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Abstract—To deal with the complex wireless conditions in
cognitive radios, data-driven learning technologies have been
advocated for spectrum sensing. While the most existing learning-
based methods are designed for basic single-band and narrow-
band circumstances, they may not work well in practical wide-
band regimes. Due to the limited sensing capability and hardware
constraints of practical secondary users (SUs) devices, individual
SUs can only observe a portion of the entire wideband spectrum
pool. It is also known as the issue of partial observations,
which leads to a heterogeneous multi-task learning problem. To
overcome these challenges, this work proposes a novel framework
of wideband spectrum sensing via collaborative learning among
distributed SUs. Capitalizing on the hierarchical nature of feature
extraction in deep neural networks (DNN), we design a novel
multi-task DNN architecture to detect wideband spectrum occu-
pancy accurately and efficiently. By decoupling the large DNN
into smaller band-specific sub-networks, these sub-networks can
be jointly trained among distributed SUs even with heterogeneous
local data. Simulation results indicate that our proposed method
outperforms existing benchmarks by achieving higher learning
accuracy at faster convergence speed.

Index Terms—Cognitive radio, spectrum sensing, collaborative
learning, partial observation, deep neural network, decoupling.

I. INTRODUCTION

While traditional spectrum sensing methods for cognitive
radios (CR) work well in the settings with perfectly known
signal and channel models [1], [2], they unfortunately be-
come vulnerable to model mismatch issues such as channel
uncertainty and/or noise uncertainty [3]. To cope with such
limitations of the traditional model-based techniques, deep
learning (DL) based methods are recently advocated for single-
band spectrum sensing [4], [5] and the narrow-band case
[6], [7]. Such methods utilize the strong capability of DL in
learning the underlying representation of complicated models
from training data in physical layer communications.

Despite the success of these pioneering works in benign
sensing scenarios with homogeneous settings and idealized
observation conditions, CRs in realistic operations often need
to find out as much as spectrum opportunities from wideband
spectrum under the constraint of locally partial observations
[8]. That is, given the limited sensing capability and hard-
ware constraints of secondary users (SUs), each SU may
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only observe a portion of the entire wideband spectrum pool
depending on its geographic location. Thus, the data collected
by each SU merely reflects a few locally observable bands,
which precludes the standard DL-based methods from being
directly applied for wideband spectrum sensing under partial
observations. Meanwhile, to build collaboration among SUs,
straightforward learning-based cooperative spectrum sensing
methods have been proposed via collecting the measurements
from all SUs and aggregating the data at a data center to make
a one-shot decision on spectrum occupancy [4]. Unfortunately,
such data aggregations lead to high communication and com-
putation costs and unwilling privacy exposure of SUs’ data.

This paper aims to overcome the aforementioned issues
while utilizing the cooperation benefit among distributed SUs.
Specifically, we develop a novel DNN-based cooperative spec-
trum sensing framework and training techniques that holis-
tically integrate efficient DL network designs with effective
collaboration mechanisms for distributed SUs under partial
observations. To the best of our knowledge, the practical
issue of partial observations has not been studied in the
literature of DL-based wideband spectrum sensing regimes.
Although federated learning (FL) [9] has been advocated for
implementation of collaborative learning, it usually hinges on
a prerequisite that all participants share a homogeneous DNN
structure for a common learning task. But, spectrum data
collected under partial observations become heterogeneous at
different SUs, which leads to a challenging multi-task learning
problem.

To achieve accurate and efficient wideband spectrum sens-
ing under partial observations, we propose a novel collabora-
tive DL framework for cooperative spectrum sensing, where
distributed SUs can only acquire training data locally from
a few bands of the wide spectrum, and may share some
overlapping bands with neighboring SUs due to geographical
proximity. We first design a novel multi-task DNN architecture
as a multi-class predictor to simultaneously detect potential
primary signal occupancy over multiple bands. The key is
to efficiently utilize the inherent correlation between different
bands, which unveils a critical connection between the neuron
activation preference in deep hidden layers and the band-
specific spectrum occupancy characteristics. Then, exploiting
the hierarchical nature of DNN neurons in feature extraction
of CR wideband spectrum, we reconfigure the original dense
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DNN structure into multiple learning paths, by decoupling un-
necessary links between the data flows for detecting different
bands. This enables the band-wise parameter sharing among
the multi-task models to fit the heterogeneously observable
bands at individual SUs, which is otherwise unavailable in ex-
isting standard DNN methods. Finally, we develop an efficient
training process for the learning-based cooperative spectrum
sensing, which jointly optimizes the heterogeneous DNNs
among SUs and obtains the global detection of spectrum
occupancy over the entire wideband quickly.

II. PROBLEM STATEMENT

A. Signal and channel model

We start from formulating the signal model of the power
spectrum density (PSD) based measurement data, and then
describe the pre-processing steps through which such data
is generated and labeled for training purpose. Suppose that
a wideband spectrum pool B is uniformly divided into Nf
bands, where each of them carries a potential spectrum occu-
pancy by certain primary user (PU). For a CR system with
J SUs, the time sequence sampled at SU-j, ∀j ∈ [1, J ], is
regarded as collected measurements of received signals. Each
of these samples can be expressed as a summation of every
primary signal reaching SU-j plus the noise wj :

yj =
∑Nf

n=1 ỹ
j
n + wj , (1)

where ỹjn is the received signal at SU-j corresponding to the
ground-truth n-th primary signal yn. To extract the spectral
features in learning, a pre-processing is adopted by applying
Fourier transform on the autocorrelation of yj in (1) at SU-j:

yj
PSD = FT(Corr(yj)), (2)

where FT denotes the Fourier transform and Corr(.) com-
putes the signal autocorrelation. Suppose that the dimension-
ality of yjPSD is 1 × NwNf , where Nw is related to the
spectral resolution of each band inversely. Given all bands
with the same bandwidth, the wideband PSD yjPSD can be
uniformly segmented into Nf band-specific PSD vectors of
size 1 × Nw: yjPSD = [yj1,PSD, . . . ,y

j
Nf ,PSD]. To unveil and

leverage the inherent correlation of primary signals between
different bands, we stack all the band-specific PSD vectors
into an Nw ×Nf matrix as the input training data:

Yj = [yj
1,PSD

T
, . . . ,yj

Nf ,PSD
T

]. (3)

For the channels, we consider the impacts of path-loss,
shadowing, white noise and power leakage from neighboring
bands. Then, the PSD vector of band-n can be expressed as:

yj
n,PSD = hj

nxn + wj
n +

∑
n′∈Bn

ηn′h
j
n′xn′ , (4)

where xn denotes the PSD of the PU signal transmitted
on band-n. When this band is unoccupied, xn = 0. The
power gain that reflects channel effects can be expressed as

hjn = β(d0/d
j)α10

−ψjn
10 [10], where β is a constant related

to the antenna characteristics and average attenuation, α is

the path-loss exponent, dj is the distance between SU-j and
the PU, d0 is the reference distance, and ψjn is a Gaussian-
distributed random variable with mean zero and variance σ2

ψjn
that measures the shadow fading of the channel over band-
n between the PU and SU-j. The PSD of the noise at SU-j
on band-n is denoted by wj

n. The third term of the right-hand
side in (4) represents the power leakage effect on band-n from
its adjacent bands n′ ∈ Bn, where the set Bn consists of all
the adjacent-band indices of band-n and the leakage ratio is
ηn′ ∈ [0, 1].

B. Deep learning-based spectrum sensing

Now, we formulate spectrum sensing as a deep learning
problem. Given the input training data (4), the CR spectrum
sensing problem at SU-j for narrow-band settings can be
formulated as a binary hypothesis testing problem either in
H1 or in H0 when band-n is occupied or vacant:

yjn,PSD =

{
wj
n+hjn0+

∑
n′∈Bn ηn′h

j
n′xn′ , for H0;

wj
n+hjnxn+

∑
n′∈Bn ηn′h

j
n′xn′ , for H1.

(5)
Given such a basic single-band model, with input data yjn,PSD
and DNN parameter set W , the binary hypothesis testing can
be expressed as a function f(yjn,PSD,W). In this sense, the
task of deep learning-based spectrum sensing on a specific
SU-j for a single band-n is to find the optimal parameter set
W∗ that generates the correct hypothesis based on the received
PSD yjn,PSD given a predefined threshold λ

f(yjn,PSD,W
∗) ≷ λ. (6)

DNN has excellent representation power even in the lack of
expert knowledge of underlying signal and channel models.
Hence, the training-based single-band detectors can be au-
tomatically trained with sufficient training and labeled data.
In general, the objective of training can be formulated by
minimizing a loss:

minW
∑
{yjn,PSD,zn}∈D

Loss(f(yjn,PSD,W), zn), (7)

where D is the dataset including the PSD and the labeled
occupancy of the target single band zn = {0, 1}, Loss(·)
denotes a certain loss function.

To extend single-band detection in (7) to a multi-band
detection case, the existing works usually resort to the softmax
as the output layer [6], [7], where the multi-band sensing
models are developed to distinguish one category out of a total
number of Nc classes. Unfortunately, to encode all occupancy
categories of Nf bands, they require the output channels of
the classifier to grow exponentially as Nc = SNf [6], [7],
where S denotes the number of occupancy status for each
band, which is equal to 2 for the {0, 1} case. To enhance the
efficiency and applicability of multi-band sensing models in
practical wideband scenarios, we next design a novel multi-
class predictor based DNN structure.
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III. COOPERATIVE SPECTRUM SENSING

In this section, we aim to develop a novel band-wise cooper-
ative spectrum sensing framework, which utilizes collaborative
training of multi-band DNNs among distributed SUs.

A. DNN-based wideband sensing under partial observations

For multi-band spectrum sensing, we propose a new multi-
task DNN structure based on multi-class predictor which can
efficiently detect all bands with no more than Nf outputs per
DNN model. Different from the DNN classifiers that produce
multiple softmax outputs [6], [7], we apply a sigmoid function
to activate each output channel of our multi-task DNN, which
is given the uniqueness of the cooperative spectrum sensing
problem as opposed to a general multi-class classification
problem. Thus, each output digit independently represents the
probability-based confidence value of the occupancy of each
band and its value is restricted between 0 and 1. In this sense,
the predefined threshold λ in (6) can be set as λ = 0.5.
Accordingly, we design a specific loss function of (7) as the
binary cross-entropy loss function of two probability-based
confidence values, which is defined as [11]

Lossb(p, q) = q log p+ (1− q) log (1− p). (8)

Further, considering the 2-D nature of our PSD-based spec-
trum data Yj in (3), we choose convolutional neurons as the
feature extractor [12], [13], to capture the correlation in the
2-D input spectrum measurement data via the shift invariance
of CNN1.

For realistic CR systems under partial observations, the
multi-task DNNs trained on different SUs turn to be hetero-
geneous. This is because practical CR systems usually focus
on wideband spectrum sensing over a large physical area with
the sensing-capability constrained SUs. Meanwhile, the path-
loss related term hjn in (4) is inversely proportional to the
distance of signal propagation. When the PU is far away from
SU-j, the PSD of the received signal on this band becomes
smaller than that caused by noise and power leakage. Then,
the spectrum occupancy characteristics in the local PSD on
this band yjn,PSD cannot be captured by the DNN detector,
because yjn,PSD(H1) ≈ yjn,PSD(H0) in (5). As a result, these
bands become unobservable to SU-j. Accordingly, each SU
only has labels for some bands, but not for all bands. In this
sense, the multi-task DNN at SU-j generates only N j

f (< Nf )
effective output logits, and each of them corresponds to one
band that is observable locally at SU-j.

Under partial observations, if the multi-task DNN detector
on each SU is independently trained in a standalone manner,
then the obtained model is dedicated to a location-specific
wireless condition but infeasible for dynamic CR systems.
Considering different SUs sharing certain overlapping bands,
it is beneficial to exchange the learned knowledge about the
common spectrum occupancy among different SUs. However,
conventional data parallel collaborative learning like FL hinges

1The proposed neural network architecture and the corresponding method-
ology developed in this work can be extended to other DNN models as well.

Fig. 1. Band-specific neuron separating and the proposed CNN structure.

on homogeneous learning tasks and IID training data across
all SUs, which is not the case under partial observations.

B. Band-specific DNN structure reconfiguration

To enable collaborative learning under partial observations,
we first design an efficient DNN reconfiguration scheme to
support band-wise parameter training and sharing. The key
idea is to cut the unnecessary connections between neurons
among multi-task data flows for detecting different bands in
heterogeneous DNN, which utilizes the band-specific neuron
sensitivity in DNN and then decouples it into sub-networks.

1) Hierarchical band-specific neuron sensitivity: In DNNs,
the neurons play as fundamental feature extractors by gen-
erating an effectively large output, once they are activated
by certain features from their inputs [14]. We observe that
neurons on different layers of a DNN exhibit a hierarchical
nature in feature extraction. In the multi-task learning model
for wideband spectrum sensing as illustrated by Fig. 1.(a),
there exist two facts: (1) the neurons in the shallow layers in
blue color are sensitive to the common features that are widely
presented by the PSD sample data collected from all bands; (2)
the neurons in the deep layers corresponding to the multiple
tasks highlighted in red, purple and yellow colors, respectively
are sensitive to the task-specific features of different bands.

For the neurons in the deep layers of the densely connected
multi-task DNNs, while their outputs are calculated with
all outputs from their prior layer, only those neurons that
contribute large values can play a dominant role in decision
making. In this sense, when PSD data is fed into the multi-
task DNN, the neurons of the shallow layers are fully activated
while only a part of the neurons in individual deep layers are
activated as shown in Fig. 1.(b). Accordingly, the data flow of
the multi-task DNN for spectrum sensing passes all neurons of
the shallow layers, but then only goes through some activated
neurons of the deep layers selectively.

WS23 IEEE ICC 2022 the 2nd Workshop on Spectrum Sharing Technology for Next Generation Communications

695Authorized licensed use limited to: George Mason University. Downloaded on July 16,2022 at 23:02:30 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 2. Collaborative training system with partial observers.

2) Decoupling multi-band DNN into band-specific sub-
networks: Utilizing the hierarchical nature of DNN neuron’s
sensitivity to band-specific input features, we decouple the
original large multi-task DNN into multiple sub-networks. To
do so, we first identify the links through which the band-
specific data flows pass within the multi-task DNN model.
And then, we keep the corresponding links that carry each
data flow related to the sensing task for a specific band.
Meanwhile, we remove the other unnecessary links between
the neurons that belong to the different data flows. In this
way, the original dense DNN structure is compressed into
a couple of compact sub-networks with (much) less training
parameters without sacrificing learning capability. The pro-
posed decoupling scheme is illustrated in Fig. 1.(c). Since
such sub-networks related to individual spectrum sensing tasks
have fewer neurons than the original dense DNN, they can be
trained in a more efficient manner.

Note that our proposed reconfiguration scheme is different
from the existing DNN pruning methods in the following
two perspectives. (1) Our decoupling scheme is motivated
by the hierarchical neuron sensitivity to different sensing
tasks and is actually applied before training in a proactive
manner. On the other hand, the existing pruning techniques are
usually conducted to remove the insignificant weights from a
well-trained model [15]. (2) Our decoupling method neither
changes the depth of DNN nor alters the number of its total
neurons. Meanwhile, the existing pruning method may lead to
a decrease of the number of neurons when all the input links
connected to some neurons have trivial weights [16], where
the variation in neuron numbers between different SUs leads
to complicated coordination among these SUs for local model
averaging.

C. Collaborative training among partial observers

To detect the entire wideband spectrum pool with Nf
bands under partial observations, a learning-based cooperative
spectrum sensing system2 is composed of J multi-task DNNs,
that belong to the J SUs. For the j-th multi-task DNN, it is
reconfigured into N j

f sub-networks related to the N j
f observ-

able bands at SU-j, as shown in Fig. 2. During band-wise

2Our collaborative learning system can be deployed in either the centralized
or decentralized topology [17].

collaborative learning among SUs on overlapping bands, the
reconfigured sub-networks for detecting the same bands have
the homogeneous network structures. The training scheme for
our collaborative learning based spectrum sensing consists of
two alternative stages: local training and parameter averaging.

Local training: At SU-j, the parameters of the local multi-
task DNN, denoted by Wj , are optimized through stochastic
gradient decent (SGD) with its locally available data. Here,
these local model parameters Wj are updated by minimizing
the binary cross-entropy loss function in a batch form as (7).
Such a local training process can be conducted over multiple
sub-networks simultaneously, thanks to the separable nature
of these multi-task sub-networks, which is enabled by the
proposed reconfiguration scheme via decoupling the original
dense DNN structure. Further, compared with the training
process for an occupancy-status classifier [6], [7], our training
solution is actually optimized over a smaller searching space
whose dimension is reduced by 2N

j
f−N j

f .
Parameter averaging: After local training at SUs, the

learned knowledge in terms of the updated local model param-
etersWj needs to be generalized through parameter averaging
and then shared among SUs in collaborative learning. Consid-
ering the heterogeneous property between SUs due to their
different partial observations of the entire wideband spectrum
pool, the parameter averaging of {Wj}, j = 1, . . . , J should
be conducted in a hierarchical way.

Since the shallow layers are common for all bands at all
SUs, their parameter averaging is conducted as

W̄ = 1
J

∑J
j=1(W̄j), (9)

where W̄j is the local parameters of the shallow layers at SU-
j. For the deep layers, their parameter averaging is done in a
band-wise manner:

W̃n = 1
|Jn|

∑
j∈Jn W̃j

n, (10)

where Jn is the set including the indices of SUs which can
observe band-n, |Jn| is the cardinality of Jn, andWj

n denotes
the deep layer parameters at SU-j for detecting band-n. Our
collaborative training scheme is listed in Algorithm 1.

Algorithm 1 Collaborative training of shallow and deep layers.
1: Initialize Wj , j = 1, . . . , J
2: for each round i = 1, 2, . . . , I do
3: for each SU-j, j = 1, . . . , J in parallel do
4: Wj ← Local training via SGD (i,Wj ,D)
5: end for
6: Parameter averaging:
7: Shallow-layer averaging via (9)
8: Deep-layer averaging via (10) for n = 1 . . . Nf
9: end for

IV. SIMULATION RESULTS

A. Experimental settings

1) Simulation environments: In our simulation, a multi-
band CR system monitors Nf = 20 spectral bands whose
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bandwidths are identically equal to 10MHz. Such a CR
system contains 10 SUs that are randomly placed within a
100 meters × 100 meters area and each SU detects several
adjacent bands. In our simulations, suppose 3 of the total
20 bands are allocated to 3 single-band PUs, 8 of them are
assigned to accommodate 4 PUs with 2-adjacent-bands, and
the rest 9 bands are for 3 PUs with 3-adjacent-bands. For
wireless channels, we simulate the impact of path-loss with
α = 3.71, β = 10−3.453, and the log-normal shadow fading
as a Gaussian-distributed random variable with mean zero and
standard deviation σψjn = 3.65dB. The reference distance is set
as d0 = 1m. The power leakage exists between adjacent bands
with a leakage ratio η = −10dB. The PU signal emission
power on each band is randomly chosen between [20, 23] in
dBm/Hz and remains constant. Our simulation is conducted at
different noise powers between [−140,−125] in dBm/Hz.

2) Training and testing data: We let the 10 distributed
SUs to conduct collaborative learning for multi-band spectrum
sensing given partial observations on their local data. For
simplicity but without loss of the generality, we let each
SU detect N j

f = 10 observable bands. Final decision on
the occupancy of each specific band is obtained by doing
a majority vote among all SUs who can observe that band.
The PSD vector of each band has the dimension Nw = 128.
For a specific signal-to-noise ratio condition in our simulation,
each SU collects 50000 PSD matrices as its local training
data and 10000 PSD matrices per SU for testing. Considering
the dynamic wireless environment, SUs may take different
positions to collect testing data, which are randomly located
within 5 meters away from their locations for training.

3) Multi-task DNN model: The multi-task DNN model on
each SU contains 3 convolutional layers followed with 1 fully
connected output layer. The first convolutional layer is re-
garded as the shared shallow layer and it has 10 convolutional
filters (neurons) with kernel size 3×3. The following two con-
volutional layers are decoupled along the band-specific data
flow, where 2 convolutional filters are allocated on each layer
of one sub-network. The kernel size and other convolutional
filter related settings of the deep layers are the same as that of
the shallow layer. There is a 2×2 max pooling layer between
the last two convolutional layers. Finally, the output layer is
band-wise decoupled so that each neuron accepts activation
only from the last convolutional layer of its sub-network to
generate a sigmoid output. The local detection outcome of
each band is calculated by comparing the sigmoid output of
the sub-network with a pre-defined threshold, (e.g., 0.5).

4) Benchmarks: To the best of our knowledge, there is no
existing work on learning-based wideband cooperative spec-
trum sensing among distributed narrowband SUs, given the
challenges of heterogeneous learning tasks at partial observers
with their non-IID data. Thus, we simulate the following
methods as the benchmarks to our proposed solution. Energy
detection followed by decision fusion is tested as the conven-
tional model-based spectrum sensing method [8]. To compare
our solution with the off-the-shelf learning-based technique
that can be reasonably used under partial observations, we

Fig. 3. Training convergence of our proposed method and standalone learning
under noise power of -130dBm/Hz and -125dBm/Hz.

apply the standalone learning for spectrum sensing [14]. In
this standalone learning method, each SU trains a dense DNN
with its own data over its locally observable bands and then
the SUs conduct decision fusion on the locally trained models,
who share the same learning tasks related to the overlapping
bands.

B. Performance evaluation

We compare our proposed method with the benchmarks,
by evaluating their training performance, sensing accuracy,
robustness to noise effect, and computation efficiency.

1) Training performance: As a learning-based technique,
we first evaluate the training performance of our collabora-
tive learning method, compared with the standalone-learning
method. As shown in Fig. 3, our proposed learning method
outperforms the standalone learning under a given noise con-
dition, in terms of achieving the higher converged accuracy at
the faster convergence speed. Specifically, when the noise PSD
is −130dBm/Hz, our method achieves the testing accuracy
90.7% after 40 epochs while the standalone method converges
to 82.5% until 80 epochs, where our method outperforms
its benchmark by 8.2% in accuracy at 2× faster speed. The
accuracy gap between these two methods becomes smaller as
the noise PSD increases to −125dBm/Hz, which indicates our
method still leads to a 4.4% improvement in accuracy beyond
the standalone benchmark, while it remains the benefit of 2×
faster speed in convergence.

2) ROC analysis: We further evaluate the performance of
different methods on the multi-band occupancy detection, by
plotting their receiver operating characteristic (ROC) curves.
In Fig. 4, When the noise PSD is −135dBm/Hz, the ROC
curve of our method is approaching the upper left corner that
is the desired ROC region. If the probability of false alarm is
set as 1%, our proposed method achieves the probability of
detection as high as 99.5% while those of the standalone learn-
ing and energy detection are 81.8% and 78.9%, respectively.
The other group of ROC curves in Fig 4 corresponds to the
case where the noise PSD is −125dBm/Hz, which indicates a
similar trend as the first case. Both ROC comparisons in Fig 4
reveal that our method outperforms the other two benchmarks.

3) Robustness to data noise: To evaluate the robustness of
our proposed method to the noise effects, we also compare
the sensing performance of different methods with varying
noise levels. Specifically, we measure their probability of
detection when the probability of false alarm is fixed as 5%.
As shown in Fig. 5, for any given noise level, our method
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Fig. 4. The ROC of proposed method, Standalone, and energy detection under
noise power of -135dBm/Hz and -125dBm/Hz.

Fig. 5. The PD of different schemes at PFA = 5%, trained and tested under
noise powers of -120dBm/Hz, -125dBm/Hz, -130dBm/Hz and -135dBm/Hz.

always obtains the highest probability of detection while
both learning-based methods work more robust to the noise
effect than the conventional energy detection scheme. Such a
comparison indicates that our method has the best robustness
to noise effect and thus achieves the best sensing performance
in noisy environments.

4) Computation efficiency: Last but not least, we analyze
how much the proposed decoupling-based multi-task deep
model can reduce the volume of trainable parameters com-
pared with the standalone learning. In Table 1, we take each
SU with N j

f = 4 observable bands as an example. In the
shared shallow layer (Conv1) and the first decoupled layer
(Conv2), our proposed DNN has the same parameter volume
as the dense network in the standalone learning. From the
second decoupled layer (Conv3), the volume of that layer as
well as the following deep layers in our proposed DNN is only
around 1

Njf
= 1

4 of that of the standalone learning model. Such
a reduction results from our proposed DNN reconfiguration
design by decoupling the deep layers where the neurons only
receive data from 1

Njf
= 1

4 neurons in the previous layer.
Therefore, the number of trainable weights reduce accordingly.
In this sense, our proposed method can significantly reduce the
DNN training overloads on SUs.

TABLE I
THE DNN SIZE OF A SU WITH 4 OBSERVABLE BANDS

Method

Model size Layer
Conv1 Conv2 Conv3 FC Total

Standalone method 100 728 584 19204 20616
Our proposed method 100 728 152 4804 5784

V. CONCLUSIONS

This paper develops a novel collaborative learning frame-
work with distributed partial observers to conduct wideband
cooperative spectrum sensing. Capitalizing on the hierarchical
neuron sensitivity of deep neural networks to band-specific
features, our proposed technique decouples the original large
deep neural network into smaller heterogeneous sub-networks,
which are collaboratively trained at distributed secondary users
detecting the overlapping bands. The simulation results verify
that our method achieves higher learning accuracy and com-
putation efficiency with faster convergence speed and presents
better robustness to noise effect than the existing benchmarks.
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