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Abstract—As a promising distributed learning technology,
analog aggregation based federated learning over the air (FLOA)
provides high communication efficiency and privacy provisioning
under the edge computing paradigm. When all edge devices
(workers) simultaneously upload their local updates to the
parameter server (PS) through commonly shared time-frequency
resources, the PS obtains the averaged update only rather than
the individual local ones. While such a concurrent transmission
and aggregation scheme reduces the latency and communication
costs, it unfortunately renders FLOA vulnerable to Byzantine
attacks. Aiming at Byzantine-resilient FLOA, this paper starts
from analyzing the channel inversion (CI) mechanism that is
widely used for power control in FLOA. Our theoretical analysis
indicates that although CI can achieve good learning performance
in the benign scenarios, it fails to work well with limited defensive
capability against Byzantine attacks. Then, we propose a novel
scheme called the best effort voting (BEV) power control policy
that is integrated with stochastic gradient descent (SGD). Our
BEV-SGD enhances the robustness of FLOA to Byzantine attacks,
by allowing all the workers to send their local updates at their
maximum transmit power. Under worst-case attacks, we derive
the expected convergence rates of FLOA with CI and BEV power
control policies, respectively. The rate comparison reveals that
our BEV-SGD outperforms its counterpart with CI in terms of
better convergence behavior, which is verified by experimental
simulations.

Index Terms—Federated learning, analog aggregation, Byzan-
tine attack, best effort voting, channel-inversion, convergence
analysis.

I. INTRODUCTION

Edge intelligence has been recognized as a key enabler of
various Internet-of-Things (IoT) services and applications in
next-generation wireless systems [2], [3]. Federated learning
(FL) provides a promising paradigm for edge intelligence,
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by taking advantages of parallel computing at edge devices
and privacy-aware access to rich distributed data [4]–[7]. To
achieve communication-efficient FL, sparsification [8], [9],
quantization [10]–[12] and infrequent uploading of local up-
dates [13]–[17] are developed to reduce the amount of data to
be digitally transmitted over wireless systems. However, the
communication overhead and latency are still proportional to
the number of local workers participated in FL over digital
communication channels. To handle this issue, FL over the
air (FLOA) is recently proposed as a new framework for
distributed learning [18]–[29], which exploits the over-the-
air computation (AirComp) principle [30], [31] for “one-shot”
aggregation via local workers’ simultaneous update transmis-
sion over the same time-frequency resources. Based on the
inherent waveform superposition property of wireless multiple
access channels (MAC), AirComp allows to directly collect
the gradient aggregation among local workers via concurrent
transmission and computation [30]–[32], which exactly fits the
need of FL for utilizing only an average of all distributed local
gradients but not the individual values.

By virtue of its communication-efficient gradient aggre-
gation, FLOA has attracted growing interest from multiple
research communities to advance its development from the
perspectives of communications, optimization and machine
learning, such as power control [18], [19], [21], [33], devices
scheduling [19], [20], [29], gradient compression [23]–[27],
beamforming design [22], [28], [34] and learning rate opti-
mization [35]. For instance, a broadband analog aggregation
scheme for power control and device scheduling in FLOA is
proposed in [20], where a set of tradeoffs between communi-
cations and learning are discussed. In [18], [19], convergence
analysis is provided to quantify the impact of AirComp on FL
and then joint optimization of communication and learning
is proposed for optimal power scaling and device scheduling.
Considering energy-constrained local devices, an energy-aware
device scheduling strategy is proposed in [29] to maximize
the average number of workers scheduled for gradient update.
For update compression, sparsification [26], [27], quantization
[23] and compressive-sensing based methods [24], [25] are
proposed to further improve communication efficiency. In
multiple antennas scenarios, a joint design of device schedul-
ing and beamforming is presented in [22] to maximize the
number of selected workers under a given mean square error
(MSE) requirement. Since hyper-parameters can also affect
learning performance, a learning rate optimization scheme is
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proposed for multi-antenna systems to further improve the
MSE performance and the testing accuracy [35].

Beside its superior communication efficiency over con-
ventional FL, FLOA also enhances the data privacy thanks
to its inherent unaccessibility to individual local gradients,
which thus prevent potential model inversion attacks, e.g., deep
leakage from gradients [36]. While FLOA closes the doors to
deep leakage from gradients, it leaves the windows open for
adversaries to perform Byzantine attacks as well. In fact, even
a single Byzantine fault may destroy FL. Byzantine-robust
aggregation has been well studied for vanilla FL [37]–[40],
most of which uses a screening method, such as geometric
median [41]–[44], coordinate-wise median [38], coordinate-
wise trimmed mean [38], Krum/Multi-Krum [45], Bulyan
[46], [47], Zeno/Zeno++ [48], [49] and so on [37]. The
basic idea of these screening methods is to exclude outliers
while aggregating the rest of local gradients. All of them
hinge on the knowledge on the individual values of local
gradients, which is however not accessible in FLOA due to
the analog superposition of all local gradients over the air.
Thus, existing Byzantine-robust methods designed for vanilla
FL cannot be applied to FLOA, which motivates us to design
a new Byzantine-resilient approach customized for FLOA.

To the best of our knowledge, there is no literature so
far on the study of Byzantine attacks to the over-the-air
transmissions, nor is there any design of counter-attack mea-
sures for FLOA. In this work, we aim to deeply understand
how Byzantine attacks affect FLOA and then provide the
corresponding defense strategy. Our main contributions are
three-fold.
• Given the fact that most prior works on FLOA adopt

channel inversion (CI) power control (or its variants)
[18]–[20], [23]–[26], [29], [35], [50], [51], we first theo-
retically prove that the CI methods under fading channels
can achieve performance approximating that of the ideal
error-free case, which explains why it is widely used
to overcome the transmission errors in FL. Meanwhile,
our analysis reveals that the defensive capacity of CI is
very limited against Byzantine attacks. Thus, we propose
a new robust transmission policy to counter Byzantine
attacks, named the best effort voting (BEV) power control
policy, where local workers transmit their local gradients
with their maximum power.

• To study the impact of Byzantine attacks to FLOA, we
derive the transmission policy of intelligent Byzantine
attackers, including the falsified gradients and transmit
power, that can maximally deter the convergence of
FLOA. As this is the strongest attack, it is meaningful
to assess its impact on FLOA under various transmission
policies, which in turn serves to illuminate the respective
robustness level of these policies.

• To demonstrate the effectiveness of our proposed BEV
method compared with the popular CI scheme under the
strongest attacks, we provide the convergence analysis
for both our BEV and the existing CI. Our theoretical
results prove that BEV outperforms CI in terms of bet-
ter convergence behavior under the strongest Byzantine
attacks.

We also test the proposed method on image classification
problems using the MNIST dataset. Simulation results show
that the learning performance of BEV is slightly worse than
that of CI when there are no Byzantine attacks, while BEV
significantly outperforms CI in terms of the robustness to
against Byzantine attacks. Thus, our theoretical analysis and
simulation results suggest that BEV is preferred over CI in
practical applications that are subject to Byzantine attacks.

The rest of this paper is organized as follows. The system
model for FLOA is presented in Section II, where we provide
two power control policies i.e., CI and BEV. The closed-form
expressions of their expected convergence rate are derived to
compare the performance of different power control policies
in Section III, where we also delineate the strongest attack
case for a Byzantine attacker. Simulation results are provided
in Section IV, followed by conclusions in Section V.

II. SYSTEM MODEL

A. Federated Learning Model
Consider a distributed computation model with one pa-

rameter server (PS) and U local workers. Each local worker
stores K data points, which are independent and identically
distributed (i.i.d.) samples drawn from a large dataset D
[38]–[40]. The Byzantine-resilient issue for the non-i.i.d. case
is more involved, which is left for future work. Denote
(xi,k,yi,k) as the k-th data of the i-th local worker. Let
f(w;xi,k,yi,k) denote the loss function associated with each
data point (xi,k,yi,k), where w = [w1, . . . , wD] of size D
consists of the model parameters. The corresponding popula-
tion loss function is denoted as F (w) := ED[f(w;xi,k,yi,k)].
The PS and local workers collaboratively learn the model
parameter vector w by minimizing

P1: w∗ = arg min
w

F (w). (1)

The minimization of F (w) is typically carried out through
stochastic gradient descent (SGD) algorithm. At the PS, the
model parameter wt at the t iteration is updated as

(Model updating) wt = wt−1 − α
∑U
i=1 gi,t
U

, (2)

where α is the learning rate and gi,t = ∇f(wt−1;xi,k,yi,k)
is the local gradient computed at the i-th local worker using
its randomly selected the data sample, say the k-th sample.
Some communication and aggregation scheme needs to be in
place in order for the PS to acquire the sum of local gradients
in (2) from local workers.

Assume that N out of U local workers are Byzantine
attackers, and the remaining M = U − N local workers
are normal. However, the Byzantine attackers do not need
to follow this protocol and can send arbitrary messages to
the PS. Even worse, these attackers may have complete
knowledge of the learning system and algorithms, and can
collude with each other. Further, the communications between
the PS and local workers inevitably introduce channel noise,
while Byzantine attackers could also exploit this opportunity
to disrupt FLOA. Next, we will show that different predefined
analog aggregation transmission protocols result in different
performance of FLOA in the presence of Byzantine attacks.
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B. Analog Aggregation Transmission Model

In FLOA, to exploit over-the-air computation for low-
latency gradient aggregation, local gradients are amplitude-
modulated for analog transmission and simultaneously trans-
mitted from local workers to the PS through the same multi-
access channel. Assume that symbol-level synchronization is
achieved among the local workers through a synchronization
channel [20]. To facilitate the power control design, the trans-
mitted symbols, denoted by g̃i,t = [g̃1

i,t, ..., g̃
d
i,t, ..., g̃

D
i,t], are

standardized such that they have zero mean and unit variance,
i.e., E[(g̃di,t)

2] = 1, ∀i, t. In this way, the power control policy
can be designed at the PS without knowledge of the specific
transmitted symbols. Note that the standardization factors are
uniform for all local gradients and therefore can be inverted
at the PS.

Since the statistics of the gradients may change over iter-
ations, the standardization is executed in all communication
rounds. Specifically, at the beginning of each communication
round, each local worker estimates its mean and variance of
the locally learnt gradient, denoted by ḡi,t = 1

D

∑D
d=1 g

d
i,t and

ε2i,t = 1
D

∑D
d=1(gdi,t − ḡi,t)

2, respectively. Then the locally
estimated mean and variance are transmitted to the PS for
global gradient statistics estimation by averaging. Given the
received ḡi,t and ε2i,t, the PS averages all the local estimates
to get the global estimates of the mean and variance of the
gradient as ḡt = 1

U

∑U
i=1 ḡi,t and ε2t = 1

U

∑U
i=1 ε

2
i,t. Then the

estimated ḡt and ε2t are broadcast back to the local workers
and used for the standardization.

After receiving the standardization factors ḡt and ε2t , each
local worker performs the transmit signal standardization as
follows:

g̃i,t =
gi,t − ḡt1

εt
, (3)

where 1 is an all-one vector with dimension equal to that of
gi,t.

Considering only two symbols (ḡt and ε2t ) transmitted in
each communication round, the individual locally estimated
mean and variance are collected at the PS one by one.
We assume that such communications for standardization are
noise-free without introducing errors. Note that the Byzantine
attackers know the designed standardization method, and they
would send the true mean and variance of their local gradients
to avoid exposing themselves during the standardization stage.
Otherwise, the attackers may be easily detected and then
filtered out by the PS, as the normal workers and Byzantine
workers have i.i.d. datasets.

After standardization, all local workers transmit their stan-
dardized local gradients g̃i,t to the PS with certain transmit
power pi,t (the design of power control on pi,t will be
discussed later in this section). The transmission of each local
worker is subject to the transmit power constraint:

E[‖pi,tg̃i,t‖2] = E[p2
i,t

D∑
d=1

(g̃di,t)
2] = p2

i,t

D∑
d=1

E[(g̃di,t)
2]

= Dp2
i,t ≤ pmax

i , ∀i. (4)

Thus the power constraint boils down to p2
i,t ≤

pmax
i

D .

On the other hand, the Byzantine attackers can report any
values of ĝn,t as their gradient updates to the PS so as to skew
FL. The transmit power p̂n,t of the n-th Byzantine attackers
satisfies

E[‖p̂n,tĝn,t‖2] ≤ pmax
n , ∀n. (5)

Consider block fading channels, where the wireless channels
remain unchanged within each iteration in FL but may change
independently from one iteration to another. We define the
duration of one iteration as one time block, indexed by t. At
the t-th iteration, the received signal at the PS is given by

yt =
M∑
m=1

pm,t|hm,t|g̃m,t +
N∑
n=1

p̂n,t|hn,t|ĝn,t + zt, (6)

where the first, second, and third terms correspond to normal
workers, attackers and noise, respectively. In particular, |hi,t|
is the channel gain from the i-th worker to the PS at the t-
th iteration and zt ∼ N (0, z2I) is additive white Gaussian
noise (AWGN) that is independent of the gradient updates.
The channels follow independent Rayleigh fading, i.e., hi,t ∼
CN (0, σ2

i ). In this work, we assume that the channels are
perfectly known at local workers and the PS. With perfect
channel state information (CSI), the channel phase offset is
compensated at the local workers before they transmit their
gradient updates.

After receiving the signals yt in (6) from the local work-
ers, the PS performs de-standardization to get the estimated
aggregated gradient by inverting the standardization of (3) as
follows:

g̃t =εtyt +

(
U∑

i=1

pi,t|hi,t|

)
ḡt1

=εt

(
M∑

m=1

pm,t|hm,t|g̃m,t +

N∑
n=1

p̂n,t|hn,t|ĝn,t + zt

)

+

(
U∑

i=1

pi,t|hi,t|

)
ḡt1

=εt

(
M∑

m=1

pm,t|hm,t|
gm,t − ḡt1

εt
+

N∑
n=1

p̂n,t|hn,t|ĝn,t + zt

)

+

(
U∑

i=1

pi,t|hi,t|

)
ḡt1

=

M∑
m=1

pm,t|hm,t|gm,t + εt

N∑
n=1

p̂n,t|hn,t|ĝn,t

+

(
N∑

n=1

pn,t|hn,t|

)
ḡt1 + εtzt, (7)

where the first term corresponds to the aggregated gradients
from normal local workers, the second plus the third terms
denote the malignant contributions of Byzantine attackers to
the gradient update, and the final term is from the noise.

By using the estimated aggregated gradient, the global
model parameters are updated at the t-th iteration by

(updating with estimated gradients) wt = wt−1 − αg̃t. (8)

Next, we discuss two transmit power allocation schemes for
the design of pi,t that are adopted by normal local workers:
the existing channel-inversion (CI) transmission [20], [23] and
our proposed best effort voting (BEV) scheme.
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1) Channel-Inversion Transmission Scheme: Given perfect
known CSI, in the CI scheme [20], [23], channels are inverted
by power control so that gradient parameters transmitted by
different local workers are received with identical amplitudes,
which leads to amplitude alignment at the PS. The transmit
power of the i-th local worker is given by p2

i,t =
b2t
|hi,t|2 , ∀i,

where b2t = min{P
max
i

D |hi,t|2, i = 1, 2, ..., U} is a scaling
factor used to satisfy the power constraint in (4).

It is evident that

E[b2t ] ≥ Pmax
0 E[min{|hi,t|2, i = 1, 2, ..., U}], (9)

where Pmax
0 = min{P

max
i

D , i = 1, 2, ..., U}. Hence we can
set b2t = Pmax

0 E[min{|hi,t|2, i = 1, 2, ..., U}] for the power
allocation. Since the channel coefficient is Rayleigh distributed
hi,t ∼ CN (0, σ2

i ), |hi,t|2 follows the exponential distribution
with mean 1

λi
= 2σ2

i . Thus, we have E[min{|hi,t|2, i =

1, 2, ..., U}] = 1∑U
i=1 λi

.
= λ. As a result, for fulfilling the

channel-inversion scheme in practice, the transmit power of
the i-th local worker is set to

pi,t =
b0
|hi,t|

, ∀i, (10)

where we set b20
.
= b2t = Pmax

0 λ.
2) The Proposed Best Effort Voting Scheme: To counter

intelligent Byzantine attackers, our idea is to let normal local
workers try their best to combat the impact of potential Byzan-
tine attacks so that FLOA converges to the right direction,
which is therefore named as the best effort voting (BEV)
scheme. In the BEV scheme, normal local workers transmit
their local gradients by using their maximum transmit power
which is independent to their CSI knowledge. The transmit
power of the i-th local worker in BEV scheme is given by

pi,t =

…
pmax
i

D
, ∀i. (11)

Different power allocation schemes have different resilience
against Byzantine attackers, which we will discuss next.

III. THE CONVERGENCE ANALYSIS

In this section, we compare the convergence performance
of the aforementioned two power allocation schemes, CI and
BEV. We first prove that there exists the strongest attack where
a Byzantine attacker tries its best to prevent the convergence
of FLOA. And then under such a circumstance, we derive the
convergence rate of FLOA when applying the two transmission
schemes, respectively.

A. Assumptions

To facilitate the convergence analysis, we make several stan-
dard assumptions on the loss function and the local gradient
estimates. Note that our theoretical derivations do not assume
convexity on the loss function. Therefore, our methodology is
also applicable to the popular learning models of deep neural
networks (DNNs).

Assumption 1: The loss function F is Lipschitz continuous
and smooth, that is,

F (wt) ≤F (wt−1) + gTt (wt −wt−1) +
L

2
‖wt −wt−1‖2,

(12)

where L is a positive constant, referred to as the Lipschitz
constant for the function F (·) [52].

Assumption 2: The stochastic local gradient estimates are
independent and unbiased estimates of the global gradient with
the variance [23], [53], i.e.,

E(gi,t) = gt, ∀i, t, (13)

E(‖gi,t − gt‖2) ≤ δ2, ∀i, t, (14)

where we consider the standard SGD in this work. If the mini-
batched SGD with a size Kb is applied, then the variance is
bounded by δ2

Kb
.

Assumption 3: The standardization factors ḡt and ε2t are
unbiased estimates of the global gradient with the bounded
variance as follows [20]

E[ḡt] =

∑D
d=1 g

d
t

D
, ∀t, (15)

εt ≤ ε, ∀t. (16)

The above assumptions allow tractable convergence analy-
sis.

B. The Strongest Byzantine Attacks

While the Byzantine attackers may send arbitrary signals,
there exists the strongest attack that a Byzantine attacker
can achieve to prevent the convergence of FLOA. Intuitively,
the Byzantine attackers would like to influence the global
gradients at the PS along the opposite direction of that of
normal local workers. To this end, the Byzantine attackers
will transmit ĝn,t = −gn,t to the PS with its maximum
transmit power p̂n,t. In particular, given the global model
parameter wt−1, the Byzantine attackers compute its own
gradient gn,t by using their own local data. In addition, the
transmit power p̂n,t satisfies the maximum power constraint,
i.e., E[‖p̂n,tĝn,t‖2] = pmax

n . This is the worst case that FLOA
experiences in this work and we theoretically demonstrate in
the following Theorem 1 that it is the strongest attack that
a Byzantine attacker can impose to deter the convergence of
FLOA.

Theorem 1. Employing SGD for the FL system deploying
analog aggregation transmission in the presence of Byzantine
attackers, the strongest attacks can be performed as

ĝn,t = −gn,t, (17)

p̂n,t =

 
pmax
n

(ḡ2
t + ε2t )D

. (18)

Proof. The proof of Theorem 1 is provide in Appendix A.

Since the aforementioned strongest attack has been proved
as the worst case that FLOA can experience, next we will eval-
uate the defense efficiency of different transmission schemes
via convergence analysis. We adopt the well known strategy of
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relating the norm of the gradient to the expected improvement
to show the convergence for non-convex optimization [23],
[53], [54], i.e,

min
0,1,...,T

E[‖gt‖2] ≤ E

[
T∑
t=1

1

T
‖gt‖2

]
≤ O(

1

T q
), (19)

where q > 0 is the order of the total number of the iterations
T . As we can see, if (19) holds, the norm of the gradient
is expected to converge to 0 as T increases to infinity, which
means that FL converges asymptotically. The convergence rate
depends on the order value q, which is a key parameter to be
assessed next.

C. The Convergence of SGD with CI Transmission

With CSI at each local worker, the CI power control can be
performed as (10). The resultant convergence rate of the CI
transmission scheme under the strongest attacks is derived as
follows.

Theorem 2. For a FLOA system with SGD-based model
updating, CI-based power control for normal workers, and
N Byzantine attackers taking the strongest attacks as in (17)-
(18), the convergence rate is given by

E[

T∑
t=1

1

T
‖gt‖2)] ≤ 1√

T

Å
2LΩCI
ω2
CI ᾱ

(F (w0)− F (w∗))

+ᾱ

Å
δ2 +

1

ΩCI
ε2z2

ãã
, (20)

where

ωCI = Mb0 −
N∑
n=1

…
πσ2

np
max
n

2D
, (21)

ΩCI = (U +N)

(
Ub20 +

N∑
n=1

2σ2
np

max
n

D

)
, (22)

and ᾱ = LΩCI

√
T

ωCI
α is a positive constant satisfying ᾱ < 2

√
T ,

and b0 is initialized as in (10). The convergence is guaranteed
if α2L

2 ΩCI − αωCI < 0, which imposes constraints on α, L,
b0, σn, pmax

n , M , N , D.

Proof. The proof of Theorem 2 is provide in Appendix B.

Remark 1. For a small learning rate, the asymptotic con-
vergence rate is dominated by O( ΩCI

ω2
CI

√
T

). In addition, the

convergence condition is given by α2L
2 ΩCI − αωCI < 0,

the proof of which is also provided in Appendix B. This
condition imposes an upper bound on the learning rate in the
form α < 2ωCI

LΩCI
. Further, when the learning rate is set to be

small enough, α2 approaches 0, and the FL converges under
a simplified condition of ωCI > 0. From this convergence
condition, we can see that even one Byzantine attacker can
destroy the FLOA, if this attacker has a very large transmit
power or its channel gain is very large, e.g., if pmax

n or σ2
n for

any n is very large, it is hard to ensure ωCI > 0.
Remark 2. For a special case where all the local workers
have the same maximum power (i.e., pmax

i = pmax, ∀i)
and the independent and identically distributed channels (i.e.,

σi = σ, ∀i), we have the convergence condition ωCI =

( M√
U
−
»

N2π
4 )
»

2pmaxσ2

D > 0. Therefore, we conclude that the
number of attackers in this special case should be no more than

U
1+
√
πU

to make the CI scheme defend against the Byzantine
attack.

When there are no Byzantine attackers, i.e., N = 0, we
have the following Lemma 1.

Lemma 1. Employing SGD-based model updating for a FLOA
system with the CI power control for normal local workers and
no Byzantine attackers, the convergence rate is given by

E[
T∑
t=1

1

T
‖gt‖2)] ≤ 1√

T

Å
2L

ᾱ
(F (w0)− F (w∗))

+ᾱ

Å
δ2 +

1

U2b20
ε2z2

ãã
, (23)

where α = 1
LUb0

√
T
ᾱ.

Proof. When N = 0, we have ω2
CI = ΩCI . Then setting

α = ωCI

LΩCI

√
T
ᾱ = 1

LUb0
√
T
ᾱ, substituting α, ωCI and ΩCI

into (20), we complete the proof.

Remark 3. As we can see from (23), in the case of CI
power control without Byzantine attackers, we get the fastest
asymptotic convergence rate as O( 1√

T
), which is the same as

the error-free (EF) case where we do not consider the influence
of wireless channels and noises.

D. The Convergence of SGD with BEV Transmission

For our BEV transmission scheme under the strongest
attacks, the resultant convergence rate is derived as following
Theorem 3.

Theorem 3. Employing SGD-based model updating for a
FLOA system with the BEV power control for normal workers
and N Byzantine attackers taking the strongest attacks as in
(17)-(18), the convergence rate is given by

E[
T∑
t=1

1

T
‖gt‖2)] ≤ 1√

T

Å
2LΩBEV
ᾱω2

BEV

(F (w0)− F (w∗))

+ᾱ

Å
δ2 +

1

ΩBEV
ε2z2

ãã
, (24)

where

ωBEV =
M∑
i=1

…
pmax
i π

2D
σi −

N∑
n=1

…
pmax
n π

2D
σn, (25)

ΩBEV = (U +N)
U∑
i=1

2σ2
i p

max
i

D
, (26)

and ᾱ = LΩBEV

√
T

ωBEV
α is a positive constant satisfying

ᾱ < 2
√
T . The convergence is guaranteed if α2L

2 ΩBEV −
αωBEV < 0, which imposes constraints on α, L, σi, pmax

i ,
M , N , D.

Proof. The proof of Theorem 3 is provide in Appendix C.

Remark 4. The proof of the convergence condition
α2L

2 ΩBEV − αωBEV < 0 is provided in Appendix C. This
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condition imposes an upper bound on the learning rate in the
form α < 2ωBEV

LΩBEV
. Further, when the learning rate is set to be

small enough, α2 approaches 0, and the FL converges under
a simplified condition of ωBEV > 0. If all the attackers and
normal workers are isomorphic (the same case in Remark 2),
our BEV can defend Byzantine attacks when N ≤ U

2 . Since
U
2 ≥

U
1+
√
πU

, our BEV scheme can defend against a larger
number of Byzantine attackers than that of CI.

Remark 5. For a small learning rate, if both the CI scheme and
our BEV scheme can converge, the asymptotic convergence
rate is dominated by O( Ω

ω2
√
T

). The comparison between
O( ΩCI

ω2
CI

√
T

) and O( ΩBEV

ω2
BEV

√
T

) depends on the specific param-
eters. For a large learning rate, if both the CI scheme and
our BEV scheme can converge, the asymptotical convergence
rate is dominated by O( 1

Ω
√
T

). Since ΩBEV > ΩCI , the
convergence rate of BEV scheme is faster than that of the
CI scheme.

Remark 6. When there are no Byzantine attackers, i.e., N =
0, we have ω2

BEV ≤ ΩBEV . Considering a small learning
rate, the asymptotic convergence rate of BEV is dominated by
O( ΩBEV

ω2
BEV

√
T

), which is slower than both the CI scheme and
the EF case.

IV. SIMULATION RESULTS

To evaluate the resilience of our proposed BEV scheme
against Byzantine attacks, we provide the simulation results
for an image classification task. Unless specified otherwise, the
simulation settings are given as follows. The FLOA system has
U = 10 workers. The wireless channels between the workers
and the PS are modeled as i.i.d. Rayleigh fading, by generating
hi,t’s from the complex Gaussian distribution CN (0, 1) for
different i and t. The average receive SNR at local workers is
set to be Pmax

i

Dz2 = 10 dB [23].
We consider the learning task of handwritten-digit identifi-

cation using the well-known MNIST dataset1 that consists of
10 classes ranging from digit “0” to “9”. In the MNIST dataset,
a total of 60000 labeled training data samples and 10000 test
samples. In our experiments, we train a multilayer perceptron
(MLP) with a 784-neuron input layer, a 64-neuron hidden
layer, and a 10-neuron softmax output layer. We adopt rectified
linear unit (ReLU) as the activation function, and cross entropy
as the loss function. The total number of parameters in the
MLP is D = 50890. We randomly select 3000 distinct training
samples and distribute them to all local workers as their local
datasets, i.e., Ki = K̄ = 3000, for any i ∈ [1, U ].

We evaluate our BEV scheme under different attacks, in-
cluding 1) without any attacks, 2) only one attacker who is far
from the PS, hence a weak attacker, 3) only one attacker who
is close to the PS, hence a strong attacker, and 4) randomly
selected several attackers. We compare with two benchmarks:
1) the CI scheme and 2) the FLOA under the ideal error-free
case (EF) where we do not consider the influence of wireless
channels and noise.
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Fig. 1: The performance of BEV, CI and EF without Byzantine attacks.

A. Performance without Attacks

The error-free case is set as the benchmark where the local
gradients are perfectly aggregated at the PS, i.e., we set the
channel hi,t = 1 and the AWGN zt = 0. In Fig. 1, we compare
the performance of BEV with CI and EF without Byzantine
attacks. Considering α < ω

LΩ in Remark 1 and Remark 4,
we set the learning rate α such as its scaled version is α̂ =
ᾱ

L
√
T

= Ω
ωα = 0.1, where α̂ denotes the adjusting fact of α. As

we can see from Fig. 1, the performance of CI is almost the
same as EF. However, BEV experiences a 2% performance
loss compared to CI and EF. This results are in agreement
with our theoretical analysis in Theorem 3, which has been
discussed in Remark 6. That is, CI converges a little faster
than our BEV scheme, if and only if there exist no Byzantine
attackers. However, practical learning applications of interest
often operate in possible adversarial environments.

B. Performance under a Single Attacker with Weak Channel
Gain

In Fig 2, we compare the performance of BEV with CI
under a single Byzantine attack. Suppose that the attacker

1http://yann.lecun.com/exdb/mnist/
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Fig. 2: The performance of BEV and CI with a Byzantine attacker whose
channel gain is the lowest.

has the lowest channel gain among all local workers. It still
adopts the strongest attack strategy to destroy FLOA. Since
the Byzantine attack to FLOA is relatively weak, both BEV
and CI can converge, if a proper learning rate α̂ = ᾱ

L
√
T

= Ω
ωα

is selected. On the other hand, when the learning rate is not
properly chosen, e.g., when α̂ = 2 in Fig. 2, BEV can converge
but CI fails. When α̂ = 1, both BEV and CI can converge, but
the convergence rate of BEV is faster than that of CI. This is
because for a large learning rate, the asymptotic convergence
rate is dominated by O( 1

Ω
√
T

) and ΩBEV > ΩCI . When
α̂ = 0.1, the performance of BEV is a little bit weaker in
performance than CI. In practice, when the convergence can
be guaranteed, we prefer a large learning rate to achieve a fast
convergence rate. Under a large learning rate, e.g., α̂ = 1, our
BEV works better than CI.

C. Performance under a Single Attacker with Large Channel
Gain

In Fig 3, we compare the performance of BEV with CI
under a Byzantine attacker whose channel gain is the highest
among all local workers. Thus, this is a strong attack. In
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Fig. 3: The performance of BEV and CI with a Byzantine attacker whose
channel gain is the highest.

this case of strong attacks, we compare the performance of
BEV with CI under α̂ = ᾱ

L
√
T

= Ω
ωα. Since the convergence

condition ωCI > 0 is hard to guarantee, it can be seen
from Fig 3 that CI cannot converge or coverage to a failure
situation. As α̂ decreases, it is useful for CI to converge to
the right direction, but it still cannot defend the attack after
a few iterations. On the other hand, BEV can still converge,
and hence is a better choice than CI in the presence of a
strong attack. In addition, the convergence rate decreases as α̂
decreases. This implies that a larger learning rate is preferred
under the condition of guaranteed convergence.

D. Performance with Multiple Randomly Selected Attackers

In Fig 4, we compare the performance of BEV with CI
under the different number of Byzantine attackers. As we can
see, when the number of Byzantine attackers is less than 4,
both BEV and CI can converge, but the convergence rate de-
creases as the number of Byzantine attackers increases. When
the number of Byzantine attackers is 4, i.e., N > U

1+
√
πU

,
CI can not converge to the correct direction, while BEV
still converges in the correct direction but it converges at a
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Fig. 4: The performance of BEV and CI with the different number of
Byzantine attackers.

slower rate. These results are consistent with our discussions
in Remark 2 and Remark 4.

V. CONCLUSION

This paper studies the robustness of FL over the air (FLOA)
against Byzantine attacks. We provide theoretical analysis on
convergence performance of different transmission schemes.
Our analytical results reveal the strongest attack that Byzantine
attackers can impose to deter FLOA from converging to the
correct direction. Our convergence analyses, corroborated by
simulation results, delineate the convergence behavior of the
CI and BEV schemes under various adversarial environments.
Specifically, in the absence of any Byzantine attacker, CI has
the performance comparable to the ideal error-free case, while
BEV has 2% performance loss. In the weakest Byzantine
attack, for a large learning rate, both CI and BEV can
converge while BEV converges faster than CI. If there exists
a strong Byzantine attacker, the convergence of CI cannot be
guaranteed, but BEV can still converge. In practice, since it
is impossible to determine the intensity of potential attacks,
BEV is a better option to counter Byzantine attacks, because
it performs well under various attack situations.
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APPENDIX A
PROOF OF THEOREM 1

Given the estimates of the global gradient in (7), we have
the update rule for model parameters as follows

wt =wt−1 − αg̃t

=wt−1 − α

(
M∑
m=1

pm,t|hm,t|gm,t + εt

N∑
n=1

p̂n,t|hn,t|ĝn,t

+

N∑
n=1

pn,t|hn,t|ḡt1 + εtzt

)
. (27)

Substituting (27) to (12), we have

F (wt) ≤F (wt−1) + gTt (wt −wt−1) +
L

2
‖wt −wt−1‖2

=F (wt−1)− αgTt

(
M∑
m=1

pm,t|hm,t|gm,t

+εt

N∑
n=1

p̂n,t|hn,t|ĝn,t +

N∑
n=1

pn,t|hn,t|ḡt1 + εtzt

)

+
α2L

2

∥∥∥∥∥
M∑
m=1

pm,t|hm,t|gm,t + εt

N∑
n=1

p̂n,t|hn,t|ĝn,t

+
N∑
n=1

pn,t|hn,t|ḡt1 + εtzt

∥∥∥∥∥
2

. (28)

Rewriting this inequality and taking the expectation, we
have

E[F (wt)− F (wt−1)] ≤ −αgTt

(
M∑
m=1

pm,t|hm,t|gt

+
N∑
n=1

p̂n,t|hn,t|ĝn,t +
N∑
n=1

pn,t|hn,t|E[ḡt]1

)

+
α2L

2
E

[∥∥∥∥∥
M∑
m=1

pm,t|hm,t|gm,t + εt

N∑
n=1

p̂n,t|hn,t|ĝn,t

+
N∑
n=1

pn,t|hn,t|ḡt1 + εtzt

∥∥∥∥∥
2
 . (29)
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Since gTt E[ḡt]1 = gTt

∑D
d=1 g

d
t

D 1 =
(
∑D

d=1 g
d
t )2

D ≥ 0, we have

E[F (wt)− F (wt−1)] ≤

− α

(
M∑
i=1

pi,t|hi,t|‖gt‖2 +
N∑
n=1

p̂n,t|hn,t|gTt ĝn,t

)

+
α2L

2
E

[∥∥∥∥∥
M∑
m=1

pm,t|hm,t|gm,t + εt

N∑
n=1

p̂n,t|hn,t|ĝn,t

+
N∑
n=1

pn,t|hn,t|ḡt1 + εtzt

∥∥∥∥∥
2
 . (30)

If E(F (wt) − F (wt−1)) ≤ 0, the objective decreases
monotonically, then FL converges in mean. As we can see
from (30), if we set the learning rate to be small enough, then
the second term on the right hand side of (30) diminishes, and
convergence is ensured as long as

M∑
i=1

pi,t|hi,t|‖gt‖2 +
N∑
n=1

p̂n,t|hn,t|gTt ĝn,t > 0. (31)

In order to break the convergence condition in (31), the N
Byzantine attackers would seek to make gTt ĝn,t < 0 for any
n. In fact, the best way for them is to send ĝn,t = −gn,t with
their maximum power so as to make E[gTt ĝn,t] = −‖gt‖2 <
0.

Given the power constraint in (5), we have

E[‖p̂n,tĝn,t‖2] = p̂2
n,t

D∑
d=1

E[(gdn,t)
2]

= p̂2
n,tD(ε2t + ḡ2

t ) ≤ pmax
n . (32)

As a result, the Byzantine attackers are supposed to send
ĝn,t = −gn,t with their maximum power p̂n,t =

√
pmax
n

D(ε2t+ḡ2t )
.

APPENDIX B
PROOF OF THEOREM 2

Given the estimates of the global gradient in (7), the
power allocation policy in (10), and the strongest attacks in
Theorem 1, we have the update rule for model parameters as
follows

wt =wt−1 − αg̃t

=wt−1 − α

(
M∑
m=1

pm,t|hm,t|gm,t + εt

N∑
n=1

p̂n,t|hn,t|ĝn,t

+

N∑
n=1

pn,t|hn,t|ḡt1 + εtzt

)

=wt−1 − α

(
M∑
m=1

b0gm,t

−εt
N∑
n=1

 
pmax
n

D(ε2t + ḡ2
t )
|hn,t|gn,t +

N∑
n=1

b0ḡt1 + εtzt

)
.

(33)

Substituting (33) to (12), we get

F (wt) ≤ F (wt−1) + gTt (wt −wt−1) +
L

2
‖wt −wt−1‖2

= F (wt−1)− αgTt

(
M∑
m=1

b0gm,t

−εt
N∑
n=1

 
pmax
n

D(ε2t + ḡ2
t )
|hn,t|gn,t +

N∑
n=1

b0ḡt1 + εtzt

)

+
α2L

2

∥∥∥∥∥
M∑
m=1

b0gm,t − εt
N∑
n=1

 
pmax
n

D(ε2t + ḡ2
t )
|hn,t|gn,t

+
N∑
n=1

b0ḡt1 + εtzt

∥∥∥∥∥
2

. (34)

Rewriting this inequality and taking the expectation, we get

E[F (wt)− F (wt−1)] ≤ −αgTt

(
M∑
m=1

b0gt

−εt
N∑
n=1

 
pmax
n

D(ε2t + ḡ2
t )
E[|hn,t|]gt +

N∑
n=1

b0E[ḡt]1

)

+
α2L

2
E

[∥∥∥∥∥
M∑
m=1

b0gm,t +

N∑
n=1

b0ḡt1

−εt
N∑
n=1

 
pmax
n

D(ε2t + ḡ2
t )
|hn,t|gn,t + εtzt

∥∥∥∥∥
2
 , (35)

where E[|hi,t|] = σi
√

π
2 , because of the Rayleigh distributed

|hi,t|.
Since gTt E[ḡt]1 = gTt

∑D
d=1 g

d
t

D 1 =
(
∑D

d=1 g
d
t )2

D ≥ 0, we have

E[F (wt)− F (wt−1)] ≤ −α (Mb0

−εt
N∑
n=1

 
pmax
n

D(ε2t + ḡ2
t )
σn

…
π

2

)
‖gt‖2

+
α2L

2
E

[∥∥∥∥∥
M∑
m=1

b0gm,t − εt
N∑
n=1

 
pmax
n

D(ε2t + ḡ2
t )
|hn,t|gn,t

+
N∑
n=1

b0ḡt1 + εtzt

∥∥∥∥∥
2


≤ −α

(
Mb0 −

N∑
n=1

…
pmax
n

D
σn

…
π

2

)
‖gt‖2

+
α2L

2
E

[∥∥∥∥∥
M∑
m=1

b0gm,t − εt
N∑
n=1

 
pmax
n

D(ε2t + ḡ2
t )
|hn,t|gn,t

+
N∑
n=1

b0ḡt1 + εtzt

∥∥∥∥∥
2
 . (36)

Using the triangle inequality of norms and Jensen’s inequal-
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ity, we have

E

[∥∥∥∥∥
M∑
m=1

b0gm,t − εt
N∑
n=1

 
pmax
n

D(ε2t + ḡ2
t )
|hn,t|gn,t

+
N∑
n=1

b0ḡt1 + εtzt

∥∥∥∥∥
2


= E

[∥∥∥∥∥
M∑
m=1

b0gm,t − εt
N∑
n=1

 
pmax
n

D(ε2t + ḡ2
t )
|hn,t|gn,t

+
N∑
n=1

b0ḡt1

∥∥∥∥∥
2
+ E[‖εtzt‖2]

≤ E

[(
M∑
m=1

‖b0gm,t‖+
N∑
n=1

∥∥∥∥∥εt
 

pmax
n

D(ε2t + ḡ2
t )
|hn,t|gn,t

∥∥∥∥∥
+

N∑
n=1

‖b0ḡt1‖

)2
+ ε2z2

≤ E

[
(U +N)

(
M∑
m=1

b20‖gm,t‖2 +
N∑
n=1

b20‖ḡt1‖2

+

N∑
n=1

ε2tp
max
n

D(ε2t + ḡ2
t )
|hn,t|2‖gn,t‖2

)]
+ ε2z2

= (U +N)

(
M∑
m=1

b20E[‖gm,t‖2] +
N∑
n=1

b20D

Ç∑D
d=1 g

d
t

D

å2

+
N∑
n=1

ε2tp
max
n

D(ε2t + ḡ2
t )
E[|hn,t|2]E[‖gn,t‖2]

)
+ ε2z2

≤ (U +N)

(
M∑
m=1

b20(‖gt‖2 + δ2) +

N∑
n=1

b20‖gt‖2

+
N∑
n=1

ε2tp
max
n

D(ε2t + ḡ2
t )

2σ2
n(‖gt‖2 + δ2)

)
+ ε2z2

≤ (U +N)

((
Ub20 +

N∑
n=1

2σ2
np

max
n

D

)
‖gt‖2

+

(
Mb20 +

N∑
n=1

2σ2
np

max
n

D

)
δ2

)
+ ε2z2. (37)

Substituting (37) to (36), we get

E[F (wt)− F (wt−1)] ≤ −α

(
Mb0 −

N∑
n=1

…
πσ2

np
max
n

2D

)
‖gt‖2

+
α2L

2

(
(U +N)

((
Ub20 +

N∑
n=1

2σ2
np

max
n

D

)
‖gt‖2

+

(
Mb20 +

N∑
n=1

2σ2
np

max
n

D

)
δ2

)
+ ε2z2

)

≤
Å
α2L

2
ΩCI − αωCI

ã
‖gt‖2 +

α2L

2
(ΩCIδ

2 + ε2z2),

(38)

where

ωCI = Mb0 −
N∑
n=1

…
πσ2

np
max
n

2D
, (39)

ΩCI = (U +N)

(
Ub20 +

N∑
n=1

2σ2
np

max
n

D

)
. (40)

If E(F (wt) − F (wt−1)) ≤ 0, the objective decreases
monotonically, then FL converges in mean. Thus, to ensure
the convergence, we have the following convergence condition

α2L

2
ΩCI − αωCI < 0. (41)

Now extend the expectation over randomness in the trajec-
tory, and perform a telescoping sum over the T iterations:

F (w0)− F (w∗) ≥ F (w0)− E[F (wT )]

= E

[
T∑
t=1

(F (wt−1)− F (wt))

]

≥ E

[
T∑
t=1

ÅÅ
αωCI −

α2L

2
ΩCI

ã
‖gt‖2

−α
2L

2
(ΩCIδ

2 + ε2z2)

ãò
. (42)

We can rearrange this inequality to yield the rate:

E

[
T∑
t=1

ÅÅ
αωCI −

α2L

2
ΩCI

ã
‖gt‖2

ã]
≤ F (w0)− F (w∗) +

α2L

2
T (ΩCIδ

2 + ε2z2). (43)

If FL converges, the condition (41) holds, yielding αωCI −
α2L

2 ΩCI > 0, and then we get

E

[
T∑
t=1

1

T
‖gt‖2

]
≤ 1

T (αωCI − α2L
2 ΩCI)

(F (w0)− F (w∗)

+
α2L

2
T (ΩCIδ

2 + ε2z2)

ã
. (44)

Let α = ωCI

LΩCI

√
T
ᾱ, where ᾱ < 2

√
T is a positive constant,
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and then we have

E

[
T∑
t=1

1

T
‖gt‖2

]
≤ 1

T
(
ᾱ

ω2
CI

LΩCI

√
T
− ᾱ2ω2

CI

2LTΩCI

) (F (w0)

−F (w∗) +
ᾱ2ω2

CI

2LΩCI

Å
δ2 +

1

ΩCI
ε2z2

ãã
=

1

T ( ᾱ√
T
− ᾱ2

2T )

Å
LΩCI
ω2
CI

(F (w0)− F (w∗))

+
ᾱ2

2

Å
δ2 +

1

ΩCI
ε2z2

ãã
≤ 1

T ᾱ
2
√
T

Å
LΩCI
ω2
CI

(F (w0)− F (w∗))

+
ᾱ2

2

Å
δ2 +

1

ΩCI
ε2z2

ãã
=

1√
T ᾱ

Å
2LΩCI
ω2
CI

(F (w0)− F (w∗))

+ᾱ2

Å
δ2 +

1

ΩCI
ε2z2

ãã
. (45)

APPENDIX C
PROOF OF THEOREM 3

Given the estimates of the global gradient in (7), the power
allocation policy in (11), and the strongest attacks in Theorem
1, we get the update rule for model parameters as follows

wt = wt−1 − αg̃t

= wt−1 − α

(
M∑
m=1

pm,t|hm,t|gm,t + εt

N∑
n=1

p̂n,t|hn,t|ĝn,t

+

N∑
n=1

pn,t|hn,t|ḡt1 + εtzt

)

= wt−1 − α

(
M∑
m=1

…
pmax
m

D
|hm,t|gm,t + εtzt

−εt
N∑
n=1

 
pmax
n

D(ε2t + ḡ2
t )
|hn,t|gn,t +

N∑
n=1

…
pmax
n

D
|hn,t|ḡt1

)
.

(46)

Substituting (46) to (12), we get

F (wt) ≤ F (wt−1) + gTt (wt −wt−1) +
L

2
‖wt −wt−1‖2

= F (wt−1)− αgTt

(
M∑
m=1

…
pmax
m

D
|hm,t|gm,t

−εt
N∑
n=1

 
pmax
n

D(ε2t + ḡ2
t )
|hn,t|gn,t + εtzt

+
N∑
n=1

…
pmax
n

D
|hn,t|ḡt1

)
+
α2L

2

∥∥∥∥∥
M∑
m=1

…
pmax
m

D
|hm,t|gm,t

−εt
N∑
n=1

 
pmax
n

D(ε2t + ḡ2
t )
|hn,t|gn,t

+
N∑
n=1

…
pmax
n

D
|hn,t|ḡt1 + εtzt

∥∥∥∥∥
2

. (47)

Rearranging this inequality and taking the expectation, we
get

E[F (wt)− F (wt−1)] ≤ −αgTt

(
M∑
m=1

…
pmax
m

D
E[|hm,t|gm,t]

− εt
N∑
n=1

 
pmax
n

D(ε2t + ḡ2
t )
E[|hn,t|gn,t]

+
N∑
n=1

…
pmax
n

D
E[|hn,t|ḡt1] + E[εtzt]

)

+
α2L

2
E

[∥∥∥∥∥
M∑
m=1

…
pmax
m

D
|hm,t|gm,t + εtzt

−εt
N∑
n=1

 
pmax
n

D(ε2t + ḡ2
t )
|hn,t|gn,t +

N∑
n=1

…
pmax
n

D
|hn,t|ḡt1

∥∥∥∥∥
2


≤ −α

(
M∑
i=1

…
pmax
i

D
σi

…
π

2

−εt
N∑
n=1

 
pmax
n

D(ε2t + ḡ2
t )
σn

…
π

2

)
‖gt‖2

+
α2L

2
E

[∥∥∥∥∥
M∑
m=1

…
pmax
m

D
|hm,t|gm,t +

N∑
n=1

…
pmax
n

D
|hn,t|ḡt1

−εt
N∑
n=1

 
ε2t

pmax
n

D(ε2t + ḡ2
t )
|hn,t|gn,t + εtzt

∥∥∥∥∥
2


≤ −α
…
π

2

(
M∑
i=1

…
pmax
i

D
σi −

N∑
n=1

…
pmax
n

D
σn

)
‖gt‖2

+
α2L

2
E

[∥∥∥∥∥
M∑
m=1

…
pmax
m

D
|hm,t|gm,t +

N∑
n=1

…
pmax
n

D
|hn,t|ḡt1

−εt
N∑
n=1

 
pmax
n

D(ε2t + ḡ2
t )
|hn,t|gn,t + εtzt

∥∥∥∥∥
2
 . (48)

Using the triangle inequality of norms and Jensen’s inequal-
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ity, we have

E

[∥∥∥∥∥
M∑
m=1

…
pmax
m

D
|hm,t|gm,t +

N∑
n=1

…
pmax
n

D
|hn,t|ḡt1

−εt
N∑
n=1

 
pmax
n

D(ε2t + ḡ2
t )
|hn,t|gn,t + εtzt

∥∥∥∥∥
2


= E

[∥∥∥∥∥
M∑
m=1

…
pmax
m

D
|hm,t|gm,t +

N∑
n=1

…
pmax
n

D
|hn,t|ḡt1

−εt
N∑
n=1

 
pmax
n

D(ε2t + ḡ2
t )
|hn,t|gn,t

∥∥∥∥∥
2
+ E[‖εtzt‖2]

≤ E

[(
M∑
m=1

…
pmax
m

D
|hm,t|‖gm,t‖+

N∑
n=1

…
pmax
n

D
|hn,t|‖ḡt1‖

+εt

N∑
n=1

 
pmax
n

D(ε2t + ḡ2
t )
|hn,t|‖gn,t‖

)2
+ ε2z2

≤ E

[
(U +N)

(
M∑
m=1

pmax
m

D
|hm,t|2‖gm,t‖2

+

N∑
n=1

ε2tp
max
n

D(ε2t + ḡ2
t )
|hn,t|2‖gn,t‖2

+
N∑
n=1

pmax
n

D
|hn,t|2‖gt‖2

)]
+ ε2z2

≤ (U +N)

(
U∑
i=1

pmax
i

D
2σ2

i ‖gt‖2 +
M∑
m=1

pmax
m

D
2σ2

mδ
2

+
N∑
n=1

ε2tp
max
n

D(ε2t + ḡ2
t )

2σ2
nδ

2

)
+ ε2z2

≤ (U +N)

(
U∑
i=1

pmax
i

D
2σ2

i ‖gt‖2 +
U∑
i=1

pmax
i

D
2σ2

i δ
2

)
+ ε2z2.

(49)

Substituting (49) to (48), we get

E[F (wt)− F (wt−1)]

≤ −α
…
π

2

(
M∑
i=1

…
pmax
i

D
σi −

N∑
n=1

…
pmax
n

D
σn

)
‖gt‖2

+
α2L

2

(
(U +N)

(
U∑
i=1

pmax
i

D
2σ2

i ‖gt‖2

+
U∑
i=1

pmax
i

D
2σ2

i δ
2

)
+ ε2z2

)

=

Å
α2L

2
ΩBEV − αωBEV

ã
‖gt‖2 +

α2L

2
(ΩBEV δ

2 + ε2z2),

(50)

where

ωBEV =
M∑
i=1

…
pmax
i π

2D
σi −

N∑
n=1

…
pmax
n π

2D
σn, (51)

ΩBEV = (U +N)
U∑
i=1

2σ2
i p

max
i

D
. (52)

If E(F (wt) − F (wt−1)) ≤ 0, the objective decreases
monotonically, then FL converges in mean. Thus, to ensure
the convergence, we have the following convergence condition

α2L

2
ΩBEV − αωBEV < 0. (53)

Now extend the expectation over randomness in the trajec-
tory, and perform a telescoping sum over the T iterations:

F (w0)− F (w∗) ≥ F (w0)− E[F (wT )]

= E

[
T∑
t=1

(F (wt−1)− F (wt))

]

≥ E

[
T∑
t=1

ÅÅ
αωBEV −

α2L

2
ΩBEV

ã
‖gt‖2

−α
2L

2
(ΩBEV δ

2 + ε2z2)

ãò
. (54)

We can rearrange this inequality to yield the rate:

E

[
T∑
t=1

Å
αωBEV −

α2L

2
ΩBEV

ã
‖gt‖2

]

≤ F (w0)− F (w∗) +
α2L

2

T∑
t=1

(ΩBEV δ
2 + ε2z2). (55)

If FL converges, αωBEV − α2L
2 ΩBEV > 0, and then we

get

E

[
T∑
t=1

1

T
‖gt‖2

]

≤
F (w0)− F (w∗) + α2L

2

∑T
t=1(ΩBEV δ

2 + ε2z2)

T (αωBEV − α2L
2 ΩBEV )

. (56)

Let α = ωBEV

LΩBEV

√
T
ᾱ, where ᾱ < 2

√
T is a positive

constant, and then we have

E

[
T∑
t=1

1

T
‖gt‖2

]

≤
F (w0)− F (w∗) +

ᾱ2ω2
BEV

2LΩBEV

Ä
δ2 + 1

ΩBEV
ε2z2
ä

T
(
ᾱ

ω2
BEV

LΩBEV

√
T
− ᾱ2ω2

BEV

2LTΩBEV

)
=

LΩBEV

ω2
BEV

(F (w0)− F (w∗)) + ᾱ2

2

Ä
δ2 + 1

ΩBEV
ε2z2
ä

T ( ᾱ√
T
− ᾱ2

2T )

≤
LΩBEV

ω2
BEV

(F (w0)− F (w∗)) + ᾱ2

2

Ä
δ2 + 1

ΩBEV
ε2z2
ä

T ᾱ
2
√
T

=

2LΩBEV

ᾱω2
BEV

(F (w0)− F (w∗)) + ᾱ
Ä
δ2 + 1

ΩBEV
ε2z2
ä

√
T

. (57)
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