ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) | 978-1-6654-0540-9/22/$31.00 ©2022 IEEE | DOI: 10.1109/ICASSP43922.2022.9746181

DEEP KERNEL LEARNING NETWORKS WITH MULTIPLE LEARNING PATHS

Ping Xu Yue Wang

Xiang Chen Zhi Tian

Department of Electrical and Computer Engineering, George Mason University, Fairfax, VA, 22030, USA

ABSTRACT

This paper proposes deep kernel learning networks with mul-
tiple learning paths (DKL-MLP) for nonlinear function ap-
proximation. Leveraging the random feature (RF) mapping
technique, kernel methods can be implemented as a two-layer
neural network, at drastically reduced workload on weight
training. Motivated by the representation power of the deep
architecture in deep neural networks, we devise a vanilla deep
kernel learning network (DKL) by applying RF mapping at
each layer and learn the last layer only. To improve the learning
performance of DKL, we add multiple trainable paths to DKL
and develop the DKL-MLP method so that some implicit in-
formation from earlier hidden layers to the output layer can be
learned. We prove that both DKL and DKL-MLP permit uni-
versal representation of a wide variety of interesting functions
with arbitrarily small error and have no bad local minimum.
Numerical experiments on both regression and classification
tasks are provided to demonstrate the learning performance
and computational efficiency of the proposed methods.

Index Terms— Kernel methods, random feature mapping,
deep kernel networks, multiple learning paths.

1. INTRODUCTION

Kernel methods and neural networks (NNs) are both attractive
in various learning tasks such as regression, classification, as
well as reinforcement learning [1-3], thanks to their abilities
to model the (complex) nonlinear function f in the learning
tasks. With different representations of f, kernel methods and
NNs enjoy (suffer) different strengths (weaknesses).

Kernel methods approximate f as a linear combination of
pre-selected kernels (nonlinear basis functions), and learn f
by optimizing the combination coefficients according to cer-
tain metrics. The learning process is usually done through
convex optimization, hence kernel methods are amenable to
theoretical analysis, permit globally optimal parameters, and
enjoy rigorous statistical learning guarantees [4]. However,
the curse of dimensionality issue prevents their applications
in large-scale learning scenarios. On the other hand, an NN
approximates f as a composite of functions of concatenated
layers, where each layer consists of a linear operation and a
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nonlinear activation function [5]. The representation power of
NN can be adjusted by the depth and width of their architec-
ture, as well as the activation functions. However, optimizing
NN models involves solving nonconvex functions; as a result,
they rely much on intuition, heuristics, and trial-and-error, and
our theoretical understanding of them is still incomplete [6].

Motivated by these observations, we propose a method
that possesses strengths of both methods and overcomes their
weaknesses. Specifically, we adopt the random feature (RF)
mapping [7] method to circumvent the curse of dimensionality
issue in kernel methods and implement kernel learning using
a two-layer NN (termed RF-KL). Then, we extend RF-KL to
deep kernel learning (DKL) by performing RF mapping at
each layer and train the last output layer only. To increase the
representation power of DKL, we add multiple trainable paths
to connect each hidden layer (except for the last hidden layer)
with the output layer. It leads to a deep kernel learning network
structure with multiple learning paths (DKL-MLP), whose
output functional is linear in the trainable multi-path model
parameters. In this way, DKL-MLP benefits not only from
the depth of DKL, but also from the (implicit) flexibility and
computational advantage of RF-based multi-kernel learning.

Related work: To mitigate the computational complexity
of kernel methods in deep structures, RF mapping is usually
adopted. For example, [8] utilizes RF mapping to address
the scalability issue in phone recognition and speech under-
standing tasks by stacking the RF-mapped kernel modules
to form a deep architecture. [9] proposes a deep hybrid NN
structure where a trainable layer and a fixed RF mapping layer
are concatenated. In [10], the random Fourier feature layer is
initialized from a Gaussian distribution and trained end-to-end
through back-propagation, thus the final optimized RF related
parameters may not follow Gaussian distribution any more. A
deep semi-random network is proposed in [11], where each
layer consists of both trainable and fixed parameters, which
differs from [9]. More recently, generative models and their ex-
tension to multi-layer structures are employed to jointly solve
the learning task and learn the random Fourier features [12].
Note that among all recent works, the deep semi-random ker-
nel method shares some similarity with our proposed method.
However, compare with our method, [11] requires much more
computational resources for their trainable weights to get up-
dated due to back-propagation through all layers.

Our contributions: Relative to prior art, our work has
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three contributions. Firstly, we leverage the RF mapping
method to implement DKL as a randomized deep neural net-
work with only last layer trainable. Compared with extreme
learning machine [13], the randomized parameters are gen-
erated from specific distributions related with pre-selected
kernels. Statistical accuracy guarantees of standard kernel
methods are applicable to RF-based kernel methods. Secondly,
we add multiple trainable paths to DKL to increase its expres-
siveness and develop the DKL-MLP method. These paths
directly connect the hidden layers with the output layer in a
linear manner and do not change the convexity of the learning
problem if the original DKL is convex. Moreover, updating
all trainable parameters in DKL-MLP does not involve back-
propagation, thus gradient diminishing problem is avoided
and the computational complexity is much reduced compared
with [11]. Finally, we provide theoretical analysis in terms of
universality to show that the developed algorithm can represent
a wide variety of interesting functions with arbitrarily small
error and have no bad local minimum, which is lacking in most
of the current deep kernel learning work. In addition, we test
the performance of our proposed algorithm on real datasets to
solve both the classification and regression tasks. The results
corroborate that DKL-MLP enjoys both good generalization
performance and low computational complexity.

Notations. R denotes the set of real numbers. ||-||2 denotes
the Euclidean norm of vectors. A, a, and a represent a matrix,
vector and scalar, respectively.

2. PROBLEM STATEMENT AND PRELIMINARIES

This section states the learning problem, reviews standard
kernel methods and introduces the RF-based kernel method
(RF-KL). We show that RF-KL can be implemented as a two-
layer NN, which leads to the development of the deep kernel
learning (DKL) framework and the deep kernel learning with
multiple learning path (DKL-MLP) method.

2.1. Problem statement

The learning task is to find a nonlinear function f € €2 such
that y; = f(x¢) + e, for the data sample set {x;, y; }Z_;, with
x; € R%, 5, € R, and e; being an error term. The optimal f is
obtained by minimizing the following total cost function:

min R(F) = S 000 + AR (D)

where (-, -) is a loss function, || - || is the norm associated
with the function space €2, and A > 0 is a regularization
parameter that controls over-fitting. Depending on different
tasks, £(-, -) can be selected as least-squares in regression tasks
or the logistic or the hinge loss in classification tasks.

2.2. RF-KL implemented using a two-layer NN

Assume f € H, where H is the reproducing kernel Hilbert
space (RKHS) H := {f|f(x) = Y_;2, aur(x,x¢)} induced

by a shift-invariant positive semidefinite kernel x(x,x;) :
R? x R? — R. Then, by the Representer theorem [4], the
optimal solution of (1) admits

fn(x)

where @ = [ag,...,ar]" € RT is the coefficient vector to
be learned, and k(x) = [k(x,%1), ..., x(x,x7)] . However,
both evaluating o« and updating it from a new sample requires
large computation, thus incurs the curse of dimensionality
when the data size is very large.

To make kernel methods scalable for large datasets, RF
mapping [7] is adopted, which approximates the kernel func-
tion k(x,x;) in (2) by the sample average

= Zle aik(X,x¢) == o' K(x), 2)

Rar(x,%x¢) = M Zm 1 O(X; Wi, b ) O(Xt, 5 Wiy b ), (3)
where ¢(x;w,b) = V2cos(w'x + b). Here {w,, }M_, are
randomly drawn from p,(w), which is the inverse Fourier
transform of x, and {b,,})_, are drawn uniformly from
[0,27]. For a Gaussian kernel k(x¢,%,;) = exp(—|x; —
x,|13/(202)), we have p,(w) ~ N(0,0721).

Then, the function f,i in (2) can be expressed as

fre(x) = Y cvdl (xe)par (%) = 0T (x), (@)

where ¢y (x) \/;[qb(x wi,b1), .., d(x;war, bar)] T

and 07 := S ;b1 (x;) denotes the new decision vector
to be learned in the RF space. Note that the size of 8 is fixed
and does not vary with the number of data samples.
The optimization problem (1) can then be reformulated as
ngn R(6) := th LB Par(x1),ye) + A6 (5)
Depending on the loss function, there may exist a closed
form solution for 8 [14]. Otherwise, the model parameters can
be updated through gradient descent.
Remark 1 (Equivalence to a shallow NN). Alternatively, we
can rewrite (4) as

frur(x) == fre(x) = Z%ﬂ Omd(whx +by),  (6)

where ¢(w, X + by,) := \/%cos(w;x + by). Notice that
with RF mapping, a kernel method that models f as (6) plays
asa special case of a two-layer NN, where the random features
{w}M_| and the parameters 6 to be learned are equivalent
to the weights in the first layer and the weights in the second
layer of a standard NN, respectively, whereas the activation
function of the first layer is cosine.

Remark 2 (Complexity and representation power). Note
that in RF-KL, the first layer’s weights are fixed and do not
need to be trained, only the weights in the second/output layer
need to trained if there does not exist a closed form solution.
Therefore, compared to the standard NN where weights from
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all layers need to be trained, RF-KL can afford to have a larger
network size given the same training overload and computation
complexity. Moreover, RF-KL does not need back-propagation
to train the weights since they are in the output layer, hence
bypassing the diminishing gradient issue. The simplicity of
RF-KL coming from the fixed weights and fixed activation
function of the first layer is a double-sword. In the extreme
case where only one kernel is applied in a NN with one hidden
layer, RF-KL has limited representation power and results in
degraded learning performance compared to the standard NN.

3. DEEP KERNEL LEARNING NETWORKS WITH
MULTIPLE LEARNING PATHS

To balance the representation power and computational com-
plexity, we devise deep kernel learning networks with multiple
learning paths. With RF mapping, a vanilla deep kernel learn-
ing (DKL) network of N layers is designed and modeled by

Frie (%) = 9THN (- (91 (x))), )

where ¢!(x) = 4 /Mil[(b(x; wi,bl), ..., o(x; w]lwl , b}\/h)]T,

*(¢'(x)) = /35 [+ (@' (X); w7, b7,), -] T, until the
last hidden layer, and ¥ € RM~ are trainable parameters that
connect the last hidden layer and the output layer. Each hidden
layer has M, neurons that does not have to be the same across
all layers.

Theorem 1 (Universal approximation of DKL.) Let C # {0}
be any fixed nonempty subset of RY, then, for any f € L?(C)
and € > 0, there exists a positive integer M such that with
probability greater than 1 — §, we can find coefficients 9 €
RMN that satisfy

I fary = Flirze) < e. ®)

Proof. Ref. [15] has proved that the composed kernel of two
positive definite kernels is also positive definite. Therefore, by
mathematic induction the composed kernel k1 of N —1 lay-
ers is also positive definite if the deep kernel model is equipped
with positive definite kernels across all layers. Specifically, for
Gaussian kernels adopted in this paper, the composed kernel
Kn—1 1s also a Gaussian kernel and its corresponding RKHS
H n—1 is dense, which indicates that H x_; is universal [16].
Then, for f € H _1 and by the mapping equivalence between
the Gaussian kernel and its random features, we conclude that
f can be approximated by f My With high probability by ran-
dom choices of w}, from the distribution p,,,, (w), Vm,n. W
Compared with a standard DNN of same network structure,
DKL enjoys drastically reduced workload on weight training
since wy, and b, Vm, n, are fixed once the kernel functions
of all layers are fixed, and it only needs to train the last layer’s
parameters 9. However, the simplicity coming from the fixed
weights is a double-sword, and DKL may not have enough
representation power for complex learning tasks.

To further enhance the learning ability of DKL, we add
multiple paths to connect the output of each hidden layer
with the output layer and form the deep kernel learning with
multiple learning path (DKL-MLP) model. Compared with
DKL, DKL-MLP has more trainable weights resulting from
the multiple paths. The network structure is shown in Figure 1
and can be modeled as

fIWN(X) = f]\/IN—l +fMN—2 +-- '+fJV11 = 25;11 ana 9

where fas, := 9" T ¢" (- (¢'(x)) with learnable parameters
9" € RMn associated with each hidden layer.
The following theorem shows the universality of (9).

Theorem 2 (Universal approximation of DKL-MLP.) Let C #
{0} be any fixed nonempty subset of R?, then, for any f €
L3(C) and € > 0, there exists a positive integer My, = M; +
-+« + Mpy_1 such that with probability greater than 1 — 6, we
can find coefficients @ € RM> that satisfy

sty — fllzze) <€ (10)

where @ = [9N 71, ... ;92,9 € RM=,

Proof. To prove that (9) admits universality, we can view it as
a multi-kernel learning problem. Theorem 5.7 in [15] states
that the space induced by the summation of two reproducing
kernels is also a RKHS. Hence, by mathematical induction, the
summation of N — 1 reproducing kernels also induces a RKHS.
For our model where all kernels are Gaussian, the composed
kernel is also Gaussian, and its corresponding RKHS is dense.
Thus, by the mapping equivalence between the Gaussian ker-
nel and its random Fourier features, we conclude that f can
be approximated by f My With high probability by random
choices of w}?, that follows the distribution p,,, (w), Vm,n. B
Remark 3 (No bad local minimum). With @ defined in
Theorem 2, we can rewrite (9) as
fo(x) =0 ®(x), (1D

where ®(x) = [¢N 1(--- (91 (x))); -+ ; P (P(X)); DL (x))].
Then, (1) becomes

min R(©) = £ ¥, Ufelx),y) + AOI3.  (12)
It is clear that the globally optimal parameters can be found
via convex optimization. Therefore, our model has no bad
local minimum by Theorem 2.
Remark 4 (Difference between DKL-MLP and deep resid-
ual networks). The multiple-learning-path (MLP) model dif-
fers from the deep residual network [17] in that short cuts
in a deep residual network skip learning for some layers to
avoid vanishing gradient problem. In contrast, we employ
91, ..., 9V 2 as trainable parameter vectors to enhance the
learning performance.
Remark 5 (Difference between DKL-MLP and deep semi-
random networks). It should be noted that our work differs
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from the deep semi-random network proposed in [11], which
formulates a nonconvex learning problem for the parameter
estimation. Moreover, updating all trainable parameters in
DKL-MLP does not involve back-propagation. On the other
hand, [11] requires much more computational resources for
their trainable weights to get updated due to back-propagation
through all layer.

B

Learnable paths

Fig. 1. A general structure of DKL-MLP with IV layers.

4. NUMERICAL TESTS

In this section, we conduct experiments to compare DKL-MLP
with several benchmarks using real datasets from UCI reposi-
tory [18] for regression and classification tasks. For all tests,
the regularization parameter is set to be A = 10~* and we use
75% of the data for training and the remaining data for testing
for all datasets. RF-KL and DKL are described by (4) and
(7), respectively. Deep-semi is the work proposed in [11] and
DNN is the vanilla deep neural network that all parameters
need to be trained. All kernel-based methods use Gaussian
kernels with their best kernel bandwidth optimized through
grid search for each dataset for each algorithm, whereas DNN
employs Relu functions for all hidden layers. Depending on
the tasks, the output layer equips with a sigmoid function, a
softmax function, or directly outputs the results. All methods
are trained using gradient descent with their learning rate opti-
mized through grid search for each dataset for each method.

‘We have conducted extensive simulations on six datasets, 2
(Twitter and Toms Hardware) for regression tasks and 4 (Adult,
Sensor, Human activity, and Letter) for classification tasks.
Due to the page limit, we select the results for one regression
(Twitter) and one classification (Letter) problems, considering
the simulations results on the other datasets present the similar
trend as shown in Fig. 2. Twitter dataset consists of 7' =
13800 samples with x;, € R7” and , € R representing the
average number of active discussions on a certain topic. The
learning task is to predict the popularity of these topics. Letter
dataset consists of 7" = 20000 samples with x; € R'6 and v,
represents letters from A to Z. The learning task is to identify
the capital letters. We set the number of layers to accommodate
the complexity of learning tasks. In our simulations, since the
regression and classification problems are not too complicate
with mild-size datasets, we apply 2 hidden layers which is
sufficient for good learning performance.

RF-KL has 50 neurons for Twitter dataset and 200 for
Letter dataset. All other deep networks have 50 neurons of
each hidden layer for Twitter dataset and 200 neurons of each
hidden layer for Letter dataset. Fig. 2(a) and 2(b) show that
eventually DNN and Deep-semi methods perform better than
the other methods, which makes sense. Take Twitter dataset
as an example, Deep-semi has 6400 parameters and DNN
has 6501 trainable parameters, while DKL-MLP only has 100
trainable parameters. Also, DKL-MLP performs better than
DKL and RF-KL since the latter two only have 50 trainable
parameters, respectively. The running time of all algorithms
on the two datasets is presented in Fig. 2(c) and 2(d), and
suggests that RF-based kernel methods enjoy low complex-
ity. The experimental results corroborate that our proposed
DKL-MLP achieves a good trade-off of learning performance
and computational complexity compared with the benchmark
methods. Note that if the training resource is limited, DNN
and Deep-semi methods may not be able to train a large model
and their representation power would degrade. On the other
hand, if the training time is limited, which means DNN and
Deep-semi methods may not have enough time to converge,
their learning performance will also be affected.

— RF-KL

1o — bk S RF-KL
— DKL-MLP || 3 DKL
1073 —— Deep-semi g DKL-MLP
\ — DNN E Deep-semi
1074 g DNN
0 2000 4000 6000 0 0 200 400
iteration iteration

(a) MSE on Twitter dataset. (b) Accuracy on Letter dataset.

Twitter run time (seconds) Letter run time (seconds)

400 300
372.56 19365.1
300 200 179.27

200

206.77

100 100

6.76 6.39 1439 27.44 36.67 36.12

> ™ Q > p
S eSS O
W 5
Q &
o?'

(¢) Run time on Twitter dataset. (d) Run time on Letter dataset.

o°°Q'

Fig. 2. Performance comparison.
5. CONCLUSION

In this paper, we have developed a deep kernel learning net-
work with multiple learning paths. Leveraging the theory
from traditional kernel methods, we have proved that our pro-
posed deep kernel learning networks admit universality. The
learnability of our method can be improved by the trainable
paths and the computational complexity is greatly reduced via
random feature mapping. It should be noted that the multiple-
learning-path scheme can also be applied to other deep net-
works such as deep extreme learning machines and deep neural
networks. Future efforts will be devoted to analyzing the gen-
eralization bound of the proposed method.
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