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Abstract— This paper presents a novel model training solution,
denoted as Adaptive-Gravity, for enhancing the robustness of deep
neural network classifiers against adversarial examples. We conceptu-
alize the model parameters/features associated with each class as a
mass characterized by its centroid location and the spread (standard
deviation of the distance) of features around the centroid. We use
the centroid associated with each cluster to derive an anti-gravity
force that pushes the centroids of different classes away from one
another during network training. Then we customized an objective
function that aims to concentrate each class’s features toward their
corresponding new centroid, which has been obtained by anti-gravity
force. This methodology results in a larger separation between different
masses and reduces the spread of features around each centroid. As a
result, the samples are pushed away from the space that adversarial
examples could be mapped to, effectively increasing the degree of
perturbation needed for making an adversarial example. We have
implemented this training solution as an iterative method consisting of
four steps at each iteration: 1) centroid extraction, 2) anti-gravity force
calculation, 3) centroid relocation, and 4) gravity training. Gravity’s
efficiency is evaluated by measuring the corresponding fooling rates
against various attack models, including FGSM, MIM, BIM, and
PGD using LeNet and ResNet110 networks, benchmarked against
MNIST and CIFAR10 classification problems. Test results show that
Gravity not only functions as a powerful instrument to robustify a
model against state-of-the-art adversarial attacks but also effectively
improves the model training accuracy.

Index Terms—Adversarial Example, Convolutional Neural Network,
Latent Space Separation

I. INTRODUCTION AND BACKGROUND

Despite the evolution in neural networks model structures and
their performance, it is illustrated that CNNs and DNNs are prone
to adversarial attacks through simple perturbation of their input
images [1]–[6]. These algorithms have demonstrated how easily the
normal images can be perturbed by adding a small amount of noise
to degrade the performance of neural networks. The vulnerability of
deep neural networks to adversarial examples was first investigated
in [7]. Since this early work, many new algorithms for generating
adversarial examples and various solutions for defending against
these attacks are proposed.

Adversarial sample is introduced as an optimization problem,
mathematically defined as follows [7]:

argmin
ϵ

f(x+ ϵ) = t s.t.

{
(x+ ϵ) ∈ D,

f(x+ ϵ) ̸= f(x)
(1)

In this optimization problem, f is a classifier that maps image
pixel vectors x to a discrete k-label set t, i.e., f : Rm → {1...k}.
The goal of this optimization formula is to find the minimum
perturbation ϵ, such that by applying it to the original data sample
x, the under-attack machine learning model f misclassifies the
perturbed sample x + ϵ as the target class t, f(x + ϵ) = t. The
obtained perturbed sample x + ϵ also needs to remain in the
acceptable input domain i.e., D ∈ [0, 1]m. In Szegedy and et al.
[7], this problem was solved using LBFGS algorithm. Although
their offered solution is effective, it is a time-extensive process to
achieve the adversarial perturbation.

In [1], Goodfellow and et al, introduced Fast Gradient Sign
Method (FGSM) that, unlike LBFGS, was fast and effective.
However, it perturbs all the input pixels for obtaining the adversarial
example. But only a subset of input pixels can be found that has a
similar effect and at the same time leads to a more imperceptible
adversarial perturbation. Soon after FGSM, many algorithms like
Basic Iterative Method (BIM) [2], Momentum Iterative Method
(MIM) [3], and Projected Gradient Descent (PGD) [8] have
introduced. In which, through an iterative procedure a minimum
amount of adversarial perturbation is generated that leads to a
successful adversarial attack.

In essence, adversarial examples could be constructed due to the
underlying model’s lack of adequate generality. By this intuition,
many defenses against adversarial examples have been introduced
that we illustrate some of the most notable ones as follow:

Adversarial training [1]: is an iterative procedure that at
each iteration, the target model is being trained based on the
training dataset. Different attacks are then applied to the model,
and the extracted adversarial examples are added to the training
dataset. This procedure continues till reaching an acceptable level
of robustness. This method has two drawbacks: 1) it can only make
the model robust against the assistant attacks; 2) It also increases
the training time significantly.

Defensive Distillation: In [9], distilling was used to propose the
defense method. For defensive distillation, the second network is
the same size as the first network [9]. The main idea is to hide
the gradients between the pre-softmax and softmax layers to make
the attacker’s job more difficult. However, it was illustrated in [10]
that this defense could be broken by using the pre-softmax layer
outputs in the attack algorithm and/or choosing a different loss
function.

Gradient Regularization: Input gradient regularization was
first introduced in [11] to improve the generalization of neural
networks training by a double backpropagation method. The work
in [9] mentions the double backpropagation as a defense, and
[12] evaluates the effectiveness of this idea to train a more robust
neural network. This approach intends to ensure that if there is a
small change in the input, the change in Kullback-Leibler (KL)
divergence between the predictions and the labels will also be small.
However, this approach is sub-optimal because of the blindness of
the gradient regulation.

Adversarial Detection: Another approach is to detect adversarial
examples before feeding them to the network [13], [14]. [13]
tries to find a decision boundary to separate adversarial and clean
inputs. [14] deploys the fact that the perturbation of pixel values
by adversarial attack alters the dependence between pixels. By
modeling the differences between adjacent pixels in natural images,
deviations due to adversarial attacks can be detected.

Autoencoders: Authors in [15] analyze the use of normal and
denoising autoencoders as a defense method against adversarial
samples. [16], uses a two-level module and uses autoencoders to
detect and reform adversarial images before feeding them to the
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target classifier. However, this method may change the clean images
and add a computational overhead to the whole defense-classifier
module. To improve the method introduced in [16], the work in
[17] presents an efficient auto-encoder with a new loss function,
which was learned to preserve the local neighborhood structure on
the data manifold.

Fig. 1. Gravitation process for robustifying a given model, indicated with step
zero, through an iterative procedure, showed with steps one to four, to generate a
resilience model against adversarial attacks, showed with step five.

II. ADAPTIVE-GRAVITY: PROPOSED ADVERSARIAL DEFENSE

In the previous sections, we have investigated different attacks
and defenses related to the adversarial examples. One of the primary
reasons for the attacks’ existence is the low generality of the
underlying model, i.e., the underlying model has trained on a
dataset that is a subset of all the feasible data samples in the
input domain. In this section, we present the proposed technique,
termed Adaptive-Gravity, as an effective method that increases the
underlying model’s generality and simultaneously preserves (or
increases) the accuracy of the ML classification model. Further,
we combine the proposed gravity method with adversarial training
to enhance the model robustness against adversaries.

An abstract view of the proposed procedure is depicted in Fig. 1.
Let’s assume that Fig. 1- 0 shows a latent space of a hypothetical
model with three categories, indicated by black squares, blue circles,
and green triangles. Due to the inherent high non-linearity of the
model, there is a boundary of the class blue-circles inside the
boundary of black-squares, making it much easier for an adversary
to find a small adversarial perturbation ϵ1 which can lead to an
imperceptible adversarial example.

In order to make it much harder for the adversary to find
a perturbation, Adaptive-Gravity employs an iterative procedure
comprised of four steps which are marked with 1 to 4 in
Fig. 1. By following these steps a robust model can be obtained
as shown in Fig. 1- 5 . These steps will be elaborated on in this
section. With this resultant model, the adversary needs a much
larger perturbation ϵ2 to deceive the underlying model to misclassify
the sample marked with the red rectangle in Fig. 1- 5 compared
with Fig. 1- 0 i.e., ϵ2>>ϵ1, which means the resilience of the
gravitated model is much higher compared to the non-robust model.

To understand the intuition behind Adaptive-Gravity, we first
illustrate the concept of traditional gravity force between two
masses m1 and m2 which are at distance of d from each other as−→
F m1,m2

= Gm1m2

d2 , in which G is constant [18]. In this equation,
the gravity force

−→
F m1,m2

increases linearly by increasing the mass
of either m1 or m2, or it increases quadratically by reducing the
distance between these two masses. With a similar intuition to the
gravity force between two masses, we analogize each class as a
mass at the centroid of that particular class. The standard deviation
of each class, denoted by σ, is considered as the size of the mass.

The L2 norm between centroids of classes depicts the distance
between their corresponding latent spaces. These parameters are
shown in Fig. 2 for two classes with a different distribution of
their latent spaces. By defining these parameters, we formulate
the anti-gravity force between two classes as described in Eq. (2)
below. −→

F 1,2 =
−→σ 1

−→σ 2

d2
(−→c1 −−→c2) (2)

The anti-gravity force shows the direction and magnitude of the
force that classes impose on each other to keep the different classes
away from themselves. This formula serves the following purposes:
1) those classes that have a lower L2 distance have a larger anti-
gravity force, i.e., those classes that are already far apart from each
other, having a higher L2 distance, have a minimum effect on other
classes. Conceptually, those classes that are closer to each other
are more vulnerable to adversarial attacks. 2) Classes with a bigger
mass (larger standard deviation) are more susceptible to adversarial
attacks. Because samples of these classes are more likely to locate
inside other classes’ boundaries. This, in turn, lowers the trained
model’s generality and, consequently, makes it more vulnerable
against adversarial attacks.

By this definition, Adaptive-Gravity iterates over four steps 1)
Centroid Extraction, Fig. 1- 1 , 2) Anti-Gravity force calculation,
Fig. 1- 2 , 3) Centroid relocation, Fig. 1- 3 , 4) Gravity Training,
Fig. 1- 4 .

Fig. 2. Definition of parameters in a model with two classes in which G is
gravitization constant, −→σ1 and −→σ2 are the standard deviation of class 1 and class 2
respectively, d is the L2 norm distance between two centroids c1 and c2 which
are associated to class 1 and class 2 respectively

A. Centroid Extraction

At this step, Fig. 1- 1 , the mean of the embedded features
in each class is considered as the corresponding centroid for that
particular class. In this paper, we assume that each class has only
one centroid, which can be obtained by averaging each class’s
embedded features. It is possible to consider more than one centroid
for each class by employing the K-Means algorithm to locate
multiple centroids for each class. The obtained centroid for ith

class is denoted by −→ci = 1
Mi

Mi∑
j=1

−→xj in which Mi is the cardinality

of the ith class and −→xj is the jth member of the ith class. Each
centroid is considered as a representative for a class that the whole
mass of that class is concentrated on that centroid. Because all
the steps of Gravity rely on the centroids of classes, the proper
centroids can significantly change the performance of Gravity.

B. Anti-Gravity Force

The second step, Fig. 1- 2 , is to obtain the total force on
the ith centroid (−→ci ) on a model with N classes. According to
Eq. (2), the anti-gravity force

−→
F i,j between two classes i and j

is determined by three sets of quantities: −→σi , dij , and −→ci . The
standard deviation of the latent space related to ith class, ϕi, is

obtained by −→σi =

√
1
Mi

Mi∑
j=1

(
−→xj −−→ci

)2

in which −→xi ∈ ϕi and Mi

is the cardinality of the ith class. The L2 distance between −→ci and
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the rest of the centroids (−→cj ) is calculated by dij =∥ −→ci −−→cj ∥2.
Lastly, the total anti-gravity force on −→ci is calculated by summing
up all the anti-gravity forces on this centroid as shown in Eq. (3).

−→
Fi =

N∑
j=1,j ̸=i

−−→
Fi,j =

N∑
j=1,j ̸=i

−→σi
−→σj

d2ij
(−→ci −−→cj ) (3)

The anti-gravity force for each centroid is different from others,
meaning centroids are forced to move in different directions with
different step sizes. Those centroids that are far from other centroids
are subject to a weaker anti-gravity force than those centroids that
are close to each other. That is because those classes that are close
are more susceptible to adversarial attacks, so those should be
separated more aggressively.

For instance, consider a simple example of three classes with
centroids −→c1 ,−→c2 ,−→c3 and standard deviations −→σ1,

−→σ2,
−→σ3 which are

located at L2 distances d12, d13, d23 from each other as shown in
Fig. 3-left. In Fig. 3-right, the anti-gravity force at each centroid has
been shown with a red arrow. As shown, the anti-gravity between
classes two and three is much larger than the anti-gravity force
toward class one. This is because classes two and three are close
to each other and have a larger mass, while class one is far apart
from the two others and has a smaller mass. Consequently, class
one imposes the minimum anti-gravity force toward the other two
classes, i.e., the other two classes have the minimum anti-gravity
force toward class one.

Fig. 3. Total anti-gravity forces
−→
F1,

−→
F2,

−→
F3 corresponding to each one the classes

with centroids −→c1 , −→c2 , −→c3 and standard deviations −→σ1, −→σ2, −→σ3, respectively.

C. Centroid Relocation

At this step, Fig. 1- 3 , the obtained centroids in Section II-A are
relocated in the direction of the total anti-gravity forces obtained
in section II-B. Because there is no constraint on the magnitude of
each centroid’s total anti-gravity forces, the new centroids’ locations
can be too far from their current locations. So it is hard for the
underlying model to get trained to converge the latent spaces of
each class to their corresponding new centroid, which leads to a
dramatic drop in the model’s accuracy. To prevent this phenomenon,
we define a normalized anti-gravity force −→αi for each class that
constraints the maximum distance of the next centroid of a class to
its current location. −→αi is a vector in the same direction of

−→
Fi with

a hyper-parameter G to adjust the magnitude of it. This procedure
is illustrated in Alg. 1.

In Alg. 1, the inputs are anti-gravity forces
−→
F , Gravity constant

G, and the list of classes’ centroids c. In line 2, the anti-gravity
force that has the largest magnitude is selected then as in line 4,
the normalized anti-gravity force −→αi for each one of the centroids

Algorithm 1 Centroid Modification
1: Inputs:

−→
F : list of anti-gravity forces, G: constant, C: list of classes’ centroid

2: FM = max(|
−→
F |2)

3: for (i = 1; i ≤ N ; i++) do
4: −→αi = G ∗ (

−→
F i/FM )

5: −→c k+1
i = −→αi+

−→c k
i

6: end for

is calculated, and finally, in line 5, each centroid is updated by the
calculated −→αi. With this algorithm, each centroid at the kth iteration
of Gravity i.e., −→c k

i , can be relocated within the L2 distance range
(0, G] in the same direction of −→αi.

Using this simple method, Adaptive-Gravity adds a priority
measure to each centroid to indicate how aggressively each centroid
should move. Adaptive-Gravity assigns a higher priority to separate
classes close to one by using a maximum step size G, while
spending less effort in separating classes that are far apart. For
example, in Fig. 3,

−→
F1 has the lowest magnitude, so at the next

iteration −→c1 has the smallest relocation compared to other two
centroids −→c2 and −→c3 .

D. Gravity Training

Gravity training, Fig. 1- 4 , is an iterative procedure that
performs in a teacher/student fashion. The student model has the
same structure as the teacher model. During this process, a student
model is trained such that its accuracy follows the teacher’s accuracy
but covers the teacher model’s weakness against adversarial attacks.

1) Gravity Force: So far, the formulated training process pushes
the centroids of different clusters away from one another. To further
increase the separation, we also need to reduce each mass’s spread
(standard deviation of the distance between features and centroid
in each class). By reducing the mass of the classes, they become
more concentrated toward their centroids. It needs to be noted that,
by decreasing the standard deviation of classes, the latent spaces
of classes are less likely to overlap, and this leads to a model
with a higher generality that is less vulnerable toward adversarial
examples.

For this purpose, gravity force has been defined to reduce the
standard deviation of classes. Expressly, we represent the gravity
force as Mean Square Error (MSE) between each class’s latent
spaces and its corresponding centroids. Conceptually, minimizing
the gravity force of a class leads to a more concentrated latent
space around its centroid. To model the force of gravity in our
optimization problem, we formulate the gravity force using the
gravity loss function, details of which are discussed in the next
section.

2) Gravity Loss Function: At this step, the model is trained to
minimize the gravity loss using the Eq. (4) through an iterative
process. This equation consists of two parts: 1) The first part
that targets accuracy is annotated with L(k)

ce and defines the cross-
entropy loss, Eq. 5, between the ground truths Y and the outputs
of the student model i.e., S(Xm×n, Y ), at the kth iteration. 2) The
second part that targets security aims to minimize the gravity force,
i.e., converging the latent space, ϕi, toward their corresponding
centroids −→ci . This structure is similar to the defensive distillation
method discussed earlier. Despite the similar structure, Gravity
uses two layers, the head, and tail of the teacher model, to transfer
their knowledge to the student model’s corresponding layers.

L
(k)
Gr = (1− γk−1)L

(k)
ce︸ ︷︷ ︸

targets the accuracy

+ γk−1(L
(l=−1,k) + L(l=i,k))︸ ︷︷ ︸

targets the security

(4)

L(k)
ce = −

i=m×n∑
i=1

Yi log(S
k(Xi)) (5)

L(l=−1,k) and L(l=i,k) are associated to the student’s head and
tail objective function at the kth iteration and are defined as in Eq.
(6) with l = −1 and l = i, respectively. In these equations, Mean
Square Error (MSE) calculates the likelihood between the latent
spaces of the head (or tail) layer of the student model, S(l=−1,k)

ϕm×n
,

and the corresponding centroids of the teacher model, S(l=−1,k−1)
cm .

L(l,k) =
1

m× n

m∑
j=1

n∑
f=1

(
S(l,k−1)
cj − S

(l,k)
ϕ(f,j)

)2

(6)
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TABLE I
LENET AND RESNET-110 STRUCTURES ARE USED FOR TRAINING MNIST AND
CIFAR10 DATASETS, RESPECTIVELY. THE HEAD AND TAIL LAYERS FOR EACH
MODEL HAVE BEEN HIGHLIGHTED. SYSTEM CONFIGURATION AND TRAINING

HYPERPARAMETERS ALSO HAVE SHOWN ON THE BOTTOM.

LeNet ResNet-110
Conv(6, 5× 5)

ReLu(2× 2)
Conv(16, 3× 3)+BN

ReLu(2× 2)

Conv(16, 5× 5)
PReLu(2× 2)

[ Conv(16, 1× 1)+BN
Conv(16, 3× 3)+BN
Conv(64, 1× 1)+BN

]
×12

FC(120) Tail
[ Conv(32, 1× 1)+BN

Conv(32, 3× 3)+BN
Conv(128, 1× 1)+BN

]
×12

FC(84)
[ Conv(64, 1× 1)+BN

Conv(64, 3× 3)+BN
Conv(256, 1× 1)+BN

]
×12

FC(10) Head FC(1024) Tail
FC(10) Head

System Configuration and training hyper parameters
OS: Red Hat 7.7, Pytorch: 1.3, AdverTorch: 0.2, GPU: Nvidia Tesla V100, EPOCH:
100, MNIST Batch Size: 64, CIFAR10 Batch Size:128, Optimizer: ADAM, MNIST
learning rate: 1e-4, CIFAR10 learning rate: 5e-3

Several remarks are in order. First, at the first iteration, Adaptive-
Gravity transfers as much as possible knowledge from the teacher
model to the student model. But at the later iterations, Adaptive-
Gravity focuses on securing the student model, i.e., removing those
vulnerabilities transferred from the teacher model during the first
iteration. Second, γi contains the accuracy of the teacher model
at each iteration. So if this accuracy is high, the student model
relies more on the teacher model, which brought in the Gravity
Loss by the second term. However, if the teacher model’s accuracy
is low, the student model relies on itself, which is the first term.
Using this strategy, the student model adds more intelligence to its
learning process to not follow the teacher model if performance
degradation occurs.

III. EXPERIMENTS

In order to assess the performance of the Adaptive-Gravity
method we used two architectures LeNet [19] and ResNet-110
[20], see Table I, for training and evaluating on two datasets
MNIST [19] and CIFAR10 [21], respectively. In this section, we
evaluate our results in three sections 1) performance of proposed
gravity technique, the impact of Gravity on 2) White-box attacks,
3) Black-box attacks. The first section shows how effective Gravity
separates the latent spaces of a target layer of an underlying model.
Sections two and three show how resistant the gravitated model
is against different adversarial examples in the white-box and
black-box scenarios.
A. Gravity Performance

In this section, we measure three metrics 1) Inter-Class Conver-
gence (ICC), that indicates how far, L2 norm, are the latent spaces
of the head or tail layer from their designated centroid at each
iteration. ICC is obtained by summing masses of all classes, see
Fig. 2, i.e.,

∑N
i=1 ϵi. 2) Intra-Class Divergence (ICD), measures

the relative distance, L2 norm, of the designated centroids for the
head and tail layers at each iteration, see Fig. 2. ICD contains
three values I) Average distance i.e., 1/N

∑N−1
i=1

∑N
j=i+1 dij , II)

Maximum distance i.e., max(dij), and III) Minimum distance i.e.,
min(dij). In which dij indicates the distance between centroids
of ith and jth classes. 3) Evaluation accuracy, that measures the
student evaluation accuracy at each iteration.

Figure 4 shows the evaluation of these three metrics during 50
iterations of Gravity for training the models ResNet110 and LeNet,
see the table I, on two datasets CIFAR10 and MNIST, respectively.
By studying Fig. 4 we have the following observations:

• The first row shows a different pattern for the ICD metric
associated with the head and tail layers of LeNet compared
with ResNet110. In the LeNet, the ICD of the head and tail
layers show a similar behavior by increasing in a logarithmic
form. Meaning, in the early iterations of Gravity, the ICD

increases with a larger magnitude than later iterations. Unlike
LeNet, in the ResNet110 after the 5th iteration, the ICD of the
tail layer comes under the head layer. One interpretation is that
in the LeNet, Gravity successfully moves the centroids further
apart because MNIST is a simple dataset. Increasing the ICD
of the head layer has no contradictory impact on the ICD of
the tail layer. However, CIFAR10 is a much more complex
dataset, and consequently, after 5th iteration increasing the
ICD of the head layer leads to decreasing the ICD of the tail
layer.

• The second row, associated with the ICC metric for the tail and
head layers, shows different behavior regarding the LeNet and
ResNet110. For the LeNet, ICC increases rapidly at the early
iterations, but later, this growth is diminishing in both head
and tail layers. For the ResNet110, the ICC of the head layer
continually increases (more rapidly at the early iterations), but
the ICC of the tail layer rapidly increases till the 7th iteration
then start a diminishing decline.

• The third row, which is related to the evaluation of the student
model’s accuracy, confirms that Gravity can increase the
accuracy of the underlying models while separating the latent
spaces of the student’s head and tail layers. Noted that the
reported accuracy at the 0th iteration indicates the original
accuracy of the model we wanted to harden it. One reason
for improving accuracy is that Gravity helps increase the
generality of the models, i.e., models show a higher accuracy
at the evaluation phase.

A secure model (against adversarial input perturbation attacks)
should resist adversarial examples and generate the correct classifi-
cation outcome maintaining a high classification accuracy for both
adversarial and normal inputs. By increasing ICD and decreasing
ICC, and preserving (or increasing) the accuracy, we expect the
underlying model’s robustness to increase. However, from our
observations presented in Fig. 4, these conditions are not always
satisfied during different iterations. Hence we need to embrace a
strategy to select one iteration of Gravity that is the most suitable for
the robustifying task. For this purpose, we establish an acceptable
threshold for accuracy at the first step, which is shown with dash
lines in the third row of fig. 4. In the next step, we measure
the relation between the normalized ICC which is defined as

MinICChead×MinICCtail
Max(MinICChead)×Max(MinICCtail)

, and the normalized ICD which is

defined as ICDhead×ICDtail
Max(ICDhead)×Max(ICDtail)

, for those iterations resulting
in an accuracy level above the threshold. In the third step, we
obtain the Pareto-front between those iterations that satisfying the
threshold requirement. Noted that each Pareto-front is associated
with one iteration, so in the fourth step, between these Pareto-
fronts, we pick one iteration that leads to the best resistance against
adversarial attack. Here we used the PGD attack as one of the
most powerful first-order adversarial attacks. Finally, The model
parameters generated in the selected iteration are then used in the
student model.

We set the threshold to 0.9965 for the MNIST dataset and 0.92
for the CIDAR10 dataset, as shown with the red-dash line in Fig.
4 third row. Then we obtained the Pareto-fronts for those selected
iterations as shown in Fig. 4 fourth row. Between all the Pareto-
fronts, the 10th and 8th iterations show the most resilience against
PGD attack for the LeNet and ResNet110, respectively. So for
the next evaluations, we use the parameters associated with these
iterations.

Figures 5-(A) and (B) illustrate the trajectory of the centroid
movement of the latent spaces associated with the head and tail
layers of LeNet, marked with blue and green in Table I, on the
MNIST dataset. In these figures, the centroids of classes at each
iteration are shown with a different color. For example, the red
color is associated with the ten centroids at the first iteration,
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Fig. 4. ICD (first row), ICC (second row), accuracy (thrid row), Pareto metrics of gravity during different iterations. The fourth row shows the relation between
normalized ICC and ICD. In the fourth row, purple is related to the early iteration, and yellow is related to the 50th iteration. Left and right figures are related to the
LeNet and ResNet110 models trained on MNIST and CIFAR10 datasets, respectively.

Fig. 5. (A), (B) shows the LeNet centroid movement of the head and tail layers with
Ghead = 100 and Gtail = 200 on MNIST dataset. (C), (D) shows the ResNet110
centroid movement of the head and tail layers with Ghead = 200 and Gtail =
300 on CIFAR10 dataset. Iterations are color-coded with red as the 0th iteration to
yellow as the 50th iteration.

and similarly, the yellow ones are corresponding to 50th iteration.
This figure confirms that by increasing the number of iterations
at the Adaptive-Gravity, the classes and subsequently their related
centroids are moving away from each other. Figure 5 captures
similar information for the head and tail layers of ResNet110 that
was trained on the CIFAR10 dataset. Unlike LeNet, the trajectory
of centroid movement of head and tail layers of ResNet110 shows
different behavior, as explained earlier in this section.

B. Performance against White-Box Attacks

In white-box attack the attacker has access to the trained model,
i.e., S(.), and the training dataset. Thus, by having these two
components, we assess how many of the input samples can be
misclassified by the adversary, i.e., the accuracy of the underlying
model in the existence of different adversarial attacks indicates the
robustness of the model.

The structure of the used model is shown in Table I in
which colored rows show the location of the tail and head in
the Adaptive-Gravity method. We also combined the Adaptive-

Gravity with adversarial training techniques for boosting the
model robustness. For adversarial training, we used two different
attacks FGSM and PGD, and their results are reported under the
names AdvTrainFGSM and AdvTrainPGD, respectively. We have also
compared the proposed Adaptive-Gravity technique’s performance
with the existing aforementioned adversarial defenses in Tables II
and III on datasets CIFAR10 and MNIST, respectively.

By investigating the white-box scenario’s result, we have
observed that: 1) The accuracy of the gravitated model is higher
than the baseline. This shows that Adaptive-Gravity has spaced the
classes far apart, allowing for better generalization by simplifying
the class mapping boundaries, resulting in the correct classification
of near-boundary samples misclassified by the baseline model. 2)
Combining adversarial training with Gravity has a trivial impact
on the accuracy of the underlying model. This is because Adaptive-
Gravity has already generalized the model, and combining more
samples (adversarial samples) into the training dataset will not
significantly change the model’s performance. 3) Compared to the
other defenses, Adaptive-Gravity shows a much better resilience
against adversarial attacks.

C. Adaptive-Gravity against Black-Box Attacks

In The black-box attacks, the attacker only has access to the
trained data and can only feed input samples to the model under
attack and observe its output. For launching this scenario, we have
assumed the attacker has chosen the VGG-19 model to generate
adversarial examples and feed them to the model which has trained
with the Adaptive-Gravity strategy. We report the results of a black-
box attack on a trained model based on Adaptive-Gravity and
adversarial training in Table IV.

IV. CONCLUSION

This paper introduces Adaptive-Gravity, a powerful training
solution for hardening Neural Network models against adversarial
attacks. Adaptive-Gravity is an iterative method. The corresponding
latent spaces related to each head and tail layer are pushed further
apart and concentrated toward their corresponding centroid at each
iteration. To find the direction for moving the latent spaces apart,
we introduced the anti-gravity force. We stipulate a new location
for the centroids of each set of latent class features in the tail and
head layers’ latent spaces using the anti-gravity force. Subsequently,
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TABLE II
COMPARISON OF GRAVITY METHOD TO OTHER DEFENSE METHODS ON CIFAR10 DATASET. FOR GRAVITY, WE REPORTED RESULTS WITHOUT ADVERSARIAL

TRAINING (GRAVITY) AND WITH ADVERSARIAL TRAINING USING FGSM (GRAVITYf ) AND PGD (GRAVITYp) ATTACKS.

Attacks Params. Baseline AdvTrain [22] Ye et al. [23] Ross et al. [24] Pang et al. [25] Madry et al. [26] Mustafa et al. [27] Gravity Gravityf Gravityp
No Attacks - 89.0 84.5 83.1 86.2 90.6 87.3 90.5 93.0 91.9 91.32

FGSM ϵ = 0.02 74.0 44.3 48.5 39.5 61.7 71.6 72.5 90.5 90.94 89.57
ϵ = 0.04 46.0 31.0 38.2 20.8 46.2 47.4 56.3 88.57 90.12 87.79

BIM ϵ = 0.01 82.57 22.6 62.7 19.0 46.6 64.3 62.9 92.45 91.79 91.31
ϵ = 0.02 77.11 7.8 39.3 6.9 31.0 49.3 40.1 92.28 91.77 91.25

MIM ϵ = 0.01 76.41 23.9 - 24.6 52.1 61.5 64.3 90.46 91.38 90.66
ϵ = 0.02 53.93 9.3 - 9.5 35.9 46.7 42.3 88.58 90.96 89.67

PGD ϵ = 0.01 82.8 24.3 - 24.5 48.4 67.7 60.1 91.12 91.7 91.09
ϵ = 0.02 74.38 7.8 - 8.5 30.4 48.5 39.3 86.21 91.29 90.47

C&W
c=0.001 52.3 67.7 82.5 72.2 80.6 84.5 91.3 90.82 91.75 91.09
c=0.01 47.38 40.9 62.9 47.8 54.9 65.7 73.7 85.24 87.27 89.48
c=0.1 10.38 25.4 40.7 19.9 25.6 47.9 60.5 83.23 85.29 84.17

TABLE III
COMPARISON OF GRAVITY METHOD TO OTHER DEFENSE METHODS ON MNIST DATASET. FOR GRAVITY, WE REPORTED RESULTS WITHOUT ADVERSARIAL TRAINING

(GRAVITY) AND WITH ADVERSARIAL TRAINING USING FGSM (GRAVITYf ) AND PGD (GRAVITYp) ATTACKS.

Attacks Params. Baseline AdvTrain [22] Ye et al. [23] Ross et al. [24] Pang et al. [25] Mustafa et al. [27] Gravity Gravityf Gravityp
No Attacks - 98.63 99.1 98.4 99.2 99.5 99.5 99.69 99.68 99.59

FGSM ϵ=0.1 91.23 73.0 91.6 91.6 96.3 97.1 91.53 97.2 97.67
ϵ=0.2 9.7 52.7 70.3 60.4 52.8 70.6 70.68 68.09 73.06

BIM ϵ=0.1 93.72 62.0 88.1 87.9 88.5 90.2 98.35 98.67 98.72
ϵ=0.15 22.2 18.7 77.1 32.1 73.6 76.3 97.54 98.56 98.66

MIM ϵ=0.1 90.9 64.5 - 83.7 92.0 92.1 97.07 97.28 98.61
ϵ=0.15 7.6 28.8 - 29.3 77.5 77.7 81.49 84.44 83.34

PGD ϵ=0.1 20.15 62.7 - 77.0 82.8 83.6 94.95 98.46 98.45
ϵ=0.15 6.99 31.9 - 44.2 41.0 62.5 68.26 96.97 97.26

C&W
c=0.1 60.15 71.1 89.2 88.1 97.3 97.7 96.55 97.3 98.05
c=1 36.99 39.2 79.1 75.3 78.1 91.2 95.6 97.87 97.92
c=10 6.01 17.0 37.6 20.0 23.8 46.0 85.26 86.97 85.96

TABLE IV
ROBUSTNESS OF OUR MODEL IN BLACK-BOX SETTINGS. ϵFGSM , ϵBIM , ϵMIM ,
ϵPGD SHOWS THE EQUIVALENT ϵ FOR EACH ONE OF THE ATTACKS FGSM, BIM,

MIM, AND PGD, THAT LEAD TO THE SAME PSNR IN WHITE-BOX SETTINGS.
WE ALSO INVESTIGATE THE IMPACT OF COMBINING GRAVITY WITH

ADVERSARIAL TRAINING.

Training No Attack FGSM BIM MIM PGD

MNIST (ϵFGSM = 0.225, ϵBIM = 0.1, ϵMIM = 0.2, ϵPGD = 0.265)
Baseline 99.3 39.2 20.15 16.28 20.1
Gravity 99.69 87.33 94.95 91.05 94.0

Gravity+AdvTrainFGSM 99.76 96.41 97.92 96.93 97.0
Gravity+AdvTrainPGD 99.76 96.04 97.69 96.52 97.65
CIFAR10 (ϵFGSM = 0.01, ϵBIM = 0.01, ϵMIM = 0.01, ϵPGD = 0.03)

Baseline 92.4 83.8 85.6 84.1 85
Gravity 92.5 87.7 88.9 88.2 88.9

Gravity+AdvTrainFGSM 91.81 89.45 89.9 89.5 90.0
Gravity+AdvTrainPGD 92.4 87.7 88.6 87.9 88.6

we deploy a training procedure to adjust the underlying model’s
parameters to achieve two objectives 1) improving the accuracy
of the underlying model 2) concentrating the latent spaces of the
tail and head layers to their projected centroids. We evaluated our
method against diverse attack scenarios on CIFAR10 and MNIST
datasets. Our experimental results indicate that Adaptive-Gravity
is an extremely effective and resilient solution for resisting the
existing adversarial attacks.
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