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Abstract

The fact that the millimeter-wave (mmWave) multiple-input multiple-output (MIMO) channel has sparse support
in the spatial domain has motivated recent compressed sensing (CS)-based mmWave channel estimation methods,
where the angles of arrivals (AoAs) and angles of departures (AoDs) are quantized using angle dictionary matrices.
However, the existing CS-based methods usually obtain the estimation result through one-stage channel sounding
that have two limitations: (i) the requirement of large-dimensional dictionary and (ii) unresolvable quantization error.
These two drawbacks are irreconcilable; improvement of the one implies deterioration of the other. To address these
challenges, we propose, in this paper, a two-stage method to estimate the AoAs and AoDs of mmWave channels.
In the proposed method, the channel estimation task is divided into two stages, Stage I and Stage II. Specifically, in
Stage I, the AoAs are estimated by solving a multiple measurement vectors (MMYV) problem. In Stage II, based on
the estimated AoAs, the receive sounders are designed to estimate AoDs. The dimension of the angle dictionary in
each stage can be reduced, which in turn reduces the computational complexity substantially. We then analyze the
successful recovery probability (SRP) of the proposed method, revealing the superiority of the proposed framework
over the existing one-stage CS-based methods. We further enhance the reconstruction performance by performing
resource allocation between the two stages. We also overcome the unresolvable quantization error issue present in
the prior techniques by applying the atomic norm minimization method to each stage of the proposed two-stage
approach. The simulation results illustrate the substantially improved performance with low complexity of the

proposed two-stage method.
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I. INTRODUCTION

The spectrum-rich millimeter-wave (mmWave) frequencies between 30 — 300 GHz have the potential to
alleviate the current spectrum crunch in sub-6GHz bands that service providers are already experiencing.
This major potential of the mmWave band has made it one of the most important components of future
mobile cellular and emerging WiFi networks. However, due to significant differences between systems
operating in mmWave and legacy sub-6 GHz bands, providing reliable and low-delay communication
in the mmWave bands is extremely challenging. Specifically, to achieve the high spectral efficiency of
mmWave communications, accurate channel state information (CSI) is the key [1]—[5], which is, however,
challenging due to the high dimensionality of the channel as well as the mmWave hardware constraints.

Nevertheless, the mmWave multiple-input multiple-output (MIMO) channel exhibits sparse property
[6], [7], facilitating the sparse channel representation by using small numbers of the angles of arrivals
(AoAs), angles of departures (AoDs), and path gains. Typically, by approximating the AoAs and AoDs to
be on quantized angle grids, the compressed sensing (CS)-based approaches transform the AoA and AoD
estimation problem to a sparse signal recovery problem [8], [9], where the transmitter sends the channel
sounding beams to the receiver and the receiver jointly estimates AoAs and AoDs. We refer to this method
as the one-stage channel sounding scheme. In particular, due to easy implementation and amenability for
analysis, the orthogonal matching pursuit (OMP) has been widely studied [9]-[13]. The OMP iteratively
searches a pair of AoA and AoD over an over-complete dictionary. However, the computational complexity
of OMP increases quadratically with the sizes of the dictionaries, i.e., O(LKG,G;), where K is the
number of channel uses for the channel sounding, L is the number of channel paths, and G, and G, are
the dimensions of angle dictionaries for AoA and AoD, respectively. It is worth pointing out that when the
dimensions of the over-complete dictionaries, i.e., G, and G, increase, the complexity of the one-stage
CS-based methods such as OMP becomes exceedingly impractical.

The over-complete dictionary and high computational complexity issues have been addressed in an
adaptive-CS point-of-view with the primary focus on the sensing vector adaptation to the previous
observations [3], [8], [14]. Theoretically, it has been shown that the adaptive CS can be benificial in low
SNR [15]. The multi-level (hierarchical) AoA and AoD search techniques [3], [8] leveraged the feedback,
where the receiver conveys a feedback to the transmitter to guide the next level angle dictionary design.
It is worth noting that these adaptation methods [3], [8] need multiple feedbacks and its performance

critically relies on the reliability of the feedback. To reduce the feedback overhead, a two-stage CS was



proposed in [14], where the first stage is to obtain a coarse estimation of the support set and the second
stage refines the result of the first stage. This method [14] only requires one-time feedback, but achieves

compatible estimation performance in low SNR.

A. Our Contributions

We newly study a sequential, two-stage AoA and AoD estimation framework for reduced computational
complexity and improved estimation performance. Specifically, in Stage I, the support set of AoAs is
recovered at the receiver by solving a multiple measurement vectors (MMYV) problem. Leveraging the
shared sparse set, it has been found that the MMV approach can provide improved estimation performance
compared to the single measurement vector (SMV) approach [16]—[18]. In Stage II, the receiver estimates
the AoDs of the channel by exploiting the estimated AoAs from Stage I. Importantly, the estimated AoAs
guide the design of receive sounding signals, which saves the channel use overhead and improves the
accuracy of AoD estimation. In each stage, since we only estimate AoAs or AoDs, the dimensions of the
signal and angle dictionary are much smaller than those of the one-stage joint AoA and AoD estimation
[9], [11], [12], readily reducing the computational complexity substantially. This can be viewed as of
converting the multiplicative channel sounding overhead (e.g., O(G,G;) of OMP) to an additive overhead.

By analyzing the MMV statistics, we present a lower bound for the successful probability of recovering
the support sets. Furthermore, based on the successful recovery probability (SRP) analysis of the proposed
two-stage method, a resource allocation (between Stage I and Stage II) strategy is newly proposed to
improve SRPs for both AoA and AoD estimation. The numerical results validate the efficacy of the
proposed resource allocation method.

Finally, in order to address the issue of unresolvable quantization error, we extend the proposed two-
stage method to the one with super resolution. Specifically, in each stage of AoA or AoD estimation, we
reformulate the MMV problem as an atomic norm minimization problem [19]-[21], which is solved by
using alternating direction method of multipliers (ADMM). Compared to the dictionary-based methods,
the atomic norm minimization can be thought of as the case when the infinite dictionary matrix is
employed. We demonstrate through simulations that the quantization error of the two-stage method with

super resolution can be effectively reduced.



B. Paper Organization and Notations

The paper is organized as follows. In Section II, we introduce the signal model and the CS-based channel
estimation problem. In Section III, based on the angular-domain channel representation, the proposed
sequential AoA and AoD estimation method is presented. In Section IV, we analyze the proposed method
in terms of SRP and introduce the resource allocation strategy. In Section V, the atomic norm-based design
is described, which resolves the quantization error in the estimated AoAs and AoDs. The simulation results
and conclusion are presented in Section VI and Section VII, respectively.

Notations: A bold lower case letter a is a vector and a bold capital letter A is a matrix. AT, A*, AH,
A~' tr(A), |A], [|A|, and ||al|, are, respectively, the transpose, conjugate, Hermitian, inverse, trace,
determinant, Frobenius norm of A, and /s-norm of a. A = (AH A)_lAH denotes the pseudo inverse of
(A],.. [A]

a tall matrix A. [A] and [a]; are, respectively, the ith column, ith row, ith row and jth

Liv 0 [
column entry of A, and ith entry of vector a. vec(A) stacks the columns of A and forms a long column

vector. diag(a) returns a square diagonal matrix with the vector a on the main diagonal. I, € RM*M jg

RJ\/[XN RJ\/[XN

the M-dimensional identity matrix. The 1, n € and Op; N € are the all one matrix, and
zero matrix, respectively. R(F') denotes the subspace spanned by the columns of matrix F. A ® B and
A o B denote the Kronecker product and Khatri-Rao product of A and B, respectively. The [z]| returns

the smallest integer greater than or equal to x.

II. SYSTEM MODEL AND GENERAL STATEMENT OF TECHNIQUES
A. Channel Model
The mmWave transmitter and receiver are equipped with N, and NN, antennas, respectively. Suppose
that the number of separable paths between the transmitter and receiver is L, where L < min{N,, N;}.

The physical mmWave channel representation based on the uniform linear array [9], [22]-[24] is given

by!,

NN, <
H= /= o (fr)a (1), (M
=1

where a;(-) € CM*! and a,(-) € CM>! are the array response vectors of the transmit and receive

antenna arrays. Specifically, a;(f) and a,(f) are given by a,(f) = \/#th[l,eﬂ”f, . ,,eJ'ZW(Nt—l)f]T and

'In wideband communication systems, one can model the channel as constant AoA/AoD and varying path gains [25], [26]. Here we could
also assume a narrow band block fading channel where the channel is static during the channel coherence time. The CSI acquisition and
data transfer are framed to happen within the channel coherence time [9], [22]-[24].
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Fig. 1. Conventional one-stage mmWave channel sounding
: : T . : :
a.(f) = \/LNir (1,727 .. el Ne=DI]" "where f € [0,1) is the normalized spatial angle. Here we assume

fruand f;; in (1) are independent and uniformly distributed in [0, 1), and the gain of the /th path ¢ follows
the complex Gaussian distribution, i.e., a; ~ CN'(0, 67). Angular domain representation of the channel in

(1) can be rewritten as
H = A, diag(h)A”, 2)

where A, = [a,(f,1), .-, a.(frr)] € CV*E LAy = [ay(fin), .., a(frr)] € CV*Landh = [hy, ..., hi] €

CLXl with hl:\/% l,lzl,...,L.

B. Channel Sounding

Fig. 1 illustrates the conventional one-stage mmWave channel sounding operation, where the transmitter
and receiver are equipped with the large-dimensional hybrid analog-digital MIMO arrays that are driven
by a limited number of RF chains, i.e., N < min{/N;, N,.}. In each channel use of downlink channel
sounding, the transmitter generates a beam conveying the pilot signal and the receiver simultaneously
generates N separate beams, using the N RF chains, to obtain a N-dimensional observation. We let
the numbers of the transmit sounding beams (TSBs) and receive sounding beams (RSBs) for channel
estimation be B; and B,, respectively. For convenience, we assume that B, is an integer multiple of N.
The total number of channel uses for the conventional one-stage sounding process is then K = B,.B;/N.

Specifically, the RSB matrix in Fig. 1 is given by

W, = [W17W2>“‘>WBT/N] c CNT-XBT’ 3



where W; € CNN for = 1,2,...,B,/N, and W; = W, Wp; with W4, € C*¥ and Wp; €

CV*N being the receive analog and digital sounders, respectively. Similarly, the TSB matrix is given by
Fb: [f17f27”' 7th] € CNtXBtv (4)

where f; € CNt*! for j = 1,2,--- , B, is the jth transmit sounder, and f; = F4 ;fp js; with F4 ; € CVexN
and fp; € CV*! being the transmit analog and digital sounders, respectively. Each observation y;; €
CN*1 in Fig. 1, associated with the ith RSB and jth TSB, i € {1,...,B,/N} and j € {1,2,..., B},

can be expressed as
yi,j = WZHHijj + WZHl’lj. (5)

The s; denotes the training signal and without loss of generality, we let s; = 1. It is worth noting that
only phase shifters are employed to constitute the analog arrays for power saving, where |[W A7i]m,n| =
1/v/N,, and |[Fa ], | = 1//Ni,V'm,n. Moreover, the power constraint ||f]||§ = p is imposed to the
transmit sounding beam at each channel use with p being the power budget, and the noise vector follows

n; ~ CN(Oy,,0%Iy,). Thus, the signal to noise ratio is p/c?.

We collect all observations in (5) by using Wy, in (3) and F in (4) as
Y = W/HF, + W;'N, (©6)

where Y € CB*Bt and N = [ny,...,np,| € CV"*B: For example, W, and F; in (6) can be generated
randomly [4] or designed as a partial discrete Fourier transform (DFT) matrix [9]. We assume that the
number of observations is strictly lower than the dimension of the channel matrix, i.e., B, B; < N, V;.
The channel estimation task is to utilize the observations in (5) (equivalently, (6)) to obtain the estimate
of the channel matrix H in (2). Encountering (2), the channel estimation task boils down to reconstructing
{frns-- s forts {feas--os frr} and {hq, ... hy} from the observations.

1) Oracle Estimator: The oracle estimator that we will utilize for benchmark? is obtained by assuming
perfect knowledge of AoAs and AoDs in (2). The oracle channel estimate only needs to estimate the
path gain h, thus the channel estimate is expressed as H=A, diag(lAl)AfI , where diag(lAl) € C*! is the

2Both Cramer-Rao lower bound (CRLB) [27] and the oracle estimator [9] can be utilized to evaluate the accuracy of estimation algorithms.
Since the CRLB can only be calculated for one-stage method, in this work we use the oracle estimator as the benchmark instead.



solution to the following problem:

h = argmin ||[Y — WZA, diag(h)AYF,||%. )
h

~

Because (7) is convex, the optimal solution is h = (X#X)~!X# vec(Y), where X € CBB*L ig given by
X = [vec ((WHA, ] [AFF)), . .., vee (WA, L[Af'F,)..)]. Because we have B, B, > L, X#X is

invertible.

C. Compressed Sensing-Based Channel Estimation

Recalling the channel model in (2), a typical CS framework restricts the normalized spatial angles
fris fei, L=1,2,..., L, to be chosen from the discrete angle dictionaries, f,.; € [0,1/G,,..., (G, —1)/G,],
and f;; € [0,1/Gy,...,(Gy —1)/Gy], where G, = [sN, | and G; = [sN;]| with s > 1 are, respectively,
the cardinalities of the receive and transmit spatial angle dictionaries. The transmit and receive array

response dictionaries are then given by

< - 1 GT_l NTXGT-
A, = {ar(O),ar (G_r) o,y ( a )] e C

— 1 _ 1
At = [at(0)7at <5) yoe ., At (GtG >:| c CNtXGt.
t t

For the latter array response dictionaries, the channel model in (2) can be rewritten as

and

H=AHA” +E, (8)

where H, € C%*% is an L-sparse matrix with L non-zero entries corresponding to the positions of
AoAs and AoDs on their respective angle grids, and E € CV"*"t denotes the quantization error.
Because the dictionary matrices A, and A, are known, the channel estimation task is equivalent to

estimating the non-zero entries in H,. Plugging the model in (8) into (6) gives
Y = W/A,(H, + E)A]'F, + W/'N. )
Vectorizing Y in (9) yields

vec(Y) = (FLA; @ W/ A,)(vec(H, + E)) + vec(W{'N). (10)



Denoting D = FLAy @ WHA, € CBBxGG and i = Dvec(E) + vec(WHN) € CB-Bx1 gives

vec(Y) = Dvec(H,) + n. Hence, the estimation of vec(H,) from (10) can be stated as a sparse signal
reconstruction problem:

min || vec(Y) — D vec(H,)||» subject to || vec(H,)|o = L, (11)

a

where || - ||o is the fo-norm that returns the number of non-zero coordinates of a vector. The problem in
(11) can be solved by using standard CS methods [28], [29].

The number of required observations to reconstruct L-sparse vector vec(H,) € C%%>! in (11) has
previously characterized as O (L - log(G,G;)) [28], which is much smaller than O(N,.N;). However, the
computational complexity for estimating vec(H,) in (11) by using OMP, for example, is O(LB, B,G,G,).
Though the quantization error associated with using dictionaries can be made small by increasing the
sizes of the dictionaries, the growing computational complexity remains a critical challenge. Instead of

developing another one-stage channel sounding method (as in Fig. 1), we propose a new two-stage channel

sounding and estimation framework to overcome the large overhead and complexity drawbacks.

III. TWO-STAGE AOA AND AOD ESTIMATION

A conceptual diagram of the proposed two-stage AoA and AoD estimation framework is presented in
Fig. 2. The proposed sequential technique has constituent two stages of channel sounding, where each
stage exclusively exploits much low-dimensional dictionary compared to the one-stage channel sounding
in Fig. 1.

Under the similar definitions of one-stage method in (6), in Stage I of the two-stage framework of Fig.
2, the transmit and receive sounding beams are represented by Fy; € CNexBei and W, € CNrxBra
respectively. The AoA estimates of Stage I produce the estimation of array response matrix A, in (2),
ie., A, € C¥*L In Stage II, the transmit and receive sounding beams are denoted by Fy,, € CNexBr2
and W, , € CNrxBr2_respectively. In particular, the receive sounding beams W, 5 is optimized based on
the estimated AoA array response matrix Kr at Stage I, which leads to improved estimation accuracy as
our analysis and simulation show. The total number of observations is given by N, = B, 1B, 1 + B, 2B, 5.

Accordingly, the total number of channel uses is K = (B;1B,1 + B;2B,3)/N.
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Fig. 2. TIllustration of the proposed two-stage AoA and AoD estimation.

A. Stage I: AoA Estimation

We rewrite the channel model in (8) as H = A, H,A” + E = A,Q, + E, where Q, € C“*"t has L
non-zero rows, whose indices are collected into the support set Q2. C {1,2,...,G,.} and |Q2,| = L. Using
Q,, the A, in (2) can be written using the columns of A, indexed by €2, as [A,Lgr =A,.

To estimate the AoAs, we need to recover the support set €2,.. Similar to the one-stage sounding in (6),

at Stage I in Fig. 2, the observations Y| € CPr1*Bt1 ig expressed as

Y, = W/ \HF,; + W/ N,
=W A,QF,; + W/ EF,; + W/ N,

= ®,C, + W} \EF,,; + W/ Ny, (12)

where &, = WflAr € CBrxGr Cy = Q,Fy; € C& B and Ny € CV*Bui i the noise matrix with
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Algorithm 1 Simultaneous OMP: SOMP(Y, ®, L)

: Input: Observations Y, measurement matrix ®, sparsity level L.
. Initialization: Support set Q) = (), residual matrix R©®) =Y.
:for/=1to L do

Calculate the coefficient matrix: S = ®AR(-.

Select the largest index 1 = arg max ||[S];.]|,.
i=1, Gy

6 Update the support set: 0 = QU= Jn.

7. Update the recovery of matrix: C = ([<I>]:7§<l))TY_
8

9

PSR SR

Update the residual matrix: RV =Y — [@]:’Q(Z)(A].
: end for
10: Output: Q) C.

independent and identically distributed (i.i.d.) entries according to [N]; i~ CN(0,0?), Vi, . Due to the
row sparsity of Q,, it is clear that C,; also has L non-zero rows indexed by €2,. If B,; = 1, the recovery
of C; in (12) can be formulated as a common SMV CS problem. When B;; > 1, it becomes an MMV
CS problem [30], where the multiple columns of C; in (12) shares a common support. The optimization
problem estimating the row support of C; for MMV is now given by

C, = argmin | Y, — ®,C,[[3. subject to [|Cy]|,, < L, (13)

C:
where [|Cy|,, is defined as the number of non-zero rows of C;. Using a similar method as the OMP,
the problem in (13) can be solved by simultaneous OMP (SOMP) [31] that is described in Algorithm 1.
The output is the estimated support set (AZT3. For notational simplicity, we omit the subscripts in Y; and
@, in Algorithm 1.

It should be emphasized that the choice of the measurement matrix ®; and C; has a profound impact
on the recovery performance of SOMP [31]. Observing (12), the TSB F} ; is incorporated in C;, and the
RSB W, is included in the measurement matrix ®;. Thus, in what follows, the design of RSB W, ;
and TSB F, 1, is of interest.

1) RSB and TSB Design: Firstly, we focus on the design of TSB F; ;. Considering C; = P_IGA{{ Fy1,
in order to guarantee that F,; is unbiased for each item (column) in A,, we design Fp,; by maximizing

3Here, we assume the number of paths is known as a priori for convenience of performance analysis in Section IV. When the number
of paths is unavailable as a priori, a threshold can be introduced to compare with the power of the residual matrix R® in Step 8 at each
iteration [32], [33]. When the power of RO is less then the threshold, Algorithm 1 terminates, which generates the estimate of number of
paths.
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the minimum correlation between F; and each column in A,, which yields

. H A
e min ||, [A]

subject to Fleb,l = pilp,,, (14)

il

where p; is the power allocation of Stage I. After taking the constraint into account, the optimal solution
to the problem in (14) should ideally satisfy the following ||F//; [A,] :72.||2 = /mBii/N;, i=1,...,G,.

It means that I, ; is isometric to all columns of A, which is obtained by

Fi1 = /D1 e, €. ep,], (15)
where e; the ith column of I,. The construction of e;, j =1,...,B;; in (15) using the hybrid analog-

digital array is possible due to the fact that any vector can be constructed by linearly combining N (> 2)
RF chains [34]. To be more specific, there exists F,; € CV*N f, ., € CV*!, and s; = 1 such that

€, = FA,ij,ij, 1.€.,

1 . v N,
[y, 19 1y, -1y 201, =150, 0] x1, (16)

\/Nt ¥2 -

ap
éFij =fp;

Ej:

where 1%2 € RN*1 is defined as the all one vector 1y, € R™*! other than the jth entry being —1.
For the measurement matrix ®; = WbJAT, we optimize W, ; by incorporating the isometric CS

measurement matrix design criterion [35]-[37]:

7)

2
re

min | @@ — Ig,

After performing standard algebraic manipulations and exploiting the fact A, AX = g—:I N, the optimality
condition for (17) is that the columns of W, are orthogonal. Accounting for the analog-digital array

constraint into W, and setting B,.; = N,, we use the DFT matrix Sy, € CY " such that

W1 =Snw,, (18)

.27 (m—1)(n—1)

L e 77w ,VYm,n.

VN,
Based on the RSB in (18), in the following, the distribution of the noise term in (12) is discussed.

where [Sy, |m.n =

Proposition 1: For any semi-orthogonal matrix A € C™*" with AA = I and random vector n € C™*!

with i.i.d. entries according to CN (0, 02), then if we denote b = An, and the entries in b are also i.i.d.
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Algorithm 2 AoA Estimation Algorithm

1: Input: Channel dimension /,, N;, number of RF chains N, channel paths L, power allocation p1,
receive array response dictionary A, € CNrxGr,

2: Initialization: Generate the TSB ¥y, = |/p1 e, .. .,eBm] in (15) according to (16) and the RSB
Wb,l = SNT in (18)

3: Collect the observations Y; = WleFb,l + Wlel.

4: Solve the problem in (13) by using Algorithm 1 with the sparsity level L and ®; = WflAr,

(€,,C;) = SOMP(Y,, ®;, L).

5. Output: Estimation of AoA array response matrix Kr = [AT]: 8, -

CN(0,02).

Proof: The covariance matrix of b is given by E[Ann?’ A¥] = ¢?I. Because the entries in b are
obviously complex Gaussian, thus, from the property of Gaussian distribution, the entries in b are also
iid. CN(0,0?). O

Remark 1: Due to the semi-orthogonality of W, ; in (18), according to Proposition 1, the effective
noise matrix W/, Ny € CV*Pe1 in (12) has i.i.d. Gaussian entries, i.e., [W/ Ni|;; ~ CN(0,0°),V1, .
Moreover, since ®; = WflAr, we have ||[®4].;][2 = 1, V4.

The algorithmic procedure estimating AoAs are described in Algorithm 2. Given the estimated support
set (AZT from Algorithm 1, the output of Algorithm 2 is the estimated AoA array response matrix Kr =

[AT]: a, € CNrxL_ Qverall, the number of channel uses for the AoA estimation is K; = Bt,l%-

B. Stage II: AoD Estimation

To attain the estimation of AoDs, we can utilize the similar method as Stage 1. Similar to the one-stage

sounding in (6), the observations of Stage II in Fig. 2 is expressed as Y, € CPr2xBr2
Y, = WiLHF, ; + W/,Ny, (19)

where Wy, € CNrxBr2 and Fy, € CV*Br2 are the RSB and TSB of the Stage II, respectively. The
N, € CVr*Br2 ig the noise matrix with i.i.d. entries according to CA(0, 0?).

Recall from (2) and (8), the channel matrix is rewritten as
H=AHA" +E. (20)

One can find that A, H, € C"¥"*% has L non-zero columns, indexed by ), with |Q,;| = L. Then, plugging
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(20) into (19) and taking conjugate transpose give

Y =FLAHIATW,, +FLE"W, 5 + NYW,,,
—_——
éq:2 éCQ

= ®,C, + FILE"W, 5 + NIYW, o, 1)

where ®, = F{l,A; € CP+>*% and C; = HYAJ'W,, € C“*Pr2 Tt is straightforward that the C; has
only L non-zero rows indexed by €2;. Similar to (13) in Stage I, the support set §2; estimation problem

can be formulated as
C, = argmin NG <I>2C2Hi subject to ||Csl|,, < L, (22)
Ca ’

which is solved by Algorithm 1. In what follows, the design of RSB W}, and TSB F;» for Stage II is
of interest.
1) RSB and TSB Design: For the design of RSB W, 5, we leverage the estimated AoAs from Stage I

to formulate

max min ||Wf2 [KT] (23)

b,2 :’i||2.
If W5 is semi-unitary, i.e., Wf2Wb72 = I, ,, the objective value in (23) satisfies ||W{,q2 [Kr]: 2 <1,V

with the equality holding if
R(Wy2) = R(Ar)' 24)

One can check (24) holds only if B, ; > L. Without loss of optimality and to save the number of sounders,
we set B, 5 = L. One solution to (24) is attained when the columns of Wy, , are the orthonormal basis of

KT. For example, we let W, be the Q-matrix of the QR decomposition* of Kr such that
W, = QR(A,), (25)

where QR(-) returns the Q-matrix of a given matrix.
Remark 2: Due to the semi-orthogonality of W} and the conclusions in Proposition 1, the effective

noise matrix Wi, N, € CP2*52 in (19) has i.i.d. Gaussian entries, i.e., [W},Ny]; ; ~ CN(0,0°),V1, j.

*The QR decomposition is a decomposition of a matrix A € C™*™ into the product A = QR. of an orthonormal matrix Q € C™*"
and an upper triangular matrix R € C"*".
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As for the design of F 5, we exploit the isometric CS measurement matrix design criterion,
. H 2
2

After similar manipulations as (17), the optimality condition for F 5 of (26) is that the columns of F
are orthogonal. Then, following the same procedure as (15) and (16), we obtain the design of TSP F

below,

Fb,2 - \/272[617 €, ... 7eBt72]7 (27)

where p, is the power coefficient of Stage II.

The algorithmic procedure of estimating AoDs are described in Algorithm 3. Provided the estimated
support set (Alt, the output of Algorithm 3 is the estimated AoD array response matrix Kt = [At]:,ﬁt €
CMNt*L_ The number of channel uses for the AoD estimation in Stage II is K, = B, 5, and the overall

number of channel uses for two stages is
N,
K:K1+K2 :Btvlﬁ_‘_BtQ' (28)

Remark 3: Recall that the number of observations for the conventional one-stage channel sounding in
Fig. 1 is O(L-log(G,Gy/L)) [28]. As a comparison, since the proposed two-stage channel sounding in Fig.
2 only estimates AoA in Stage I, and estimates AoD in Stage II, the number of required observations is
O(L-log(G,/L)) in Stage I, and O(L-log(G;/L)) in Stage II. The total number of required observations for
the proposed two-stage channel sounding is O(L-log(G,./L))+ O(L-log(G;/L)) = O(L-log(G:G,/L?),
which is less than the conventional one-stage sounding.

Remark 4: About happening of the design RSB and TSB, in Stage I, one can find that the design of
RSB in (18) and TSB in (15) are completed before the channel estimation, which are then utilized by the
transmitter and receiver. Like the fact that the training pilots are known for the transmitter and receiver
in advance before the task of channel estimation, here we also assume that the TSB and RSB are known
as a priori. In Stage II, the TSB F 5 in (27) is also designed in advance, while the RSB W, 5 in (25) is
designed and employed at the receiver side, which requires no feedback to the transmitter. Overall, the

proposed method requires no feedback during the whole procedures of the channel estimation.
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Algorithm 3 AoD Estimation Algorithm

1: Input: Channel dimension i\fr, N, number of RF chains N, channel paths L, power allocation p,,
output of AoA estimation A,, transmit array response dictionary A, € CNtxGt, R

2: Initialization: Generate the TSB Fy,» = \/pzle1,. .., ep,,] in (27) and RSB W, 5 = QR(A,) in (25).

3: Collect the observations Yy = W/, HF, 5 + WL, N,.

4: Solve the problem in (22) by using Algorithm 1 with the sparsity level L and ®; = Fszt,

(€, Cy) = SOMP(Y &, L).

5. Output: Estimation of AoD array response matrix A, = (A4, 8,

C. Channel Estimation

Recalling the channel representation in (2) and after estimating Kr € CN*L in Algorithm 2 and

Xt € CN*L in Algorithm 3, we can express the channel estimate as
H=ARA”Y, (29)

where R € CL* denotes the estimation of diag(h) in (2). In the following, we will discuss how to obtain
the estimate R. It is worth noting that unlike (2) we do not restrict R to be a diagonal matrix because of
the possible permutations in the columns of A, and A,.

Recall the observations of each stage, i.e., Y| = WflATﬁaAtHFb,l + W/ EF,; + W/ Ny, and Y, =
WfQATI_{aAZHFb,g + W/[LEF,, + W/,N;. Since Wi/, N; and W//,N, are i.i.d. Gaussian, incorporating
the expressions of channel estimate in (29), the estimation of R is given by

2

. | | vee(Yy) vec(WH A, RAFF, )

R = argmin — R )
R vec(Ys) vec(WiL A RA{F;5)

where the optimal solution is given by
vec(R) = (ATA; + AfA2)_1 (A{ vec(Y1) + Al vec(Ys))

where A; = (AZF,,)’ ® Wflgr € CVBuixl® and A, = (AHF,,)T ny&r € CLB.2xL?  Because
N,B;1 > L? and By, > L, the matrix ATA; + AYA, € CF*F* is always invertible.

Remark 5: After R is estimated, the pairing of AoAs and AoDs can be obtained by selecting positions
of the largest L entries in R. Then, the path gain h;,l = 1,2,---, L, can be calculated by solving a

problem like the oracle estimator in (7), where the two-stage RSBs and TSBs are utilized.
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IV. PERFORMANCE ANALYSIS AND RESOURCE ALLOCATION

In this section, we discuss the reconstruction probability of AoAs and AoDs of the proposed two-stage
method in Section III. Moreover, we further enhance the reconstruction performance by performing power

and channel use allocation to each stage.

A. Successful Recovery Probability Analysis

1) SRP of AoA Estimation: As a starting point, we focus on the SRP of Algorithm 1. An SRP bound of
SOMP was previously studied in [38], where the analysis was based on the restricted isometry property
constant of the measurement matrix ®. In this work, we instead analyze the recovery performance of
Algorithm 1, based on the mutual incoherence property (MIP) constant® [39] of ®.

Lemma 1: Suppose C € CV*4 is a row sparse matrix, where L (< N) rows of C, indexed by (), are
non-zero. We consider the observation Y = ®C + N, where Y € CM*4 & ¢ CM*N is the measurement
matrix with L < M < N and ||[®].;]|2 = 1,V4, and N € CM*? is the noise matrix with each entry i.i.d.
according to complex Gaussian distribution CN'(0, o2). Given that the MIP constant y of the measurement

matrix ® is ¢ < 1/(2L — 1), the SRP of Algorithm 1 satisfies

(1— (2L — 1)p)*Chin — 402/~LM,d) 7 (30)

4U2UM,d

Pr(Vs) > Fy (

where Vs is the event of successful reconstruction of Algorithm 1, Cpy;, = rlrégl 1Cli: g para = (MY +
dV?)?, ong = (MY? + dY2)(M~2 4 d=Y/2)1/3, and the function Fy(-)® is the cumulative distribution
function (CDF) of Tracy-Widom law [40], [41].
Proof: See Appendix A. O
Proposition 2: Suppose the signal model provided in Lemma 1 and, given the quantization error, the
observation model Y = ®C + N, where effective noise N = E + N with quantization error E and

>The MIP constant of matrix @ is quantified by a variable . = max;; |{[®].., [®].,;)|, where (-,-) denotes the inner product.
®The CDF of Tracy-Widom law [40], [41] F5(-) is expressed as

m(s) =exp ([ (o= atala).
where g(x) is the solution of Painlevé equation of type II:
q"(x) = zq(x) + 2q(x)*, q(z) ~ Ai(z),z — oo,

where Ai(x) is the Airy function [40], [41]. To save computational complexity, we admit the table lookup method [42] to obtain the value
of F: 2 ()
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Gaussian noise N of i.i.d. CN'(0, 0?) entries. If z is the MIP constant of the measurement matrix ® with

i <1/(2L — 1), the SRP of Algorithm 1 is given by

1— (2L — 1)) Coin — 2||E[l2)* — 402
4020 )1 4
where C\;, = mlél 1[Cli: Iy frsa = (MY2 4+ d/?)2, and oy g = (MY2 + dY2)(M~Y2 4 d=Y2)1/3,
1€
Proof: See Appendix B. O

As a direct consequence of Proposition 2, Theorem 1 below quantifies the SRP of AoA estimation in
Algorithm 2.
Theorem 1: Assume the MIP constant of the measurement matrix ®; in Algorithm 2 satisfies p; <

1/(2L — 1). Then, the SRP of Algorithm 2 is lower bounded by

2
(1= (2L = 1)) (oo /202 = 20[Bull2) = 40, .,

P > F
r(As) > Fy 1% 5,
o (1—-(2L— 1)%)@%% — 40°un, B, , -
i 40’20']\/ B ( )
Dt 1
= Pl(pb Bt,l)v (33)

where Ag is the event of successful reconstruction of AoA, hy, = min;<y, || with h; being the [th entry
of hin (2), pw, 5, = (N2 4+ B on,p, = (NP4 B (N2 4 B,17%)Y3, and By = WL EF, ).
The approximation in (32) is obtained by neglecting the quantization term E;. In (33), the SRP lower
bound is substituted as a function of (py, B 1).

Proof: Recalling the observation model in (12) with the TSB and RSB in (15) and (18), respectively,
the effective TSB matrix C; in (12) satisfies [|[Ci],, [, = \/%WL where r; € €, is the index of
the Ith path of A, in A, such that [A,].,, = [A,].;, [=1,..., L. Substituting Cppy, = TIlIélQIIT I[Cilr ]l =

p1Bia

N, |Amin| in (30) results in (33), which completes the proof. O

Remark 6: According to Theorem 1, when the power p; of Stage I is fixed and the number of transmit
sounding beams B, (< N,) increases, the SRP of AoA increases accordingly. Interestingly, it is more
efficient to increase the power allocation p; than the number of transmit sounding beams B, ; to achieve
a higher SRP of AoA. This can be understood through the two cases where p; or B,; grow at the same
rate. Compared to the case of pi, both uy, p,, and oy, p,, increase slowly as B;; grows, resulting in

lower SRP in (32). This aspect will be clearer in the next subsection when we optimize the allocation of
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p1 and By ;.

2) SRP of AoD Estimation: Regarding the SRP of Algorithm 3, we assume for tractability that the
Ao0A estimation in Stage I was perfect. The following theorem quantifies the SRP of AoD estimation in
Algorithm 3.

Theorem 2: Provided the perfect AoA knowledge known a priori and MIP constant s of matrix

Nt/ (p2By2)®, satisfying po < 1/(2L — 1), the SRP of Algorithm 3 is lower bounded by

(1= (2L — 1) p12) hunin — 2|| E|2)? — 402 TNy, 5.1
Pr(Ds) > F ( e

p2Bt 2
2_Ne
4Nt0' p2Br.2 O’Bt’27L

- (1= (2L = Dpa)? iy — 40° 5 Nebi, o1 a4
~ I

4Nt0‘2p2]étt,2 OBi2,L
£ Pu(p2, Bi ), (35)

where Dg denotes the event of successful AoD reconstruction, hpy, = min<y |k with h; being the

lth entry of h in (2), pp,,p = (LY? + B))%, om0 = (LY? + B (LY? + B,,/%)'3, and E, =

m];ft 2Ff2EWb72. In (35) , the SRP lower bound is substituted as a function of (py, B ).

Proof: See Appendix C. O

B. Power and Channel Use Allocation

We recall that in the proposed two-stage method, the transmit sounding beams at Stage I and II are,
respectively, F,; = \/pile;,...,ep,,] in (15) and Fy, = /Pslei,...,ep,,] in (27). The total power
budget £ is therefore defined by

E = p1ByiN; [N + pa By s, (36)
—_———— ——
£F £F,

where E; and E, are the power budgets at the Stage I and Stage II, respectively.
We let 71 > 0 and 72 > 0 be the target SRP values at Stage I and Stage II, respectively. The SRP-
guaranteed power budget minimization problem’ is then formulated as
min E1 + E2 (378)
p1,p2,B¢t,1,B¢ 2

"In (37), we present the SRP-constrained power minimization problem for optimizing power and channel use allocations. For instance,
this criterion can be thought of as a prudent alternative of the performance maximization subject to power constraints in the MIMO literature
because it provides a guarantee on the achievable performance [43]. Multiple variants of the performance-guaranteed power minimization
problem can be found in the context of MIMO resource allocation [44], [45].
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subject to  Pi(p1, Bi1) > m, Pu(pe, Bra) > 19, (37b)
Eq :plBt,lNr/N7 E, = szt,% (37¢)

Bi1 > By1, By > By, (37d)

where Et,l and Emg are the minimum numbers of allowed transmit beams at Stage I and Stage II,
respectively. The problem in (37) optimizes the power allocation p; and p,, and the number of transmit
beams B;; and B, to minimizes the total power budget subject to the SRP requirements at Stage I and
Stage II. It is worth noting that that because the problem in (37) is separable, thus (37) is equivalent to

the following two sub-problems,

min F; (38a)

p1,Bt1
. Nr =
subject to Pi(p1, Bul) >, By = PlBulW, By > By, (38b)
and

min Fs (39a)
2,8t .2

subject to Py(ps, By2) = 102, o = psBia, Bz > Bia. (39b)

First of all, we focus on the sub-problem of Stage I in (38). It is worth noting that directly solving
(38) is difficult due to the coupled constraints. Thus, we first maximize the SRP, i.e., Pi(p1, B:1), with

arbitrary power budget Fj,

max Py(p1, Byq) (40a)
p1,Bt,1
subject to py By N,/N = Ey, By1 > By, (40b)

Prior to showing how to solve the problem in (40), we first elaborate the relation between the problem
in (38) and (40). It is easy to observe that as F; increases the achievable SRP of the objective function
in (40) also increases. Thus, the minimum F; in (38) is achieved when the SRP constraint in (38b), i.e.,
Pi(p1, Bia) > m, holds as the equality. Moreover, given any arbitrary power budget E; in problem (40),
the interrelation between the power allocation p; and the number of transmit sounding beams B, ; points

to a fundamental tradeoff between them, which is demonstrated in the following theorem.
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Fig. 3. SRP of AoA vs. SNR (dB) (N, = 20, Ny = 64,L =4, N = 4,5 = 1, By = 10, B;.1 = 1).

Theorem 3: Consider the following non-linear programming

(p1, Bi1) = arg max P(py, By.1) (41a)
p1,Bt,1
subject to p; By 1N, /N = E;, By; > Et,l, (41b)
where FE is an arbitrary power budget. The solution to (41) is given by Em = Em and p; = —EEi% .

Proof: Substituting constraint p; = B?lljjvvr in (41b) into the objective function in (41a), we first show

that Pj( Bi%r ,B:1) in (41a) is a monotonically decreasing function of the number of transmit sounding

beams B, ; for a fixed E;. Specifically, substituting uy, p,, = (Nf/2 + Btlf)2 and oy, B,, = (er/2 +

By\)(N7 7?4 B ")V of (32) into R(z24-. Bia) gives

1 1
EN B2 (1— (2L — 1)11)2E\N — AN,N,0*(N? + B2, )?
PI< 1 ):F2 (1—( 1) By N0 ( 21) 42)

—— Bis I 1 ! 7
BN, AN,N,02(N? + BZ)(N; * + By 2)3

Taking the first derivative of the argument inside F5(-) in (42) with respect to B, ; reveals that the argument

is a decreasing function of B; ;. This implies that the P( B?lljl\\[fr. , B; 1) in (42) is a monotonically decreasing
function of B; ;. Hence, (41) is maximized when B;; = Et,l, which completes the proof. OJ

Therefore, based on Theorem 3, the maximum SRP of AoA estimation for a given E; is given by

E/N ~ h2. (1 — (2L — 1)u1)*E1N/N, — 40* Ny, 5
H( 1>&J:5< (1- L~ )m)°EN/ ZEAY

(43)

D 2 ~
Bt,lNr 4Nt0 O-Nr'th,l
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We demonstrate Theorem 3 via numerical simulations in Fig. 3, in which the SRP of AoA is evaluated for
different numbers of channel uses B;; € {1,3,5,9,11}. The simulation parameters N, = 20, V; = 64,
L=4, N=4, s=1, F; =10, and Em = 1 are assumed. The curves clearly show that the highest SRP
is achieved when B;; = 1.

Now, based on Theorem 3, the solution to (38) is readily obtained as follows. In order to make SRP of
Ao0A higher than 7; in (38), we solve the inverse function in (43) with respect to £ and conclude that

the resource allocation of Stage I should meet the following conditions:

;

b 40NNy (F5H (m)oy, 5., + kx5, (44a)
b h2m(1— (2L — 1)p)2N ’
By = By, (44b)
E.N
PL=—= ; (44¢)
7 BN,

where F,'(+) is the inverse function of Fy(-). By using similar procedures of the proof of Theorem 3,
we observe the following more general result about the number of vectors d in the signal model stated
Lemma 1.

Corollary 1: The bound in (30) is a monotonically decreasing function of the number of measurement
vectors d.

Remark 7: Corollary 1 states the effect of d on the recovery performance of SOMP. It can be interpreted
in the following way. The increase of the number of measurement vectors d has an effect of increasing
the number of columns of C in Lemma 1 while keeping the C.,;, unchanged. This leads to the increase
of the noise power due to the increase in the dimension of N, which in turn reduces SRP.

When it comes to the number of channel uses B, » at Stage II, we cannot reach the same conclusion as
Theorem 3 because the constant f5 in (34) changes with B, 5. Therefore, Given B;; = gm and the total
number of channel uses K for channel sounding, B; > is determined by (28), i.e., K = EMNT /N + B s.

Then, the solution to (39) is given by

p

 40%Ny(F5 ' (12)0B, .1 + 1By s,L) 45a)
2 h2 (1 — (20 — 1)pp)?
Bis = K — By 1N, /N, (45b)
E
Py = — . (45c¢)
\ K — B;1N,/N

In summary, after solving the two-subproblems in (38) and (39), we successfully solve the problem in
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Fig. 4. Power allocation to achieve the required SRP vs. SNR (dB) (IV, =20, Ny =64, L =4, N =4,s =1, EM =1,m =n2 =0.95).

(37). The specific resource allocations for two stages are shown in (44) and (45), respectively. In particular,
when the total power budget £/ > E; + FEj5, the joint SRP of AoA and AoD is at least ny7s.

In Fig. 4, we illustrate the designed resource allocations in (44) and (45) with the simulation results.
The parameters are set as 17; = 12 = 0.95. The curves of theoretical results calculate the power allocations
p1 and po through (44c) and (45c). The curves of simulation results are the required power allocations
to achieved SRPs of 7, and 7),. The simulation parameters N, = 20, N;, =64, L =4, N =4, s =1 are
assumed. In Fig. 4, to achieve the same required SRP, i.e., n; = 1 = 0.95, Stage II requires less power
allocation than Stage I. This is because the design of the sounding beams for Stage II saves the power
consumption. Overall, the trend of the theoretical results is consistent with that of the simulation results,
which validates the proposed resource allocation strategies in (44) and (45).

In Fig. 5, we demonstrate the SRP of AoA and AoD achieved by the power allocations in (44) and
(45) compared to the equal power allocation. The power allocations p; and p, are calculated by setting
m =mny=0.95 and 0 = 0.1 in (44) and (45). The simulation parameters are N, = 20, N, = 64, L = 4,
N =4, s = 1. As we can see from Fig. 5, the proposed power allocation achieves much higher SRP
than that of the equal power allocation, which verifies the effectiveness of the proposed power allocation

strategy.

V. EXTENSION TO TWO-STAGE METHOD WITH SUPER RESOLUTION

In this section, we extend the proposed two-stage method to the one with super resolution, through

which we aim to address the issue of unresolvable quantization errors. Among the existing works,
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Fig. 5. Evaluation of the power allocation strategy with equal power allocation (N, = 20, N; = 64, L =4, N =4,s = 1,B;1 = 1,1 =
n2 = 0.95).

there are two directions to solve the quantization error for off-grid effect. Firstly, the works in [46]-
[48] model the response vector as the summation of on-grid part and the approximation error, in which
the sparse Bayesian inference is utilized to estimate the approximation error. Secondly, the atomic norm
minimization has been proposed in [19]-[21], which can be viewed as the case when the infinite dictionary
matrix is employed. Based on atomic norm minimization, the sparse signal recovery is reformulated as
a semidefinite programming. Compared to the sparse Bayesian inference, one advantage of atomic norm
minimization is that the recovery guarantee is analyzable [19]-[21]. Following the methodology of the
atomic norm minimization, in this section, we aim to estimate the AoAs and AoDs, i.e., {f.1,..., frr}

and {fi1,..., fr.r}, under the proposed two-stage framework.

A. Super Resolution AoA Estimation

The sounding beams of Stage I, i.e., F,; and W}, ;, are designed according to (15) and (18). By using
the exact expression of H in (2) rather than the quantized version in (8), the observations for Stage I is

given by
Y, = W/ HF,; + W/ N,

= Wil A, diag(h)A{Fy1 + Wi N,

= W/LA,C, + W/N;, (46)
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where Y; € CV*Bu1 and C, = diag(h)AfF,; € CL*Pt1. Since W;,; = Sy, in (18), projecting Y,

onto Wy, ; yields
Y, =W,,Y; = A,C, +Nj. (47)
The observation in (47) is rewritten by explicitly involving the array response vectors,
Y, =[a,(fr1), s a,(fr)]Cr + Ny = Ry + Ny, (48)

where Ry = [a,(f-1),...,a.(f.1)]C, € CN*Bt1 The atom A, (f,b) € CN*Bt1 ig defined in [19], [20]
as A,(f,b) = a,(f)b¥, where f € [0,1) and b € CPt1*! with ||b||, = 1. We let the collection of all
such atoms be the set A, = {A,(f,b): f €[0,1),|/b||, = 1}. Obviously, the cardinality of A, is infinite.

The matrix R; in (48) can be written as the linear combination among the atoms from the atomic set A,.,

L L
Z frlabl Z Cr lar frl bl ) (49)

1=1 =1
where ¢, € RE*! is the coefficient vector with [c,]; > 0, and it has the relationship [C,];. = [c,|;bf, VI =
1,..., L. Observing (49), the dimension of vector c,, i.e., L, can be interpreted as the sparest representation

of R; in the context of the atomic set .A,. Therefore, in order to seek the sparsest representation, after

taking the noise in (48) into account, the reconstruction problem is formulated by
. )\1 7 2
min IR 4,0+ 7||Y1 — Ry|F, (50)

where A; > 0 is the penalty parameter, and ||R,||, , is defined as

IRl 4, 0 = inf fle.fl, (Sla)
L

subject to Ry = ) _ [¢,], A, (fr1, b1), (51b)
=1

AT(fT,h bl) c AT7 [CT]Z Z 07 (51C)

with ||R;]|4, 0 revealing the minimal number of atoms in R;. When the sparest representation of R,
ie., {[c.],a (fr.)bf }},, is found by solving (50), the AoAs {f,;}, can be obtained from the atomic

decomposition in (49). However, since the minimization problem in (51) is combinatorial, it is not tractable
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to calculate the value of [[R4l| 4, - To overcome the challenge, the problem in (50) is relaxed as,
. )\1 7 2
min IRl 4.0 + 7||Y1 — Ry|F, (52)

where [|Ri[ 4, , is the atomic norm of R, defined by

IRl = nf e[|, (53a)
L

subject to Ry = ) _ [¢,], A, (fri, b1), (53b)
=1

Ar(fr,la bl) c AT7 [cr]l Z 0. (53C)

It is noted that in (53), the atomic norm ||R;]| 4, 1 is to minimize the summation of entries in c, instead
of the number of non-zero elements in (51).
Different from the intractability of (51), the problem in (53) can be efficiently solved by semi-definite

programming [19]:

1 1
Rl 4, = inzf §tr (Toeplitz(u)) + §tr(Z) (54a)
_ Toeplitz(u) R,
subject to =0, (54b)
RY Z

where u € CV*1 Z e CBurxBuiand Toeplitz(u) € CN*Nr denotes the Hermitian Toeplitz matrix
generated by the vector u. Plugging (54) into (52) gives
izng tr (Toeplitz(u)) + tr(Z) + A ||Y1 — Ry[|% (55a)
_ Toeplitz(u) R,
subject to X = , X >=0. (55b)
RY  Z
It is straightforward to find that (55) is convex, where ADMM can be employed to accelerate the

computation. The augmented Lagrangian of (55) is expressed as
L(u,Z, Ry, X, A) = tr(Toeplitz(u)) + tr(Z) + M| Y1 — Ry||%

Toeplitz(u) R Toeplitz(u) R
+<A,X— plitz(u) 1>+g x — | ot Rt )

RH Z R Z
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where X € CWrtBu)x(NetBi1) and A € CWVrt+Bu)x(Nr+Bi1) are Hermitian matrices, and p is the
Lagrangian multiplier. Then, with ¢ being the iteration index, we iteratively update the variables in (56)

as follows:

(u', 2" R = argmin £(u, Z, Ry, X', AY), (57)
u,Z,R1

X = argmin L(u'*!, Z RETE X, AY), (58)
X>0

- 1 t+1
A A X Toeplitz(u't') RJ | 59)
(RAH)H Zi+1

The solutions of the (57) and (58) are respectively

t+1 %7 1=1 _ Nrtl—i t Np+1—i t
[11 + ]Z = 7Wlth ‘/Z = Z [A ]k,k—1+i7 Sz = Z [X ]k,k—l-}-i,
(‘]/\L[j_ff);)a Z = 2, ey NT’ k=1 k=1
1 ~
Rt1+1 h A1+ p()\lYl + p[Xt]LNT"NT-i_l:end + [At]liNr-,Nr-i-l:end)a
1

1
Zt+1 - ;([At]NT--i-l:end,NT-—i-l:end + p[Xt]NT—i-l:end,NT-—i-l:end - IBm)a

Toeplitz(u'*!) RLH! 1 A
(Rg-i-l)H Zt+1 P )

Xt—i—l —

It is worth noting that in order to guarantee X >~ 0 as shown in (58), we can set the negative eigenvalues
of X1 to 0. When the iterative process converges, the result Toeplitz(u) can be utilized to obtain
the estimation of AoAs. Specifically, we can take Vandermonde decomposition [19] for Toeplitz(u),
Toeplitz(u) = VDV, where V = [a,(f,.1),...,a,(f.1)] € CV*L with {f,,;}£, being the estimated
AoAs and D = diag([dy,...,dr]) € CE*L. In practice, it is not necessary to calculate the Vandermonde
decomposition of Toeplitz(u) explicitly. Since the column subspace of Toeplitz(u) is equal to R(V), the
set of AoAs can be estimated from Toeplitz(u) efficiently by spectrum estimation algorithms such as

MUSIC or ESPRIT [19], [20].

B. Super Resolution AoD Estimation

Similarly, the observations for the second stage is given by

Y, = WiLHF, ; + W/,N,
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= WiLA, diag(h)A/'F, 5 + WIN,

= CA/'Fy5 + W/[,N,, (60)
where we let C, = WL, A, diag(h) € C"*". At Stage II, the observation Y in (60) is rewritten as
Yy =FLACf+ NYW,, = RY + NJ W, (61)
where we let R, = F{l,A,C/" € CP2*". Due to the design of Fy in (27), we have

FibA, = VDa[Advs, .. = VP2lau(fia), - a(fon)]is, .

For convenience, we define a;(f) = [a,(f)]1.5,, € C%**! and A, = [&(fi1), ..., & (fir)] € CPe2xL,
The AoD estimation boils down to extracting L parameters { ft,l}lel in A,. We let A(f,b) € CBraxL
be A(f,b) = a(f)b", where f € [0,1), b € C¥*! with ||b||, = 1, and the atomic set A; is defined by
A = {A(f,b) : f €]0,1],]|b]|, = 1}, Similarly, R in (61) can be written as the linear combination

of the atoms from the set A,,

L L
th At ftlabl thlat ftlbl7
=1 =1

where ¢; € RE*! is the coefficient vector with [c;]; > 0. Therefore, using the similar approach as AoA

estimation in (52), the AoD estimation problem is given by
. H )\2 2
min R, + 5 Y2~ Rallr, (62)

where \; is a penalty parameter. The problem in (62) can also be solved in a similar manner as (52), and
the estimation for AoDs, i.e., { fm}le, can be obtained.

Furthermore, after the AoAs { f,;}Z, and AoDs {f,,}~ , are estimated, we can easily calculate the AoA
and AoD array response matrix KT and Kt. Then, by using the channel estimation technique provided in

Section III-C, the final channel estimation result is obtained.

VI. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed two-stage AoA and AoD estimation method
and two-stage method with super resolution. For comparison, we take the OMP-based mmWave channel

estimation method [9] as our benchmark. Also, we include the oracle estimator as we discussed in (7). The
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parameter settings for evaluation are as follows. We assume throughout the simulation N, = 20, N; = 64,
and the channel model is given by (1). We let the dimensions of the angle grids for the proposed two-stage
method and OMP [9] be GG, = s, and G; = sN;. The number of paths is L. = 4. The variance of the path
gain is 07 = 1,V [. The number of RF chains is N = 4. The number of channel uses for the estimation
task is K = 50. The minimum allowed transmit beams at Stage I are Et,l = 1. Without loss of generality,
for the proposed two-stage framework, the power budget £/ = E; + E5, where /4 and Es are, respectively,
given by the resource allocations in (44) and (45) with 1; = 7, = 0.95 and SNR= 20dB.
To evaluate the estimation performance, we use three performance metrics:

o The first metric is the SRP. The error of the estimated angles are defined as

L
— 1 Fo12 - 2)
€ = 2L;<|fr,l fr,l| +|ft,l ft,l‘ .
We declare the reconstruction is successful if € < 1073, Precisely, SRP is defined as

SRP — number of trials with € < 1073

number of total trials

» The second metric is MSE of angle estimation defined as

i (|fr,z — ol + | fra — ft71|2>] .

MSE = E
=1

e The third metric is NMSE of channel estimation defined as
NMSE = E[|H — H||%./|[H||7],
where H is the channel estimate.

A. Channel Estimation Performance of Two-stage Method with Discrete Angles

For the simulations with discrete angles in Figs. 6-7, the f;; and f,; in (1) are uniformly distributed on
the grids of size G; = N; and G, = N,, respectively. Three methods are compared, which are proposed
two-stage SOMP method, one-stage OMP method [9], AMP method [49], and oracle method in (7). We
show the SRP in Fig. 6 and NMSE in Fig. 7.

In Fig. 6, considering that oracle method assumes that AoAs and AoDs are known as a priori, we do
not illustrate the performance of the oracle method when comparing the SRP. As can be seen in Fig. 6,

the proposed two-stage SOMP method achieves a higher SRP compared to the benchmarks. It is worth
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Fig. 6. SRP vs. SNR (dB) with discrete angles (N,, =20, Ny =64, L =4, N =4, K = 50, Et,l =1,s=1).
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Fig. 7. NMSE vs. SNR (dB) with discrete angles (N, = 20, Ny =64, L =4, N =4, K = 50, EM =1,s=1).

noting that the AMP-based method require the minimal measurements to guarantee the convergence [49].
When the number of channel uses is limited, the AMP-based method can not achieve the near one SRP
even if the SNR is high. Also, the SRPs of AoA and AoD of the proposed two-stage SOMP method
are both higher than those of one-stage OMP method. The improvement of SRP of AoD is because we
optimize the sounding beams of the second stage based on the estimated AoA result. For the improvement
of SRP of AoA, it is because we allocate more power budget to Stage I according to the proposed resource

allocation strategy.
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Similarly, in Fig. 7, the proposed two-stage SOMP method has lower NMSE than the one-stage OMP
and AMP methods. In addition, we can find from Fig. 7 that the proposed two-stage SOMP method
converges to the performance of the oracle method as SNR grows. Overall, Figs. 6-7 verify that the

proposed two-stage method outperforms the one-stage OMP in the scenario of discrete angles.

B. Channel Estimation Performance of Two-stage Method with Continuous Angles

For this set of simulations in Fig. 8-9, we assume the f;; and f,; in (1) are uniformly distributed in [0, 1).
Four methods are compared, which are the proposed two-stage SOMP method, two-stage method with
super resolution, one-stage OMP method [9], and one-stage atomic method [21]. When implementing the
two-stage SOMP method and one-stage OMP method with the defined angle grids, the estimated angles
are located on the defined grids. Fig. 8 illustrates the MSE and Fig. 9 illustrates the NMSE of channel
estimation.

In Fig. 8, the proposed two-stage SOMP method and two-stage method with super resolution outperform
the one-stage OMP and one-stage atomic method, respectively. Interestingly, the two-stage SOMP method
achieves the minimal MSE when SNR is low. This is because when SNR is low, i.e., SNR < 5dB, the noise
power is higher than that of the quantization error. Therefore, using the quantized model could reduce
the complexity of problem and achieve near-optimal performance. When SNR is high, i.e., SNR > 5dB,
the two-stage method with super resolution achieves the minimal MSE. This is because when SNR is
high, the quantization error will become dominant, which can not be handled by the grid-based methods.
Nevertheless, the Fig. 8 verifies that by dividing the estimation into two stages, the estimation of AoAs
and AoDs is improved compared to the one-stage estimation.

Likewise, in Fig. 9, the proposed two-stage SOMP method and two-stage method with super resolution
also achieve lower NMSE than the one-stage OMP and one-stage atomic methods. Similarly, when SNR

is high, the two-stage method with super resolution shows the minimum NMSE.

C. Analysis of Computational Complexity

For two-stage method, the computational complexity for the first stage is O(LN,G,) = O(sLN?),
and the complexity for the second stage is O(LB;2G;) = O(sL(K — N,/N)N;) = O(sLK N,) with K
being the number of channel uses. Therefore, the total computational complexity for two-stage method

is O(sLN?) + O(sLKN,) = O(sLK N;). However, for the one-stage OMP method, the computational
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Fig. 9. NMSE vs. SNR (dB) with continuous angles (N, = 20, N; = 64, L =4, N = 4, K = 50, EM =1,s=2).

complexity is O(LKNG,G,) = O(s*LKNN;N,). It is obvious that the two-stage method has much
lower computational complexity compared to the one-stage OMP by O(sNN,.) times.

For the two-stage method with super resolution, in Stage I, the computational complexity of ADMM
per iteration is dominated by the eigenvalue decomposition of X1, i.e., O(N3). Similarly, for Stage II,
each iteration has the computational complexity of O(B},) = O((K — N,/N)?) = O(K?). Given the
number of iteration 7" and K > N,, the total computational complexity of the super resolution method

is O(TN?) + O(TK?) = O(TK?). In order to compare the complexities of the two-stage method with
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super resolution and one-stage OMP, we consider a simple example as follows. In particular, if N, = N,
and K = O(N,), the complexity of the proposed two-stage method with super resolution is O(s?LN/T)

times lower than that of the one-stage OMP.

VII. CONCLUSION

In this paper, the two-stage method for the mmWave channel estimation was proposed. By sequentially
estimating AoAs and AoDs of large-dimensional antenna arrays, the proposed two-stage method saved the
computational complexity as well as channel use overhead compared to the existing methods. Theoretically,
we analyzed the SRPs of AoA and AoD of the proposed two-stage method. Based on the analyzed SRP,
we designed the resource allocation strategy among two stages to guarantee the accurate AoA and AoD
estimation. In addition, to resolve the issue of quantization error, we extended the proposed two-stage
method to a version with super resolution. The numerical simulations showed that the proposed two-stage

method achieves more accurate channel estimation result than the one-stage method.

APPENDIX A

PROOF OF LEMMA 1

For an arbitrary random noise matrix N, the SRP of SOMP has been characterized in [33]. This result
is general to be extended to the case in Lemma 1, where the entries in N are i.i.d. complex Gaussian.

Theorem 4: (SRP of SOMP with arbitrary random noise [33]) Suppose the signal model provided in
Lemma 1. Given the measurement matrix ® with its MIP constant satisfying 1 < 1/(2L + 1) and the

cumulative distribution function (CDF) of ||N||; satisfying
Pr(|IN|y < z) = Fiy(2), (63)

the SRP of SOMP in Algorithm 1 satisfies

(64)

Pr(Vs) > Fy (Cmm<1 — (2L~ 1>u>) |

2

where Vg is the event of successful reconstruction of Algorithm 1, C;, = miél 1[Cli.: |l
[4S]
According to the results in Theorem 4, the SRP of SOMP is characterized by the CDF of ||N||5. Thus,

in order to extend the result provided in Theorem 4 to the case in Lemma 1, the CDF of ||N||; is of
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interest when the entries of N € CM*? are i.i.d. CA/(0, 02). Fortunately, according to [40], [41], the CDF
of the largest singular value of N converges in distribution to the Tracy-Widom law as M, d tend to oo,
Pr(|N|, < 2) = F, (M) , (65)

OM,d
where the function Fy(-) is the CDF of Tracy-Widom law [40], [41], piasg = (M2 +d"/?)?, and o4 =
(M2 4 d'/2)(M~/? 4+ d=1/2)1/3 Finally, after plugging the expression in (65) into (64) of Theorem 4,

we obtain Lemma 1, which completes the proof. O

APPENDIX B

PROOF OF PROPOSITION 2

One can write the effective noise as N = E + N where the entries in N are i.i.d. with CA/ (0,0?).

Therefore, we have the following probability bound,

~ (a)
Pr (INJl2 < 2) < Pr(|Ell, + N}, < @)
— B2 /02 —
QF<( IE])?/o uM,d)7 ©6)

OM,d

where the inequality (a) is due to the triangular inequality, and the approximation (b) holds from (65).

Then, according to Theorem 4, plugging the expression (66) into (64) leads to

4U2UM,d

Pr(Vy) > F <<<1 — (2L — 1)) Crnin — 2||E}2)* — 4a2uM,d>

where Ciyin = mgl |[Cli.:|l,- This concludes the proof. O
1€

APPENDIX C

PROOF OF THEOREM 2
Plugging RSB in (25) and TSB in (27) into (21) gives ||[®2].jll2 = /P2Bia/Niy § = 1,..., Gy,
and Cin = mingcq, ||[Cals,.|l2 = |Amin| With #; being the index of the Ith path of A; in A; such that
[Ai].., = [Ad.. L =1,..., L. Hence, incorporating the latter Cyy,;, and ||[®3). ;|| into Lemma 1 concludes

the proof. O
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