑒𝐷 Reynolds number
𝑇 temperature
𝑢 tangential velocity in the 𝑥 direction
𝑈 (𝑥) local farfield potential flow velocity
𝑈∞ approaching freestream velocity
𝑣 normal velocity in the 𝑦 direction
𝑥 tangential coordinate along cylindrical surface
𝑦 normal component above cylindrical surface

Greek
𝛼 thermal diffusivity
𝛿 hydrodynamic boundary-layer disturbance thickness
𝛿* displacement thickness
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𝛿𝑇 thermal boundary-layer thickness
Λ Pohlhausen’s pressure-gradient parameter
𝜇, 𝜌 fluid molecular viscosity and density
𝜈 kinematic viscosity, 𝜇/𝜌
𝜙 azimuthal angle measured from stagnation point (ccw)
𝜙sep azimuthal angle at flow separation point
𝜃 momentum thickness
𝜏𝑤 wall shear stress
𝜉 normalized 𝑦 coordinate (hydrodynamic), 𝑦/𝛿
𝜉𝑇 normalized 𝑦 coordinate (thermal), 𝑦/𝛿𝑇

I. Introduction

Modern boundary-layer analysis may be traced back to a highly impactful 1904 paper by Prandtl [1] in which
a reduced partial differential set of the Navier–Stokes equations is provided for the treatment of viscous flow

problems. Four years later, this significant development in aerodynamics is succeeded by a brilliantly constructed
similarity solution for flow over a flat plate by Prandtl’s first doctoral student, Blasius [2]. Then, in 1921, a seemingly
straightforward extension to Prandtl’s equations is conceived in the form of an integral formulation, again this time,
by two of Prandtl’s most celebrated students. After its introduction through two sequential papers by von Kármán
[3] and Pohlhausen [4], the so-called Kármán–Pohlhausen (KP) momentum-integral approach may be seen to quickly
gain popularity within the aerodynamics, fluid mechanics, and propulsion communities. In hindsight, this may be
attributed to its versatility, simplicity, and effectiveness at capturing both laminar and turbulent boundary layers in a
variety of phenomenological problems. In fact, given its broad applicability range, this method is presently featured in
several textbooks on the subject including those by Oleinik and Samokhin [5], Schetz and Bowersox [6], Pritchard and
Mitchell [7], Schlichting and Gersten [8], and White and Majdalani [9]; it is also cited or used at the basis of several
interesting studies such as those by Cantwell [10], Khan et al. [11], Bujurke and Jagadeeswar [12], and others. More
contemporaneously, it has been relied upon to predict the viscous drag in modern computational schemes based on
potential flow solvers and surface vorticity panel codes such as FlightStream® by DiMaggio et al. [13].

To begin, it may be instructive to note that, from a procedural standpoint, Kármán’s momentum-integral approach
is predicated on the availability of suitable representations of the velocity profile in the nearfield. In fact, the systematic
construction of a viable profile is addressed quite elegantly in a 1921 companion paper by Pohlhausen [4]. For this
reason, the overarching method is presently referred to as “KP’s,” namely, in recognition of both contributors, whose
centennial articles we celebrate.

Pohlhausen’s idea is simple. By postulating reasonable boundary conditions that can be applied at the extremities of
a viscous region, velocity profiles of increasing orders can be methodically developed. These are often termed P2, P3,
and P4, in reference to their quadratic, cubic, or quartic orders[14]. Naturally, higher-order approximations are capable
of satisfying a larger number of postulated conditions. Most perplexingly, however, as Pohlhausen’s polynomial orders
are elevated, their ability to predict basic boundary-layer characteristics has been shown to deteriorate. Instead of
producing a reduced error at successively increasing orders, a magnification in the error is realized[7–9]. For example,
the errors in predicting the displacement thickness and shape factor for planar flow over a flat plate increase from 4.7%
and 7.2% to 12% and 17% when P4 is used in lieu of P3[9]. Effectively, to overcome the inexplicable increase in error,
several other methods are later developed and these include two comparable formulations by Walz [15] and Thwaites
[16]. The latter consist of semi-empirical integral relations that predict the momentum thickness directly from the
velocity profile in the farfield region irrespective of the flow developing in the nearfield. As such, these alternative
techniques provide no particular detail on the velocity or temperature profiles across the viscous or thermal layers.

In actuality, due to the findings reported in a recent study by Majdalani and Xuan [17], the paradoxical error behavior
undermining Pohlhausen’s polynomials is rationally explained. This is accomplished by demonstrating that one of
the postulated boundary conditions by Pohlhausen, which drastically affects polynomials of order four and higher, is
rather imprecise, being markedly dissimilar from its numerically computed value. It is then shown that, by relaxing
the second-order curvature requirement postulated by Pohlhausen on the velocity at the edge of the viscous layer, a
substantially improved quartic polynomial representation is achieved [17]. More specifically, this is accomplished by
replacing the deficient condition with an optimal slope at the wall to the extent of reducing the predictive error accrued
in the KP formulation by one full order of magnitude.
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Having demonstrated the effectiveness of this novel approach in modeling the motion over a flat plate with a zero
pressure gradient [17], it is the purpose of this work to extend its application to another canonical problem, namely,
that of a circular cylinder in crossflow [18]. In this geometric setting, the decreasing and then increasing flow area
normal to the uniform stream past the nose section of the cylinder leads to a pressure gradient that must be accounted
for. From a practical perspective, the analysis of flow past a cylinder remains of tremendous academic interest due,
partially, to its ubiquitous coverage in textbooks on the subject [5–9] and, partially, to its frequent designation as a
benchmark problem in the development of new computational techniques [19]. In fact, the characterization of flow
development around bluff bodies in general and circular cylinders in particular remains an active area of research that
continues to attract dedicated experimental [20–23] and computational [24–33] studies.

Naturally, the spatial variations of the pressure gradient and farfield velocity around the cylinder give rise to
additional complexities in the momentum equation relative to the flat-plate problem at zero angle of incidence [17].
The present extension from a flat plate to a cylinder in crossflow using an optimized quartic polynomial approximation
is therefore essential to pursue in order to ascertain the manner by which the presence of a pressure gradient can be
judiciously handled. This will be attempted while taking into account the results obtained by Khan et al. [34] for the
boundary-layer treatment of a cylinder in crossflow. The latter is carried out using Pohlhausen’s quartic velocity profile
[3] in conjunction with the method of Walz [15] to extract analytical expressions for a variety of viscous and thermal
boundary-layer properties. To prove its effectiveness, an optimized quartic polynomial, which is based on a slightly
refined momentum-integral formulation [17], will be introduced and shown to outperform in its predictive capability
both cubic (KP3) and quartic (KP4) Pohlhausen polynomials.

From an organizational standpoint, the article is divided into two main sections augmenting the present introduction
and concluding material of Sec. IV. The first part focuses on the hydrodynamic momentum analysis of the viscous
boundary-layer structure over a cylinder in crossflow. This is undertaken in Sec. II using Kármán–Pohlhausen’s both
cubic (KP3) and quartic (KP4) flow profiles as well as an improved quartic (MX4) polynomial approximation of the
nearfield [17]. In all three cases, the farfield is represented by the classic potential flow solution and all results are
compared to existing numerical and experimental measurements. In this process, the momentum-thickness estimation
is retrieved from the well-established integral formulation by Walz [15]. Results based on the MX4 solution are then
shown to be the most precise at forecasting the disturbance, displacement, and momentum thicknesses as well as the
separation point along the rear portion of the cylinder. Because of its unique characteristics relative to its counterparts,
the MX4 solution is also seen to predict the most accurate location of the maximum skin friction coefficient along the
surface. In the second part, the main focus is shifted to the thermal boundary layer and heat transfer analyses of the same
problem using both isothermal and isoflux surface conditions. This is undertaken in Sec. III where both traditional KP3
and KP4 as well as the improved polynomial approximation MX4 are implemented in conjunction with the Reynolds
analogy, namely, to characterize the thermal boundary-layer structures and corresponding Nusselt number relations.
The underlying effort is performed for a total assortment of six cases that consider three different KP3, KP4, and MX4
temperature profiles and both isothermal and isoflux surface conditions. Here too, all predictions are compared to one
another and to existing empirical correlations. In this process, the closed-form analytical expressions associated with
the improved MX4 profile are shown to be the most accurate at estimating the thermal characteristics irrespective of
whether a constant wall temperature or heat flux condition is prescribed.

II. Hydrodynamic Analysis

A. Problem Formulation and Governing Equations

We consider a two-dimensional circular cylinder of diameter 𝐷 and infinite width, which is surrounded by an
incompressible Newtonian fluid approaching at uniform axial speed 𝑈∞ and temperature 𝑇∞. As depicted in Fig. 1a,
𝑥 stands for the circular arc distance measured tangentially along the surface of the cylinder, 𝑦 refers to the normal
distance at any station 𝑥, 𝜙 denotes the azimuthal angle measured counterclockwise from the front stagnation point
at the nose of the cylinder, and 𝛿(𝑥) represents the boundary-layer disturbance thickness. Using the subscript “sep”
to abbreviate the term “separation,” our domain of interest ranges from 𝜙 = 0◦ at 𝑥 = 0 to the point of separation
at 𝜙 = 𝜙sep or 𝑥sep = 𝜙sep𝐷/2. The potential flow solution for the farfield, which extends beyond the edge of the
viscous layer, can be suitably represented by 𝑈 (𝑥) = 2𝑈∞ sin 𝜙, as illustrated in Fig. 1b [9]; therein, the characteristic
streamlines of the inviscid outer solution are outlined. In the nearfield, one may follow Prandtl [1] by implementing
an order-of-magnitude scaling analysis through which terms of lower order can be systematically dismissed. Using
standard notation, the reduced set of Navier–Stokes equations, which form the backbone of the substantially simplified
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Fig. 1. Side-by-side schematics of a) an infinitely long cylinder in a crossflow configuration identifying the
growing disturbance thickness and principal coordinates in the presence of uniform flow in the farfield with
speed 𝑼∞ and temperature 𝑻∞, and b) streamlines corresponding to the idealized, slip-permitting, potential
solution denoting the farfield region.

boundary-layer equations, can be written as:

𝜕𝑢

𝜕𝑥
+ 𝜕𝑣

𝜕𝑦
= 0 (continuity), (1)

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= − 1

𝜌

d𝑝
d𝑥

+𝜈 𝜕
2𝑢

𝜕𝑦2 (wall-tangential 𝑥-momentum equation), (2)

d𝑝
d𝑦

= 0 (wall-normal 𝑦-momentum equation), (3)

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
= 𝛼

𝜕2𝑇

𝜕𝑦2 (energy equation), (4)

where (𝜌, 𝑝, 𝑇) and (𝑢, 𝑣) denote the density, pressure, temperature, and both axial and normal velocity components
within the boundary-layer region, whereas 𝜈 and𝛼 stand for the viscous and thermal diffusivity coefficients, respectively.

Four years after the advent of these equations, and pursuant to Prandtl’s milestone achievement, Blasius [2] manages
to extract a nearly exact shape-preserving similarity solution for the incompressible motion over a flat plate at zero
incidence. By demonstrating that the second-order viscous diffusion term in the wall-normal direction trumps its
counterpart in the wall-tangential direction, and through the use of a brilliant similarity transformation, Blasius reduces
Eqs. (1–3) to a third-order differential equation that can be solved numerically. For the reader’s convenience, this
equation may be expressed in terms of the normalized velocity profile, 𝐹 (𝜉) ≡ 𝑢/𝑈, when written as:

𝐹′′′𝐹′ − 𝐹′′2 + 1
2𝑎

2𝐹′2𝐹 = 0, with 𝐹 (0) = 𝐹′′ (0) = 0, and 𝐹 (∞) = 1, (5)

where 𝜉 ≡ 𝑦/𝛿 denotes the normalized boundary-layer coordinate in lieu of the Blasius similarity variable (see
Appendix A for detail). In 1921, an alternative integral technique to these equations is introduced by von Kármán
[3], thus leading to the momentum-integral formulation, particularly, whose centennial we recognize in this Special
Collection. The latter is actually applied straightforwardly in a companion article by Pohlhausen [4] to showcase
its effectiveness at capturing the various boundary-layer properties for flow over a flat plate. This is carried out in
conjunction with the use of polynomial approximations to represent the velocity profile across the viscous region. In
short, as detailed by Schlichting and Gersten [8], the incompressible form of the momentum-integral equation can be
written as:

𝐶 𝑓

2
≡ 𝜏𝑤

𝜌𝑈2 =
1
𝑈2

𝜕

𝜕𝑡

(
𝑈𝛿*) + d𝜃

d𝑥
+
(
2𝜃 + 𝛿*) 1

𝑈

d𝑈
d𝑥

(momentum-integral equation), (6)

where𝐶 𝑓 , 𝜏𝑤, 𝛿*, and 𝜃 stand for the skin friction coefficient, wall shear stress, displacement thickness, and momentum
thickness, respectively. The last two properties along with their ratio, which returns the shape factor 𝐻 ≡ 𝛿*/𝜃, can be
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evaluated from

𝛿* ≡
∫ ∞

0

𝑈 − 𝑢

𝑈
d𝑦 ≈ 𝛿

∫ 1

0
(1 − 𝐹) d𝜉, (7)

and

𝜃 ≡
∫ ∞

0

𝑢

𝑈

𝑈 − 𝑢

𝑈
d𝑦 ≈ 𝛿

∫ 1

0
𝐹 (1 − 𝐹) d𝜉, (8)

with

𝐻 ≡

∫ ∞
0

𝑈 − 𝑢

𝑈
d𝑦∫ ∞

0
𝑢

𝑈

𝑈 − 𝑢

𝑈
d𝑦

≈
∫ 1
0 (1 − 𝐹) d𝜉∫ 1

0 𝐹 (1 − 𝐹) d𝜉
. (9)

Given our interest in pursuing steady-state solutions, we may eliminate the time-dependent terms in Eq. (6) and continue
our analysis by referring to

𝐶 𝑓

2
=

d𝜃
d𝑥

+ (2 + 𝐻) 𝜃

𝑈

d𝑈
d𝑥

(steady momentum-integral equation). (10)

B. Flow Regime and Boundary Conditions

In the laminar boundary-layer regime, the local Reynolds number 𝑅𝑒𝑥 may be assumed to be reasonably small,
specifically, not exceeding the critical value of 105. Moreover, in the presence of a uniform crossflow velocity, the
viscous disturbance thickness begins to grow from its thinnest value at the stagnation point (𝜙 = 0◦) to a maximum
height that occurs at separation. As illustrated in Fig. 1a, the latter takes place along the aft portion of the cylinder.
Then, considering the typically small size of the boundary-layer thickness compared to the cylindrical radius, the
flow bending effect may be neglected in a leading-order approximation. As such, the tangential motion along the
curved surface may be likened to that of its axial counterpart over a flat plate [35]. This simple analogy enables us to
employ the same set of flow profiles devised by Pohlhausen [4] and others to model the velocity distribution within the
boundary-layer region using the KP approach [3]. Some of these formulations are reviewed by Majdalani and Xuan
[17] and further discussed by Pritchard and Mitchell [7]. In short, the guessed profiles consist of several piecewise
approximations that are intended to mimic the behavior of the Blasius solution over the 0 ≤ 𝑦 ≤ 𝛿 interval, and that
become fixed at unity over the semi-infinite domain, 𝛿 < 𝑦 < ∞. In the absence of a pressure gradient, three of these
profiles are of particular interest here. These consist of Pohlhausen’s cubic and quartic profiles [4],

𝑢

𝑈
=

3
2
𝑦

𝛿
− 1

2
𝑦3

𝛿3 (P3) and
𝑢

𝑈
= 2

𝑦

𝛿
− 2

𝑦3

𝛿3 + 𝑦4

𝛿4 (P4), (11)

which are often referred to as P3 and P4, in reference to their polynomial orders [14], as they satisfy either four or five
of the basic boundary conditions postulated by Pohlhausen [4]. Using similar arguments to those made by Pohlhausen
[4], and by avoiding a prematurely imposed boundary condition on the normal shear-stress gradient evaluated at the
edge of the boundary layer, a rationally-optimized quartic profile is derived by Majdalani and Xuan [17]. Again, for
the case of zero angle of incidence over a flat plate, one gets:

𝑢

𝑈
=

5
3
𝑦

𝛿
− 𝑦3

𝛿3 + 1
3
𝑦4

𝛿4 (M4). (12)

As shown in Table 1, which compares the boundary-layer properties predicted by P3, P4, and M4 to those ascribed
to Blasius [2], one can confirm that, with an error that does not exceed 1.7% over the entire 0 ≤ 𝑦 ≤ 𝛿 interval in any
of the fundamental properties, M4 outperforms its polynomial counterparts in approximating the traditional Blasius
estimates. These include both displacement and momentum thicknesses (𝛿*, 𝜃), shape factor 𝐻, disturbance thickness
𝛿, and skin friction coefficient 𝐶 𝑓 . In contrast, the P3 and P4 profiles lead to appreciably larger peak errors of 9% and
17%, respectively. In fact, by comparing P3 and P4 estimates, it may be seen that P3 outperforms P4 in predicting the
non-dimensional displacement and momentum thicknesses, whose errors increase from 9.0% and 4.7% to 13% and
12%, respectively, when P3 is replaced by P4. Moreover, the overall 𝐿2 error, which is defined relative to the Blasius
solution, increases from 0.034 to 0.054 when Pohlhausen’s cubic polynomial is superseded by its quartic form. Here
too, the overall 𝐿2 ≈ 0.008 error that accompanies M4 proves to be lower by one full order of magnitude.

5
American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 A

U
B

U
R

N
 U

N
IV

ER
SI

TY
 o

n 
Ju

ne
 2

2,
 2

02
2 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I: 
10

.2
51

4/
6.

20
22

-3
24

6 



Table 1. Characteristic boundary-layer predictions and corresponding errors relative to the Blasius solution
using three piecewise-analytic velocity profiles [6–8]

Profile 𝐹

( 𝑦
𝛿

)
≡ 𝑢

𝑈

𝛿*
𝛿

𝜃

𝛿
𝐻 =

𝛿*
𝜃

𝛿

𝑥

√
𝑅𝑒𝑥 𝐶 𝑓

√
𝑅𝑒𝑥

𝛿*
𝑥

√
𝑅𝑒𝑥 𝐿2 error

P3
3
2
𝑦

𝛿
− 1

2
𝑦3

𝛿3 0.375 0.139 2.692 4.641 0.646 1.740 0.034

Error 9.0% 4.7% 4.0% 7.2% 2.6% 1.1%

P4 2
𝑦

𝛿
− 2

𝑦3

𝛿3 + 𝑦4

𝛿4 0.300 0.118 2.554 5.836 0.685 1.751 0.054

Error 13% 12% 1.4% 17% 3.2% 1.8%

M4
5
3
𝑦

𝛿
− 𝑦3

𝛿3 + 1
3
𝑦4

𝛿4 0.350 0.134 2.618 4.993 0.668 1.748 0.008

Error 1.7% 0.52% 1.1% 0.13% 0.53% 1.6%
Blasius [2] Eq. (5) [1908 numerics] 0.344 0.133 2.59 5.000† 0.664 1.72

† Although the 1908 value of 5.0 is still widely used, a more precise modern computation yields 4.9099895 [17].

Upon further scrutiny, what causes Pohlhausen’s fourth-order polynomial P4 to deteriorate in predictive capability
relative to P3 or M4, despite its ability to secure five boundary conditions instead of four, can be attributed to its
incorporation of an overly constraining physical requirement [17]. In the interest of clarity, it may be instructive to
revisit the five constraints that each of Pohlhausen’s polynomials seeks to satisfy progressively with each successive
order. These encompass the velocity adherence condition both at the wall and boundary-layer edge, the vanishing of
the shear stress at the edge of the viscous layer, the axial momentum balance at the wall, and, lastly, the vanishing of
the normal gradient of the shear stress at the edge of the viscous layer. Mathematically, these physical requirements
translate into:

𝑢(𝑥, 0) = 0 or 𝐹 (0) = 0 (inner wall velocity adherence), (13)
𝑢(𝑥, 𝛿) = 𝑈 (𝑥) or 𝐹 (1) = 1 (outer edge velocity adherence), (14)
𝜕𝑢

𝜕𝑦

����
𝑦=𝛿

= 0 or 𝐹′ (1) = 0 (negligible outer edge shear stress), (15)

𝜕2𝑢

𝜕𝑦2

����
𝑦=0

=
1
𝜇

d𝑝
d𝑥

= −𝑈
𝜈

d𝑈
d𝑥

or 𝐹′′ (0) = −Λ (pressure-determined wall shear-stress gradient), (16)

𝜕2𝑢

𝜕𝑦2

����
𝑦=𝛿

= 0 or 𝐹′′ (1) = 0 (outer edge shear-stress gradient), (17)

where Pohlhausen’s pressure parameter, which represents a non-dimensional pressure gradient, is given by

Λ ≡ − 𝛿2

𝜇𝑈

d𝑝
d𝑥

=
𝛿2

𝜈

d𝑈
d𝑥

(Pohlhausen’s pressure parameter). (18)

Note that the fourth condition, Eq. (16), ensures that the axial momentum balance is observed at the wall, wherein the
pressure gradient may be exchanged with the farfield velocity gradient by way of Euler’s equation [9]. However, as
shown in previous work [17], the fifth constraint in Eq. (17) proves to be rather imprecise at the edge of 𝛿. Despite the
negligible shear stress at the edge of the viscous layer, its normal gradient continues to change.

To better understand this elusive inconsistency, it is helpful to compare the behavior of the polynomial
approximations under consideration to those of the Blasius solution at the endpoints of the viscous layer. This is
accomplished in Table 2 where the normalized velocity function 𝐹 = 𝑢/𝑈 and its derivatives with respect to the
normalized boundary-layer coordinate 𝜉 are compared to their precisely computed values from the exact Blasius
equation. As one can immediately see, the assumption of 𝐹′′ (1) = 0 for a flat plate with no pressure gradient deviates
from the exact Blasius value of −0.709 by one order of magnitude. Moreover, M4 provides the closest estimate for
the Blasius connection parameter, slope, or constant, 𝐹′ (0) = 1.630, relative to P3 and P4, which, alternatively, yield
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Table 2. Comparison of the endpoint values of P3, P4, and M4 to the traditional Blasius values. All derivatives
are taken with respect to 𝝃 = 𝒚/𝜹

Profile 𝐹 (𝜉) = 𝑢/𝑈 𝐹 (0) 𝐹′ (0) 𝐹′′ (0) 𝐹 (1) 𝐹′ (1) 𝐹′′ (1)
P3 3

2𝜉 −
1
2𝜉

3 0 1.500 0 1.000 0 −3.000
P4 2𝜉 − 2𝜉3 + 𝜉4 0 2.000 0 1.000 0 0.000
M4 5

3𝜉 − 𝜉3 + 1
3𝜉

4 0 1.667 0 1.000 0 −2.000
Blasius [2] Eq. (5) 0 1.630 0 0.990 0.0904 −0.709

1.5 and 2.0, respectively. Clearly, P4 leads to the largest velocity slope disparity at the wall, which helps to justify its
tendency to overshoot the Blasius solution relative to P3 or M4. On the other hand, the improved accuracy associated
with M4 may be attributed to its ability to observe Pohlhausen’s four essential boundary conditions that are consistent
with the Blasius estimates, while judiciously avoiding the fifth requirement that deviates from its Blasius counterpart.
Lastly, it may be useful to note that Pohlhausen’s simplifying assumption of 𝑢 = 𝑈 instead of 𝑢 = 0.99𝑈 [or 𝐹 (1) = 1
instead of 0.99] in Table 2 equally affects all piecewise approximations. Only the Blasius solution returns the defining
value of 99%, as one expects at 𝑦 = 𝛿.

C. Velocity Profiles for Nonzero Pressure Gradients

The foregoing observations explain, at least in part, why Pohlhausen polynomials of order four and higher, which
incorporate the fifth condition [Eq. (17)], tend to deteriorate relative to their lower-order forms. Conversely, those that
discount the fifth condition tend to be generally more accurate[17]. Bearing these factors in mind, one may proceed by
applying the KP approach to the problem involving a variable 𝑈 (𝑥) and, therefore, a non-vanishing pressure gradient
in the farfield region. Using KP3, KP4, and MX4 in reference to the pressure-sensitive polynomials, one obtains, after
some algebra (see Appendix B), the following expressions:

𝐹 (𝜉) =


3
2𝜉 −

1
2𝜉

3 + 1
4Λ

(
𝜉 − 2𝜉2 + 𝜉3) (KP3),

2𝜉 − 2𝜉3 + 𝜉4 + 1
6Λ

(
𝜉 − 3𝜉2 + 3𝜉3 − 𝜉4) (KP4),

5
3𝜉 − 𝜉3 + 1

3𝜉
4 + Λ

(
83
400𝜉 −

1
2𝜉

2 + 151
400𝜉

3 − 17
200𝜉

4
)

(MX4).

(19)

In what follows, the same analysis will be repeated using the three representative profiles, whose solutions for flow
over a flat plate with a variable pressure gradient will be collectively conveyed to a cylinder in crossflow.

D. Momentum-Integral Analysis of a Cylinder in Crossflow

In the presence of a variable pressure gradient, Λ proves to be a keystone parameters on which most properties of
interest depend. At this point in the analysis, however, the distribution of Λ around the cylinder remains unknown. As
such, the first essential step becomes that of determining the pressure distribution along the surface of the cylinder.
This may be accomplished by combining the definition of Λ from Eq. (18) and the farfield velocity distribution, 𝑈 (𝑥),
to retrieve a relation linking the disturbance thickness 𝛿 to the spatial location. One gets

𝛿2 (𝜙) = 𝜈Λ(𝜙)
d𝑈/d𝑥 and so

𝛿(𝜙)
𝐷

=

√︄
Λ(𝜙)

4𝑅𝑒𝐷 cos 𝜙
, (20)

where 𝑅𝑒𝐷 ≡ 𝑈∞𝐷/𝜈. Note that Eq. (20) does not directly depend on the assumed velocity profile 𝐹 (𝜉), but rather on
the farfield velocity distribution, 𝑈 (𝑥), which controls the pressure gradient. Consequently, this relation remains valid
for all profiles. Bearing this in mind and using Eq. (8) in conjunction with each of the three velocity profiles in the
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nearfield, the momentum thickness 𝜃 can be readily evaluated and written in terms of Λ and 𝛿, namely,

𝜃

𝛿
=

∫ 1

0
𝐹 (1 − 𝐹) d𝜉 =


1

280

(
39 − 1

2Λ − 1
6Λ

2
)

(KP3),

1
63

(
37
5 − 1

15Λ − 1
144Λ

2
)

(KP4),

1
2520

(
3032

9 − 1159
300 Λ − 29791

40000Λ
2
)

(MX4).

(21)

Then, since 𝛿(𝜙) is prescribed by Eq. (20), it may be wholly eliminated from Eq. (21). This enables us to express 𝜃
solely in terms of Λ(𝜙) and 𝜙, specifically,

𝜃 (𝜙)
𝐷

√︁
𝑅𝑒𝐷 =



1
280

(
39 − 1

2Λ − 1
6Λ

2
) √︂ Λ

4 cos 𝜙
(KP3),

1
63

(
37
5 − 1

15Λ − 1
144Λ

2
) √︂ Λ

4 cos 𝜙
(KP4),

1
2520

(
3032

9 − 1159
300 Λ − 29791

40000Λ
2
) √︂ Λ

4 cos 𝜙
(MX4).

(22)

At this juncture, it proves helpful to recall the elegant transformation produced by Walz [15] and fitted to a
substantial body of experimental measurements; the resulting formulation is known for providing a straightforward
integral relation between the momentum thickness and the farfield solution irrespective of the nearfield velocity profile.
Being based on empirical measurements rather than viscous models of the nearfield velocity [8], one may estimate the
momentum thickness directly from

𝜃2 ≈ 0.47𝜈
𝑈6

∫ 𝑥

0
𝑈5 d𝑥. (23)

Practically, one may replace 𝑈 (𝑥) by the potential flow velocity distribution and switch the integration variable from 𝑥

to 𝜙; after minor rearrangements, Eq. (23) returns:

𝜃 (𝜙)
𝐷

√︁
𝑅𝑒𝐷 =

√︄
0.1175
sin6 𝜙

(
8
15

− cos5 𝜙

5
+ 2 cos3 𝜙

3
− cos 𝜙

)
. (24)

Being solely dependent on 𝜙 and generally applicable to any assumed velocity in the boundary-layer region, Eq. (24)
provides the closure relation needed to solve this problem. One may proceed by equating the right-hand side of Eq. (24)
to the respective right-hand side of Eq. (22) for each of the three candidate functions. This enables us to retrieve an
expression for Λ as a function of 𝜙 (see Appendix C). Lastly, being limited to a laminar regime, it may be recognized
that the validity of the solutions just obtained will cease beyond the point of separation. For this reason, it is essential
to determine the range of Λ leading up to 𝜙 = 𝜙sep. The latter can be evaluated at the point where the laminar shear
stress at the wall vanishes, i.e., 𝑠 ≡ (𝜕𝑢/𝜕𝑦) |𝑦=0 = 0. More specifically, by suppressing the first derivative of the
normalized velocity at the wall (a quantity that we have labeled as “𝑠” in previous work [17]), the critical value of Λ
may be determined. One finds:

𝑠(Λ) =


3
2 + 1

4Λsep = 0 (KP3),

2 + 1
6Λsep = 0 (KP4),

5
3 + 83

400Λsep = 0 (MX4).

(25)

The separation values are thus found to be Λsep = −6 (KP3), −12 (KP4), and −8.0321 (MX4). As indicated earlier,
having a direct correlation of the form Λ = Λ(𝜙) in hand, one may set Λ(𝜙sep) = Λsep and deduce the separation angle
for each of the assumed profiles as well as the critical pressure gradient at the point of separation.

For the reader’s convenience, the separation angles that accompany these models are evaluated and summarized
in Table 3 along with the accrued errors relative to the numerical projection of 𝜙sep = 105◦ reported by Žukauskas
and Žiugžda [36]. The latter employs a modification of the finite-difference method of Patankar and Spalding [37]
where a partial derivative solution of the linear differential equations of motion is substituted for the original finite-
difference approach. Accordingly, the partial differential equations representing continuity and axial momentum are
discretized using forward differences and then solved using an explicit marching technique to calculate 𝑢 and 𝑣 until
𝐶 𝑓 is suppressed at the point where (𝜕𝑢/𝜕𝑦) |𝑦=0 = 0.
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Table 3. Separation angle using three different velocity profiles with the corresponding errors relative to
numerical prediction of 𝝓sep = 105◦ reported by Žukauskas and Žiugžda [36]

Profile KP3 KP4 MX4
Separation angle 103.56◦ 107.71◦ 105.91◦

Error 1.37% 2.58% 0.87%

0° 20° 40° 60° 80° 100°

-8

-4

0

4

-12

8

 KP3
 KP4
 MX4

a)

0° 20° 40° 60° 80° 100°

1

2

3

0

4

DRe
D

 KP3
 KP4
 MX4

b)

Fig. 2. Profile-dependent angular variations of a) the non-dimensional pressure gradient parameter 𝚲 as well
as b) the normalized hydrodynamic disturbance thickness 𝜹

√
𝑹𝒆𝑫/𝑫.

Interestingly, the same compact MX4 profile, which has been previously shown to outperform other polynomial
approximations at the same order or lower, namely, in predicting boundary-layer characteristics for flow over a flat
plate [9], continues to provide the most accurate estimate of the separation point for flow over a cylinder. By exhibiting
a mere relative error of 0.87%, the pressure-augmented MX4 profile given by Eq. (19) may be viewed as being
practically equivalent to the numerical simulations conducted by Žukauskas and Žiugžda [36]. As for KP3 and KP4,
their projections also seem to be fair, although the error entailed in the KP4 model is almost twice that of KP3. Such
a perplexing outcome could have been anticipated by recognizing that KP4 is compelled to satisfy a rather imprecise
boundary condition in Eq. (17), particularly, which stands at the root of the Pohlhausen paradox [17].

To further complement the tabulated values, the angular distributions of Pohlhausen’s pressure parameter Λ(𝜙) as
well as a normalized form of the hydrodynamic disturbance thickness 𝛿

√
𝑅𝑒𝐷/𝐷 are provided in Fig. 2 as functions

of the azimuthal angle 𝜙. These are supplied for each of the velocity profiles using solid (KP3), broken (KP4), and
chained (MX4) lines. Unsurprisingly, these profile-dependent angular variations show strong similarities, especially
between MX4 and KP3, which remain the two most accurate models. As for KP4, its disparities are quite visible in
both Fig. 2a and Fig. 2b. Based on Part (a), the pressure parameter may be seen to range from Λ0 = 6.075 (MX4),
6.274 (KP3), and 7.215 (KP4) at the front stagnation point down to Λsep = −8.0321, −6, and −12, respectively.

Based on Part (b), one confirms that the largest boundary-layer thicknesses in all models are realized at the point
of separation and that 𝛿 at the front stagnation point is not zero, but rather finite. Graphically, one may estimate
starting values of 𝛿

√
𝑅𝑒𝐷/𝐷 ≈ 1.232 (MX4), 1.252 (KP3), and 1.343 (KP4) at the nose of the cylinder and ending

values of 2.681, 2.411, and 3.123, respectively. Subsequently, using the boundary-layer thickness 𝛿, the normalized
displacement thickness 𝛿*/𝛿 can be evaluated and displayed, as shown in Fig. 3a. The normalized displacement
thickness follows a closely similar increasing trend to that of 𝛿; both are characterized by slow variations between the
front stagnation point at 𝜙 = 0◦ and halfway to separation at approximately 53◦, and these are followed by progressive
steepening as the separation point is approached. More specifically, one can see that the initial values of 𝛿*/𝛿 vary, in
descending order, from 0.262 (MX4) to 0.244 (KP3), and then 0.240 (KP4). As for the peak displacement values that
occur at separation, KP3 is seen to supersede MX4 (starting at around 60◦) to reach a maximum value of 0.488 (KP3),
whereas MX4 and KP4 reach 0.464 and 0.398, respectively. Along similar lines, the maximum value of the momentum
shape factor 𝐻 at the front stagnation point in Fig. 3b starts at 1.873 (MX4), 1.746 (KP3), and 1.714 (MX4); it then
decreases to a minimum that is reached just before the separation point; the minimum shape factor obtained for each
profile is thus found to be 1.468 (KP3), 1.323 (MX4), and 1.099 (KP4). As such, all three profiles predict 𝛿* > 𝜃 or

9
American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 A

U
B

U
R

N
 U

N
IV

ER
SI

TY
 o

n 
Ju

ne
 2

2,
 2

02
2 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I: 
10

.2
51

4/
6.

20
22

-3
24

6 



0° 20° 40° 60° 80° 100°

0.2

0.4

0

0.6

*

 KP3
 KP4
 MX4

a)

0° 20° 40° 60° 80° 100°

0.5

1.5

0

1

2

*

 KP3
 KP4
 MX4

b)

Fig. 3. Profile-dependent angular variations of a) the normalized local displacement thickness 𝜹∗/𝜹 and b) the
dimensionless momentum shape factor 𝑯 = 𝜹∗/𝜽 .

𝐻 > 1 over the entire physical range, in full conformance to boundary-layer theory. Interestingly, both the normalized
displacement thickness and momentum shape factor associated with KP3 start below those of MX4 and then switch
order at 𝜙 ≈ 60◦, thus leading to lower values of MX4-based 𝛿* and 𝐻 relative to KP3 at separation. As for KP4, its
predictions undershoot those of MX4. As a result, MX4 properties such as Λ, 𝛿, 𝛿*, and 𝐻 in both Figs. 2 and 3 may
be seen to serve as the middle ground by falling strictly between their KP3 and KP4 values at separation. This behavior
may be attributed to the initial velocity slope of MX4 being bracketed by the slopes of KP3 and KP4, as per Eq. (25).

E. Viscous Boundary-Layer Characteristics

Having determined the normalized pressure distributions for each model from stagnation to separation, other
characteristic properties may be readily evaluated. For example, the local skin friction coefficient 𝐶 𝑓 may be deduced
from the non-dimensional ratio of the wall shear stress and the dynamic pressure. As usual, one can put

𝐶 𝑓 =
𝜏𝑤

1
2 𝜌𝑈

2
∞

=
𝜇 (𝜕𝑢/𝜕𝑦) |𝑦=0

1
2 𝜌𝑈

2
∞

. (26)

By inserting each of the individual velocity profiles into Eq. (26) and rearranging, the local skin friction may be
straightforwardly retrieved. One gets:

𝐶 𝑓

√︁
𝑅𝑒𝐷 =



8
(

3
2 + 1

4Λ
)

sin 𝜙
√︂

cos 𝜙
Λ(𝜙) (KP3),

8
(
2 + 1

6Λ
)

sin 𝜙
√︂

cos 𝜙
Λ(𝜙) (KP4),

8
(

5
3 + 83

400Λ
)

sin 𝜙
√︂

cos 𝜙
Λ(𝜙) (MX4).

(27)

It may be instructive to note that, as one may have anticipated, the first-order derivative or slope of the velocity
profile at the wall, which is given by Eq. (25), appears in the local skin friction coefficient rather explicitly, as it does
in several other flow properties. This reaffirms the influential role that the slope plays in controlling the momentum-
integral solution. Furthermore, since Eq. (27) is solely dependent on 𝜙,𝐶 𝑓 may be characterized in Fig. 4a as a function
of 𝜙 up to the separation point. Therein, the skin friction coefficient associated with each of the models is reproduced
and compared to the numerical predictions of Schönauer [38] as well as the series approximation provided by Terrill
[39]; the former relies on an implicit finite difference method for treating laminar, incompressible, stationary boundary
layers over impermeable cylinders using Crocco’s differential equation.

Forthwith, it may be seen that the chained MX4 line stays in fair agreement with the computations performed
by both Schönauer [38] and Terrill [39], especially as the separation point is approached in Fig. 4a. The enhanced
agreement is portrayed further in Table 4, where MX4 can be ascertained to predict the lowest 𝐿2 error of the three
profiles under consideration as compared to the aforementioned results of Schönauer [38] and Terrill [39]. Graphically,
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Table 4. 𝑳2 error for the local skin friction 𝑪 𝒇
√
𝑹𝒆𝑫 relative to the numerical results of Schönauer [38] and

Terrill [39] using three different velocity profiles

Profile KP3 KP4 MX4
𝐿2 error (Schönauer) 1.195 1.186 0.958
𝐿2 error (Terrill) 1.057 1.166 0.822

0° 20° 40° 60° 80° 100°

2

4

6

0

7

f DC Re
 KP3
 KP4
 MX4
 Terrill
 Schönauer

a)

101 102 103 104 105

1

2

3

4

5  KP3     Wieselsberger
 KP4     D Alessio
 MX4     Takami

DRe

DC

b)

Fig. 4. Profile-dependent variations of a) the normalized local skin friction coefficient 𝑪 𝒇
√
𝑹𝒆𝑫 as a function

of 𝝓 relative to numerical predictions by both Schönauer [38] and Terrill [39]. Also shown is b) the total drag
coefficient 𝑪𝑫 as a function of 𝑹𝒆𝑫 relative to experimental measurements by Wieselsberger [40] side-by-side
with numerical simulations by Takami [41] as well as D’Alessio and Dennis [42].

one may also identify that the maximum skin friction coefficient (𝐶 𝑓 )max takes on the values of 6.1063 (MX4),
6.1500 (KP3), and 6.1758 (KP4) at the particular angles of 𝜙max = 57.53◦, 56.23◦, and 58.04◦, respectively. Here
too, the momentum-integral predictions seem to agree rather well with Schönauer’s computations, which yield a
(𝐶 𝑓 )max ≈ 6.494 at 𝜙max ≈ 56.95◦, as well as Terrill’s predictions of (𝐶 𝑓 )max ≈ 6.383 at 𝜙max ≈ 57.3◦. In comparison
to Schönauer’s and Terrill’s, the MX4 overpredicts the locus of (𝐶 𝑓 )max by only 1.02% and 0.40%, respectively.

At this juncture, having fully determined the local 𝐶 𝑓 behavior, one may proceed to calculate the total friction
exerted over the cylinder; this can be achieved by integrating the local skin friction coefficient over the attached segment
of the cylinder. The resulting friction drag coefficient may be calculated from [9]:

𝐶𝐷 𝑓
=

∫ 𝜙sep

0
𝐶 𝑓 sin 𝜙 d𝜙. (28)

In the above, we note that the integration bounds on 𝜙 do not cover the entire back of the cylinder. Instead, they
range from zero at stagnation to 𝜙sep at separation. Recognizing that𝐶 𝑓 suddenly drops to zero when the flow detaches,
one does not expect an appreciable contribution of the shear stress over the rear portion of the cylinder. Solving Eq. (28)
for the respective profiles and rearranging, one obtains:

𝐶𝐷 𝑓

√︁
𝑅𝑒𝐷 =


5.5230 (KP3),
5.7963 (KP4),
5.6259 (MX4).

(29)

Another figure of merit consists of the pressure or form drag coefficient; this property takes into account the
existence of a higher pressure along the front portion of the cylinder as opposed to the lower pressure forming along
its rear portion. The normalized pressure difference and, in turn, the non-dimensional local pressure coefficient, may
be evaluated from

𝐶𝑃 =
Δ𝑝

1
2 𝜌𝑈

2
∞

= 2 (1 − cos 2𝜙) + 8
𝑅𝑒𝐷

(1 − cos 𝜙) . (30)

11
American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 A

U
B

U
R

N
 U

N
IV

ER
SI

TY
 o

n 
Ju

ne
 2

2,
 2

02
2 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I: 
10

.2
51

4/
6.

20
22

-3
24

6 



Since the relations used to derive Eq. (30) depend solely on the farfield velocity, the resulting expression for 𝐶𝑃

remains valid for any assumed profile. As with the local skin friction and associated drag coefficients, the pressure
drag 𝐶𝐷𝑝

can be determined by integrating 𝐶𝑃 over the entire area of interest. As before, the bounds of integration
start from the frontal stagnation point and extend all the way to separation. Algebraically, one computes

𝐶𝐷𝑝
=

∫ 𝜙sep

0
𝐶𝑃 cos 𝜙 d𝜙. (31)

At first glance, Eq. (31) may appear to be invariant with respect to the assumed velocity profile; however, since
each profile leads to a different separation point, dissimilarities in the pressure drag prediction can be expected. One
gets

𝐶𝐷𝑝 =



1.2249 + 1.4587
𝑅𝑒𝐷

(KP3),

1.1526 + 1.2604
𝑅𝑒𝐷

(KP4),

1.1860 + 1.3546
𝑅𝑒𝐷

(MX4).

(32)

Now that both 𝐶𝐷 𝑓
and 𝐶𝐷𝑝 are in hand, the total drag coefficient may be deduced. One obtains

𝐶𝐷 = 𝐶𝐷 𝑓 + 𝐶𝐷𝑝 =



1.2249 + 1.4587
𝑅𝑒𝐷

+ 5.5230
√
𝑅𝑒𝐷

(KP3),

1.1526 + 1.2604
𝑅𝑒𝐷

+ 5.7963
√
𝑅𝑒𝐷

(KP4),

1.1858 + 1.3538
𝑅𝑒𝐷

+ 5.6259
√
𝑅𝑒𝐷

(MX4).

(33)

Forthwith, the dependence of𝐶𝐷 on the Reynolds number is illustrated in Fig. 4b for each of the guessed functions.
This is carried out over a range of 4 < 𝑅𝑒𝐷 < 105, where the rapid depreciation of 𝐶𝐷 is demonstrated in the
fully laminar range from 4.3 at 𝑅𝑒𝐷 = 4 to a value of 1.3 at 𝑅𝑒𝐷 = 103. Beyond this point, the drag coefficient
appears to asymptote very slowly to a value of about 1.2 as transition is approached. Note that the analytical results
are accompanied by experimental measurements due to Wieselsberger [40]. The latter are based on wind-tunnel
tests conducted on a cylinder in crossflow using air as the working fluid and a wide range of diameters. They are
also compared to numerical predictions by Takami [41] as well as D’Alessio and Dennis [42]. In these works,
Takami [41] relies on an iterative finite-difference technique to tackle the cylinder in crossflow over a range of Reynolds
numbers whereas D’Alessio and Dennis [42] decompose the solution domain into an inner region where boundary-layer
characteristics are resolved and an outer region where wake flow phenomena are modeled.

F. Topology of the Wall-Tangential and Wall-Normal Velocity Profiles

Lastly, with 𝑢 = 𝑈𝐹 in hand, one may use continuity to deduce the normal component of velocity 𝑣 as shown
in detail in Appendix D. One may then proceed to characterize the variation of both 𝑢/𝑈 and 𝑣/𝑈 with the pressure
parameter or, alternatively, 𝜙. The former is illustrated in Figs. 5a–5c where the non-dimensional component 𝑢/𝑈 is
displayed at several distinct values of Λ for each of the three profiles. These range from the peak adverse pressure
gradient Λsep at separation to the largest allowable pressure gradient Λ0 at the front stagnation point. In the interest
of clarity, all three profiles at separation are gathered and further compared side-by-side in Fig. 5d. Therein, one may
note the vertically tangential slope at 𝑦 = 0, which clearly reflects the vanishing shear stress requirement at the wall,
(𝜕𝑢/𝜕𝑦) |𝑦=0 = 0. One may also infer that the shear stress associated with the MX4 profile continues to serve as a
compromise between its KP3 and KP4 values, which either undershoot or overshoot the local shear stress, respectively.

As for the behavior of the normal velocity 𝑣
√
𝑅𝑒𝐷/𝑈∞, which is formulated in Appendix D, it is displayed in

Figs. 6a–6c at several equispaced angles taken in 20◦ increments around the cylinder and ranging from the stagnation
point at 𝜙 = 0◦ to the back of the cylinder, where 𝜙 = 100◦. For the sake of completeness, the normal velocity profiles
at their separation angles are collected and displayed side-by-side in Fig. 6d. Interestingly, the change in 𝑣 from the
wall to the edge of the boundary layer broadens as one moves further away from the front stagnation point toward
separation, thus illustrating the gradual increase in 𝑣max around the cylinder. Graphically, it can be seen that the normal
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c) MX4
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0.8

0

1

sep 8.032
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  KP3
  KP4
  MX4

d) Λ = Λsep

Fig. 5. Spatial variation of the non-dimensional tangential velocity 𝒖/𝑼 at several distinct values of 𝚲 that range
from stagnation to separation according to a) KP3, b) KP4, and c) MX4. Part d) provides a comparison of all
three profiles at separation.

velocity, which occurs at the separation point, attains a maximum value of 𝑣max = 13.060 (MX4), 12.798 (KP4), and
10.108 (KP3), in descending order. Interestingly, despite KP4 predicting higher values of 𝑣 over the vast majority of
the boundary-layer thickness, it is exceeded by MX4 near the edge of the boundary layer, specifically, in the top 10%
of 𝛿. As a result, MX4 may be seen to predict the highest 𝑣max of the three profiles at separation, with KP3 providing
the most conservative values of 𝑣 everywhere.

III. Thermal Analysis

A. Thermal Configurations and Temperature Profiles

Having showcased the effectiveness of the momentum-integral approach, when used in conjunction with rationally-
optimized polynomial approximations, at predicting viscous boundary-layer characteristics, one may invoke the
Reynolds analogy to extend this procedure to the heat transfer analysis of thermal boundary layers, specifically,
for flow past a cylinder. The latter can be achieved by coupling the momentum-integral formulation with the energy
balance equation given by Eq. (4). The main objective of the thermal analysis will be to model the thermal layer in the
process of determining a Nusselt number correlation that is suitable for predicting convective heat transfer from the
surface of the cylinder. To do so, two canonical thermal configurations will be considered, as depicted schematically
in Fig. 7. In the first, isothermal case, the surface of the cylinder will be maintained at a uniform wall temperature
(UWT); in the second, isoflux case, the cylinder will be subjected to a uniform wall flux (UWF). In both situations, the
temperature of the wall 𝑇𝑤 will be taken to exceed 𝑇∞, thus leading to two cases of freestream heating. Accordingly,
𝑇𝑤 will remain spatially invariant in the UWT configuration and, conversely, the wall heat flux per unit area 𝑞𝑤 will be
held constant in the UWF configuration. As usual, the edge of the thermal boundary layer will be situated at 𝑦 = 𝛿𝑇 ,
where 𝛿𝑇 denotes the thermal layer thickness [9]. At such a distance, the temperature would have practically reached
its freestream value and the normal gradients of the temperature in the 𝑦-direction would have nearly vanished. Using
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d) 𝜙 = 𝜙sep

Fig. 6. Spatial variation of the non-dimensional normal velocity 𝒗
√
𝑹𝒆𝑫/𝑼∞ at several distinct values of 𝝓

that range from stagnation to near separation according to a) KP3, b) KP4, and c) MX4. Part d) provides a
comparison of all three profiles at separation.

TU   ,

Curved wall maintained 
at uniform T

w
 (UWT) or q

w 
(UWF) 

T( y) = 0.99T
u( y) = 0.99U(x)

q
w

T
w

δ
δ

Τ

x
y

Fig. 7. Schematics of the viscous and thermal boundary layers, 𝜹 and 𝜹𝑻 , for the two fluid heating scenarios
corresponding to either a curved surface at uniform wall temperature (UWT) or heat flux (UWF).

𝑘 𝑓 to designate the fluid’s thermal conductivity, the boundary conditions for the ensuing two-pronged problem can be
expressed as

𝑦 = 0;

𝑇 = 𝑇𝑤 (uniform wall temperature, UWT case),
𝜕𝑇

𝜕𝑦
= −𝑞𝑤

𝑘 𝑓

(uniform wall flux, UWF case),
(34a)
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and, for both cases,
𝑦 = 𝛿𝑇 ; 𝑇 = 𝑇∞ with

𝜕𝑇

𝜕𝑦
= 0. (34b)

Based on the Reynolds analogy and the technique used recently by Majdalani and Xuan [17], a total of six thermal
profiles may be defined, particularly, two for each of the KP3, KP4, and MX4 models depending on whether isothermal
or isoflux requirements are imposed. In summary, one may define 𝜉𝑇 ≡ 𝑦/𝛿𝑇 and obtain, under isothermal conditions,
the following reduced temperature distributions:

𝑇 − 𝑇∞
𝑇𝑤 − 𝑇∞

=


1 − 3

2𝜉𝑇 + 1
2𝜉

3
𝑇

(KP3, UWT),

1 − 2𝜉𝑇 + 2𝜉3
𝑇
− 𝜉4

𝑇
(KP4, UWT),

1 − 5
3𝜉𝑇 + 𝜉3

𝑇
− 1

3𝜉
4
𝑇

(MX4, UWT).

(35)

Similarly, under isoflux conditions, one recovers:

𝑇 − 𝑇∞
𝑞𝑤𝛿𝑇/𝑘 𝑓

=


2
3

(
1 − 3

2𝜉𝑇 + 1
2𝜉

3
𝑇

)
(KP3, UWF),

1
2
(
1 − 2𝜉𝑇 + 2𝜉3

𝑇
− 𝜉4

𝑇

)
(KP4, UWF),

3
5

(
1 − 5

3𝜉𝑇 + 𝜉3
𝑇
− 1

3𝜉
4
𝑇

)
(MX4, UWF).

(36)

In the interest of clarity, Eqs. (35) and (36) are illustrated side-by-side in Fig. 8. Graphically, one may readily infer that
the MX4-based temperature profile (chained line) remains bracketed, for both UWT and UWF configurations, by the
KP3 (solid) and KP4 (broken) lines, which slightly overshoot and undershoot its value at any vertical distance from the
wall, respectively. Although these thermal distributions are based on the Reynolds analogy for flow over a flat plate,
the small size of 𝛿𝑇 in comparison to the curvature of a typical cylinder in crossflow may be used to justify the present
extension [9].

B. Isothermal Momentum-Integral Analysis

As shown in Appendix E, the integro-differential form of the energy balance relation for the isothermal case can
be expressed as:

𝜕

𝜕𝑥

∫ 𝛿𝑇

0
(𝑇 − 𝑇∞) 𝑢 d𝑦 = −𝛼 𝜕𝑇

𝜕𝑦

����
𝑦=0

, (37)

where, as before, 𝛼 represents the thermal diffusivity. By substituting the velocity profiles from Eq. (19) as well as the
temperature profiles from Eq. (35) into Eq. (37), one retrieves, after some simplifications:

𝛿𝑇
𝜕

𝜕𝑥

[
𝑈 (𝑥)𝛿𝑇 𝜁

(
3
2 + 1

4Λ
)]

= 15𝛼 (KP3), (38)

0.2 0.4 0.6 0.80 1

0.2

0.4

0.6

0.8

0

1

T

y

( ) / ( )wT T T T

 KP3  (UWT)
 KP4  (UWT)
 MX4 (UWT)

a)

0.2 0.4 0.6 0.80 1

0.2

0.4

0.6

0.8

0

1

T

y

( ) / ( / )w T fT T q k

 KP3  (UWF)
 KP4  (UWF)
 MX4 (UWF)

b)

Fig. 8. Profile-dependent spatial variation of the reduced temperature distribution within the thermal boundary
layer for a) UWT and b) UWF thermal configurations.
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𝛿𝑇
𝜕

𝜕𝑥

[
𝑈 (𝑥)𝛿𝑇 𝜁

(
2 + 1

6Λ
)]

= 30𝛼 (KP4), (39)

and
𝛿𝑇

𝜕

𝜕𝑥

[
𝑈 (𝑥)𝛿𝑇 𝜁

(
5
3 + 83

400Λ
)]

=
75
4
𝛼 (MX4), (40)

where 𝜁 ≡ 𝛿𝑇/𝛿 captures the thermal-to-viscous ratio of boundary-layer thicknesses. In practice, 𝜁 < 1 when the
Prandtl number, 𝑃𝑟, is found to exceed unity. In fact, Majdalani and Xuan [17] show that 𝜁 = 𝑃𝑟−1/3 + 𝑂 (𝑃𝑟−1)
provides an excellent approximation so long as 𝑃𝑟 > 0.3; as such, higher-order corrections for 𝜁 = 𝑃𝑟−1/3 may be
safely discounted. A similar assumption will be later adopted in the isoflux analysis, since switching to the UWF
condition does not alter the order of 𝜁 .

At this juncture, integrating the energy balance expressions of Eqs. (38–40) with respect to 𝑥 enables us retrieve
closed-form relations for the normalized 𝛿𝑇 as a function of the azimuthal angle 𝜙. After some effort, we obtain

𝛿𝑇 (𝜙) ≡
𝛿𝑇 (𝜙)
𝐷

𝑅𝑒
1/2
𝐷

𝑃𝑟1/3 =



3

√√√√√√15
∫ 𝜙

0

(
3
2 + 1

4Λ
)

sin 𝜙 d𝜙

4
(

3
2 + 1

4Λ
)2

sin2 𝜙

√︂
Λ

cos 𝜙
(KP3),

3

√√√√√√15
∫ 𝜙

0

(
2 + 1

6Λ
)

sin 𝜙 d𝜙

2
(
2 + 1

6Λ
)2

sin2 𝜙

√︂
Λ

cos 𝜙
(KP4),

3

√√√√√√75
∫ 𝜙

0

(
5
3 + 83

400Λ
)

sin 𝜙 d𝜙

16
(

5
3 + 83

400Λ
)2

sin2 𝜙

√︂
Λ

cos 𝜙
(MX4),

(41)

where 𝛿𝑇 (𝜙) denotes the normalized group parameter that combines the thermal boundary-layer thickness with 𝐷,
𝑅𝑒𝐷 , and 𝑃𝑟. Moreover, in terms of the thermal conductivity of the surrounding fluid 𝑘 𝑓 , the local heat transfer
coefficient can be written as [35]:

ℎ(𝜙) = −
𝑘 𝑓

𝑇𝑤 − 𝑇∞

𝜕𝑇

𝜕𝑦

����
𝑦=0

= −
𝑘 𝑓

𝛿𝑇 (𝜙)
d [(𝑇 − 𝑇∞)/(𝑇𝑤 − 𝑇∞) ]

d𝜉𝑇

����
𝜉𝑇=0

. (42)

After substituting the modeled temperature distributions from Eq. (35) into Eq. (42), the profile-specific local heat
transfer coefficient can be determined using:

ℎ(𝜙)𝛿𝑇 (𝜙) =


3
2 𝑘 𝑓 (KP3),

2𝑘 𝑓 (KP4),
5
3 𝑘 𝑓 (MX4).

(43)

At this point, rearranging Eq. (41) and substituting it into Eq. (43) enables us to construct the local Nusselt number
correlation for each of the three thermal profiles. We get

𝑁𝑢𝐷 (𝜙) |isothermal

𝑅𝑒
1/2
𝐷

𝑃𝑟1/3
=



3
2

3

√√√√√√ 4
(

3
2 + 1

4Λ
)2

sin2 𝜙

15
∫ 𝜙

0

(
3
2 + 1

4Λ
)

sin 𝜙 d𝜙

√︂
cos 𝜙
Λ

(KP3),

2 3

√√√√√√ 2
(
2 + 1

6Λ
)2

sin2 𝜙

15
∫ 𝜙

0

(
2 + 1

6Λ
)

sin 𝜙 d𝜙

√︂
cos 𝜙
Λ

(KP4),

5
3

3

√√√√√√ 16
(

5
3 + 83

400Λ
)2

sin2 𝜙

75
∫ 𝜙

0

(
5
3 + 83

400Λ
)

sin 𝜙 d𝜙

√︂
cos 𝜙
Λ

(MX4),

(44)

where 𝑁𝑢𝐷 ≡ ℎ𝐷/𝑘 𝑓 represents the diameter-based Nusselt number.
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C. Isoflux Momentum-Integral Analysis

In similar manner, the energy balance statement for the isoflux case can be used to write

𝜕

𝜕𝑥

∫ 𝛿𝑇

0
(𝑇 − 𝑇∞) 𝑢 d𝑦 =

𝑞𝑤

𝜌𝑐𝑝
, (45)

where 𝜌 and 𝑐𝑝 refer to the density and constant pressure specific heat of the working fluid. To make further headway,
the fluid’s physical properties can be taken to be constant, an assumption that is often made in the treatment of
incompressible laminar flow with no internal heat generation. This enables us to further simplify Eq. (45) into:

𝜕

𝜕𝑥

[
𝑈 (𝑥)𝛿2

𝑇 𝜁

(
3
2 + 1

4Λ
)]

= 15
𝜈

𝑃𝑟
(KP3), (46)

𝜕

𝜕𝑥

[
𝑈 (𝑥)𝛿2

𝑇 𝜁

(
2 + 1

6Λ
)]

= 30
𝜈

𝑃𝑟
(KP4), (47)

and
𝜕

𝜕𝑥

[
𝑈 (𝑥)𝛿2

𝑇 𝜁

(
5
3 + 83

400Λ
)]

=
75
4

𝜈

𝑃𝑟
(MX4). (48)

Lastly, one may integrate Eqs. (46–48) with respect to 𝑥; the resulting expressions may be readily rearranged,
normalized, and simplified into the following relations for the local 𝛿𝑇 :

𝛿𝑇 (𝜙) =
𝛿𝑇 (𝜙)
𝐷

𝑅𝑒
1/2
𝐷

𝑃𝑟1/3 =



3

√√√ 15𝜙

8
(

3
2 + 1

4Λ
)

sin 𝜙

√︂
Λ

cos 𝜙
(KP3),

3

√√√ 15𝜙

4
(
2 + 1

6Λ
)

sin 𝜙

√︂
Λ

cos 𝜙
(KP4),

3

√√√ 75𝜙

32
(

5
3 + 83

400Λ
)

sin 𝜙

√︂
Λ

cos 𝜙
(MX4).

(49)

For the reader’s convenience, Eqs. (41) and (49) are displayed side-by-side in Fig. 9a for the isothermal and isoflux
models. As usual, the MX4-based thermal boundary layer (chained line) remains bounded between the KP3 (solid)
and KP4 (broken) lines except at the back of the cylinder, prior to separation, specifically for 𝜙 ≥ 93.5◦ and 98.2◦
for the UWT and UWF configurations, respectively. Everywhere else, the MX4-based 𝛿𝑇 remains closest to the KP3
model approximation, which slightly underestimates its local values.
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b)

Fig. 9. Profile-dependent angular variations of 𝜹𝑻 ≡ (𝜹𝑻 /𝑫)𝑹𝒆1/2
𝑫 𝑷𝒓1/3 for the two thermal configurations:

a) UWT’s Eq. (41) and b) UWF’s Eq. (49).
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At this stage, having fully characterized the thermal boundary layer, the local heat transfer coefficient may be
evaluated and written in terms of the wall heat flux using Newton’s law for cooling. One can put

ℎ (𝜙) = 𝑞𝑤

𝑇 (𝜙) − 𝑇∞
. (50)

Then, by consolidating Eq. (49) with Eq. (50), a local Nusselt number correlation may be constructed under isoflux
conditions. One gets

𝑁𝑢𝐷 (𝜙) |isoflux

𝑅𝑒
1/2
𝐷

𝑃𝑟1/3
=



3
2

3

√√√
4
(

3
2 + 1

4Λ
)

sin 𝜙

15𝜙

√︂
cos 𝜙
Λ

(KP3),

2
3

√√√
8
(
2 + 1

6Λ
)

sin 𝜙

15𝜙

√︂
cos 𝜙
Λ

(KP4),

5
3

3

√√√
32

(
5
3 + 83

400Λ
)

sin 𝜙

75𝜙

√︂
cos 𝜙
Λ

(MX4).

(51)

Using air with 𝑃𝑟 ≈ 0.71, both UWT and UWF cases of Nusselt number correlations, given by Eqs. (44) and (51),
are illustrated as a function of 𝜙 in Figs. 10a and 10b using the three analytical models in hand. They are also
compared to empirical data reported by Kreith et al. [35] and Giedt [43]. We recall that the empirical relations obtained
heretofore are formulated by consolidating the equations of motion and energy as well as tabulated constants based on
experimental measurements. Graphically, one may infer that although all formulations follow the same monotonically
decreasing trend in 𝑁𝑢𝐷/

√
𝑅𝑒𝐷 , the closest curves to the empirically acquired values correspond to the MX4 model.

This is followed by the KP3 and KP4 formulations, with the latter exhibiting the largest deviations over the physical
range of 𝜙. In fact, under both UWT and UWF conditions, the MX4-based thermal formulation predicts the most
conservative values of the Nusselt number throughout the vast majority of the angular range relative to its KP3 and
KP4 counterparts. The underlying behavior leads to a closer overall agreement with empirical measurements [35, 43]
which translates, in turn, into a lower 𝐿2 error. This is readily shown in Table 5 where the 𝐿2 error based on each of the
three analytical models is evaluated and compared to the data by Kreith et al. [35] under both isothermal and isoflux
conditions. For the resulting 6 cases, one finds 1.324 (KP3), 1.681 (KP4), and 1.183 (MX4) under UWT conditions,
and 1.658 (KP3), 1.959 (KP4), and 1.471 (MX4) under UWF conditions.

As one may have been anticipated, the MX4 model is accompanied by the lowest overall error, particularly, for the
UWF case. This is followed by the KP3 and KP4 errors in ascending order; this behavior may be viewed as being
consistent with the Pohlhausen paradox observed in flat-plate analysis [17]. Here too, the KP3 model outperforms its
higher-order KP4 approximation. Moreover, and for all cases considered, the thermal profiles used in conjunction with
the UWT assumption seem to slightly outperform their UWF counterparts. An intriguing yet somewhat foreseeable
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Fig. 10. Profile-dependent angular variations of the normalized Nusselt number 𝑵𝒖𝑫/
√
𝑹𝒆𝑫 as a function of

𝝓 assuming air (𝑷𝒓 = 0.71) under both a) isothermal (UWT) and b) isoflux (UWF) conditions; also shown are
empirical predictions according to Kreith et al. [35] and Giedt [43].
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Table 5. 𝑳2 errors of the normalized local Nusselt number 𝑵𝒖𝑫/
√
𝑹𝒆𝑫 for three different velocity profiles and

both isothermal (UWT) and isoflux (UWF) conditions relative to empirical measurements by Kreith et al. [35]

Profile KP3 KP4 MX4
UWT 𝐿2 error 1.324 1.681 1.183
UWF 𝐿2 error 1.658 1.959 1.471

realization in Figs. 10a and 10b corresponds to the steep decrease after 𝜙 = 90◦; this sharp drop may be attributed
to the sudden shift from a favorable to an adverse pressure gradient as the flow crosses the top of the cylinder. The
presence of an adverse pressure gradient triggers rapid changes in boundary-layer characteristics that eventually lead
to separation. In hindsight, a similarly abrupt transition may be seen to affect the hydrodynamic properties described
in Figs. 2, 4 and 6 past the 90◦ angle.

IV. Concluding Remarks

The traditional Kármán–Pohlhausen (KP) momentum-integral approach for boundary-layer analysis is widely used
but noted for deteriorating at increasing orders of the Pohlhausen polynomial representing the velocity profile in the
nearfield[9]. Rather paradoxically, increasing (rather than decreasing) errors are realized when using fourth and higher-
order Pohlhausen polynomials, often leading to discrepancies in boundary-layer estimates that are of order 10-20%.
To overcome this perplexing deficiency, other methods have been meticulously devised including those mirrored by
Walz [15] and Thwaites [16]. However, unlike Kármán–Pohlhausen’s technique, these alternative methods compute
the momentum thickness with a fair degree of accuracy; however, they provide no information about the topology of
the flowfield inside the viscous region. On the centennial anniversary of the 1921 momentum-integral approach, the
underlying deficiency is finally explained and resolved using a dedicated study by Majdalani and Xuan [17]. Therein,
the root of the disparity is clarified and attributed to an overly constraining second-order derivative of the axial velocity
that is prescribed (too early) by Pohlhausen [4] at the outer edge of the boundary layer. By relaxing this condition, a
much improved formulation is readily achieved.

In this work, the Kármán–Pohlhausen momentum-integral approach is shown to be highly effective at predicting
the viscous and thermal boundary-layer characteristics associated with the frequently cited benchmark problem of a
stationary flow over a cylinder. This is especially true when the KP approach is used in concert with a novel polynomial
representation of the velocity and, through the use of the Reynolds analogy, the temperature profile in the nearfield.
Dubbed MX4 in the foregoing analysis, this profile is shown to outperform its predecessors, specifically Pohlhausen’s
KP3 and KP4 profiles, which have been widely used throughout the literature. In comparison to the latter, the MX4
profile leads to more accurate predictions of the separation point at the back of the cylinder as well as the point of
maximum shear. These special points are evaluated analytically and shown to produce 0.87% and 1.02% relative errors
that fall well within the uncertainty associated with typical experimental measurements. The KP-MX4 approach also
leads to better predictions of the thermal boundary-layer characteristics and Nusselt number formulations under both
uniform wall temperature and heat flux conditions.

In practice, despite the presence of pressure-gradients, the use of MX4 in lieu of KP4 leads to better overall
estimates of both skin friction and pressure drag coefficients and, therefore, total drag. Furthermore, although other
integral techniques by Walz [15] and Thwaites [16] can predict the skin friction coefficient based on a momentum
thickness evaluation, their integral forms are solely dependent on the farfield velocity 𝑈 (𝑥). As such, they provide no
characteristic information that helps to elucidate the nature of the velocity or thermal profiles across the viscous or
thermal boundary layers. In fact, their extrapolation of the momentum thickness may be traced back to a reasonable
fit to experimental measurements. In contrast, the present approach can be paired with the KP formulation to predict
the boundary-layer characteristics all the way from the surface of the cylinder to the farfield. These include accurate
reconstructions of the actual velocity and temperature distributions in the nearfield that directly affect the remaining
boundary-layer properties. The parameters that accompany higher-order polynomial approximations of the present
approach can also be adjusted to accommodate any sets of measurements or numerical simulations of the flow around
the cylinder with a variable pressure gradient. Reducing the error further is therefore possible, as shown by Majdalani
and Xuan [17]. So long as the deficient curvature condition at the edge of the boundary layer is judiciously avoided,
the projections obtained through this technique seem to be virtually equivalent to numerical simulations of the same
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problem. For this reason, it is hoped that the Kármán–Pohlhausen momentum-integral approach will continue to be
employed in conjunction with rationally-optimized polynomial approximations, such as the MX4 profile, in future
investigations involving other canonical problems and both hydrodynamic and thermal analyses.
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Appendices

A. Alternative Form of the Blasius Equation

The purpose of this section is to reformulate the Blasius equation in terms of 𝐹 (𝜉) = 𝑢/𝑈 and derivatives of 𝜉,
instead of the characteristic function 𝑓 (𝜂) = 𝜓/

√
2𝜈𝑥𝑈 and derivatives of 𝜂, where 𝜓 and 𝜂 = 𝑦

√︁
𝑈/(2𝜈𝑥) represent

the Blasius stream function and similarity variable, respectively, and 𝜉 = 𝑦/𝛿 denotes the fractional distance within
the boundary layer [2]. This transformation is performed to better reconcile between the velocity profiles used in the
Kármán–Pohlhausen momentum-integral approach, which are expressed in terms of 𝐹 (𝜉), and the velocity distribution
computed from the Blasius equation through the derivative function 𝐹 (𝜂) = 𝑑𝑓 /𝑑𝜂. Assuming viscous motion over a
flat plate with a zero pressure gradient, the traditional Blasius equation and its boundary conditions can be written as
[9]

d3 𝑓

d𝜂3 + 𝑓
d2 𝑓

d𝜂2 = 0 with 𝑓 (0) = d 𝑓 (0)
d𝜂

= 0, and
d 𝑓 (∞)

d𝜂
= 1. (52)

To begin, a straightforward differentiation with respect to 𝜂 yields:

d4 𝑓

d𝜂4 + 𝑓
d3 𝑓

d𝜂3 + d 𝑓
d𝜂

d2 𝑓

d𝜂2 = 0. (53)

Note that the characteristic function 𝑓 may be expressed in terms of its derivatives by rearranging the Blasius equation
into

𝑓 = −d3 𝑓 /d𝜂3

d2 𝑓 /d𝜂2 . (54)

Since 𝐹 (𝜉) can only be written in terms of the derivative of 𝑓 (𝜂), it is beneficial to eliminate 𝑓 from the second
member of Eq. (53) using Eq. (54). After a simple rearrangement, one gets:

d4 𝑓

d𝜂4
d2 𝑓

d𝜂2 + d 𝑓
d𝜂

(
d2 𝑓

d𝜂2

)2

+
(
d3 𝑓

d𝜂3

)2

= 0. (55)

As emphasized by Majdalani and Xuan [17], the two independent parameters 𝜂 and 𝜉 can be connected using

𝜉 =

√
2
𝑎
𝜂 and

d𝜉
d𝜂

=

√
2
𝑎
, (56)

where 𝑎 = 𝛿
√
𝑅𝑒𝑥/𝑥 = 4.9099895 ≈ 4.91 denotes a characteristic constant of the boundary-layer thickness[17]. Then,

using primes to denote differentiation with respect to 𝜉, the chain rule may be used to relate the derivatives of 𝑓 (𝜂)
and 𝐹 (𝜉). One collects

d2 𝑓

d𝜂2 =
d𝐹
d𝜂

=
d𝐹
d𝜉

d𝜉
d𝜂

=

√
2
𝑎

𝐹′; 𝐹′ ≡ d𝐹
d𝜉

, (57)

d3 𝑓

d𝜂3 =
2
𝑎2 𝐹

′′, and
d4 𝑓

d𝜂4 =
2
√

2
𝑎3 𝐹′′′. (58)

It can thus be seen that the backward substitution of Eqs. (57) and (58) into Eq. (55) leads to the alternative form,

𝐹′′′𝐹′ − 𝐹′′2 + 1
2𝑎

2𝐹′2𝐹 = 0, with 𝐹 (0) = 𝐹′′ (0) = 0, and 𝐹 (∞) = 1. (59)
20
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Fig. 11. Numerical solution of a) an equivalent formulation of the Blasius equation given by Eq. (59) directly for
the normalized velocity 𝑭(𝝃) across the boundary-layer region, including its first and second derivatives 𝑭′ and
𝑭′′. Also shown in Part b) is the normalized Blasius velocity along with its polynomial approximations given by
Eqs. (11) and (12) in the absence of a pressure-gradient parameter.

We thus arrive at another third-order, nonlinear differential equation that is conveniently cast in terms of the normalized
velocity function 𝐹 (𝜉). Note that the first and third boundary conditions convey directly from the basic requirements
used by Blasius [2] for wall adherence and freestream recovery in the farfield. However, given that 𝑓 (0) = 0 becomes
impractical to use, the second condition, 𝐹′′ (0) = 0, may be retrieved from Pohlhausen’s fourth boundary condition
given by Eq. (16). The latter represents the shear-stress gradient at the wall that can be connected to the pressure
gradient prescribed by the farfield velocity via Euler’s momentum equation. A straightforward numerical solution of
the normalized velocity 𝐹, given by Eq. (59), as well as its first two derivatives, is provided in Fig. 11a. It is also
compared in Fig. 11a to its analytical approximations given by the three velocity profiles, P3, P4 and M4, which exclude
a pressure-gradient correction. Clearly, M4 displays the closest agreement with the exact Blasius distribution and is
followed by P3 and P4, respectively.

B. Pressure-Sensitive Velocity Profiles

In order to specify the unknown polynomial coefficients that can be used to construct the piecewise analytic velocity
profiles across the boundary-layer region, four of Pohlhausen’s fundamental boundary conditions given by Eqs. (13–16)
may be applied to a generic quartic polynomial of the form

𝐹 (𝜉) = 𝑐0 + 𝑠𝜉 + 𝑐2𝜉
2 + 𝑐3𝜉

3 + 𝑐4𝜉
4. (60)

Condition 1 (no slip condition at the wall), 𝐹 (0) = 0:

𝑐0 + 𝑠(0) + 𝑐2 (0)2 + 𝑐3 (0)3 + 𝑐4 (0)4 = 0, or 𝑐0 = 0. (61)

Condition 2 (matching the freestream velocity at the boundary-layer edge), 𝐹 (1) = 1:

𝑠 + 𝑐2 + 𝑐3 + 𝑐4 = 1, or 𝑐2 = 1 − 𝑠 − 𝑐3 − 𝑐4. (62)

Condition 3 (negligible shear at the boundary-layer edge), 𝐹′ (1) = 0:

𝐹′ (𝜉) = 𝑠 + 2𝑐2𝜉 + 3𝑐3𝜉
2 + 4𝑐4𝜉

3, or 𝐹′ (1) = 𝑠 + 2𝑐2 + 3𝑐3 + 4𝑐4 = 0. (63)

The last two expressions enable us to eliminate 𝑐2 and write 𝑐3 = 𝑠−2−2𝑐4. This leaves us with the fourth requirement,
Condition 4 (pressure gradient in the farfield), 𝐹′′ (0) = −Λ:

𝐹′′ (𝜉) = 2𝑐2 + 6𝑐3𝜉 + 12𝑐4𝜉
2, 𝐹′′ (0) = 2𝑐2 = −Λ, and so 𝑐2 = − 1

2Λ. (64)

This value of 𝑐2 may be readily substituted into the expression found through Condition 2 to retrieve 𝑐3 = 1−𝑠+ 1
2Λ−𝑐4.

Then, by combining 𝑐3 with the expression found through Condition 3, we get 𝑐4 = 2𝑠 − 3 − 1
2Λ and 𝑐3 = 4 − 3𝑠 + Λ.
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We thus arrive at
𝐹 (𝜉) = 𝑠𝜉 − 1

2Λ𝜉
2 + (4 − 3𝑠 + Λ)𝜉3 + (2𝑠 − 3 − 1

2Λ)𝜉
4 (quartic), (65)

and, using only Conditions 1, 2, and 4, we find, alternatively,

𝐹 (𝜉) = 𝑠𝜉 − 1
2Λ𝜉

2 + (1 − 𝑠 + 1
2Λ)𝜉

3 (cubic). (66)

At this juncture, since flow detachment at separation implies 𝐹′ (0) = 0, one is left with

𝑠 = 𝑠0 + 𝑠1Λsep = 0 or Λsep = − 𝑠0

𝑠1
, (67)

where a two-term expansion of the velocity slope at the wall is used. In the absence of a pressure gradient, 𝑠0 may be
readily determined to be 3/2 (KP3), 2 (KP4), and 5/3 (MX4)[17]. The last constant, 𝑠1, may be obtained from Eq. (15)
(KP3) and Eq. (17) (KP4), thus leading to 𝑠 = 3/2+Λ/4 (KP3) and 𝑠 = 2+Λ/6 (KP4). As for the rationally-optimized
quartic profile, one obtains 𝑠1 in such a manner to minimize the 𝐿2 error across the viscous domain. One obtains
𝑠 = 5/3 + (83/400)Λ. We finally arrive at:

𝐹 (𝜉) =


3
2𝜉 −

1
2𝜉

3 + 1
4Λ

(
𝜉 − 2𝜉2 + 𝜉3) (KP3),

2𝜉 − 2𝜉3 + 𝜉4 + 1
6Λ

(
𝜉 − 3𝜉2 + 3𝜉3 − 𝜉4) (KP4),

5
3𝜉 − 𝜉3 + 1

3𝜉
4 + Λ

(
83
400𝜉 −

1
2𝜉

2 + 151
400𝜉

3 − 17
200𝜉

4
)

(MX4),
(68)

with

Λsep =


−6 (KP3),
−12 (KP4),
−8.0321 (MX4).

(69)

C. Angular Variation of the Pohlhausen Pressure Parameter

This section provides the polynomial approximations that enable the user to solve for Λ directly as a function of 𝜙
for each of the three profiles under consideration. One gets:

Λ(𝜙) = 6.273919 + 0.395242𝜙 − 8.422234𝜙2 + 48.651031𝜙3 − 185.610093𝜙4 + 412.865334𝜙5

− 565.752359𝜙6 + 482.671630𝜙7 − 249.799142𝜙8 + 71.813531𝜙9 − 8.811819𝜙10 (KP3), (70)

Λ(𝜙) = 7.214982 + 1.883475𝜙 − 32.958116𝜙2 + 218.289016𝜙3 − 789.364671𝜙4 + 1661.397226𝜙5

− 2146.640907𝜙6 + 1724.723478𝜙7 − 840.031463𝜙8 + 227.019743𝜙9 − 26.129896𝜙10 (KP4), (71)

and

Λ(𝜙) = 6.074946 + 1.656599𝜙 − 29.794450𝜙2 + 197.292144𝜙3 − 723.411948𝜙4 + 1545.684314𝜙5

− 2026.622929𝜙6 + 1652.001660𝜙7 − 816.173724𝜙8 + 223.698442𝜙9 − 26.104890𝜙10 (MX4). (72)

D. Normal Velocity Formulation

Beginning with the continuity relation given by Eq. (1), substituting 𝑢 = 𝐹 (𝜉)𝑈 (𝑥), and rearranging, one gets:

𝑣 = − 𝜕

𝜕𝑥

∫ 𝑦

0
𝑢 d𝑦 = − 𝜕

𝜕𝑥

∫ 𝑦

0
𝑈 (𝑥)𝐹 (𝜉) d𝑦. (73)

As opposed to flat-plate analysis at zero incidence, flow over a cylinder, which is accompanied by a non-zero pressure
gradient, leads to a varying farfield velocity 𝑈 (𝑥). This warrants the use of Leibniz’s integral rule that enables us to
reduce Eq. (73) into

𝑣 = −
∫ 𝑦

0

[
d𝑈 (𝑥)

d𝑥
𝐹 (𝜉) −𝑈 (𝑥) d𝐹 (𝜉)

d𝑥

]
d𝑦. (74)
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Due to 𝐹 (𝜉) not being explicitly a function of 𝑥 but rather 𝜉 = 𝑦/𝛿(𝑥), a chain rule can be used to recover its derivative
with respect to 𝑥. This requires setting d𝑦 = 𝛿 d𝜉 and

d𝐹 (𝜉)
d𝑥

=
d𝐹
d𝜉

d𝜉
d𝑥

=
d𝐹
d𝜉

d[𝑦/𝛿(𝑥)]
d𝑥

= − 𝑦

𝛿(𝑥)2 𝐹
′ (𝜉). (75)

The foregoing relations can be substituted back into Eq. (74) to obtain an expression for 𝑣 that can be readily integrated
with respect to 𝜉 for an arbitrary farfield velocity 𝑈 (𝑥) and boundary-layer profile 𝐹 (𝜉). One recovers:

𝑣 =

∫ 𝜉

0

[
𝜉𝑈 (𝑥)𝐹′ (𝜉) d𝛿(𝑥)

d𝑥
− d𝑈 (𝑥)

d𝑥
𝐹 (𝜉)𝛿(𝑥)

]
d𝜉. (76)

E. Energy Balance Equations

This section details the derivation of the integro-differential energy balance equations starting from Eq. (4). As
shown by White and Majdalani [9], the wall heat flux 𝑞𝑤 can be modeled within the thermal boundary-layer by putting

𝑞𝑤 ≈ 𝜕

𝜕𝑥

[∫ 𝛿𝑇

0
𝜌𝑐𝑝𝑢(𝑇 − 𝑇∞) d𝑦

]
= −𝑘 𝑓

𝜕𝑇

𝜕𝑦

����
𝑦=0

(77)

≈ 𝛿𝑇
𝜕

𝜕𝑥

[∫ 𝛿𝑇

0
𝑢(𝑇 − 𝑇∞) d𝑦

]
= −𝛼 𝜕𝑇

𝜕𝜉𝑇

����
𝜉𝑇=0

, (78)

where 𝜉𝑇 = 𝑦/𝛿𝑇 and d𝑦 = 𝛿𝑇 d𝜉𝑇 . In order to introduce the normalized velocity and temperature profiles,
straightforward algebraic manipulations can be used to obtain:

𝛿𝑇
𝜕

𝜕𝑥

[
𝑈 (𝑥)

∫ 𝛿𝑇

0

𝑢

𝑈 (𝑥)

(
𝑇 − 𝑇∞
𝑇𝑤 − 𝑇∞

)
d𝑦

]
= −𝛼

d
(
𝑇−𝑇∞
𝑇𝑤−𝑇∞

)
d𝜉𝑇

�������
𝜉𝑇=0

. (79)
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