P1-97: In early summer, nesting Bluegill Sunfish (Leepomis macrochirus) expend large amounts of energy building nests,
spawning, protecting their offspring, and dhasing away yredators. The energetic demands of nesting are likely significant
and may heavily influence their life history and reproductive success. However, the exact metabolic cost of nesting is spawning, protecting their offspring, and chasing away predators. The energetic demands of nesting are likely significara
and may heavily ynfluence their lif history and reproductive success. However, the exact metabolic cost of nesting is
difficicult to quantify without precise information about the three dimensional position of the center of mass of nesting and
dificull to to quantify without precise information about the three dimensional position of the center of mass of nesting
ifhe Fied osbervations of Bluegill Sunfish nesting in Lake Waban (Wellesley, MA) were obtaien fish. Field observations of Bluegill Sunfish nesting in Lake Waban (Wellesley, MA) were obtained throughout June until
early July by using underwater cameras, fitted with a temperature and light sensor, calibrated to allow three dimensional early July by using underwater cameras, fitted with a temperature and light sensor, calibrated to allow three dimensio
tracking. The positional data of nesting Bluegill Sunfish were analyzed to derive velocity and acceleration in order to tracking. The positional data of nesting Bluegiil Sunfish were analyzed to derive velocity and acceleration in order to
calculate their metabolic rate. We chose to analyze repetitive nesting behaviors, such as rim circling and defensive chasing, due to their frequency of occurrence and consequentially high metabolic demand. Using metabolic rates calculated from Buegill swimming in a flume, we found that $r i m$ circling is nearry 22.2 times more metaboically expensive
than the average metabolic cost of swimming in a straight path for the same velocity and duration. Since rim circling is so than the average metabolic cost of swimming in a straight path for the same velocity and duration. Since rim Circting is so
metabolically yexpensive and since we estimate that rim circling occurs nearly 25,500 times during an 8 day nesting perioo our results strongly suggest that the nesting cycle is one of the most critical periods in the life history of Bluegill Sunfish. The high energetic demands of nesting and the temporary bout of starvation while the fish occupies its nest results in a small margin of error for reproductive success. These conclusions deepen our understanding of male Bluegills' true

Figure 1: Bluegill Sunfish Lake Waban Nesting Sites: Active nesting was observed in shallow water near the shore around nearly the entirely lake.

Figure 3: Underwater Camera Rig. Two cameras mounte with overlapping fields of view (green and blue shading) Iow tracking of 3D position. Rig is fitted with HOBO

Figure 5: Field Work. The camera rig was often
d via boat.
Going in Circles: Nesting Kinematics of Bluegill Sunfish (Lepomis macrochirus) Zoë T. Reynolds ${ }^{1}$, Annika H.L. Pfister ${ }^{1}$, Paige J. Gee ${ }^{1}$, Bradley M. Wood¹,2
${ }^{1}$ Department of Biological Sciences, Wellesley College, Wellesley MA ${ }^{2}$ Department of Biological Sciences, University of Montana Western, Dillon MT
Email: zrevnold@Welleslev.edu; bradley,wood@umwestern.edu

Figure 7: Flume Swimming for Metabolic Mathematical Modeling. The metabolic rate of aerobic straight-line swimming Bluegill Sunfish was calculated from respirometry experiments of Bluegill er the flume metabolic rate can be calculated as
$M_{\text {flume }}=0.46+0.23 u^{2.75}$ (Cathcart et al. 2017)
he metabolic rate of curved path swimming during rim circling can be calculated as: $\frac{M_{\text {curve }}}{M_{\text {fume }}}=\sqrt{1+2 \frac{V^{1 / 3}}{R C_{D}}\left(\frac{p f}{p w}+\lambda\right)^{2}}$ (Weihs 1981)
The metabolic cost of anaerobic swimming during a defensive chase was estimated from total anaerobic total capacity (Binder 2016) in relation to the length of the chase.

Rim Circle Metabolic Cost
Calories Supplied by Meal Worms

A singular rim circle with an average velocity of $1.34 \mathrm{BL} / \mathrm{s}$ and an average cost of 3.33 calories ($n=20$).
c
During full nesting period, consisting of minimum 8 days with 15 hours of sunlight in late June, we estimate to have minimum 32,724 rim circles due to an average of 3.53 circling during nesting is 84.75 kcal.

Figure 9: Metabolic Results. The schematic outlines the metabolic costs for a single rim circle, a ingle chase, and the amount they would have to eat from a common food source meal worms. The lower row estimates the total minimum metabolic cost of an entire nesting period for the fish
 Methods: Video was collected with 2 GoPro Hero 7 cameras. Temperature and luminosity was measured using a Onest Observer by Onset sensor. Video was calibrated using the Easywand5 app in Matlab version R2019b. The velocity and acceleration were further derived using Igor-pro (64 -bit). Metabolic rates were calculated by hand.

