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Abstract—Analog aggregation based federated learning over
the air (FLOA) provides high communication efficiency and
privacy provisioning in edge computing paradigm. When all
edge devices (workers) simultaneously upload their local updates
to the parameter server (PS) through the commonly shared
time-frequency resources, the PS can only obtains the averaged
update rather than the individual local ones. As a result, such
a concurrent transmission and aggregation scheme reduces the
latency and costs of communication but makes FLOA vulnerable
to Byzantine attacks. For the design of Byzantine-resilient FLOA,
this paper starts from analyzing the channel inversion (CI)
power control mechanism that is widely used in existing FLOA
literature. Our theoretical analysis indicates that although CI
can achieve good learning performance in the non-attacking
scenarios, it fails to work well with limited defensive capability
to Byzantine attacks. Then, we propose a novel scheme called
the best effort voting (BEV) power control policy, integrated
with stochastic gradient descent (SGD). Our proposed BEV-
SGD improves the robustness of FLOA to Byzantine attacks,
by allowing all the workers to send their local updates at
their maximum transmit power. Under the strongest-attacking
circumstance, we derive the expected convergence rates of FLOA
with CI and BEYV, respectively. The comparison reveals that
our BEV outperforms its counterpart with CI in terms of
better convergence behavior, which is verified by experimental
simulations.

Index Terms—Federated learning, analog aggregation, Byzan-
tine attack, best effort voting, channel-inversion, convergence.

I. INTRODUCTION

Federated learning (FL) is a promising paradigm of dis-
tributed learning for low-latency and privacy-aware access
to rich distributed data [1]-[5]. To achieve communication-
efficient FL, sparsification [6], quantization [7] and infrequent
uploading of local updates [8], [9] are proposed to reduce
the amount of data needed to transfer in digital wireless
communications. However, the communication overhead and
latency are still proportional to the number of involved lo-
cal workers in FL over digital communication channels. To
handle this issue, FL over the air (FLOA) is proposed as
a distributed learning solution [10]-[18], which exploits the
over-the-air computation (AirComp) principle [19] for “one-
shot” aggregation via local workers’ concurrent update trans-
mission using the same time-frequency resources. Based on the
inherent waveform superposition property of wireless multiple
access channels (MAC), AirComp allows to directly collect
the gradient aggregation among local workers via concurrent
transmission and computation [19], which exactly fits the need

of FL for only an average of all distributed local gradients but
not the individual values.

Benefitting from communication-efficient gradient aggrega-
tion, FLOA as a cross-disciplinary topic has attracted growing
research interests, such as power control [11], [14], [20],
devices scheduling [11], [13], [18], gradient compression [10],
[12], [16], [17], and beamforming design [15]. For instance,
a broadband analog aggregation scheme for broadband power
control and device scheduling in FLOA is proposed in [13],
where a set of tradeoffs between communication and learn-
ing are derived. In [11], convergence analysis quantifies the
impact of AirComp on FL and then a joint optimization of
communication and learning is proposed for the optimal power
scaling and device scheduling. Considering energy-constrained
local devices, an energy-aware device scheduling strategy is
proposed in [18] to maximize the average number of work-
ers scheduled for gradient update. For update compression,
sparsification [17], quantization [16] and compressive-sensing
based methods are proposed to further improve communication
efficiency [10], [12]. In multiple antennas scenarios, a joint
design of device scheduling and beamforming is presented in
[15] to maximize the number of selected workers under the
given mean square error (MSE) requirements.

Besides, FLOA not only improves communication effi-
ciency, but also enhances the data privacy thanks to its
unaccessibility of individual local gradients, which thus avoids
the risk of potential model inversion attack, e.g., deep leak-
age from gradients [21]. While FLOA closes the doors to
deep leakage from gradients, it leaves the windows open for
adversaries to perform Byzantine attacks as well. Byzantine-
robust aggregation has been well studied for vanilla FL [22],
most of which uses a screening method, such as geometric
median [23], coordinate-wise median [24], coordinate-wise
trimmed mean [24], Krum/Multi-Krum [25], Bulyan [26] and
so on [22]. The basic idea of these existing screening methods
is to exclude outliers while aggregating the local gradients.
All of them hinge on knowing the individual values of local
gradients, which is however not accessible in FLOA due to the
analog superposition of all local gradients over the air. Thus,
the existing Byzantine-robust methods designed for vanilla FL.
fail to work for FLOA, which motivates our work.

To the best of our knowledge, this is the first paper to
study the Byzantine attacks that occurs in the over-the-air
transmissions for FL. We aim to deeply understand how
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Byzantine attacks affect FLOA and then provide the corre-
sponding defense strategy. Our main technical contributions
are three-fold.

o Given the fact that most prior works on FLOA adopt
channel inversion (CI) power control (or its variants)
[10]-[13], [16]-[18], we theoretically prove that it can
achieve performance approximating that of the ideal
error-free case, which explains why it is widely used.
However, its defensive capacity to Byzantine attacks is
limited. Thus, we propose a new transmission policy,
named the best effort voting (BEV) power control policy,
where local workers transmit their local gradients with
their maximum power.

o We theoretically prove that there exists a strongest attack
for a Byzantine attacker to prevent FLOA from con-
verging to the correct updating direction. As this is the
strongest attack, which a Byzantine attacker may adopt
to design its transmission policy.

o To demonstrate the effectiveness of our BEV compared
with the existing most popular CI scheme under the
strongest attacks, we provide the convergence analysis
for both of them. We thus theoretically prove that BEV
is better than CI in practice.

We also test the proposed method on the image classification
problems using the MNIST dataset. The simulation results
show that BEV is slightly weaker than CI when there are no
Byzantine attacks, while BEV is much better than CI against
Byzantine attacks. Thus, it is proved by theory and simulation
that BEV is preferred over CI in practical applications where
it is unpredictable whether there exists a Byzantine attack.

II. SYSTEM MODEL

A. Federated Learning Model

We consider a distributed computation model with one
parameter server (PS) and U local workers. Each local worker
stores K data points, each of which is sampled independently
from D. That is, all workers have independent and identically
distributed (i.i.d.) datasets [24]. Denote (X;,y: k) as the k-
th data of the i-th local worker. Let f(w;x; j,y: %) denote a
loss function of a parameter vector w = [w?, ..., wP] € RP
of dimension D associated with the data point (X;,¥ix)-
The corresponding population loss function is denoted as
F(w) := Ep[f(W;Xi,yikr)]- The PS and local workers
collaboratively learn a model defined by the parameter w that
minimizes the population loss:

Pl: w' =argmin F(w). )]

The minimization of F(w) is typically carried out through
stochastic gradient descent (SGD) algorithm. The model pa-
rameter w; at the ¢ iteration is updated as

Zg:1 8it
U
where « is the learning rate and g; ; = V f(W¢—1;X; 1, Yi k)
is the local gradient computed at the ¢-th local worker using
its randomly selected the k-th data sample.
We assume that N local workers are Byzantine attackers,
and the remaining M = U — N local workers are normal. To

€3]

(Model updating) w; =wi—1 — «

achieve (2), the PS needs to communicate with the local work-
ers using some predefined protocol. The Byzantine attackers
do not need to abide by this protocol and can send arbitrary
messages to the PS. In particular, they may have complete
knowledge of the learning system and algorithms, and can
collude with each other.

B. Analog Aggregation Transmission Model

Assume symbol-level synchronization is achieved among
the local workers through a synchronization channel [13].
To facilitate the power-control design, the transmitted sym-
bols, denoted by g,; = [g},“...,ggt,...,gft], are standard-
ized such that they have zero mean and unit variance, i.e.,
E[gf,(g¢)"] = 1. In this way, the power-control policy
can be designed at the PS without knowledge of the specific
transmitted symbols.

Since the statistics of the gradients may change over iter-
ations, the standardization is needed for all communication
rounds. Specifically, at the beginning of each communication
round, each local worker estimates the mean and variance of
the locally learnt gradient, denoted by g; ; = % Ele ggt and
& =5 ZdDzl(th — Gi1)?, respectively. Then the locally
estimated mean and variance are transmitted to the PS for
global gradient statistics estimation by averaging.

Upon receiving g;; and 612715’ the PS averages all the local
estimates to get the global estimates of the mean and variance
of the gradient as gy = & S0, Giy and € = £ 307 €2,
Then the estimated g; and ¢? are broadcast back to the local

workers and used for the standardization.

After receiving the standardization factors g; and ef, each
local worker performs the transmit signal standardization as
follows:

g = B I, ©
where 1 is an all-1 vector, the dimension of which is the same
as g; + and all the entries of which are 1.

Considering only two symbols transmitted in each com-
munication round, the individual locally estimated mean and
variance are collected at the PS one by one. We assume such
communications for standardization are noise-free without
introducing errors. Note that the Byzantine attackers know the
designed standardization method, and they would send the true
mean and variance of their local gradients to avoid exposing
themselves during the standardization stage. Otherwise, the
attackers may be easily detected and then filtered out by the
PS, as the normal workers and Byzantine workers have i.i.d.

datasets.

After standardization, all local workers transmit their stan-
dardized local gradients g; ; to the PS with the transmit power
pi+ to be designed in the sequel. The transmission of each
local worker is subject to the transmit power constraint:

D
"] = E[pi, > (54)%) = Dpi, <p™, Vi. @
d=1

E[||p:,t&:,e

max

Thus the power constraint boils down to pit < B
On the other hand, the Byzantine attackers can report any
values g, ; as their gradient updates to the PS so as to skew
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FL. The transmit power p, ; of the n-th Byzantine attackers
satisfies

E[||pn.&n.l’] < P2, Vn. 5)

Considering block fading channels, where the wireless
channels remain unchanged within each iteration in FL but
may change independently from one iteration to another. We
define the duration of one iteration as one time block, indexed
by t. At the ¢-th iteration, the received signals at the PS is
given by

M N
yt = Z Drnt [Pt | &t + Zﬁn,t|hn,t|gn,t + Z¢, (6)
m=1 n=1

where |h; ;| is the channel gain from the i-th worker to the
PS at the ¢-th iteration and z; ~ CA(0, 221) is additive white
Gaussian noise (AWGN). The channels follow independent
Rayleigh fading, i.e., h;; ~ CN(0,02) and we assume that
channels are perfectly known at local workers and the PS. With
perfect channel state information (CSI), the channel phase
offset is compensated at the local workers before they transmit

their gradient updates.

After receiving the signals from the local workers, the PS
performs de-standardization to get the estimated aggregated
gradient by inverting the standardization as follows

U
gt = €&yt + (ZPi,t'hi,t|> g:1

=1

M N
= Z Pt N, t|Gm.t + € Zﬁn,t|hn,t|gn,t
m=1 n=1

N
+ <an,z hn,t|> gl + €42y (7
n=1

By using the estimated aggregated gradient, the global model
parameters are updated at the ¢-th iteration by

(Updating with estimated gradients) w; = W¢—1 — ag;. ®)

Next, we provide two transmit power allocation schemes
for normal local workers: the existing channel-inversion (CI)
transmission [13], [16] and our proposed best effort voting
(BEV) scheme.

1) Channel-inversion Transmission Scheme: given perfect
CSI, in the channel-inversion scheme [13], [16], channels are
inverted by power control so that gradient parameters trans-
mitted by different local workers are received with identical
amplitudes, achieving amplitude alignment at the PS. The
transmit power of the i-th local worker is given by pit =

Vi Vi, where b2 = min{ T B |20 = 1,2,..,U} is a
|hi,t|2’ ) - D Lt 2t — Ly &y ey

scaling factor used to satisfy the power constraint in (4).
It is evident that

E[b7] > Py E[min{|hi:|*, i = 1,2,...,U}], )
where P"®* = min{ ;;MJ = 1,2,...,U}. Hence we can
set b7 = PP*>*E[min{|h;+|%,i = 1,2,...,U}] for the power
allocation. Since the channel coefficient is Rayleigh distributed
hit ~ CN(0,02), |hi.|? follows the exponential distribution
with mean = 202, Thus, we have E[min{|h;|? i =
1,2,...,U}] ZU% = X. As a result, for fulfilling the

i=1 "

I 1=

channel-inversion scheme in practice, the transmit power of
the ¢-th local worker is
bo

o Vi
Dit |hi,t| ) 2

(10)
where we set b7 = PIax )\ = b2,

2) The Proposed BEV scheme: To counter intelligent
Byzantine attackers, our idea is to let normal local workers
try their best to combat the impact of potential Byzantine
attackers and to guide the FL to converge in the right direction,
which is therefore named as the best effort voting (BEV)
scheme. In the BEV scheme, normal local workers transmit
their local gradients by using their maximum transmit power.
The transmit power of the i-th local worker in BEV scheme
is given by

pie=1 2
i,t D 3

Different power allocation schemes have different resistance
against Byzantine attackers, we will discuss in the next section.

Vi. (11

III. THE CONVERGENCE ANALYSIS

In this section, we compare the convergence performance
of two different power allocation schemes. We first prove that
there is a strongest attack that a Byzantine attacker can achieve
to prevent the convergence of FLOA. And then under such a
circumstance, we provide the convergence rate of FLOA for
the two transmission schemes, respectively.

A. Assumptions

To facilitate the convergence analysis, we make several stan-
dard assumptions on the loss function and computed gradient
estimates. Note that our developed theory is applicable to the
popular deep neural networks (DNNs), since we do not assume

a convex setting on the loss function.
Assumption 1: We assume the Lipschitz continuity and
smoothness of the loss function F', and thus we get [27]

L
F(we) < F(wer) + g0 (We = weon) + 5 lwe = we|[*. (12)

where L is a positive Lipschitz constant.

Assumption 2: It is assumed that the stochastic local
gradient estimates are independent and unbiased estimates of
the global gradient with the bounded variance [16], i.e.,

]E(gi’f) = 8t; Viztv
E(|lgi.c — &%) < 6%,

(13)

Vi, t, (14)

where we consider the standard SGD in this work. When the
mini-batched SGD with a size K, is applied, then the variance
is bounded by %

Assumption 3: The standardization factors g; and €7 are

unbiased estimates of the global gradient with the bounded
variance as follows [13]

D d
Blg) = =19y,

e <€, Vit

15)
(16)

The above assumptions allow tractable convergence analysis
as follows.
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B. The Strongest Attack Case of Byzantine Attacks

While the Byzantine attackers may send arbitrary signals to
destroy FL, there exists the strongest attack that a Byzantine
attacker can achieve to prevent the convergence of FLOA. In-
tuitively, since the Byzantine attackers want the global gradient
to be updated at the PS in the opposite direction of what nor-
mal local workers expect, the Byzantine attackers would like
to transmit g, ; = —gj, ¢ to the PS with its maximum transmit
power Dy ;. Given the global model parameter w;_;, the
Byzantine attackers compute the true gradient g, ; by using
their own data. In addition, the transmit power p,, ; satisfies the
maximum power constraint, i.e., E[||pn &+ [%] = p2a*. This
is the worst case considered in this paper and we theoretically
demonstrate in the following Theorem 1 that it is the strongest
attack that a Byzantine attacker can achieve.

Theorem 1. Considering SGD for the FL system deploying
analog aggregation transmission with Byzantine attackers, the
strongest attacks can be performed as

gn,t = —8n,t; (17)
pglax

(92 +e)D’

Proof. All the proofs, which are omitted in this paper due to

the page limit, can be found in our journal version at [28]:

https://arxiv.org/abs/2110.09660. O

Pyt = (18)

We consider the above strongest attacks in the following
convergence analysis so as to evaluate the defensive efficiency
of different transmission schemes.

C. The Convergence of SGD with Channel-inversion Trans-
mission

With perfect CSI at each local worker, the channel inversion
power control can be accurately performed. The resultant
convergence rate of the CI transmission scheme under the
strongest attacks is derived as follows.

Theorem 2. Considering SGD for the FL system deploying
analog aggregation transmission with the CI power control
and N Byzantine attackers taking the strongest attacks as in
(17)-(18), the convergence rate is given by

1 2L .
E{qugtm <= (2L wo) — P
+a <52+ ! e%?)), (19)
Qecr
where wer = Mby — >4 W%%, Qcr = (U +

N)(Ub + Ef 1 2Gip]’j‘m) We set the learning rate o =
S f\/Toz where @ is a positive constant satisfying a < 2\F
dc T'is the cumulative number of the communication rounds.

The convergence is guaranteed if wcor > 0.

Proof. Please refer to our journal version [28]. ]

Remark 1. Considering a small learning rate, the asymptotical
convergence rate is dominated by O(—; o \IF) In addition, the

convergence condition is given by wer S 0, which implies that

the FL converges as long as we set a small enough learning
rate. From this convergence condition, we can see that even
one Byzantine attacker (once it has a very large transmit power
or its channel gain is very large) can destroy the FL.

Remark 2. For a special case where all the local workers
have the same maximum power (i.e., pj*®* = p™a Vi)
and the independent and identically distributed channels (i.e.,

o; = o, Vi), we have the convergence condition wc; =
—/ N:’T)\/ 2p m;x"z > 0. Therefore, we conclude that the
number of attackers in this special case should be no more than
U . .
1{{ \/TTU to make the CI scheme defend against the Byzantine
attack.

max

Remark 3. As we can see, in the case of CI power control
without Byzantine attackers, we get the fastest asymptotical
convergence rate as O(—= ), which is the same as the error-free
(EF) case where we do not consider the influence of wireless
channels and noises.

D. The Convergence of SGD with BEV Transmission

For our BEV transmission scheme under the strongest
attacks, the resultant convergence rate is derived as following
Theorem 3.

Theorem 3. Considering SGD for the FL system deploying
analog aggregation transmission with BEV power control and
N Byzantine attackers taking the strongest attacks as in (17)-
(18), the convergence rate is given by

T
1 9 1 (2LQpgv x
E[; ngtH )l Sﬁ (WBEV(F(WO) - F(w"))
(2 I 55

S e
VE D o — Zn VB0, and

Qppy = (U + N) Zi:l %. We set the learning rate

wppy - _ . . o
o = ——=Q Where Q1S a positive constant satisfyin
LQpsv VT " p fying

a < 2V'T. The convergence is guaranteed if wgpy > 0.

where wppy

Proof. Please refer to our journal version [28]. ]

Remark 4. If all the attackers and normal workers are iso-
morphic (the same case in Remark 2), our BEV can defend
Byzantine attacks when N < % Since % > ﬁ, our
BEV scheme can defend against a larger number of Byzantine
attackers than that of CIL.

Remark 5. Considering a small learning rate, if both the CI
scheme and our BEV scheme can converge the asymptotical
convergence rate is dominated by O(—; \F) The comparison
between O(— L ) and O(—; Sppv_ ) depends on the specific
parameters. Cconmderlng a large learmng rate, if both CI and
our BEV can converge, the asymptotical convergence rate is
dominated by O(Q#) Since Qppy > Qc;y, the convergence
rate of BEV is faster than CI .
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Fig. 1: The performance of BEV, CI and EF
without Byzantine attacks.

Remark 6. When there are no Byzantine attackers, i.e., N = 0,

we have w% gy < Qpgy. For a small learning rate, the asymp-

totic convergence rate of BEV is dominated by O(%),

which is slower than both the CI scheme and the EFBgavse.

IV. SIMULATION RESULTS

To evaluate the resilience of our proposed BEV scheme
against Byzantine attacks, we provide the simulation results
for an image classification task. Unless specified otherwise,
the simulation settings are as follows. We consider that the FL.
system has U = 10 workers. The channels %; ;’s are generated
from CN(0, 1) for different i and ¢. We set the average receive
SNR at local workers, defined as %L;{ =10 dB [16].

We consider the learning task of handwritten-digit identifi-
cation using the well-known MNIST dataset' that consists of
10 classes ranging from digit “0” to “9”. In our experiments,
we train a multilayer perceptron (MLP) with a 784-neuron
input layer, a 64-neuron hidden layer, and a 10-neuron softmax
output layer. We adopt rectified linear unit (ReLU) as the
activation function, and cross entropy as the loss function. The
total number of parameters in the MLP is D = 50890. We
randomly select 3000 distinct training samples and distribute
them to all local workers as their different local datasets, i.e.,
K; = K = 3000, for any i € [1,U].

We evaluate our BEV scheme under different attacks, in-
cluding 1) without any attacks, 2) only one attacker who is
far to the PS, 3) only one attacker who is close to the PS,
and 4) randomly selected several attackers. We compare two
benchmarks with our BEV scheme, including 1) the CI scheme
and 2) the FL under the ideal EF case where we do not
consider the influence of wireless channels and noises.

A. Performance without Attacks

The EF case is set as the benchmark where the local
gradients are perfectly aggregated at the PS, i.e., we set the
channel h; ; = 1 and the AWGN z; = 0. In Fig 1, we compare
the performance of BEV with CI and EF without Byzantine
attacks. We set adjusting factor of the learning rate, define
& = % = 0.1. As we can see, the performance of CI is
almost the same as EF. However, the performance of BEV is
2% loss compared to CI and EF. This results are in agreement

with the theoretical analysis as indicated by Remark 6.

Thttp://yann.lecun.com/exdb/mnist/

Communication rounds

300 400 500 10° 10 10 10°
Communication rounds

Fig. 2: The performance comparisons under an Fig. 3: The performance comparisons under an
attacker with the lowest channel gain.

attacker with the highest channel gain.

B. Performance under a Single Attacker with Weak Channel
Gain

In Fig 2, we compare the performance of BEV with CI
under Byzantine attacks. We consider the local worker whose
channel gain is the lowest as the Byzantine attacker. The
Byzantine attacker adopts the strongest attack to destroy
FL. Under different adjusting factors of the learning rate
a = % we compare the performance of BEV with CL
Since the Byzantine attacker’s channel gain is lowest, the
overall impact of its attack to FLOA is relatively weak. In
this case, both BEV and CI can converge, if a proper learning
rate is selected. On the other hand, when the learning rate is
not properly chosen, e.g., when & = 2 in Fig. 2, BEV can
converge but CI fails. When & = 1, both BEV and CI can
converge, but the convergence rate of BEV is faster than that
of CI. This is because considering a large learning rate, the
asymptotic convergence rate is dominated by O(ﬁ) and
Qpev > Qcr. When & = 0.1, the performance of BEV is a
little bit weaker in performance than CI. In practice, we prefer
a large learning rate and hence BEV is superior than CIL.

C. Performance under a Single Attacker with Large Channel
Gain

In Fig 3, we compare the performance of BEV with CI
under a Byzantine attacker whose channel gain is the highest.
Due to the highest channel gain of the Byzantine attacker, we
consider its attack as a strong attack. In this case, we compare
the performance of BEV with CI under different & = L%.
Since the convergence condition wcy > 0 is hard to guarantee,
it can be seen from Fig 3 that CI cannot converge or coverage
to a failure situation. As the decrease of &, it is useful for CI
to converge to the right direction, but it still cannot defense
the attack after a few iterations. On the other hand, BEV can
still converge even in this strong attack case. Thus, if there is
a strong attack, BEV is a better choice than CI. In addition,
the convergence rate decreases as & decreases. This implies
that a larger learning rate is recommended under the condition
of guaranteed convergence.

D. Performance with Multiple Randomly Selected Attackers

In Fig 4, we compare the performance of BEV with CI
under the different number of Byzantine attackers. When the
number of Byzantine attackers is less than 4, both BEV and
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Fig. 4: The performance of BEV and CI with the different number of
Byzantine attackers.

1000

CI can converge, but the convergence rate decreases as the
number of Byzantine attackers increases. When the number
of Byzantine attackers is 4, i.e., N > Uﬂ , CI can not
converge to the correct direction, while BEV still converges
in the correct direction but it converges at a slower rate. These
results is consistent with the Remark 2 and Remark 4.

V. CONCLUSION

This paper studies the robustness of FLOA against Byzan-
tine attacks. We provide analysis of convergence of different
transmission schemes. Our analysis reveals the strongest attack
that Byzantine attackers can achieve to prevent FLOA from
converging in the correct direction. Through our convergence
analysis, we find that, without Byzantine attackers, CI has the
performance comparable to the ideal EF, while BEV has 2%
performance loss. In the weakest Byzantine attack, considering
a large learning rate, both CI and BEV can converge while
BEV converges faster. If there is a strong Byzantine attack,
the convergence of CI cannot guaranteed, but BEV can still
converge. In practice, since it is impossible to determine the
intensity of potential attacks, BEV is the better option because
it performs well under various attack situations.
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