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Abstract

The fact that the millimeter-wave (mmWave) multiple-input multiple-output (MIMO) channel has sparse support

in the spatial domain has motivated recent compressed sensing (CS)-based mmWave channel estimation methods,

where the angles of arrivals (AoAs) and angles of departures (AoDs) are quantized using angle dictionary matrices.

However, the existing CS-based methods usually obtain the estimation result through one-stage channel sounding

that have two limitations: (i) the requirement of large-dimensional dictionary and (ii) unresolvable quantization error.

These two drawbacks are irreconcilable; improvement of the one implies deterioration of the other. To address these

challenges, we propose, in this paper, a two-stage method to estimate the AoAs and AoDs of mmWave channels.

In the proposed method, the channel estimation task is divided into two stages, Stage I and Stage II. Specifically, in

Stage I, the AoAs are estimated by solving a multiple measurement vectors (MMV) problem. In Stage II, based on

the estimated AoAs, the receive sounders are designed to estimate AoDs. The dimension of the angle dictionary in

each stage can be reduced, which in turn reduces the computational complexity substantially. We then analyze the

successful recovery probability (SRP) of the proposed method, revealing the superiority of the proposed framework

over the existing one-stage CS-based methods. We further enhance the reconstruction performance by performing

resource allocation between the two stages. We also overcome the unresolvable quantization error issue present in

the prior techniques by applying the atomic norm minimization method to each stage of the proposed two-stage

approach. The simulation results illustrate the substantially improved performance with low complexity of the

proposed two-stage method.
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I. INTRODUCTION

The spectrum-rich millimeter-wave (mmWave) frequencies between 30−300 GHz have the potential to

alleviate the current spectrum crunch in sub-6GHz bands that service providers are already experiencing.

This major potential of the mmWave band has made it one of the most important components of future

mobile cellular and emerging WiFi networks. However, due to significant differences between systems

operating in mmWave and legacy sub-6 GHz bands, providing reliable and low-delay communication

in the mmWave bands is extremely challenging. Specifically, to achieve the high spectral efficiency of

mmWave communications, accurate channel state information (CSI) is the key [1]–[5], which is, however,

challenging due to the high dimensionality of the channel as well as the mmWave hardware constraints.

Nevertheless, the mmWave multiple-input multiple-output (MIMO) channel exhibits sparse property

[6], [7], facilitating the sparse channel representation by using small numbers of the angles of arrivals

(AoAs), angles of departures (AoDs), and path gains. Typically, by approximating the AoAs and AoDs to

be on quantized angle grids, the compressed sensing (CS)-based approaches transform the AoA and AoD

estimation problem to a sparse signal recovery problem [8], [9], where the transmitter sends the channel

sounding beams to the receiver and the receiver jointly estimates AoAs and AoDs. We refer to this method

as the one-stage channel sounding scheme. In particular, due to easy implementation and amenability for

analysis, the orthogonal matching pursuit (OMP) has been widely studied [9]–[13]. The OMP iteratively

searches a pair of AoA and AoD over an over-complete dictionary. However, the computational complexity

of OMP increases quadratically with the sizes of the dictionaries, i.e., O(LKGrGt), where K is the

number of channel uses for the channel sounding, L is the number of channel paths, and Gr and Gt are

the dimensions of angle dictionaries for AoA and AoD, respectively. It is worth pointing out that when the

dimensions of the over-complete dictionaries, i.e., Gr and Gt, increase, the complexity of the one-stage

CS-based methods such as OMP becomes exceedingly impractical.

The over-complete dictionary and high computational complexity issues have been addressed in an

adaptive-CS point-of-view with the primary focus on the sensing vector adaptation to the previous

observations [3], [8], [14]. Theoretically, it has been shown that the adaptive CS can be benificial in low

SNR [15]. The multi-level (hierarchical) AoA and AoD search techniques [3], [8] leveraged the feedback,

where the receiver conveys a feedback to the transmitter to guide the next level angle dictionary design.

It is worth noting that these adaptation methods [3], [8] need multiple feedbacks and its performance

critically relies on the reliability of the feedback. To reduce the feedback overhead, a two-stage CS was
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proposed in [14], where the first stage is to obtain a coarse estimation of the support set and the second

stage refines the result of the first stage. This method [14] only requires one-time feedback, but achieves

compatible estimation performance in low SNR.

A. Our Contributions

We newly study a sequential, two-stage AoA and AoD estimation framework for reduced computational

complexity and improved estimation performance. Specifically, in Stage I, the support set of AoAs is

recovered at the receiver by solving a multiple measurement vectors (MMV) problem. Leveraging the

shared sparse set, it has been found that the MMV approach can provide improved estimation performance

compared to the single measurement vector (SMV) approach [16]–[18]. In Stage II, the receiver estimates

the AoDs of the channel by exploiting the estimated AoAs from Stage I. Importantly, the estimated AoAs

guide the design of receive sounding signals, which saves the channel use overhead and improves the

accuracy of AoD estimation. In each stage, since we only estimate AoAs or AoDs, the dimensions of the

signal and angle dictionary are much smaller than those of the one-stage joint AoA and AoD estimation

[9], [11], [12], readily reducing the computational complexity substantially. This can be viewed as of

converting the multiplicative channel sounding overhead (e.g., O(GrGt) of OMP) to an additive overhead.

By analyzing the MMV statistics, we present a lower bound for the successful probability of recovering

the support sets. Furthermore, based on the successful recovery probability (SRP) analysis of the proposed

two-stage method, a resource allocation (between Stage I and Stage II) strategy is newly proposed to

improve SRPs for both AoA and AoD estimation. The numerical results validate the efficacy of the

proposed resource allocation method.

Finally, in order to address the issue of unresolvable quantization error, we extend the proposed two-

stage method to the one with super resolution. Specifically, in each stage of AoA or AoD estimation, we

reformulate the MMV problem as an atomic norm minimization problem [19]–[21], which is solved by

using alternating direction method of multipliers (ADMM). Compared to the dictionary-based methods,

the atomic norm minimization can be thought of as the case when the infinite dictionary matrix is

employed. We demonstrate through simulations that the quantization error of the two-stage method with

super resolution can be effectively reduced.
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B. Paper Organization and Notations

The paper is organized as follows. In Section II, we introduce the signal model and the CS-based channel

estimation problem. In Section III, based on the angular-domain channel representation, the proposed

sequential AoA and AoD estimation method is presented. In Section IV, we analyze the proposed method

in terms of SRP and introduce the resource allocation strategy. In Section V, the atomic norm-based design

is described, which resolves the quantization error in the estimated AoAs and AoDs. The simulation results

and conclusion are presented in Section VI and Section VII, respectively.

Notations: A bold lower case letter a is a vector and a bold capital letter A is a matrix. AT , A∗, AH ,

A−1, tr(A), |A|, ‖A‖F and ‖a‖2 are, respectively, the transpose, conjugate, Hermitian, inverse, trace,

determinant, Frobenius norm of A, and ℓ2-norm of a. A† = (AHA)−1AH denotes the pseudo inverse of

a tall matrix A. [A]:.i, [A]i,:, [A]i,j , and [a]i are, respectively, the ith column, ith row, ith row and jth

column entry of A, and ith entry of vector a. vec(A) stacks the columns of A and forms a long column

vector. diag(a) returns a square diagonal matrix with the vector a on the main diagonal. IM ∈ R
M×M is

the M-dimensional identity matrix. The 1M,N ∈ RM×N and 0M,N ∈ RM×N are the all one matrix, and

zero matrix, respectively. R(F) denotes the subspace spanned by the columns of matrix F. A ⊗B and

A ◦B denote the Kronecker product and Khatri-Rao product of A and B, respectively. The ⌈x⌉ returns

the smallest integer greater than or equal to x.

II. SYSTEM MODEL AND GENERAL STATEMENT OF TECHNIQUES

A. Channel Model

The mmWave transmitter and receiver are equipped with Nt and Nr antennas, respectively. Suppose

that the number of separable paths between the transmitter and receiver is L, where L ≪ min{Nr, Nt}.

The physical mmWave channel representation based on the uniform linear array [9], [22]–[24] is given

by1,

H =

√
NrNt

L

L∑

l=1

αlar(fr,l)a
H
t (ft,l), (1)

where at(·) ∈ C
Nt×1 and ar(·) ∈ C

Nr×1 are the array response vectors of the transmit and receive

antenna arrays. Specifically, at(f) and ar(f) are given by at(f) = 1√
Nt

[
1, ej2πf , . . . , ej2π(Nt−1)f

]T
and

1In wideband communication systems, one can model the channel as constant AoA/AoD and varying path gains [25], [26]. Here we could

also assume a narrow band block fading channel where the channel is static during the channel coherence time. The CSI acquisition and

data transfer are framed to happen within the channel coherence time [9], [22]–[24].
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H

Nt NrN N N

sj yi,j

Fb Wb

Wi

Fig. 1. Conventional one-stage mmWave channel sounding

ar(f) =
1√
Nr

[
1, ej2πf , . . . , ej2π(Nr−1)f

]T
, where f ∈ [0, 1) is the normalized spatial angle. Here we assume

fr,l and ft,l in (1) are independent and uniformly distributed in [0, 1), and the gain of the lth path αl follows

the complex Gaussian distribution, i.e., αl ∼ CN (0, σ2
l ). Angular domain representation of the channel in

(1) can be rewritten as

H = Ar diag(h)A
H
t , (2)

where Ar = [ar(fr,1), . . . , ar(fr,L)] ∈ CNr×L , At = [at(ft,1), . . . , at(ft,L)] ∈ CNt×L, and h = [h1, . . . , hL] ∈
CL×1 with hl =

√
NrNt

L
αl, l = 1, . . . , L.

B. Channel Sounding

Fig. 1 illustrates the conventional one-stage mmWave channel sounding operation, where the transmitter

and receiver are equipped with the large-dimensional hybrid analog-digital MIMO arrays that are driven

by a limited number of RF chains, i.e., N ≪ min{Nt, Nr}. In each channel use of downlink channel

sounding, the transmitter generates a beam conveying the pilot signal and the receiver simultaneously

generates N separate beams, using the N RF chains, to obtain a N-dimensional observation. We let

the numbers of the transmit sounding beams (TSBs) and receive sounding beams (RSBs) for channel

estimation be Bt and Br, respectively. For convenience, we assume that Br is an integer multiple of N .

The total number of channel uses for the conventional one-stage sounding process is then K = BrBt/N .

Specifically, the RSB matrix in Fig. 1 is given by

Wb = [W1,W2, . . . ,WBr/N ] ∈ CNr×Br , (3)
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where Wi ∈ CNr×N for i = 1, 2, . . . , Br/N , and Wi = WA,iWD,i with WA,i ∈ CNr×N and WD,i ∈
CN×N being the receive analog and digital sounders, respectively. Similarly, the TSB matrix is given by

Fb = [f1, f2, · · · , fBt
] ∈ CNt×Bt , (4)

where fj ∈ CNt×1 for j = 1, 2, · · · , Bt is the jth transmit sounder, and fj = FA,jfD,jsj with FA,j ∈ CNt×N

and fD,j ∈ CN×1 being the transmit analog and digital sounders, respectively. Each observation yi,j ∈
CN×1 in Fig. 1, associated with the ith RSB and jth TSB, i ∈ {1, . . . , Br/N} and j ∈ {1, 2, . . . , Bt},

can be expressed as

yi,j = WH
i Hfjsj +WH

i nj . (5)

The sj denotes the training signal and without loss of generality, we let sj = 1. It is worth noting that

only phase shifters are employed to constitute the analog arrays for power saving, where |[WA,i]m,n| =
1/
√
Nr, and |[FA,j]m,n| = 1/

√
Nt, ∀m,n. Moreover, the power constraint ‖fj‖22 = p is imposed to the

transmit sounding beam at each channel use with p being the power budget, and the noise vector follows

nj ∼ CN (0Nr
, σ2INr

). Thus, the signal to noise ratio is p/σ2.

We collect all observations in (5) by using Wb in (3) and Fb in (4) as

Y = WH
b HFb +WH

b N, (6)

where Y ∈ CBr×Bt and N = [n1, . . . ,nBt
] ∈ CNr×Bt . For example, Wb and Fb in (6) can be generated

randomly [4] or designed as a partial discrete Fourier transform (DFT) matrix [9]. We assume that the

number of observations is strictly lower than the dimension of the channel matrix, i.e., BrBt ≪ NrNt.

The channel estimation task is to utilize the observations in (5) (equivalently, (6)) to obtain the estimate

of the channel matrix H in (2). Encountering (2), the channel estimation task boils down to reconstructing

{fr,1, . . . , fr,L}, {ft,1, . . . , ft,L} and {h1, . . . , hL} from the observations.

1) Oracle Estimator: The oracle estimator that we will utilize for benchmark2 is obtained by assuming

perfect knowledge of AoAs and AoDs in (2). The oracle channel estimate only needs to estimate the

path gain h, thus the channel estimate is expressed as Ĥ = Ar diag(ĥ)A
H
t , where diag(ĥ) ∈ CL×1 is the

2Both Cramer-Rao lower bound (CRLB) [27] and the oracle estimator [9] can be utilized to evaluate the accuracy of estimation algorithms.

Since the CRLB can only be calculated for one-stage method, in this work we use the oracle estimator as the benchmark instead.
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solution to the following problem:

ĥ = argmin
h

‖Y −WH
b Ar diag(h)A

H
t Fb‖2F . (7)

Because (7) is convex, the optimal solution is ĥ = (XHX)−1XH vec(Y), where X ∈ CBrBt×L is given by

X =
[
vec ([WH

b Ar]:,1[A
H
t Fb]1,:), . . . , vec ([W

H
b Ar]:,L[A

H
t Fb]L,:)

]
. Because we have BrBt ≫ L, XHX is

invertible.

C. Compressed Sensing-Based Channel Estimation

Recalling the channel model in (2), a typical CS framework restricts the normalized spatial angles

fr,l, ft,l, l = 1, 2, . . . , L, to be chosen from the discrete angle dictionaries, fr,l ∈ [0, 1/Gr, . . . , (Gr − 1)/Gr],

and ft,l ∈ [0, 1/Gt, . . . , (Gt − 1)/Gt], where Gr = ⌈sNr⌉ and Gt = ⌈sNt⌉ with s ≥ 1 are, respectively,

the cardinalities of the receive and transmit spatial angle dictionaries. The transmit and receive array

response dictionaries are then given by

Ār =

[
ar(0), ar

(
1

Gr

)
, . . . , ar

(
Gr − 1

Gr

)]
∈ CNr×Gr

and

Āt =

[
at(0), at

(
1

Gt

)
, . . . , at

(
Gt − 1

Gt

)]
∈ CNt×Gt .

For the latter array response dictionaries, the channel model in (2) can be rewritten as

H = ĀrH̄aĀ
H
t + E, (8)

where H̄a ∈ CGr×Gt is an L-sparse matrix with L non-zero entries corresponding to the positions of

AoAs and AoDs on their respective angle grids, and E ∈ CNr×Nt denotes the quantization error.

Because the dictionary matrices Ār and Āt are known, the channel estimation task is equivalent to

estimating the non-zero entries in H̄a. Plugging the model in (8) into (6) gives

Y = WH
b Ār(H̄a + E)ĀH

t Fb +WH
b N. (9)

Vectorizing Y in (9) yields

vec(Y) = (FT
b Ā

∗
t ⊗WH

b Ār)(vec(H̄a + E)) + vec(WH
b N). (10)
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Denoting D = FT
b Ā

∗
t ⊗ WH

b Ār ∈ CBrBt×GrGb and n̄ = D vec(E) + vec(WH
b N) ∈ CBrBt×1 gives

vec(Y) = D vec(H̄a) + n̄. Hence, the estimation of vec(H̄a) from (10) can be stated as a sparse signal

reconstruction problem:

min
H̄a

‖ vec(Y)−D vec(H̄a)‖2 subject to ‖ vec(H̄a)‖0 = L, (11)

where ‖ · ‖0 is the ℓ0-norm that returns the number of non-zero coordinates of a vector. The problem in

(11) can be solved by using standard CS methods [28], [29].

The number of required observations to reconstruct L-sparse vector vec(H̄a) ∈ CGrGt×1 in (11) has

previously characterized as O (L · log(GrGt)) [28], which is much smaller than O(NrNt). However, the

computational complexity for estimating vec(H̄a) in (11) by using OMP, for example, is O(LBrBtGrGt).

Though the quantization error associated with using dictionaries can be made small by increasing the

sizes of the dictionaries, the growing computational complexity remains a critical challenge. Instead of

developing another one-stage channel sounding method (as in Fig. 1), we propose a new two-stage channel

sounding and estimation framework to overcome the large overhead and complexity drawbacks.

III. TWO-STAGE AOA AND AOD ESTIMATION

A conceptual diagram of the proposed two-stage AoA and AoD estimation framework is presented in

Fig. 2. The proposed sequential technique has constituent two stages of channel sounding, where each

stage exclusively exploits much low-dimensional dictionary compared to the one-stage channel sounding

in Fig. 1.

Under the similar definitions of one-stage method in (6), in Stage I of the two-stage framework of Fig.

2, the transmit and receive sounding beams are represented by Fb,1 ∈ CNt×Bt,1 and Wb,1 ∈ CNr×Br,1 ,

respectively. The AoA estimates of Stage I produce the estimation of array response matrix Ar in (2),

i.e., Âr ∈ CNt×L. In Stage II, the transmit and receive sounding beams are denoted by Fb,2 ∈ CNt×Bt,2

and Wb,2 ∈ CNr×Br,2 , respectively. In particular, the receive sounding beams Wb,2 is optimized based on

the estimated AoA array response matrix Âr at Stage I, which leads to improved estimation accuracy as

our analysis and simulation show. The total number of observations is given by Np = Bt,1Br,1+Bt,2Br,2.

Accordingly, the total number of channel uses is K = (Bt,1Br,1 +Bt,2Br,2)/N .
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Transmitter ReceiverH

Transmitter ReceiverH

Fb,1 Wb,1

ÂrEstimate AoAs:

Fb,2 Wb,2

Optimize Wb,2

ÂtEstimate AoDs:

Stage I

Stage II

Y1

Y2

Fig. 2. Illustration of the proposed two-stage AoA and AoD estimation.

A. Stage I: AoA Estimation

We rewrite the channel model in (8) as H = ĀrH̄aĀ
H
t +E = ĀrQr +E, where Qr ∈ CGr×Nt has L

non-zero rows, whose indices are collected into the support set Ωr ⊂ {1, 2, . . . , Gr} and |Ωr| = L. Using

Ωr, the Ar in (2) can be written using the columns of Ār indexed by Ωr as [Ār]:,Ωr
= Ar.

To estimate the AoAs, we need to recover the support set Ωr. Similar to the one-stage sounding in (6),

at Stage I in Fig. 2, the observations Y1 ∈ CBr,1×Bt,1 is expressed as

Y1 = WH
b,1HFb,1 +WH

b,1N1

= WH
b,1ĀrQrFb,1 +WH

b,1EFb,1 +WH
b,1N1

= Φ1C1 +WH
b,1EFb,1 +WH

b,1N1, (12)

where Φ1 = WH
b,1Ār ∈ CBr,1×Gr , C1 = QrFb,1 ∈ CGr×Bt,1 , and N1 ∈ CNr×Bt,1 is the noise matrix with
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Algorithm 1 Simultaneous OMP: SOMP(Y,Φ, L)

1: Input: Observations Y, measurement matrix Φ, sparsity level L.

2: Initialization: Support set Ω̂(0) = ∅, residual matrix R(0) = Y.

3: for l = 1 to L do

4: Calculate the coefficient matrix: S = ΦHR(l−1).

5: Select the largest index η = argmax
i=1,··· ,Gr

‖[S]i,:‖2.

6: Update the support set: Ω̂(l) = Ω̂(l−1)
⋃

η.

7: Update the recovery of matrix: Ĉ = ([Φ]:,Ω̂(l))†Y.

8: Update the residual matrix: R(l) = Y − [Φ]:,Ω̂(l)Ĉ.

9: end for

10: Output: Ω̂(L), Ĉ.

independent and identically distributed (i.i.d.) entries according to [N1]i,j ∼ CN (0, σ2), ∀ i, j. Due to the

row sparsity of Qr, it is clear that C1 also has L non-zero rows indexed by Ωr. If Bt,1 = 1, the recovery

of C1 in (12) can be formulated as a common SMV CS problem. When Bt,1 > 1, it becomes an MMV

CS problem [30], where the multiple columns of C1 in (12) shares a common support. The optimization

problem estimating the row support of C1 for MMV is now given by

Ĉ1 = argmin
C1

‖Y1 −Φ1C1‖2F subject to ‖C1‖r,0 ≤ L, (13)

where ‖C1‖r,0 is defined as the number of non-zero rows of C1. Using a similar method as the OMP,

the problem in (13) can be solved by simultaneous OMP (SOMP) [31] that is described in Algorithm 1.

The output is the estimated support set Ω̂r
3. For notational simplicity, we omit the subscripts in Y1 and

Φ1 in Algorithm 1.

It should be emphasized that the choice of the measurement matrix Φ1 and C1 has a profound impact

on the recovery performance of SOMP [31]. Observing (12), the TSB Fb,1 is incorporated in C1, and the

RSB Wb,1 is included in the measurement matrix Φ1. Thus, in what follows, the design of RSB Wb,1

and TSB Fb,1, is of interest.

1) RSB and TSB Design: Firstly, we focus on the design of TSB Fb,1. Considering C1 = H̄aĀ
H
t Fb,1,

in order to guarantee that Fb,1 is unbiased for each item (column) in Āt, we design Fb,1 by maximizing

3Here, we assume the number of paths is known as a priori for convenience of performance analysis in Section IV. When the number

of paths is unavailable as a priori, a threshold can be introduced to compare with the power of the residual matrix R(l) in Step 8 at each

iteration [32], [33]. When the power of R(l) is less then the threshold, Algorithm 1 terminates, which generates the estimate of number of

paths.
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the minimum correlation between Fb,1 and each column in Āt, which yields

max
Fb,1

min
i

‖FH
b,1

[
Āt

]
:,i
‖
2

subject to FH
b,1Fb,1 = p1IBt,1, (14)

where p1 is the power allocation of Stage I. After taking the constraint into account, the optimal solution

to the problem in (14) should ideally satisfy the following ‖FH
b,1

[
Āt

]
:,i
‖
2
=

√
p1Bt,1/Nt, i = 1, . . . , Gt.

It means that Fb,1 is isometric to all columns of Āt, which is obtained by

Fb,1 =
√
p1

[
e1, e2, . . . , eBt,1

]
, (15)

where ei the ith column of INt
. The construction of ej , j = 1, . . . , Bt,1 in (15) using the hybrid analog-

digital array is possible due to the fact that any vector can be constructed by linearly combining N(≥ 2)

RF chains [34]. To be more specific, there exists FA,j ∈ CNt×N , fD,j ∈ CN×1, and sj = 1 such that

ej = FA,jfD,jsj , i.e.,

ej =
1√
Nt

[1Nt
1̃
(j)
Nt

1Nt
· · ·1Nt

]

︸ ︷︷ ︸
,FA,j

√
Nt

2
[1,−1, 0, · · · , 0]T

︸ ︷︷ ︸
,fD,j

×1, (16)

where 1̃
(j)
Nt

∈ R
Nt×1 is defined as the all one vector 1Nt

∈ R
Nt×1 other than the jth entry being −1.

For the measurement matrix Φ1 = Wb,1Ār, we optimize Wb,1 by incorporating the isometric CS

measurement matrix design criterion [35]–[37]:

min
Φ1

∥∥ΦH
1 Φ1 − IGr

∥∥2

F
. (17)

After performing standard algebraic manipulations and exploiting the fact ĀrĀ
H
r = Gr

Nr
INr

, the optimality

condition for (17) is that the columns of Wb,1 are orthogonal. Accounting for the analog-digital array

constraint into Wb,1 and setting Br,1 = Nr, we use the DFT matrix SNr
∈ CNr×Nr such that

Wb,1 = SNr
, (18)

where [SNr
]m,n = 1√

Nr
e−j

2π(m−1)(n−1)
Nr , ∀m,n.

Based on the RSB in (18), in the following, the distribution of the noise term in (12) is discussed.

Proposition 1: For any semi-orthogonal matrix A ∈ Cm×n with AAH = I and random vector n ∈ Cn×1

with i.i.d. entries according to CN (0, σ2), then if we denote b = An, and the entries in b are also i.i.d.
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Algorithm 2 AoA Estimation Algorithm

1: Input: Channel dimension Nr, Nt, number of RF chains N , channel paths L, power allocation p1,
receive array response dictionary Ār ∈ CNr×Gr .

2: Initialization: Generate the TSB Fb,1 =
√
p1[e1, . . . , eBt,1 ] in (15) according to (16) and the RSB

Wb,1 = SNr
in (18).

3: Collect the observations Y1 = WH
b,1HFb,1 +WH

b,1N1.

4: Solve the problem in (13) by using Algorithm 1 with the sparsity level L and Φ1 = WH
b,1Ār,

(Ω̂r, Ĉ1) = SOMP(Y1,Φ1, L).

5: Output: Estimation of AoA array response matrix Âr = [Ār]:,Ω̂r
.

CN (0, σ2).

Proof: The covariance matrix of b is given by E[AnnHAH ] = σ2I. Because the entries in b are

obviously complex Gaussian, thus, from the property of Gaussian distribution, the entries in b are also

i.i.d. CN (0, σ2).

Remark 1: Due to the semi-orthogonality of Wb,1 in (18), according to Proposition 1, the effective

noise matrix WH
b,1N1 ∈ CNr×Bt,1 in (12) has i.i.d. Gaussian entries, i.e., [WH

b,1N1]i,j ∼ CN (0, σ2), ∀ i, j.

Moreover, since Φ1 = WH
b,1Ār, we have ‖[Φ1]:,i‖2 = 1, ∀ i.

The algorithmic procedure estimating AoAs are described in Algorithm 2. Given the estimated support

set Ω̂r from Algorithm 1, the output of Algorithm 2 is the estimated AoA array response matrix Âr =

[Ār]:,Ω̂r
∈ CNr×L. Overall, the number of channel uses for the AoA estimation is K1 = Bt,1

Nr

N
.

B. Stage II: AoD Estimation

To attain the estimation of AoDs, we can utilize the similar method as Stage I. Similar to the one-stage

sounding in (6), the observations of Stage II in Fig. 2 is expressed as Y2 ∈ CBr,2×Bt,2 ,

Y2 = WH
b,2HFb,2 +WH

b,2N2, (19)

where Wb,2 ∈ CNr×Br,2 and Fb,2 ∈ CNt×Bt,2 are the RSB and TSB of the Stage II, respectively. The

N2 ∈ CNr×Bt,2 is the noise matrix with i.i.d. entries according to CN (0, σ2).

Recall from (2) and (8), the channel matrix is rewritten as

H = ĀrH̄aĀ
H
t + E. (20)

One can find that ĀrH̄a ∈ CNr×Gt has L non-zero columns, indexed by Ωt with |Ωt| = L. Then, plugging
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(20) into (19) and taking conjugate transpose give

YH
2 = FH

b,2Āt︸ ︷︷ ︸
,Φ2

H̄H
a Ā

H
r Wb,2︸ ︷︷ ︸

,C2

+FH
b,2E

HWb,2 +NH
2 Wb,2

= Φ2C2 + FH
b,2E

HWb,2 +NH
2 Wb,2, (21)

where Φ2 = FH
b,2Āt ∈ C

Bt,2×Gt , and C2 = H̄H
a Ā

H
r Wb,2 ∈ C

Gt×Br,2 . It is straightforward that the C2 has

only L non-zero rows indexed by Ωt. Similar to (13) in Stage I, the support set Ωt estimation problem

can be formulated as

Ĉ2 = argmin
C2

∥∥YH
2 −Φ2C2

∥∥2

F
subject to ‖C2‖r,0 ≤ L, (22)

which is solved by Algorithm 1. In what follows, the design of RSB Wb,2 and TSB Fb,2 for Stage II is

of interest.

1) RSB and TSB Design: For the design of RSB Wb,2, we leverage the estimated AoAs from Stage I

to formulate

max
Wb,2

min
i

‖WH
b,2[Âr]:,i‖2. (23)

If Wb,2 is semi-unitary, i.e., WH
b,2Wb,2 = IBr,2 , the objective value in (23) satisfies ‖WH

b,2[Âr]:,i‖2 ≤ 1, ∀ i
with the equality holding if

R(Wb,2) = R(Âr). (24)

One can check (24) holds only if Br,2 ≥ L. Without loss of optimality and to save the number of sounders,

we set Br,2 = L. One solution to (24) is attained when the columns of Wb,2 are the orthonormal basis of

Âr. For example, we let Wb,2 be the Q-matrix of the QR decomposition4 of Âr such that

Wb,2 = QR(Âr), (25)

where QR(·) returns the Q-matrix of a given matrix.

Remark 2: Due to the semi-orthogonality of Wb,2 and the conclusions in Proposition 1, the effective

noise matrix WH
b,2N2 ∈ CBr,2×Bt,2 in (19) has i.i.d. Gaussian entries, i.e., [WH

b,2N2]i,j ∼ CN (0, σ2), ∀ i, j.

4The QR decomposition is a decomposition of a matrix A ∈ C
m×n into the product A = QR of an orthonormal matrix Q ∈ C

m×n

and an upper triangular matrix R ∈ C
n×n.
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As for the design of Fb,2, we exploit the isometric CS measurement matrix design criterion,

min
Φ2

‖ΦH
2 Φ2 − IGt

‖2F . (26)

After similar manipulations as (17), the optimality condition for Fb,2 of (26) is that the columns of Fb,2

are orthogonal. Then, following the same procedure as (15) and (16), we obtain the design of TSP Fb,2

below,

Fb,2 =
√
p2[e1, e2, . . . , eBt,2], (27)

where p2 is the power coefficient of Stage II.

The algorithmic procedure of estimating AoDs are described in Algorithm 3. Provided the estimated

support set Ω̂t, the output of Algorithm 3 is the estimated AoD array response matrix Ât = [Āt]:,Ω̂t
∈

C
Nt×L. The number of channel uses for the AoD estimation in Stage II is K2 = Bt,2, and the overall

number of channel uses for two stages is

K = K1 +K2 = Bt,1
Nr

N
+Bt,2. (28)

Remark 3: Recall that the number of observations for the conventional one-stage channel sounding in

Fig. 1 is O(L·log(GrGt/L)) [28]. As a comparison, since the proposed two-stage channel sounding in Fig.

2 only estimates AoA in Stage I, and estimates AoD in Stage II, the number of required observations is

O(L·log(Gr/L)) in Stage I, and O(L·log(Gt/L)) in Stage II. The total number of required observations for

the proposed two-stage channel sounding is O(L · log(Gr/L))+O(L · log(Gt/L)) = O(L · log(GtGr/L
2),

which is less than the conventional one-stage sounding.

Remark 4: About happening of the design RSB and TSB, in Stage I, one can find that the design of

RSB in (18) and TSB in (15) are completed before the channel estimation, which are then utilized by the

transmitter and receiver. Like the fact that the training pilots are known for the transmitter and receiver

in advance before the task of channel estimation, here we also assume that the TSB and RSB are known

as a priori. In Stage II, the TSB Fb,2 in (27) is also designed in advance, while the RSB Wb,2 in (25) is

designed and employed at the receiver side, which requires no feedback to the transmitter. Overall, the

proposed method requires no feedback during the whole procedures of the channel estimation.
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Algorithm 3 AoD Estimation Algorithm

1: Input: Channel dimension Nr, Nt, number of RF chains N , channel paths L, power allocation p2,
output of AoA estimation Âr, transmit array response dictionary Āt ∈ CNt×Gt .

2: Initialization: Generate the TSB Fb,2 =
√
p2[e1, . . . , eBt,2 ] in (27) and RSB Wb,2 = QR(Âr) in (25).

3: Collect the observations Y2 = WH
b,2HFb,2 +WH

b,2N2.

4: Solve the problem in (22) by using Algorithm 1 with the sparsity level L and Φ2 = FH
b,2Āt,

(Ω̂t, Ĉ2) = SOMP(YH
2 ,Φ2, L).

5: Output: Estimation of AoD array response matrix Ât = [Āt]:,Ω̂t
.

C. Channel Estimation

Recalling the channel representation in (2) and after estimating Âr ∈ CNr×L in Algorithm 2 and

Ât ∈ C
Nt×L in Algorithm 3, we can express the channel estimate as

Ĥ = ÂrR̂ÂH
t , (29)

where R̂ ∈ C
L×L denotes the estimation of diag(h) in (2). In the following, we will discuss how to obtain

the estimate R̂. It is worth noting that unlike (2) we do not restrict R̂ to be a diagonal matrix because of

the possible permutations in the columns of Âr and Ât.

Recall the observations of each stage, i.e., Y1 = WH
b,1ĀrH̄aĀ

H
t Fb,1+WH

b,1EFb,1+WH
b,1N1, and Y2 =

WH
b,2ĀrH̄aĀ

H
t Fb,2+WH

b,2EFb,2+WH
b,2N1. Since WH

b,1N1 and WH
b,2N2 are i.i.d. Gaussian, incorporating

the expressions of channel estimate in (29), the estimation of R̂ is given by

R̂ = argmin
R

∥∥∥∥∥∥


vec(Y1)

vec(Y2)


−


vec(W

H
b,1ÂrRÂH

t Fb,1)

vec(WH
b,2ÂrRÂH

t Fb,2)



∥∥∥∥∥∥

2

F

,

where the optimal solution is given by

vec(R̂) =
(
AH

1 A1 +AH
2 A2

)−1 (
AH

1 vec(Y1) +AH
2 vec(Y2)

)
,

where A1 = (ÂH
t Fb,1)

T ⊗WH
b,1Âr ∈ CNrBt,1×L2

and A2 = (ÂH
t Fb,2)

T ⊗WH
b,2Âr ∈ CLBt,2×L2

. Because

NrBt,1 ≫ L2 and Bt,2 ≫ L, the matrix AH
1 A1 +AH

2 A2 ∈ CL2×L2
is always invertible.

Remark 5: After R̂ is estimated, the pairing of AoAs and AoDs can be obtained by selecting positions

of the largest L entries in R̂. Then, the path gain hl, l = 1, 2, · · · , L, can be calculated by solving a

problem like the oracle estimator in (7), where the two-stage RSBs and TSBs are utilized.
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IV. PERFORMANCE ANALYSIS AND RESOURCE ALLOCATION

In this section, we discuss the reconstruction probability of AoAs and AoDs of the proposed two-stage

method in Section III. Moreover, we further enhance the reconstruction performance by performing power

and channel use allocation to each stage.

A. Successful Recovery Probability Analysis

1) SRP of AoA Estimation: As a starting point, we focus on the SRP of Algorithm 1. An SRP bound of

SOMP was previously studied in [38], where the analysis was based on the restricted isometry property

constant of the measurement matrix Φ. In this work, we instead analyze the recovery performance of

Algorithm 1, based on the mutual incoherence property (MIP) constant5 [39] of Φ.

Lemma 1: Suppose C ∈ CN×d is a row sparse matrix, where L (≪ N) rows of C, indexed by Ω, are

non-zero. We consider the observation Y = ΦC+N, where Y ∈ CM×d, Φ ∈ CM×N is the measurement

matrix with L ≤ M ≪ N and ‖[Φ]:,i‖2 = 1, ∀ i, and N ∈ C
M×d is the noise matrix with each entry i.i.d.

according to complex Gaussian distribution CN (0, σ2). Given that the MIP constant µ of the measurement

matrix Φ is µ < 1/(2L− 1), the SRP of Algorithm 1 satisfies

Pr(VS) ≥ F2

(
(1− (2L− 1)µ)2C2

min − 4σ2µM,d

4σ2σM,d

)
, (30)

where VS is the event of successful reconstruction of Algorithm 1, Cmin = min
i∈Ω

‖[C]i,:‖2, µM,d = (M1/2+

d1/2)2, σM,d = (M1/2 + d1/2)(M−1/2 + d−1/2)1/3, and the function F2(·)6 is the cumulative distribution

function (CDF) of Tracy-Widom law [40], [41].

Proof: See Appendix A.

Proposition 2: Suppose the signal model provided in Lemma 1 and, given the quantization error, the

observation model Y = ΦC + Ñ, where effective noise Ñ = E + N with quantization error E and

5The MIP constant of matrix Φ is quantified by a variable µ = maxi6=j |〈[Φ]:,i, [Φ]:,j〉|, where 〈·, ·〉 denotes the inner product.
6The CDF of Tracy-Widom law [40], [41] F2(·) is expressed as

F2(s) = exp

(∫ ∞

s

(x− s)q(x)dx

)
,

where q(x) is the solution of Painlevé equation of type II:

q
′′(x) = xq(x) + 2q(x)3, q(x) ∼ Ai(x), x → ∞,

where Ai(x) is the Airy function [40], [41]. To save computational complexity, we admit the table lookup method [42] to obtain the value

of F2(·).
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Gaussian noise N of i.i.d. CN (0, σ2) entries. If µ is the MIP constant of the measurement matrix Φ with

µ < 1/(2L− 1), the SRP of Algorithm 1 is given by

Pr(VS) ≥ F2

(
((1− (2L− 1)µ)Cmin − 2‖E‖2)2 − 4σ2µM,d

4σ2σM,d

)
, (31)

where Cmin = min
i∈Ω

‖[C]i,:‖2, µM,d = (M1/2 + d1/2)2, and σM,d = (M1/2 + d1/2)(M−1/2 + d−1/2)1/3.

Proof: See Appendix B.

As a direct consequence of Proposition 2, Theorem 1 below quantifies the SRP of AoA estimation in

Algorithm 2.

Theorem 1: Assume the MIP constant of the measurement matrix Φ1 in Algorithm 2 satisfies µ1 <

1/(2L− 1). Then, the SRP of Algorithm 2 is lower bounded by

Pr(AS) ≥ F2



(1− (2L− 1)µ1)

(
hmin

√
p1Bt,1

Nt
− 2‖E1‖2

)2

− 4σ2µNr,Bt,1

4σ2σNr ,Bt,1




≈ F2

(
(1− (2L− 1)µ1)h

2
min

p1Bt,1

Nt
− 4σ2µNr ,Bt,1

4σ2σNr ,Bt,1

)
(32)

, PI(p1, Bt,1), (33)

where AS is the event of successful reconstruction of AoA, hmin = minl≤L |hl| with hl being the lth entry

of h in (2), µNr,Bt,1 = (N
1/2
r +B

1/2
t,1 )

2, σNr ,Bt,1 = (N
1/2
r +B

1/2
t,1 )(N

−1/2
r +B

−1/2
t,1 )1/3, and E1 = WH

b,1EFb,1.

The approximation in (32) is obtained by neglecting the quantization term E1. In (33), the SRP lower

bound is substituted as a function of (p1, Bt,1).

Proof: Recalling the observation model in (12) with the TSB and RSB in (15) and (18), respectively,

the effective TSB matrix C1 in (12) satisfies ‖[C1]rl,:‖2 =
√

p1Bt,1

Nt
|hl|, where rl ∈ Ωr is the index of

the lth path of Ar in Ār such that [Ār]:,rl = [Ar]:,l, l = 1, . . . , L. Substituting Cmin = min
rl∈Ωr

‖[C1]rl,:‖2 =√
p1Bt,1

Nt
|hmin| in (30) results in (33), which completes the proof.

Remark 6: According to Theorem 1, when the power p1 of Stage I is fixed and the number of transmit

sounding beams Bt,1(≪ Nr) increases, the SRP of AoA increases accordingly. Interestingly, it is more

efficient to increase the power allocation p1 than the number of transmit sounding beams Bt,1 to achieve

a higher SRP of AoA. This can be understood through the two cases where p1 or Bt,1 grow at the same

rate. Compared to the case of p1, both µNr ,Bt,1 and σNr ,Bt,1 increase slowly as Bt,1 grows, resulting in

lower SRP in (32). This aspect will be clearer in the next subsection when we optimize the allocation of
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p1 and Bt,1.

2) SRP of AoD Estimation: Regarding the SRP of Algorithm 3, we assume for tractability that the

AoA estimation in Stage I was perfect. The following theorem quantifies the SRP of AoD estimation in

Algorithm 3.

Theorem 2: Provided the perfect AoA knowledge known a priori and MIP constant µ2 of matrix
√

Nt/(p2Bt,2)Φ2 satisfying µ2 < 1/(2L− 1), the SRP of Algorithm 3 is lower bounded by

Pr(DS) ≥ F2

(
(1− (2L− 1)µ2)hmin − 2‖E2‖2)2 − 4σ2 Nt

p2Bt,2
NtµBt,2,L

4Ntσ2 Nt

p2Bt,2
σBt,2,L

)

≈ F2

(
(1− (2L− 1)µ2)

2h2
min − 4σ2 Nt

p2Bt,2
NtµBt,2,L

4Ntσ2 Nt

p2Bt,2
σBt,2,L

)
(34)

, PII(p2, Bt,2), (35)

where DS denotes the event of successful AoD reconstruction, hmin = minl≤L |hl| with hl being the

lth entry of h in (2), µBt,2,L = (L1/2 + B
1/2
t,2 )

2, σBt,2,L = (L1/2 + B
1/2
t,2 )(L−1/2 + B

−1/2
t,2 )1/3, and E2 =

Nt

p2Bt,2
FH

b,2EWb,2. In (35) , the SRP lower bound is substituted as a function of (p2, Bt,2).

Proof: See Appendix C.

B. Power and Channel Use Allocation

We recall that in the proposed two-stage method, the transmit sounding beams at Stage I and II are,

respectively, Fb,1 =
√
p1[e1, . . . , eBt,1] in (15) and Fb,2 =

√
p2[e1, . . . , eBt,2] in (27). The total power

budget E is therefore defined by

E = p1Bt,1Nr/N︸ ︷︷ ︸
,E1

+ p2Bt,2︸ ︷︷ ︸
,E2

, (36)

where E1 and E2 are the power budgets at the Stage I and Stage II, respectively.

We let η1 > 0 and η2 > 0 be the target SRP values at Stage I and Stage II, respectively. The SRP-

guaranteed power budget minimization problem7 is then formulated as

min
p1,p2,Bt,1,Bt,2

E1 + E2 (37a)

7In (37), we present the SRP-constrained power minimization problem for optimizing power and channel use allocations. For instance,

this criterion can be thought of as a prudent alternative of the performance maximization subject to power constraints in the MIMO literature

because it provides a guarantee on the achievable performance [43]. Multiple variants of the performance-guaranteed power minimization

problem can be found in the context of MIMO resource allocation [44], [45].
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subject to PI(p1, Bt,1) ≥ η1, PII(p2, Bt,2) ≥ η2, (37b)

E1 = p1Bt,1Nr/N, E2 = p2Bt,2, (37c)

Bt,1 ≥ B̃t,1, Bt,2 ≥ B̃t,2, (37d)

where B̃t,1 and B̃t,2 are the minimum numbers of allowed transmit beams at Stage I and Stage II,

respectively. The problem in (37) optimizes the power allocation p1 and p2, and the number of transmit

beams Bt,1 and Bt,2 to minimizes the total power budget subject to the SRP requirements at Stage I and

Stage II. It is worth noting that that because the problem in (37) is separable, thus (37) is equivalent to

the following two sub-problems,

min
p1,Bt,1

E1 (38a)

subject to PI(p1, Bt,1) ≥ η1, E1 = p1Bt,1
Nr

N
,Bt,1 ≥ B̃t,1, (38b)

and

min
p2,Bt,2

E2 (39a)

subject to PII(p2, Bt,2) ≥ η2, E2 = p2Bt,2, Bt,2 ≥ B̃t,2. (39b)

First of all, we focus on the sub-problem of Stage I in (38). It is worth noting that directly solving

(38) is difficult due to the coupled constraints. Thus, we first maximize the SRP, i.e., PI(p1, Bt,1), with

arbitrary power budget E1,

max
p1,Bt,1

PI(p1, Bt,1) (40a)

subject to p1Bt,1Nr/N = E1, Bt,1 ≥ B̃t,1. (40b)

Prior to showing how to solve the problem in (40), we first elaborate the relation between the problem

in (38) and (40). It is easy to observe that as E1 increases the achievable SRP of the objective function

in (40) also increases. Thus, the minimum E1 in (38) is achieved when the SRP constraint in (38b), i.e.,

PI(p1, Bt,1) ≥ η1, holds as the equality. Moreover, given any arbitrary power budget E1 in problem (40),

the interrelation between the power allocation p1 and the number of transmit sounding beams Bt,1 points

to a fundamental tradeoff between them, which is demonstrated in the following theorem.
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Fig. 3. SRP of AoA vs. SNR (dB) (Nr = 20, Nt = 64, L = 4, N = 4, s = 1, E1 = 10, B̃t,1 = 1).

Theorem 3: Consider the following non-linear programming

(p̂1, B̂t,1) = argmax
p1,Bt,1

PI(p1, Bt,1) (41a)

subject to p1Bt,1Nr/N = E1, Bt,1 ≥ B̃t,1, (41b)

where E1 is an arbitrary power budget. The solution to (41) is given by B̂t,1 = B̃t,1 and p1 =
E1N

B̃t,1Nr
.

Proof: Substituting constraint p1 = E1N
Bt,1Nr

in (41b) into the objective function in (41a), we first show

that PI(
E1N

Bt,1Nr
, Bt,1) in (41a) is a monotonically decreasing function of the number of transmit sounding

beams Bt,1 for a fixed E1. Specifically, substituting µNr,Bt,1 = (N
1/2
r + B

1/2
t,1 )

2 and σNr ,Bt,1 = (N
1/2
r +

B
1/2
t,1 )(N

−1/2
r +B

−1/2
t,1 )1/3 of (32) into PI(

E1N
Bt,1Nr

, Bt,1) gives

PI

(
E1N

Bt,1Nr

, Bt,1

)
= F2


h2

min(1− (2L− 1)µ1)
2E1N − 4NtNrσ

2(N
1
2
r +B

1
2
t,1)

2

4NtNrσ2(N
1
2
r +B

1
2
t,1)(N

− 1
2

r +B
− 1

2
t,1 )

1
3


 . (42)

Taking the first derivative of the argument inside F2(·) in (42) with respect to Bt,1 reveals that the argument

is a decreasing function of Bt,1. This implies that the PI(
E1N

Bt,1Nr
, Bt,1) in (42) is a monotonically decreasing

function of Bt,1. Hence, (41) is maximized when Bt,1 = B̃t,1, which completes the proof.

Therefore, based on Theorem 3, the maximum SRP of AoA estimation for a given E1 is given by

PI

(
E1N

B̃t,1Nr

, B̃t,1

)
= F2

(
h2

min(1− (2L− 1)µ1)
2E1N/Nr − 4σ2NtµNr ,B̃t,1

4Ntσ2σNr ,B̃t,1

)
. (43)
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We demonstrate Theorem 3 via numerical simulations in Fig. 3, in which the SRP of AoA is evaluated for

different numbers of channel uses Bt,1 ∈ {1, 3, 5, 9, 11}. The simulation parameters Nr = 20, Nt = 64,

L = 4, N = 4, s = 1, E1 = 10, and B̃t,1 = 1 are assumed. The curves clearly show that the highest SRP

is achieved when Bt,1 = 1.

Now, based on Theorem 3, the solution to (38) is readily obtained as follows. In order to make SRP of

AoA higher than η1 in (38), we solve the inverse function in (43) with respect to E1 and conclude that

the resource allocation of Stage I should meet the following conditions:





E1 =
4σ2NtNr(F

−1
2 (η1)σNr ,B̃t,1

+ µNr ,B̃t,1
)

h2
min(1− (2L− 1)µ1)2N

, (44a)

Bt,1 = B̃t,1, (44b)

p1 =
E1N

B̃t,1Nr

, (44c)

where F−1
2 (·) is the inverse function of F2(·). By using similar procedures of the proof of Theorem 3,

we observe the following more general result about the number of vectors d in the signal model stated

Lemma 1.

Corollary 1: The bound in (30) is a monotonically decreasing function of the number of measurement

vectors d.

Remark 7: Corollary 1 states the effect of d on the recovery performance of SOMP. It can be interpreted

in the following way. The increase of the number of measurement vectors d has an effect of increasing

the number of columns of C in Lemma 1 while keeping the Cmin unchanged. This leads to the increase

of the noise power due to the increase in the dimension of N, which in turn reduces SRP.

When it comes to the number of channel uses Bt,2 at Stage II, we cannot reach the same conclusion as

Theorem 3 because the constant µ2 in (34) changes with Bt,2. Therefore, Given Bt,1 = B̃t,1 and the total

number of channel uses K for channel sounding, Bt,2 is determined by (28), i.e., K = B̃t,1Nr/N +Bt,2.

Then, the solution to (39) is given by





E2 =
4σ2Nt(F

−1
2 (η2)σBt,2,L + µBt,2,L)

h2
min(1− (2L− 1)µ2)2

, (45a)

Bt,2 = K − B̃t,1Nr/N, (45b)

p2 =
E2

K − B̃t,1Nr/N
. (45c)

In summary, after solving the two-subproblems in (38) and (39), we successfully solve the problem in
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Fig. 4. Power allocation to achieve the required SRP vs. SNR (dB) (Nr = 20, Nt = 64, L = 4, N = 4, s = 1, B̃t,1 = 1, η1 = η2 = 0.95).

(37). The specific resource allocations for two stages are shown in (44) and (45), respectively. In particular,

when the total power budget E ≥ E1 + E2, the joint SRP of AoA and AoD is at least η1η2.

In Fig. 4, we illustrate the designed resource allocations in (44) and (45) with the simulation results.

The parameters are set as η1 = η2 = 0.95. The curves of theoretical results calculate the power allocations

p1 and p2 through (44c) and (45c). The curves of simulation results are the required power allocations

to achieved SRPs of η1 and η2. The simulation parameters Nr = 20, Nt = 64, L = 4, N = 4, s = 1 are

assumed. In Fig. 4, to achieve the same required SRP, i.e., η1 = η2 = 0.95, Stage II requires less power

allocation than Stage I. This is because the design of the sounding beams for Stage II saves the power

consumption. Overall, the trend of the theoretical results is consistent with that of the simulation results,

which validates the proposed resource allocation strategies in (44) and (45).

In Fig. 5, we demonstrate the SRP of AoA and AoD achieved by the power allocations in (44) and

(45) compared to the equal power allocation. The power allocations p1 and p2 are calculated by setting

η1 = η2 = 0.95 and σ = 0.1 in (44) and (45). The simulation parameters are Nr = 20, Nt = 64, L = 4,

N = 4, s = 1. As we can see from Fig. 5, the proposed power allocation achieves much higher SRP

than that of the equal power allocation, which verifies the effectiveness of the proposed power allocation

strategy.

V. EXTENSION TO TWO-STAGE METHOD WITH SUPER RESOLUTION

In this section, we extend the proposed two-stage method to the one with super resolution, through

which we aim to address the issue of unresolvable quantization errors. Among the existing works,
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Fig. 5. Evaluation of the power allocation strategy with equal power allocation (Nr = 20, Nt = 64, L = 4, N = 4, s = 1, B̃t,1 = 1, η1 =
η2 = 0.95).

there are two directions to solve the quantization error for off-grid effect. Firstly, the works in [46]–

[48] model the response vector as the summation of on-grid part and the approximation error, in which

the sparse Bayesian inference is utilized to estimate the approximation error. Secondly, the atomic norm

minimization has been proposed in [19]–[21], which can be viewed as the case when the infinite dictionary

matrix is employed. Based on atomic norm minimization, the sparse signal recovery is reformulated as

a semidefinite programming. Compared to the sparse Bayesian inference, one advantage of atomic norm

minimization is that the recovery guarantee is analyzable [19]–[21]. Following the methodology of the

atomic norm minimization, in this section, we aim to estimate the AoAs and AoDs, i.e., {fr,1, . . . , fr,L}
and {ft,1, . . . , ft,L}, under the proposed two-stage framework.

A. Super Resolution AoA Estimation

The sounding beams of Stage I, i.e., Fb,1 and Wb,1, are designed according to (15) and (18). By using

the exact expression of H in (2) rather than the quantized version in (8), the observations for Stage I is

given by

Y1 = WH
b,1HFb,1 +WH

b,1N1

= WH
b,1Ar diag(h)A

H
t Fb,1 +WH

b,1N1

= WH
b,1ArCr +WH

b,1N1, (46)
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where Y1 ∈ CNr×Bt,1 and Cr = diag(h)AH
t Fb,1 ∈ CL×Bt,1 . Since Wb,1 = SNr

in (18), projecting Y1

onto Wb,1 yields

Ỹ1 = Wb,1Y1 = ArCr +N1. (47)

The observation in (47) is rewritten by explicitly involving the array response vectors,

Ỹ1 = [ar(fr,1), . . . , ar(fr,L)]Cr +N1 = R1 +N1, (48)

where R1 = [ar(fr,1), . . . , ar(fr,L)]Cr ∈ C
Nr×Bt,1 . The atom Ar(f,b) ∈ CNr×Bt,1 is defined in [19], [20]

as Ar(f,b) = ar(f)b
H , where f ∈ [0, 1) and b ∈ CBt,1×1 with ‖b‖2 = 1. We let the collection of all

such atoms be the set Ar = {Ar(f,b) : f ∈ [0, 1), ‖b‖2 = 1}. Obviously, the cardinality of Ar is infinite.

The matrix R1 in (48) can be written as the linear combination among the atoms from the atomic set Ar,

R1 =
L∑

l=1

[cr]lAr(fr,l,bl) =
L∑

l=1

[cr]lar(fr,l)b
H
l , (49)

where cr ∈ RL×1 is the coefficient vector with [cr]l ≥ 0, and it has the relationship [Cr]l,: = [cr]lb
H
l , ∀ l =

1, . . . , L. Observing (49), the dimension of vector cr, i.e., L, can be interpreted as the sparest representation

of R1 in the context of the atomic set Ar. Therefore, in order to seek the sparsest representation, after

taking the noise in (48) into account, the reconstruction problem is formulated by

min
R1

‖R1‖Ar ,0
+

λ1

2
‖Ỹ1 −R1‖2F , (50)

where λ1 > 0 is the penalty parameter, and ‖R1‖Ar ,0
is defined as

‖R1‖Ar ,0
= inf

cr

‖cr‖0 (51a)

subject to R1 =

L∑

l=1

[cr]lAr(fr,l,bl), (51b)

Ar(fr,l,bl) ∈ Ar, [cr]l ≥ 0, (51c)

with ‖R1‖Ar ,0 revealing the minimal number of atoms in R1. When the sparest representation of R1,

i.e., {[cr]lar(fr,l)b
H
l }Ll=1, is found by solving (50), the AoAs {fr,l}Ll=1 can be obtained from the atomic

decomposition in (49). However, since the minimization problem in (51) is combinatorial, it is not tractable
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to calculate the value of ‖R1‖Ar ,0
. To overcome the challenge, the problem in (50) is relaxed as,

min
R1

‖R1‖Ar ,1
+

λ1

2
‖Ỹ1 −R1‖2F , (52)

where ‖R1‖Ar ,1
is the atomic norm of R1 defined by

‖R1‖Ar ,1
= inf

cr

‖cr‖1 (53a)

subject to R1 =

L∑

l=1

[cr]lAr(fr,l,bl), (53b)

Ar(fr,l,bl) ∈ Ar, [cr]l ≥ 0. (53c)

It is noted that in (53), the atomic norm ‖R1‖Ar ,1 is to minimize the summation of entries in cr instead

of the number of non-zero elements in (51).

Different from the intractability of (51), the problem in (53) can be efficiently solved by semi-definite

programming [19]:

‖R1‖Ar ,1
= inf

u,Z

1

2
tr (Toeplitz(u)) +

1

2
tr(Z) (54a)

subject to


Toeplitz(u) R1

RH
1 Z


 � 0, (54b)

where u ∈ CNr×1,Z ∈ CBt,1×Bt,1 , and Toeplitz(u) ∈ CNr×Nr denotes the Hermitian Toeplitz matrix

generated by the vector u. Plugging (54) into (52) gives

inf
u,Z,R1

tr (Toeplitz(u)) + tr(Z) + λ1‖Ỹ1 −R1‖2F (55a)

subject to X =


Toeplitz(u) R1

RH
1 Z


 , X � 0. (55b)

It is straightforward to find that (55) is convex, where ADMM can be employed to accelerate the

computation. The augmented Lagrangian of (55) is expressed as

L(u,Z,R1,X,Λ) = tr (Toeplitz(u)) + tr(Z) + λ1‖Ỹ1 −R1‖2F

+

〈
Λ,X−


Toeplitz(u) R1

RH
1 Z



〉

+
ρ

2

∥∥∥∥∥∥
X−


Toeplitz(u) R1

RH
1 Z



∥∥∥∥∥∥

2

F

, (56)
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where X ∈ C(Nr+Bt,1)×(Nr+Bt,1) and Λ ∈ C(Nr+Bt,1)×(Nr+Bt,1) are Hermitian matrices, and ρ is the

Lagrangian multiplier. Then, with t being the iteration index, we iteratively update the variables in (56)

as follows:

(ut+1,Zt+1,Rt+1
1 ) = argmin

u,Z,R1

L(u,Z,R1,X
t,Λt), (57)

Xt+1 = argmin
X�0

L(ut+1,Zt+1,Rt+1
1 ,X,Λt), (58)

Λt+1 = Λt + ρ


Xt+1 −


Toeplitz(ut+1) Rt+1

1

(Rt+1
1 )H Zt+1




 . (59)

The solutions of the (57) and (58) are respectively

[ut+1]i =





Vi+ρSi

(Nr−t)ρ+Nr
, i = 1

Vi+ρSi

(Nr−t)ρ
, i = 2, . . . , Nr

,with Vi =

Nr+1−i∑

k=1

[Λt]k,k−1+i, Si =

Nr+1−i∑

k=1

[Xt]k,k−1+i,

Rt+1
1 =

1

λ1 + ρ
(λ1Ỹ1 + ρ[Xt]1:Nr ,Nr+1:end + [Λt]1:Nr ,Nr+1:end),

Zt+1 =
1

ρ
([Λt]Nr+1:end,Nr+1:end + ρ[Xt]Nr+1:end,Nr+1:end − IBt,1),

Xt+1 =


Toeplitz(ut+1) Rt+1

1

(Rt+1
1 )H Zt+1


− 1

ρ
Λt.

It is worth noting that in order to guarantee X � 0 as shown in (58), we can set the negative eigenvalues

of Xt+1 to 0. When the iterative process converges, the result Toeplitz(u) can be utilized to obtain

the estimation of AoAs. Specifically, we can take Vandermonde decomposition [19] for Toeplitz(u),

Toeplitz(u) = VDVH , where V = [ar(f̂r,1), . . . , ar(f̂r,L)] ∈ CNr×L with {f̂r,l}Ll=1 being the estimated

AoAs and D = diag([d1, . . . , dL]) ∈ CL×L. In practice, it is not necessary to calculate the Vandermonde

decomposition of Toeplitz(u) explicitly. Since the column subspace of Toeplitz(u) is equal to R(V), the

set of AoAs can be estimated from Toeplitz(u) efficiently by spectrum estimation algorithms such as

MUSIC or ESPRIT [19], [20].

B. Super Resolution AoD Estimation

Similarly, the observations for the second stage is given by

Y2 = WH
b,2HFb,2 +WH

b,2N2
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= WH
b,2Ar diag(h)A

H
t Fb,2 +WH

2 N2

= CtA
H
t Fb,2 +WH

b,2N2, (60)

where we let Ct = WH
b,2Ar diag(h) ∈ CL×L. At Stage II, the observation Y2 in (60) is rewritten as

YH
2 = FH

b,2AtC
H
t +NH

2 Wb,2 = RH
2 +NH

2 Wb,2, (61)

where we let R2 = FH
b,2AtC

H
t ∈ CBt,2×L. Due to the design of Fb,2 in (27), we have

FH
b,2At =

√
p2[At]1:Bt,2,: =

√
p2[at(ft,1), . . . , at(ft,L)]1:Bt,2,:.

For convenience, we define ãt(f) = [at(f)]1:Bt,2 ∈ CBt,2×1 and Ãt = [ãt(ft,1), . . . , ãt(ft,L)] ∈ CBt,2×L.

The AoD estimation boils down to extracting L parameters {ft,l}Ll=1 in Ãt. We let At(f,b) ∈ CBt,2×L

be At(f,b) = ãt(f)b
H , where f ∈ [0, 1), b ∈ CL×1 with ‖b‖2 = 1, and the atomic set At is defined by

At = {At(f,b) : f ∈ [0, 1], ‖b‖2 = 1}, Similarly, RH
2 in (61) can be written as the linear combination

of the atoms from the set At,

RH
2 =

L∑

l=1

[ct]lAt(ft,l,bl) =

L∑

l=1

[ct]lat(ft,l)b
H
l ,

where ct ∈ RL×1 is the coefficient vector with [ct]l ≥ 0. Therefore, using the similar approach as AoA

estimation in (52), the AoD estimation problem is given by

min
R2

∥∥RH
2

∥∥
At,1

+
λ2

2
‖Y2 −R2‖2F , (62)

where λ2 is a penalty parameter. The problem in (62) can also be solved in a similar manner as (52), and

the estimation for AoDs, i.e., {f̂t,l}Ll=1, can be obtained.

Furthermore, after the AoAs {f̂r,l}Ll=1 and AoDs {f̂t,l}Ll=1 are estimated, we can easily calculate the AoA

and AoD array response matrix Âr and Ât. Then, by using the channel estimation technique provided in

Section III-C, the final channel estimation result is obtained.

VI. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed two-stage AoA and AoD estimation method

and two-stage method with super resolution. For comparison, we take the OMP-based mmWave channel

estimation method [9] as our benchmark. Also, we include the oracle estimator as we discussed in (7). The
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parameter settings for evaluation are as follows. We assume throughout the simulation Nr = 20, Nt = 64,

and the channel model is given by (1). We let the dimensions of the angle grids for the proposed two-stage

method and OMP [9] be Gr = sNr and Gt = sNt. The number of paths is L = 4. The variance of the path

gain is σ2
l = 1, ∀ l. The number of RF chains is N = 4. The number of channel uses for the estimation

task is K = 50. The minimum allowed transmit beams at Stage I are B̃t,1 = 1. Without loss of generality,

for the proposed two-stage framework, the power budget E = E1+E2, where E1 and E2 are, respectively,

given by the resource allocations in (44) and (45) with η1 = η2 = 0.95 and SNR= 20dB.

To evaluate the estimation performance, we use three performance metrics:

• The first metric is the SRP. The error of the estimated angles are defined as

ǫ =
1

2L

L∑

l=1

(
|fr,l − f̂r,l|2 + |ft,l − f̂t,l|2

)
.

We declare the reconstruction is successful if ǫ ≤ 10−3. Precisely, SRP is defined as

SRP =
number of trials with ǫ ≤ 10−3

number of total trials
.

• The second metric is MSE of angle estimation defined as

MSE = E

[
L∑

l=1

(
|fr,l − f̂r,l|2 + |ft,l − f̂t,l|2

)]
.

• The third metric is NMSE of channel estimation defined as

NMSE = E[‖H− Ĥ‖2F/‖H‖2F ],

where Ĥ is the channel estimate.

A. Channel Estimation Performance of Two-stage Method with Discrete Angles

For the simulations with discrete angles in Figs. 6-7, the ft,l and fr,l in (1) are uniformly distributed on

the grids of size Gt = Nt and Gr = Nr, respectively. Three methods are compared, which are proposed

two-stage SOMP method, one-stage OMP method [9], AMP method [49], and oracle method in (7). We

show the SRP in Fig. 6 and NMSE in Fig. 7.

In Fig. 6, considering that oracle method assumes that AoAs and AoDs are known as a priori, we do

not illustrate the performance of the oracle method when comparing the SRP. As can be seen in Fig. 6,

the proposed two-stage SOMP method achieves a higher SRP compared to the benchmarks. It is worth
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Fig. 6. SRP vs. SNR (dB) with discrete angles (Nr = 20, Nt = 64, L = 4, N = 4, K = 50, B̃t,1 = 1, s = 1).

-20 -15 -10 -5 0 5 10 15 20
SNR (dB)

10-4

10-3

10-2

10-1

100

101

102

N
M

S
E

 o
f C

ha
nn

el
 E

st
im

at
io

n

Fig. 7. NMSE vs. SNR (dB) with discrete angles (Nr = 20, Nt = 64, L = 4, N = 4,K = 50, B̃t,1 = 1, s = 1).

noting that the AMP-based method require the minimal measurements to guarantee the convergence [49].

When the number of channel uses is limited, the AMP-based method can not achieve the near one SRP

even if the SNR is high. Also, the SRPs of AoA and AoD of the proposed two-stage SOMP method

are both higher than those of one-stage OMP method. The improvement of SRP of AoD is because we

optimize the sounding beams of the second stage based on the estimated AoA result. For the improvement

of SRP of AoA, it is because we allocate more power budget to Stage I according to the proposed resource

allocation strategy.
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Similarly, in Fig. 7, the proposed two-stage SOMP method has lower NMSE than the one-stage OMP

and AMP methods. In addition, we can find from Fig. 7 that the proposed two-stage SOMP method

converges to the performance of the oracle method as SNR grows. Overall, Figs. 6-7 verify that the

proposed two-stage method outperforms the one-stage OMP in the scenario of discrete angles.

B. Channel Estimation Performance of Two-stage Method with Continuous Angles

For this set of simulations in Fig. 8-9, we assume the ft,l and fr,l in (1) are uniformly distributed in [0, 1).

Four methods are compared, which are the proposed two-stage SOMP method, two-stage method with

super resolution, one-stage OMP method [9], and one-stage atomic method [21]. When implementing the

two-stage SOMP method and one-stage OMP method with the defined angle grids, the estimated angles

are located on the defined grids. Fig. 8 illustrates the MSE and Fig. 9 illustrates the NMSE of channel

estimation.

In Fig. 8, the proposed two-stage SOMP method and two-stage method with super resolution outperform

the one-stage OMP and one-stage atomic method, respectively. Interestingly, the two-stage SOMP method

achieves the minimal MSE when SNR is low. This is because when SNR is low, i.e., SNR ≤ 5dB, the noise

power is higher than that of the quantization error. Therefore, using the quantized model could reduce

the complexity of problem and achieve near-optimal performance. When SNR is high, i.e., SNR ≥ 5dB,

the two-stage method with super resolution achieves the minimal MSE. This is because when SNR is

high, the quantization error will become dominant, which can not be handled by the grid-based methods.

Nevertheless, the Fig. 8 verifies that by dividing the estimation into two stages, the estimation of AoAs

and AoDs is improved compared to the one-stage estimation.

Likewise, in Fig. 9, the proposed two-stage SOMP method and two-stage method with super resolution

also achieve lower NMSE than the one-stage OMP and one-stage atomic methods. Similarly, when SNR

is high, the two-stage method with super resolution shows the minimum NMSE.

C. Analysis of Computational Complexity

For two-stage method, the computational complexity for the first stage is O(LNrGr) = O(sLN2
r ),

and the complexity for the second stage is O(LBt,2Gt) = O(sL(K − Nr/N)Nt) = O(sLKNt) with K

being the number of channel uses. Therefore, the total computational complexity for two-stage method

is O(sLN2
r ) + O(sLKNt) = O(sLKNt). However, for the one-stage OMP method, the computational
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Fig. 8. MSE vs. SNR (dB) with continuous angles (Nr = 20, Nt = 64, L = 4, N = 4,K = 50, B̃t,1 = 1, s = 2).
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Fig. 9. NMSE vs. SNR (dB) with continuous angles (Nr = 20, Nt = 64, L = 4, N = 4,K = 50, B̃t,1 = 1, s = 2).

complexity is O(LKNGtGr) = O(s2LKNNtNr). It is obvious that the two-stage method has much

lower computational complexity compared to the one-stage OMP by O(sNNr) times.

For the two-stage method with super resolution, in Stage I, the computational complexity of ADMM

per iteration is dominated by the eigenvalue decomposition of Xt+1, i.e., O(N3
r ). Similarly, for Stage II,

each iteration has the computational complexity of O(B3
t,2) = O((K − Nr/N)3) = O(K3). Given the

number of iteration T and K ≥ Nr, the total computational complexity of the super resolution method

is O(TN3
r ) + O(TK3) = O(TK3). In order to compare the complexities of the two-stage method with



32

super resolution and one-stage OMP, we consider a simple example as follows. In particular, if Nr = Nt

and K = O(Nr), the complexity of the proposed two-stage method with super resolution is O(s2LN/T )

times lower than that of the one-stage OMP.

VII. CONCLUSION

In this paper, the two-stage method for the mmWave channel estimation was proposed. By sequentially

estimating AoAs and AoDs of large-dimensional antenna arrays, the proposed two-stage method saved the

computational complexity as well as channel use overhead compared to the existing methods. Theoretically,

we analyzed the SRPs of AoA and AoD of the proposed two-stage method. Based on the analyzed SRP,

we designed the resource allocation strategy among two stages to guarantee the accurate AoA and AoD

estimation. In addition, to resolve the issue of quantization error, we extended the proposed two-stage

method to a version with super resolution. The numerical simulations showed that the proposed two-stage

method achieves more accurate channel estimation result than the one-stage method.

APPENDIX A

PROOF OF LEMMA 1

For an arbitrary random noise matrix N, the SRP of SOMP has been characterized in [33]. This result

is general to be extended to the case in Lemma 1, where the entries in N are i.i.d. complex Gaussian.

Theorem 4: (SRP of SOMP with arbitrary random noise [33]) Suppose the signal model provided in

Lemma 1. Given the measurement matrix Φ with its MIP constant satisfying µ < 1/(2L + 1) and the

cumulative distribution function (CDF) of ‖N‖2 satisfying

Pr(‖N‖2 ≤ x) = FN(x), (63)

the SRP of SOMP in Algorithm 1 satisfies

Pr(VS) ≥ FN

(
Cmin(1− (2L− 1)µ)

2

)
, (64)

where VS is the event of successful reconstruction of Algorithm 1, Cmin = min
i∈Ω

‖[C]i,:‖2.

According to the results in Theorem 4, the SRP of SOMP is characterized by the CDF of ‖N‖2. Thus,

in order to extend the result provided in Theorem 4 to the case in Lemma 1, the CDF of ‖N‖2 is of
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interest when the entries of N ∈ CM×d are i.i.d. CN (0, σ2). Fortunately, according to [40], [41], the CDF

of the largest singular value of N converges in distribution to the Tracy-Widom law as M, d tend to ∞,

Pr(‖N‖2 ≤ x) ≈ F2

(
x2/σ2 − µM,d

σM,d

)
, (65)

where the function F2(·) is the CDF of Tracy-Widom law [40], [41], µM,d = (M1/2 + d1/2)2, and σM,d =

(M1/2 + d1/2)(M−1/2 + d−1/2)1/3. Finally, after plugging the expression in (65) into (64) of Theorem 4,

we obtain Lemma 1, which completes the proof.

APPENDIX B

PROOF OF PROPOSITION 2

One can write the effective noise as Ñ = E + N where the entries in N are i.i.d. with CN (0, σ2).

Therefore, we have the following probability bound,

Pr
(
‖Ñ‖2 ≤ x

) (a)

≤ Pr (‖E‖2 + ‖N‖2 ≤ x)

(b)≈ F2

(
(x− ‖E‖2)2/σ2 − µM,d

σM,d

)
, (66)

where the inequality (a) is due to the triangular inequality, and the approximation (b) holds from (65).

Then, according to Theorem 4, plugging the expression (66) into (64) leads to

Pr(VS) ≥ F2

(
((1− (2L− 1)µ)Cmin − 2‖E‖2)2 − 4σ2µM,d

4σ2σM,d

)
,

where Cmin = min
i∈Ω

‖[C]i,:‖2. This concludes the proof.

APPENDIX C

PROOF OF THEOREM 2

Plugging RSB in (25) and TSB in (27) into (21) gives ‖[Φ2]:,j‖2 =
√
p2Bt,2/Nt, j = 1, . . . , Gt,

and Cmin = mintl∈Ωt
‖[C2]tl,:‖2 = |hmin| with tl being the index of the lth path of At in Āt such that

[Āt]:,tl = [At]:,l, l = 1, . . . , L. Hence, incorporating the latter Cmin and ‖[Φ2]:,j‖2 into Lemma 1 concludes

the proof.
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