
Best Effort Voting Power Control for
Byzantine-resilient Federated Learning Over the Air

Xin Fan1, Yue Wang2, Yan Huo1, and Zhi Tian2

1School of Electronics and Information Engineering, Beijing Jiaotong University, Beijing, China
2Department of Electrical & Computer Engineering, George Mason University, Fairfax, VA, USA

E-mails: {yhuo,fanxin}@bjtu.edu.cn, {ywang56,ztian1}@gmu.edu

Abstract—Analog aggregation based federated learning over
the air (FLOA) provides high communication efficiency and
privacy provisioning in edge computing paradigm. When all
edge devices (workers) simultaneously upload their local updates
to the parameter server (PS) through the commonly shared
time-frequency resources, the PS can only obtains the averaged
update rather than the individual local ones. As a result, such
a concurrent transmission and aggregation scheme reduces the
latency and costs of communication but makes FLOA vulnerable
to Byzantine attacks. For the design of Byzantine-resilient FLOA,
this paper starts from analyzing the channel inversion (CI)
power control mechanism that is widely used in existing FLOA
literature. Our theoretical analysis indicates that although CI
can achieve good learning performance in the non-attacking
scenarios, it fails to work well with limited defensive capability
to Byzantine attacks. Then, we propose a novel scheme called
the best effort voting (BEV) power control policy, integrated
with stochastic gradient descent (SGD). Our proposed BEV-
SGD improves the robustness of FLOA to Byzantine attacks,
by allowing all the workers to send their local updates at
their maximum transmit power. Under the strongest-attacking
circumstance, we derive the expected convergence rates of FLOA
with CI and BEV, respectively. The comparison reveals that
our BEV outperforms its counterpart with CI in terms of
better convergence behavior, which is verified by experimental
simulations.

Index Terms—Federated learning, analog aggregation, Byzan-
tine attack, best effort voting, channel-inversion, convergence.

I. INTRODUCTION

Federated learning (FL) is a promising paradigm of dis-

tributed learning for low-latency and privacy-aware access

to rich distributed data [1]–[5]. To achieve communication-

efficient FL, sparsification [6], quantization [7] and infrequent

uploading of local updates [8], [9] are proposed to reduce

the amount of data needed to transfer in digital wireless

communications. However, the communication overhead and

latency are still proportional to the number of involved lo-

cal workers in FL over digital communication channels. To

handle this issue, FL over the air (FLOA) is proposed as

a distributed learning solution [10]–[18], which exploits the

over-the-air computation (AirComp) principle [19] for “one-

shot” aggregation via local workers’ concurrent update trans-

mission using the same time-frequency resources. Based on the

inherent waveform superposition property of wireless multiple

access channels (MAC), AirComp allows to directly collect

the gradient aggregation among local workers via concurrent

transmission and computation [19], which exactly fits the need

of FL for only an average of all distributed local gradients but

not the individual values.

Benefitting from communication-efficient gradient aggrega-

tion, FLOA as a cross-disciplinary topic has attracted growing

research interests, such as power control [11], [14], [20],

devices scheduling [11], [13], [18], gradient compression [10],

[12], [16], [17], and beamforming design [15]. For instance,

a broadband analog aggregation scheme for broadband power

control and device scheduling in FLOA is proposed in [13],

where a set of tradeoffs between communication and learn-

ing are derived. In [11], convergence analysis quantifies the

impact of AirComp on FL and then a joint optimization of

communication and learning is proposed for the optimal power

scaling and device scheduling. Considering energy-constrained

local devices, an energy-aware device scheduling strategy is

proposed in [18] to maximize the average number of work-

ers scheduled for gradient update. For update compression,

sparsification [17], quantization [16] and compressive-sensing

based methods are proposed to further improve communication

efficiency [10], [12]. In multiple antennas scenarios, a joint

design of device scheduling and beamforming is presented in

[15] to maximize the number of selected workers under the

given mean square error (MSE) requirements.

Besides, FLOA not only improves communication effi-

ciency, but also enhances the data privacy thanks to its

unaccessibility of individual local gradients, which thus avoids

the risk of potential model inversion attack, e.g., deep leak-

age from gradients [21]. While FLOA closes the doors to

deep leakage from gradients, it leaves the windows open for

adversaries to perform Byzantine attacks as well. Byzantine-

robust aggregation has been well studied for vanilla FL [22],

most of which uses a screening method, such as geometric

median [23], coordinate-wise median [24], coordinate-wise

trimmed mean [24], Krum/Multi-Krum [25], Bulyan [26] and

so on [22]. The basic idea of these existing screening methods

is to exclude outliers while aggregating the local gradients.

All of them hinge on knowing the individual values of local

gradients, which is however not accessible in FLOA due to the

analog superposition of all local gradients over the air. Thus,

the existing Byzantine-robust methods designed for vanilla FL

fail to work for FLOA, which motivates our work.

To the best of our knowledge, this is the first paper to

study the Byzantine attacks that occurs in the over-the-air

transmissions for FL. We aim to deeply understand how
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Byzantine attacks affect FLOA and then provide the corre-

sponding defense strategy. Our main technical contributions

are three-fold.

• Given the fact that most prior works on FLOA adopt

channel inversion (CI) power control (or its variants)

[10]–[13], [16]–[18], we theoretically prove that it can

achieve performance approximating that of the ideal

error-free case, which explains why it is widely used.

However, its defensive capacity to Byzantine attacks is

limited. Thus, we propose a new transmission policy,

named the best effort voting (BEV) power control policy,

where local workers transmit their local gradients with

their maximum power.

• We theoretically prove that there exists a strongest attack

for a Byzantine attacker to prevent FLOA from con-

verging to the correct updating direction. As this is the

strongest attack, which a Byzantine attacker may adopt

to design its transmission policy.

• To demonstrate the effectiveness of our BEV compared

with the existing most popular CI scheme under the

strongest attacks, we provide the convergence analysis

for both of them. We thus theoretically prove that BEV

is better than CI in practice.

We also test the proposed method on the image classification

problems using the MNIST dataset. The simulation results

show that BEV is slightly weaker than CI when there are no

Byzantine attacks, while BEV is much better than CI against

Byzantine attacks. Thus, it is proved by theory and simulation

that BEV is preferred over CI in practical applications where

it is unpredictable whether there exists a Byzantine attack.

II. SYSTEM MODEL

A. Federated Learning Model
We consider a distributed computation model with one

parameter server (PS) and U local workers. Each local worker
stores K data points, each of which is sampled independently
from D. That is, all workers have independent and identically
distributed (i.i.d.) datasets [24]. Denote (xi,k,yi,k) as the k-
th data of the i-th local worker. Let f(w;xi,k,yi,k) denote a
loss function of a parameter vector w = [w1, . . . , wD] ∈ RD

of dimension D associated with the data point (xi,k,yi,k).
The corresponding population loss function is denoted as
F (w) := ED[f(w;xi,k,yi,k)]. The PS and local workers
collaboratively learn a model defined by the parameter w that
minimizes the population loss:

P1: w∗ = argmin
w

F (w). (1)

The minimization of F (w) is typically carried out through
stochastic gradient descent (SGD) algorithm. The model pa-
rameter wt at the t iteration is updated as

(Model updating) wt = wt−1 − α

∑U
i=1 gi,t

U
, (2)

where α is the learning rate and gi,t = ∇f(wt−1;xi,k,yi,k)
is the local gradient computed at the i-th local worker using

its randomly selected the k-th data sample.

We assume that N local workers are Byzantine attackers,

and the remaining M = U −N local workers are normal. To

achieve (2), the PS needs to communicate with the local work-

ers using some predefined protocol. The Byzantine attackers

do not need to abide by this protocol and can send arbitrary

messages to the PS. In particular, they may have complete

knowledge of the learning system and algorithms, and can

collude with each other.

B. Analog Aggregation Transmission Model

Assume symbol-level synchronization is achieved among

the local workers through a synchronization channel [13].

To facilitate the power-control design, the transmitted sym-

bols, denoted by g̃i,t = [g̃1i,t, ..., g̃
d
i,t, ..., g̃

D
i,t], are standard-

ized such that they have zero mean and unit variance, i.e.,

E[g̃di,t(g̃
d
i,t)

H ] = 1. In this way, the power-control policy

can be designed at the PS without knowledge of the specific

transmitted symbols.

Since the statistics of the gradients may change over iter-

ations, the standardization is needed for all communication

rounds. Specifically, at the beginning of each communication

round, each local worker estimates the mean and variance of

the locally learnt gradient, denoted by ḡi,t =
1
D

∑D
d=1 g

d
i,t and

ε2i,t = 1
D

∑D
d=1(g

d
i,t − ḡi,t)

2, respectively. Then the locally

estimated mean and variance are transmitted to the PS for

global gradient statistics estimation by averaging.

Upon receiving ḡi,t and ε2i,t, the PS averages all the local

estimates to get the global estimates of the mean and variance

of the gradient as ḡt = 1
U

∑U
i=1 ḡi,t and ε2t = 1

U

∑U
i=1 ε

2
i,t.

Then the estimated ḡt and ε2t are broadcast back to the local

workers and used for the standardization.
After receiving the standardization factors ḡt and ε2t , each

local worker performs the transmit signal standardization as
follows:

g̃i,t =
gi,t − ḡt1

εt
, (3)

where 1 is an all-1 vector, the dimension of which is the same

as gi,t and all the entries of which are 1.

Considering only two symbols transmitted in each com-

munication round, the individual locally estimated mean and

variance are collected at the PS one by one. We assume such

communications for standardization are noise-free without

introducing errors. Note that the Byzantine attackers know the

designed standardization method, and they would send the true

mean and variance of their local gradients to avoid exposing

themselves during the standardization stage. Otherwise, the

attackers may be easily detected and then filtered out by the

PS, as the normal workers and Byzantine workers have i.i.d.

datasets.
After standardization, all local workers transmit their stan-

dardized local gradients g̃i,t to the PS with the transmit power
pi,t to be designed in the sequel. The transmission of each
local worker is subject to the transmit power constraint:

E[‖pi,tg̃i,t‖2] = E[p2i,t

D∑

d=1

(g̃di,t)
2] = Dp2i,t ≤ pmax

i , ∀i. (4)

Thus the power constraint boils down to p2i,t ≤ pmax
i

D .
On the other hand, the Byzantine attackers can report any

values ĝn,t as their gradient updates to the PS so as to skew
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FL. The transmit power p̂n,t of the n-th Byzantine attackers
satisfies

E[‖p̂n,tĝn,t‖2] ≤ pmax
n , ∀n. (5)

Considering block fading channels, where the wireless
channels remain unchanged within each iteration in FL but
may change independently from one iteration to another. We
define the duration of one iteration as one time block, indexed
by t. At the t-th iteration, the received signals at the PS is
given by

yt =
M∑

m=1

pm,t|hm,t|g̃m,t +
N∑

n=1

p̂n,t|hn,t|ĝn,t + zt, (6)

where |hi,t| is the channel gain from the i-th worker to the

PS at the t-th iteration and zt ∼ CN (0, z2I) is additive white

Gaussian noise (AWGN). The channels follow independent

Rayleigh fading, i.e., hi,t ∼ CN (0, σ2
i ) and we assume that

channels are perfectly known at local workers and the PS. With

perfect channel state information (CSI), the channel phase

offset is compensated at the local workers before they transmit

their gradient updates.
After receiving the signals from the local workers, the PS

performs de-standardization to get the estimated aggregated
gradient by inverting the standardization as follows

g̃t = εtyt +

(
U∑

i=1

pi,t|hi,t|
)
ḡt1

=

M∑

m=1

pm,t|hm,t|gm,t + εt

N∑

n=1

p̂n,t|hn,t|ĝn,t

+

(
N∑

n=1

pn,t|hn,t|
)
ḡt1+ εtzt. (7)

By using the estimated aggregated gradient, the global model
parameters are updated at the t-th iteration by

(Updating with estimated gradients) wt = wt−1 − αg̃t. (8)

Next, we provide two transmit power allocation schemes

for normal local workers: the existing channel-inversion (CI)

transmission [13], [16] and our proposed best effort voting

(BEV) scheme.

1) Channel-inversion Transmission Scheme: given perfect

CSI, in the channel-inversion scheme [13], [16], channels are

inverted by power control so that gradient parameters trans-

mitted by different local workers are received with identical

amplitudes, achieving amplitude alignment at the PS. The

transmit power of the i-th local worker is given by p2i,t =
b2t

|hi,t|2 , ∀i, where b2t = min{Pmax
i

D |hi,t|2, i = 1, 2, ..., U} is a

scaling factor used to satisfy the power constraint in (4).
It is evident that

E[b2t ] ≥ Pmax
0 E[min{|hi,t|2, i = 1, 2, ..., U}], (9)

where Pmax
0 = min{Pmax

i

D , i = 1, 2, ..., U}. Hence we can
set b2t = Pmax

0 E[min{|hi,t|2, i = 1, 2, ..., U}] for the power
allocation. Since the channel coefficient is Rayleigh distributed
hi,t ∼ CN (0, σ2

i ), |hi,t|2 follows the exponential distribution
with mean 1

λi
= 2σ2

i . Thus, we have E[min{|hi,t|2, i =

1, 2, ..., U}] = 1∑U
i=1 λi

.
= λ. As a result, for fulfilling the

channel-inversion scheme in practice, the transmit power of
the i-th local worker is

pi,t =
b0

|hi,t| , ∀i, (10)

where we set b2t = Pmax
0 λ

.
= b20.

2) The Proposed BEV scheme: To counter intelligent
Byzantine attackers, our idea is to let normal local workers
try their best to combat the impact of potential Byzantine
attackers and to guide the FL to converge in the right direction,
which is therefore named as the best effort voting (BEV)
scheme. In the BEV scheme, normal local workers transmit
their local gradients by using their maximum transmit power.
The transmit power of the i-th local worker in BEV scheme
is given by

pi,t =

…
pmax
i

D
, ∀i. (11)

Different power allocation schemes have different resistance

against Byzantine attackers, we will discuss in the next section.

III. THE CONVERGENCE ANALYSIS

In this section, we compare the convergence performance

of two different power allocation schemes. We first prove that

there is a strongest attack that a Byzantine attacker can achieve

to prevent the convergence of FLOA. And then under such a

circumstance, we provide the convergence rate of FLOA for

the two transmission schemes, respectively.

A. Assumptions

To facilitate the convergence analysis, we make several stan-

dard assumptions on the loss function and computed gradient

estimates. Note that our developed theory is applicable to the

popular deep neural networks (DNNs), since we do not assume

a convex setting on the loss function.
Assumption 1: We assume the Lipschitz continuity and

smoothness of the loss function F , and thus we get [27]

F (wt) ≤ F (wt−1) + gT
t (wt −wt−1) +

L

2
‖wt −wt−1‖2. (12)

where L is a positive Lipschitz constant.
Assumption 2: It is assumed that the stochastic local

gradient estimates are independent and unbiased estimates of
the global gradient with the bounded variance [16], i.e.,

E(gi,t) = gt, ∀i, t, (13)

E(‖gi,t − gt‖2) ≤ δ2, ∀i, t, (14)

where we consider the standard SGD in this work. When the

mini-batched SGD with a size Kb is applied, then the variance

is bounded by δ2

Kb
.

Assumption 3: The standardization factors ḡt and ε2t are
unbiased estimates of the global gradient with the bounded
variance as follows [13]

E[ḡt] =

∑D
d=1 g

d
t

D
, ∀t, (15)

εt ≤ ε, ∀t. (16)

The above assumptions allow tractable convergence analysis

as follows.
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B. The Strongest Attack Case of Byzantine Attacks

While the Byzantine attackers may send arbitrary signals to

destroy FL, there exists the strongest attack that a Byzantine

attacker can achieve to prevent the convergence of FLOA. In-

tuitively, since the Byzantine attackers want the global gradient

to be updated at the PS in the opposite direction of what nor-

mal local workers expect, the Byzantine attackers would like

to transmit ĝn,t = −gn,t to the PS with its maximum transmit

power p̂n,t. Given the global model parameter wt−1, the

Byzantine attackers compute the true gradient gn,t by using

their own data. In addition, the transmit power p̂n,t satisfies the

maximum power constraint, i.e., E[‖p̂n,tĝn,t‖2] = pmax
n . This

is the worst case considered in this paper and we theoretically

demonstrate in the following Theorem 1 that it is the strongest

attack that a Byzantine attacker can achieve.

Theorem 1. Considering SGD for the FL system deploying
analog aggregation transmission with Byzantine attackers, the
strongest attacks can be performed as

ĝn,t = −gn,t, (17)

p̂n,t =

 
pmax
n

(ḡ2t + ε2t )D
. (18)

Proof. All the proofs, which are omitted in this paper due to

the page limit, can be found in our journal version at [28]:

https://arxiv.org/abs/2110.09660.

We consider the above strongest attacks in the following

convergence analysis so as to evaluate the defensive efficiency

of different transmission schemes.

C. The Convergence of SGD with Channel-inversion Trans-
mission

With perfect CSI at each local worker, the channel inversion

power control can be accurately performed. The resultant

convergence rate of the CI transmission scheme under the

strongest attacks is derived as follows.

Theorem 2. Considering SGD for the FL system deploying
analog aggregation transmission with the CI power control
and N Byzantine attackers taking the strongest attacks as in
(17)-(18), the convergence rate is given by

E[

T∑

t=1

1

T
‖gt‖2)] ≤ 1√

T

Å
2LΩCI

ω2
CI ᾱ

(F (w0)− F (w∗))

+ᾱ

Å
δ2 +

1

ΩCI
ε2z2
ãã

, (19)

where ωCI = Mb0 − ∑N
n=1

»
πσ2

np
max
n

2D , ΩCI = (U +

N)(Ub20 +
∑N

n=1
2σ2

np
max
n

D ). We set the learning rate α =
ωCI

LΩCI

√
T
ᾱ, where ᾱ is a positive constant satisfying ᾱ < 2

√
T ,

and T is the cumulative number of the communication rounds.
The convergence is guaranteed if ωCI > 0.

Proof. Please refer to our journal version [28].

Remark 1. Considering a small learning rate, the asymptotical

convergence rate is dominated by O( ΩCI

ω2
CI

√
T
). In addition, the

convergence condition is given by ωCI > 0, which implies that

the FL converges as long as we set a small enough learning

rate. From this convergence condition, we can see that even

one Byzantine attacker (once it has a very large transmit power

or its channel gain is very large) can destroy the FL.

Remark 2. For a special case where all the local workers

have the same maximum power (i.e., pmax
i = pmax, ∀i)

and the independent and identically distributed channels (i.e.,

σi = σ, ∀i), we have the convergence condition ωCI =

( M√
U
−
»

N2π
4 )
»

2pmaxσ2

D > 0. Therefore, we conclude that the

number of attackers in this special case should be no more than
U

1+
√
πU

to make the CI scheme defend against the Byzantine

attack.

Remark 3. As we can see, in the case of CI power control

without Byzantine attackers, we get the fastest asymptotical

convergence rate as O( 1√
T
), which is the same as the error-free

(EF) case where we do not consider the influence of wireless

channels and noises.

D. The Convergence of SGD with BEV Transmission

For our BEV transmission scheme under the strongest

attacks, the resultant convergence rate is derived as following

Theorem 3.

Theorem 3. Considering SGD for the FL system deploying
analog aggregation transmission with BEV power control and
N Byzantine attackers taking the strongest attacks as in (17)-
(18), the convergence rate is given by

E[

T∑
t=1

1

T
‖gt‖2)] ≤ 1√

T

Å
2LΩBEV

ᾱω2
BEV

(F (w0)− F (w∗))

+ᾱ

Å
δ2 +

1

ΩBEV
ε2z2
ãã

, (20)

where ωBEV =
∑M

i=1

»
pmax
i π

2D σi −
∑N

n=1

»
pmax
n π
2D σn and

ΩBEV = (U + N)
∑U

i=1
2σ2

i p
max
i

D . We set the learning rate
α = ωBEV

LΩBEV

√
T
ᾱ, where ᾱ is a positive constant satisfying

ᾱ < 2
√
T . The convergence is guaranteed if ωBEV > 0.

Proof. Please refer to our journal version [28].

Remark 4. If all the attackers and normal workers are iso-

morphic (the same case in Remark 2), our BEV can defend

Byzantine attacks when N ≤ U
2 . Since U

2 ≥ U
1+

√
πU

, our

BEV scheme can defend against a larger number of Byzantine

attackers than that of CI.

Remark 5. Considering a small learning rate, if both the CI

scheme and our BEV scheme can converge, the asymptotical

convergence rate is dominated by O( Ω
ω2

√
T
). The comparison

between O( ΩCI

ω2
CI

√
T
) and O( ΩBEV

ω2
BEV

√
T
) depends on the specific

parameters. Considering a large learning rate, if both CI and

our BEV can converge, the asymptotical convergence rate is

dominated by O( 1
Ω
√
T
). Since ΩBEV > ΩCI , the convergence

rate of BEV is faster than CI .
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Fig. 1: The performance of BEV, CI and EF
without Byzantine attacks.
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Fig. 2: The performance comparisons under an
attacker with the lowest channel gain.
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Fig. 3: The performance comparisons under an
attacker with the highest channel gain.

Remark 6. When there are no Byzantine attackers, i.e., N = 0,

we have ω2
BEV ≤ ΩBEV . For a small learning rate, the asymp-

totic convergence rate of BEV is dominated by O( ΩBEV

ω2
BEV

√
T
),

which is slower than both the CI scheme and the EF case.

IV. SIMULATION RESULTS

To evaluate the resilience of our proposed BEV scheme

against Byzantine attacks, we provide the simulation results

for an image classification task. Unless specified otherwise,

the simulation settings are as follows. We consider that the FL

system has U = 10 workers. The channels hi,t’s are generated

from CN (0, 1) for different i and t. We set the average receive

SNR at local workers, defined as
Pmax

i

Dz2 = 10 dB [16].

We consider the learning task of handwritten-digit identifi-

cation using the well-known MNIST dataset1 that consists of

10 classes ranging from digit “0” to “9”. In our experiments,

we train a multilayer perceptron (MLP) with a 784-neuron

input layer, a 64-neuron hidden layer, and a 10-neuron softmax

output layer. We adopt rectified linear unit (ReLU) as the

activation function, and cross entropy as the loss function. The

total number of parameters in the MLP is D = 50890. We

randomly select 3000 distinct training samples and distribute

them to all local workers as their different local datasets, i.e.,

Ki = K̄ = 3000, for any i ∈ [1, U ].
We evaluate our BEV scheme under different attacks, in-

cluding 1) without any attacks, 2) only one attacker who is

far to the PS, 3) only one attacker who is close to the PS,

and 4) randomly selected several attackers. We compare two

benchmarks with our BEV scheme, including 1) the CI scheme

and 2) the FL under the ideal EF case where we do not

consider the influence of wireless channels and noises.

A. Performance without Attacks

The EF case is set as the benchmark where the local

gradients are perfectly aggregated at the PS, i.e., we set the

channel hi,t = 1 and the AWGN zt = 0. In Fig 1, we compare

the performance of BEV with CI and EF without Byzantine

attacks. We set adjusting factor of the learning rate, define

α̂ = ᾱ
L
√
T

= 0.1. As we can see, the performance of CI is

almost the same as EF. However, the performance of BEV is

2% loss compared to CI and EF. This results are in agreement

with the theoretical analysis as indicated by Remark 6.

1http://yann.lecun.com/exdb/mnist/

B. Performance under a Single Attacker with Weak Channel
Gain

In Fig 2, we compare the performance of BEV with CI

under Byzantine attacks. We consider the local worker whose

channel gain is the lowest as the Byzantine attacker. The

Byzantine attacker adopts the strongest attack to destroy

FL. Under different adjusting factors of the learning rate

α̂ = ᾱ
L
√
T

, we compare the performance of BEV with CI.

Since the Byzantine attacker’s channel gain is lowest, the

overall impact of its attack to FLOA is relatively weak. In

this case, both BEV and CI can converge, if a proper learning

rate is selected. On the other hand, when the learning rate is

not properly chosen, e.g., when α̂ = 2 in Fig. 2, BEV can

converge but CI fails. When α̂ = 1, both BEV and CI can

converge, but the convergence rate of BEV is faster than that

of CI. This is because considering a large learning rate, the

asymptotic convergence rate is dominated by O( 1
Ω
√
T
) and

ΩBEV > ΩCI . When α̂ = 0.1, the performance of BEV is a

little bit weaker in performance than CI. In practice, we prefer

a large learning rate and hence BEV is superior than CI.

C. Performance under a Single Attacker with Large Channel
Gain

In Fig 3, we compare the performance of BEV with CI

under a Byzantine attacker whose channel gain is the highest.

Due to the highest channel gain of the Byzantine attacker, we

consider its attack as a strong attack. In this case, we compare

the performance of BEV with CI under different α̂ = ᾱ
L
√
T

.

Since the convergence condition ωCI > 0 is hard to guarantee,

it can be seen from Fig 3 that CI cannot converge or coverage

to a failure situation. As the decrease of α̂, it is useful for CI

to converge to the right direction, but it still cannot defense

the attack after a few iterations. On the other hand, BEV can

still converge even in this strong attack case. Thus, if there is

a strong attack, BEV is a better choice than CI. In addition,

the convergence rate decreases as α̂ decreases. This implies

that a larger learning rate is recommended under the condition

of guaranteed convergence.

D. Performance with Multiple Randomly Selected Attackers

In Fig 4, we compare the performance of BEV with CI

under the different number of Byzantine attackers. When the

number of Byzantine attackers is less than 4, both BEV and
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Fig. 4: The performance of BEV and CI with the different number of
Byzantine attackers.

CI can converge, but the convergence rate decreases as the

number of Byzantine attackers increases. When the number

of Byzantine attackers is 4, i.e., N > U
1+

√
πU

, CI can not

converge to the correct direction, while BEV still converges

in the correct direction but it converges at a slower rate. These

results is consistent with the Remark 2 and Remark 4.

V. CONCLUSION

This paper studies the robustness of FLOA against Byzan-

tine attacks. We provide analysis of convergence of different

transmission schemes. Our analysis reveals the strongest attack

that Byzantine attackers can achieve to prevent FLOA from

converging in the correct direction. Through our convergence

analysis, we find that, without Byzantine attackers, CI has the

performance comparable to the ideal EF, while BEV has 2%

performance loss. In the weakest Byzantine attack, considering

a large learning rate, both CI and BEV can converge while

BEV converges faster. If there is a strong Byzantine attack,

the convergence of CI cannot guaranteed, but BEV can still

converge. In practice, since it is impossible to determine the

intensity of potential attacks, BEV is the better option because

it performs well under various attack situations.
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