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Abstract—Federated learning (FL) is an attractive paradigm
for making use of rich distributed data while protecting data
privacy. Nonetheless, non-ideal communication links and limited
transmission resources may hinder the implementation of fast
and accurate FL. In this paper, we study joint optimization of
communications and FL based on analog aggregation transmis-
sion in realistic wireless networks. We first derive closed-form
expressions for the expected convergence rate of FL over the air,
which theoretically quantify the impact of analog aggregation
on FL. Based on the analytical results, we develop a joint
optimization model for accurate FL implementation, which allows
a parameter server to select a subset of workers and determine an
appropriate power scaling factor. Since the practical setting of FL
over the air encounters unobservable parameters, we reformulate
the joint optimization of worker selection and power allocation
using controlled approximation. Finally, we efficiently solve the
resulting mixed-integer programming problem via a simple yet
optimal finite-set search method by reducing the search space.
Simulation results show that the proposed solutions developed
for realistic wireless analog channels outperform a benchmark
method, and achieve comparable performance of the ideal case
where FL is implemented over noise-free wireless channels.

Index Terms—Federated learning, analog aggregation, con-
vergence analysis, joint optimization, worker scheduling, power
scaling.

I. INTRODUCTION

In recent years, with the development of IoT and social
networks, huge amounts of data have been generated at the
edge of networks [1]. To obtain useful information from big
data, machine learning has been widely applied to deal with
complex models and tasks in emerging data-driven applica-
tions, such as autonomous driving, virtual and augmented
reality [2]. Standard machine learning is usually developed
under a centralized architecture, where each node located at the
edge sends its collected data to a central node for centralized
data processing. However, with the exponential growth of the
volume of local data and the increasing concerns on user data
privacy, it is neither practical nor safe to directly transmit
the data of local devices to a central node due to the limited
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communication and processing capability as well as the lack
of privacy protection. As such, distributed machine learning is
well motivated to overcome these issues.

In the regime of distributed machine learning, federated
learning (FL) has been proposed as a well noted approach
for collaborative learning [3]. In FL, local workers train local
models from their own data, and then transmit their local
updates to a parameter server (PS). The PS aggregates these
received local updates and sends the averaged update back
to the local workers. These iterative updates between the
PS and workers, can be either model parameters or their
gradients, for model averaging [4] and gradient averaging [5],
respectively. In this way, FL relieves communication overheads
and protects user privacy compared to traditional data-sharing
based collaborative learning, especially when the local data
is in large volume and privacy-sensitive. Existing research
on FL mostly focuses on FL algorithms under idealized link
assumptions. However, the impacts of wireless environments
on FL performance should be taken into account in the design
of FL deployed in practical wireless systems. Otherwise,
such impacts may introduce unwanted training errors that
dramatically degrade the learning performance in terms of
accuracy and convergence rate [6].

To solve this problem, research efforts have been spent
on optimizing network resources used for transmitting model
updates in FL [7], [8]. These works of FL over wireless
networks adopt digital communications, using a transmission-
then-aggregation policy. Unfortunately, the communication
overhead and transmission latency become large as the number
of active workers increases. On the other hand, it is worth
noting that FL aims for global aggregation and hence only
utilizes the averaged updates of distributed workers rather
than the individual local updates from workers. Alternatively,
the nature of waveform superposition in wireless multiple
access channel (MAC) [9]–[12] provides a direct and efficient
way for transmission of the averaged updates in FL, also
known as analog aggregation based FL [13]–[18]. As a joint
transmission-and-aggregation policy, analog aggregation trans-
mission enables all the participating workers to simultaneously
upload their local model updates to the PS over the same
time-frequency resources as long as the aggregated waveform
represents the averaged updates, thus substantially reducing
the overhead of wireless communication for FL.

The research on analog aggregation based FL is still at
early stage, leaving some fundamental questions unexplored,
such as its convergence behavior and design of efficient
algorithms. Given the limited transmit power and communi-
cation bandwidth at user devices, users may have to contend
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for communication resources when transmitting their local
updates to the PS. It gives rise to the need for an efficient
transmission paradigm, along with network resource allocation
in terms of worker selection and transmit power control. All
these practical issues motivate our work to study FL from the
perspectives of both wireless communications and machine
learning. In this paper, we quantify the impact of analog
aggregation on the convergence behavior and performance of
FL. Such quantitative results are essential in guiding the joint
optimization of communication and computing resources. This
paper aims at a comprehensive study on problem formulation,
solution development, and algorithm implementation for the
joint design and optimization of wireless communication and
FL. Our key contributions are summarized as follows:

• We derive closed-form expressions for the expected con-
vergence rate of FL over the air in the cases of convex
and non-convex, respectively, which not only interprets
but also quantifies the impact of wireless communications
on the convergence and accuracy of FL over the air. Also,
full-size gradient descent (GD) and mini-batched statisti-
cal gradient descent (SGD) methods are both considered
in this work. These closed-form expressions unveil a
fundamental connection between analog wireless commu-
nication and FL with analog aggregation, which provides
a fresh perspective to measure how the parameter design
of analog wireless systems affects the performance of FL
over the air.

• Based on the closed-form theoretical results, we formu-
late a joint optimization problem of learning, worker
selection, and power control, with a goal of minimizing
the global FL loss function given limited transmit power
and bandwidth. The optimization formulation turns out
to be universal for the convex and non-convex cases
with GD and SGD. Further, for practical implementation
of the joint optimization problem in the presence of
some unobservable parameters, we develop an alternative
reformulation that approximates the original unattainable
problem as a feasible optimization problem under the
operational constraints of analog aggregation.

• To efficiently solve the approximate problem, we iden-
tity a tight solution space by exploring the relationship
between the number of workers and the power scaling.
Thanks to the reduced search space, we propose a sim-
ple discrete enumeration method to efficiently find the
globally optimal solution.

We evaluate the proposed joint optimization scheme for FL
with analog aggregation in solving linear regression and image
classification problems, respectively. Simulation results show
that our proposed FL is superior to the benchmark scheme
that uses random worker selection and power control, and
achieves comparable performance to the ideal case where FL
is implemented over noise-free wireless channels.

The remainder of this paper is organized as follows. Related
work is presented in Section II. The system model for FL
over the air and the associated joint communication and
learning optimization formulation are presented in Section III.
Section IV derives the closed-form expressions of the expected

convergence rate of the FL over the air as the foundation
for algorithm design and performance analysis. Section V
provides a framework of joint optimization of communication
and FL, and develops the corresponding algorithms. Section VI
presents numerical results, followed by conclusions in Section
VII.

II. RELATED WORK

This section reviews the literature and highlights the novelty
of this paper with respect to related works.

To achieve communication efficiency in distributed learning,
most of the existing strategies focus on digital communica-
tions, which may involve the preprocessing of transmitted
updates or the management of wireless resources. For example,
a popular line of work is to reduce the communication load
per worker by compression of the updates under the assump-
tions of ideal communication links, such as exploiting coding
schemes [19], utilizing the sparsity of updates [20], employing
quantization of the updates [21], and avoiding less informative
local updates via communication censoring schemes [22]–[26].
Another line of work is to support FL through communication
resource management, such as worker scheduling schemes
to maximize the number of participating workers [27], joint
optimization of resource allocation and worker scheduling [7],
and communication and computation resource allocation and
scheduling for cell-free networks [8].

There are some pioneering works on analog aggregation
based FL [13]–[18], most of which focus on designing trans-
mission schemes [13]–[16]. They adopt preselected partici-
pating workers and fix their power allocation without further
optimization along FL iterations. The optimization issues
are considered in [17], [18], but they are mainly conducted
on the communication side alone, without an underlying
connection to FL. When communication-based metrics are
used, the optimization in existing works often suggests to
maximize the number of selected workers that participate
FL, but our theoretical results indicate that selecting more
workers is not necessarily better over imperfect links or under
limited communication resources. Thus, unlike these existing
works, we seek to analyze the convergence behavior of analog
aggregation based FL, which provides a fresh angle to interpret
the specific relationship between communications and FL in
the paradigm of analog aggregation. Such a connection leads
to this work on a joint optimization framework for analog
communications and FL, in which the work selection and
power allocation decisions are optimized during the iterative
FL process.

III. SYSTEM MODEL

As shown in Fig. 1, we consider a one-hop wireless network
consisting of a single parameter server (PS) at a base station
and U user devices as distributed local workers. Through
federated learning, the PS and all workers collaborate to train
a common model for supervised learning and data inference,
without sharing local data.
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Fig. 1: Federated learning via analog aggregation from wirelessly distributed
data.

A. FL Model

Let Di = {xi,k,yi,k}Ki

k=1 denote the local dataset at the i-th
worker, i = 1, . . . , U , where xi,k is the input data vector, yi,k
is the labeled output vector, k = 1, 2, ...,Ki, and Ki = |Di|
is the number of data samples available at the i-th worker.
With K =

∑U
i=1Ki samples in total, these U workers seek

to collectively train a learning model parameterized by a global
model parameter w = [w1, . . . , wD] ∈ RD of dimension D,
by minimizing the following loss function

(Global loss function) F (w;D) =
1

K

U∑
i=1

Ki∑
k=1

f(w;xi,k,yi,k),

(1)
where the global loss function F (w;D) is a summation of K
data-dependent components, each component f(w;xi,k,yi,k)
is a sample-wise local function that quantifies the model
prediction error of the same data model parameterized by the
shared model parameter w, and D =

⋃
iDi.

In distributed learning, each worker trains a local model wi

from its local data Di, which can be viewed as a local copy
of the global model w. That is, the local loss function is

(Local loss function) Fi(wi;Di) =
1

Ki

Ki∑
k=1

f(wi;xi,k,yi,k),

(2)
where wi = [w1

i , . . . , w
D
i ] ∈ RD is the local model parameter.

Through collaboration, it is desired to achieve wi = w = w∗,
∀i, so that all workers reach the globally optimal model w∗.
Such a distributed learning can be formulated via consensus
optimization as [4], [28]

P1: min
w

1

K

U∑
i=1

Ki∑
k=1

f(wi;xi,k, yi,k). (3)

To solve P1, this paper adopts a model-averaging algorithm
for FL [4], [28]. It is essentially an iterative process consisting
of both computing and communication steps at each iteration.
Specifically, in each communication round, the PS broadcasts
the current w to all workers. Then, the i-th worker uses a
learning algorithm to update its wi by minimizing its local
data-dependent loss function in (2). In this work, gradient

descent1 is applied, in which the local model at the i-th local
worker is updated as

(Local model updating) wi = w − α∇Fi(wi;Di)

= w − α

Ki

Ki∑
k=1

∇f(w;xi,k,yi,k),

(4)

where α is the learning rate, and ∇f(w;xi,k,yi,k) is the
gradient of f(w;xi,k,yi,k) with respect to w.

When local updating is completed, each worker transmits
its updated parameter wi to the PS via wireless uplinks to
update the global w as

(Global model updating) w =

∑U
i=1Kiwi

K
. (5)

Then, the PS broadcasts w in (5) to all participating workers
as their initial value in the next round. The FL implements the
local model-updating in (4) and the global model-averaging in
(5) iteratively, until convergence. It has been shown that this
FL algorithm converges to the globally optimal solution of
the original problem in P1 under the conditions that F is a
convex function and the data transmission between the PS and
workers is error-free [4], [28].

Note that the implementation steps in (4) and (5) only
concern the computational aspect of FL, by assuming perfect
communications for both the global w and local wi between
the PS and all workers. However, the communication impacts
on FL performance should not be ignored. Especially in
practical wireless network environments, certain errors are
inevitably introduced during transmissions of the updates due
to the imperfect characteristics of wireless channels.

B. Analog Aggregation Transmission Model

To avoid heavy communication overhead and save trans-
mission bandwidth of FL over wireless channels, we adopt
analog aggregation without coding, which allows multiple
workers to simultaneously upload their local model updates to
the PS over the same time-frequency resources. All workers
transmit their local wi’s in an analog form with perfect time
synchronization among them2. In this way, the local updates
wi’s are aggregated over the air to implement the global model
updating step in (5). Such an analog aggregation is conducted
in an entry-wise manner. That is, the d-th entries wdi from all
workers, i = 1, ..., U , are aggregated to compute wd in (5),
for any d ∈ [1, D].

Let pi,t = [p1
i,t, . . . , p

d
i,t, . . . , p

D
i,t] denote the power control

vector of worker i at the t-th iteration. Noticeably, the choice
of pi,t in FL over the air should be made not only to effectively
implement the aggregation rule in (5), but also to properly

1In this work, we take the basic gradient descent as an example, while
the proposed methodology can be extended to mini-batch gradient descent as
well.

2The implementation of time synchronization and the impact of imperfect
synchronization are beyond the scope of this work. Interested readers are
referred to [12], [29].
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accommodate the need for network resource allocation. Ac-
cordingly, we set the power control policy as

pdi,t =
βdi,tKib

d
t

hdi,t
, (6)

where hi,t is the channel gain between the i-th worker and the
PS at the t-th iteration3, bdt is the power scaling factor, and
βdi,t is a transmission scheduling indicator. That is, βdi,t = 1
means that the d-th entry of the local model parameter wi,t of
the i-th worker is scheduled to contribute to the FL algorithm
at the t-th iteration, and βdi,t = 0, otherwise. Through power
scaling, the transmit power used for uploading the d-th entry
from the i-th worker should not exceed a maximum power
limit P d,max

i = Pmax
i for any d, as follows:

|pdi,twdi,t|2 =

∣∣∣∣∣βdi,tKib
d
t

hdi,t
wdi,t

∣∣∣∣∣
2

≤ Pmax
i . (7)

At the PS side, the received signal at the t-th iteration can
be written as

yt =
U∑
i=1

pi,t �wi,t � hi,t + zt

=
U∑
i=1

Kibt � βi,t �wi,t + zt, (8)

where � represents Hadamard product, hi,t =
[h1
i,t, h

2
i,t, ..., h

D
i,t], βi,t = [β1

i,t, β
2
i,t, .., β

D
i,t], bt =

[b1t , b
2
t , ..., b

D
t ], and zt ∼ CN (0, σ2I) is additive white

Gaussian noise (AWGN).
Given the received yt, the PS estimates wt via a post-

processing operation as

wt =

(
U∑
i=1

Kiβi,t � bt

)�−1

� yt

=

(
U∑
i=1

Kiβi,t

)�−1 U∑
i=1

Kiβi,t �wi,t

+

(
U∑
i=1

Kiβi,t � bt

)�−1

� zt, (9)

where (
∑U
i=1Kiβi,t � bt)

�−1 is a properly chosen scaling
vector to produce equal weighting for participating wi’s in (9)
as desired in (5), and (X)�−1 represents the inverse Hadamard
operation of X that calculates its entry-wise reciprocal. No-
ticeably, in order to implement the averaging of (5) in FL
over the air, such a post-processing operation requires bt to
be the same for all workers for given t and d, which allows
to eliminate bt from the first term in (9).

Comparing (9) with (5), there exist differences between
wt and w due to the effect of wireless communications.
This work aims to mitigate such a gap through optimizing
the worker selection βi,t and power scaling bt for FL over

3In this paper, we assume the channel state information (CSI) to be constant
within each iteration, but may vary over iterations. We also assume that the
CSI is perfectly known at the PS, and leave the imperfect CSI case in future
work.

the air. To this end, our next step is to unveil an important
but unexplored foundation, i.e., how wireless communications
affect the convergence behavior of FL over the air.

IV. THE CONVERGENCE ANALYSIS OF FL WITH ANALOG
AGGREGATION

In this section, we study the effect of analog aggregation
transmission on FL over the air, by analyzing its convergence
behavior for both the convex and the non-convex cases. To
average the effects of instantaneous SNRs, we derive the
expected convergence rate of FL over the air, which quantifies
the impact of wireless communications on FL using analog
aggregation transmissions.

A. Convex Case

We first make the following assumptions that are commonly
adopted in the optimization literature [7], [30]–[34].

Assumption 1 (Lipschitz continuity, smoothness): The
gradient ∇F (w) of the loss function F (w) is uniformly
Lipschitz continuous with respect to w, that is,

‖∇F (wt+1)−∇F (wt)‖ ≤ L‖wt+1 −wt‖, ∀wt,wt+1, (10)

where L is a positive constant, referred to as a Lipschitz
constant for the function F (·).

Assumption 2 (strongly convex): ∇F (w) is strongly
convex with a positive parameter µ, obeying

F (wt+1) ≥F (wt) + (wt+1 −wt)
T∇F (wt)

+
µ

2
‖wt+1 −wt‖2, ∀wt,wt+1. (11)

Assumption 3 (bounded local gradients): The sample-
wised local gradients at local workers are bounded by their
global counterpart [32], [33]

‖∇f(wt)‖2 ≤ ρ1 + ρ2‖∇F (wt)‖2, (12)

where ρ1, ρ2 ≥ 0.
According to [5], [35], the FL algorithm applied over ideal

wireless channels is able to solve P1 and converges to an
optimal w∗. In the presence of wireless transmission errors,
we derive the expected convergence rate of the FL over the
air with analog aggregation, as in Theorem 1.

Theorem 1. Adopt Assumptions 1-3, and denote the globally
optimal learning model in (3) as w∗. The model updating rule
for wt of the FL-over-the-air scheme is given by (9), ∀t. Given
the transmit power scaling factors bt, worker selection vectors
βi,t, and setting the learning rate to be α = 1

L , the expected
performance gap E[F (wt)−F (w∗)] of wt at the t-th iteration
is given by

E[F (wt)− F (w∗)] ≤ Bt +AtE[F (wt−1)− F (w∗)], (13)

with

At = 1− µ

L
+ ρ2

D∑
d=1

(
K∑U

i=1Kiβdi,t
− 1

)
, (14)
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Bt =
ρ1

2L

D∑
d=1

(
K∑U

i=1Kiβdi,t
− 1

)

+

∥∥∥∥∥
(

U∑
i=1

Kiβi,t � bt

)�−1 ∥∥∥∥∥
2
Lσ2

2
, (15)

where the expectation is over the channel AWGN of zero mean
and variance σ2.

Proof. The proof of Theorem 1 is provide in Appendix A.

Based on Theorem 1, we further derive the cumulative
performance gap resulted from wireless communications and
the worker selection of the whole FL process, summarized by
the following Lemma 1.

Lemma 1. Given an initial global model w0, the cumulative
performance gap E[F (wt)− F (w∗)] of FL after t iterations
is bounded by

E[F (wt)− F (w∗)] ≤
t−1∑
i=1

i∏
j=1

At+1−jBt−i +Bt︸ ︷︷ ︸
∆t

+

t∏
j=1

AjE[F (w0)− F (w∗)]. (16)

Proof. Given the expected performance gap at the t-th itera-
tion in (13), we carry out recursions as follows:

E[F (wt)− F (w∗)] ≤ Bt +AtE[F (wt−1)− F (w∗)]

≤ Bt +At

Å
Bt−1 +At−1E[F (wt−2)− F (w∗)]

ã
≤ ...

≤
t−1∑
i=1

i∏
j=1

At+1−jBt−i +Bt +
t∏

j=1

AjE[F (w0)− F (w∗)].

(17)

.

Lemma 1 reveals that the FL algorithm converges asymp-
totically in t under mild conditions, as stated in Proposition
1.

Proposition 1. Given the learning rate α = 1
L , the conver-

gence of the FL algorithm is guaranteed with limt→∞wt =
w∗, as long as ρ2 in (12) satisfies the following condition:

0 < ρ2 <
µ

( K
Kmin

− 1)DL
, (18)

where Kmin = min{Ki}Ui=1.

Proof. When At < 1, ∀t, it is evident that
limt→∞

∏t+1
j=1Aj = 0. From Lemma 1, to guarantee

the convergence, a sufficient condition is to ensure
Amax , max{At, t = 1, 2...} < 1. Given (14), it holds that

At = 1− µ

L
+ ρ2

D∑
d=1

(
K∑U

i=1Kiβdi,t
− 1

)

≤ 1− µ

L
+ ρ2

D∑
d=1

(
K

Kmin
− 1

)
, (19)

where Kmin = min{Ki}Ui=1. When all workers have the same
amount of data, i.e., Ki = K

U , ∀i, then At ≤ 1− µ
L +ρ2D(U−

1).
To ensure Amax < 1, we have

Amax ≤ 1− µ

L
+ ρ2

D∑
d=1

(
K

Kmin
− 1

)
< 1. (20)

From (20), it holds that ρ2 <
µ

( K
Kmin

−1)DL
. On the other hand,

ρ2 > 0, according to (12) in Assumption 3. As a result, we
have 0 < ρ2 <

µ
( K
Kmin

−1)DL
, which completes the proof.

Proposition 1 indicates that the convergence behavior of the
FL algorithm depends on both the learning-related parameters,
i.e., µ,L, ρ1, ρ2, and communication-related parameters, in-
cluding β, b and σ2. Interestingly, the channel noise σ2 and b
do not affect At, and hence they do not affect the convergence
of the FL algorithm but determine the steady state that the FL
algorithm converges to.

Lemma 1 also provides the expected convergence rate of an
FL algorithm when the transmission link is error-free. In this
ideal case, it offers the fastest convergence rate achievable by
the FL algorithm, which is derived by the following Lemma
2.

Lemma 2. Consider a resource-unconstrained and error-free
mode where the effects of wireless channels, as well as that
of noise, are already mitigated or fully compensated. Given
the optimal global w∗ and the learned wt in (9), the upper
bound of E[F (wt)− F (w∗)] for the FL over the air is given
by

E[F (wt)− F (w∗)] ≤ (1− µ

L
)tE[F (w0)− F (w∗)]. (21)

Proof. Without channel noise or worker selection (that is, all
workers participate the FL and deliver their data perfectly), we
have σ2 = 0 and

∑D
d=1

(
K∑U

i=1Kiβd
i,t

− 1
)

= 0. Then, in (14)
and (15), we have Bt = B = 0 and At = A = 1− µ

L , ∀t. As
a result, (16) is reduced to (21).

It is worth noting that Lemma 2 provides the convergence
rate for the ideal case, which assumes that the impacts
of wireless communications, including noise, channel and
constrained resources, are all mitigated to result in error-
free transmission. According to (16) in the realistic case, the
trajectory of E[F (wt+1)] exhibits jump discontinuity with a
gap term ∆t at each step t, as defined in (16):

∆t =
t−1∑
i=1

i∏
j=1

At+1−jBt−i +Bt.

This gap reflects the impact of wireless communication factors
on FL, by means of the worker selection, transmit power
scaling and AWGN. Intuitively, this gap diminishes as the
number of selected workers increases, which reduces the value
of At. Meanwhile, as the power scaling factor bt increases,
Bt is decreased, which leads to a reduction of the gap as
well. Hence, it is necessary to optimize transmit power scaling
factors and worker selection in order to minimize the gap in
(16) for the implementation of FL algorithms over a realistic
wireless network.
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B. Non-convex Case

When the loss function F (w) is nonconvex, such as in
the case of convolutional neural networks, we derive the
convergence rate of the FL over the air with analog aggregation
for the nonconvex case without Assumption 2, which is
summarized in Theorem 2.

Theorem 2. Under the Assumptions 1 and 3 for the non-
convex case, given the transmit power scaling factors bt,
worker selection vectors βi,t, the optimal global FL model
w∗, and the learning rate α = 1

L , the convergence at the T -th
iteration is given by

1

T

T∑
t=1

‖∇F (wt−1)‖2 ≤
2L
∑T
t=1Bt

T (1− ρ2D( K
Kmin

− 1))

+
2L

T (1− ρ2D( K
Kmin

− 1))
E[F (w0)]− F (w∗)]. (22)

Proof. Please refer to Appendix B.

As we can see from Theorem 2, when T is large enough,
we have

min
0,1,...,T

E[‖∇F (wt−1)‖2] ≤ 1

T

T∑
t=1

‖∇F (wt−1)‖2

T→∞
≤

2L
∑T
t=1Bt

T (1− ρ2D( K
Kmin

− 1))︸ ︷︷ ︸
4NC

T

, (23)

which guarantees convergence of the FL algorithm to a sta-
tionary point [28], [36]. Similarly, the performance gap at the
step t for non-convex cases is given by

4NCt =
2L
∑T
t=1Bt

T (1− ρ2D( K
Kmin

− 1))
. (24)

Note that the non-convex case and the convex shares the
same sufficient condition for convergence as (18) in Proposi-
tion 1.

C. Stochastic gradient descent

Our work can be extended to stochastic versions of gradient
descent (SGD) as well. Here, we provide convergence analysis
for mini-batch gradient descent with a constant mini-batch
size Kb, while the results directly apply to the standard SGD
by setting Kb = 1. Theorem 3 summarizes the convergence
behavior of SGD for the strongly convex case.

Theorem 3. Under the Assumptions 1, 2 and 3 for the
convex case, and given the transmit power scaling factors bt,
worker selection vectors βi,t, the optimal global FL model
w∗, the learning rate α = 1

L and the mini-batch size Kb, the

convergence behavior of the SGD implementation of FL over
the air is given by

E[F (wt)− F (w∗)] ≤
t−1∑
i=1

i∏
j=1

ASGDt+1−jB
SGD
t−i +BSGDt︸ ︷︷ ︸

∆SGD
t

+
t∏

j=1

ASGDj E[F (w0)− F (w∗)], (25)

where

ASGDt =1− µ

L
+ ρ2

(
D∑
d=1

(
(
∑U
i=1Kb)

2 − 2K(
∑U
i=1Kb)

K2

+
(
∑U
i=1Kb)∑U

i=1Kbβdi,t

)
+

(
∑U
i=1(Ki −Kb))

2

K2

)
, (26)

BSGDt =
ρ1

2L

(
D∑
d=1

(
(
∑U
i=1Kb)

2 − 2K(
∑U
i=1Kb)

K2

+
(
∑U
i=1Kb)∑U

i=1Kbβdi,t

)
+

(
∑U
i=1(Ki −Kb))

2

K2

)

+

∥∥∥∥∥∥
(

U∑
i=1

Kiβi,t � bt

)�−1
∥∥∥∥∥∥

2

Lσ2

2
. (27)

Proof. Please refer to Appendix C.

From Theorem 3, the cumulative performance gap of FL
after the t-th iteration for the SGD case is bounded by

4SGDt =
t−1∑
i=1

i∏
j=1

ASGDt+1−jB
SGD
t−i +BSGDt . (28)

Remark 1. If Kb is set to be Ki, then Theorem 3 for SGD is
the same as Theorem 1 for GD. In addition, since the common
mini-batch size is no larger than the minimum local data size,
i.e., Kb ≤ Kmin ≤ K

U , both ASGDt in (26) and BSGDt in (27)
decrease as Kb increases, which leads to a smaller ∆SGD

t in
(25). In other words, FL has a better convergence performance
with a larger Kb. On the other hand, such an improvement on
performance is achieved at the cost of high computation load at
the local workers in each communication round, which reflects
the tradeoff between training performance and computational
complexity in SGD.

Similarly, we can also derive the mild convergence condition
for SGD, given by the following Proposition 2.

Proposition 2. Given the learning rate α = 1
L , the conver-

gence of the FL algorithm for SGD cases is guaranteed with
limt→∞wt = w∗, as long as ρ2 in (12) satisfies the following
condition:

0 < ρ2 <
µ

( 2UKb

K +
U2K2

b

K2 +DU − 2DUKb

K +
DU2K2

b

K2 )L
.

(29)
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Proof. Similar to the GD case, to guarantee the conver-
gence, a sufficient condition is still to ensure ASGDmax ,
max{ASGDt , t = 1, 2...} < 1. It holds that,

ASGDt =1− µ

L
+ ρ2

(
(K − UKb)

2

K2

+
D∑
d=1

(
U2K2

b − 2KUKb

K2
+

U∑U
i=1 β

d
i,t

))

≤1− µ

L
+ ρ2

(
(K − UKb)

2

K2

+
DU2K2

b − 2DKUKb

K2
+DU

)
, (30)

which comes from the fact that
∑U
i=1 β

d
i,t ≥ 1.

Thus, we have

ASGDmax ≤ 1− µ

L
+

ρ2

(
(K − UKb)

2 +DU2K2
b − 2DKUKb +DUK2

K2

)
< 1.

(31)

From (31), we can get ρ2 <
µ

(1− 2UKb
K +

U2K2
b

K2 +DU− 2DUKb
K +

DU2K2
b

K2 )L
. Considering ρ2 > 0

in Assumption 3, we get (29) as a result.

V. PERFORMANCE OPTIMIZATION FOR FEDERATED
LEARNING OVER THE AIR

In this section, we first formulate a joint optimization
problem to reduce the gap for FL over the air, which turns
out to be applicable for both the convex and non-convex
cases, using either GD or SGD implementations. To make it
applicable in practice in the presence of some unobservable
parameters at the PS, we reformulate it to an approximate
problem by imposing a conservative power constraint. To
efficiently solve such an approximate problem, we first identify
a tight solution space and then develop an optimal solution via
discrete programming.

A. Problem Formulation for Joint Optimization

Since we are concerned with convergence accuracy, our op-
timization problem boils down to minimizing the performance
gap for different cases (i.e., 4t, 4NCt , and 4SGDt ) at each
iteration under the corresponding convergence conditions (i.e.,
Proposition 1 and Proposition 2).

We recognize that solving P1 amounts to iteratively min-
imizing those gap 4t, 4NCt , and 4SGDt under the transmit
power constraint in (7). At the t-th iteration, the objective
functions for those three cases are given by

4t =Bt +At4t−1, (32)

4NCt =Bt, (33)

4SGDt =BSGDt +ASGDt 4SGDt−1 . (34)

where 40 = 0 and 4SGD0 = 0. Note that when the
optimization is executed at the t-th iteration, 4t−1 and 4SGDt−1

can be treated as constants.
Considering the entry-wise transmission for analog aggre-

gation, we remove irrelevant items and extract the component
of the d-th entry from those gap in (32), (33) and (34) as the
objective to minimize, which is given by

Rt[d] =
Lσ2

2
Ä∑U

i=1 β
d
i,tKibdt

ä2 +
Kρ1 + 2KLρ24t−1

2L
∑U
i=1Kiβdi,t

, ∀d,

(35)

RNCt [d] =
Lσ2

2
Ä∑U

i=1 β
d
i,tKibdt

ä2 +
Kρ1

2L
∑U
i=1Kiβdi,t

, ∀d,

(36)

RSGDt [d] =
Lσ2

2
Ä∑U

i=1 β
d
i,tKibdt

ä2 +
U(ρ1 + 2Lρ24t−1)

2L
∑U
i=1Kiβdi,t

, ∀d.

(37)

Since all entries indexed by d are separable with respect
to the design parameters, we perform entry-wise optimization
by considering wt and wi,t one entry at a time, where the
superscript d and the index of different cases are omitted
hereafter. To determine the worker selection vector βi,t and
the power scaling factor bt at the t-th iteration, the PS carries
out a joint optimization problem formulated as follows:

P2: min
{bt,βi,t}Ui=1

Rt (38a)

s.t.
∣∣∣∣βi,tKibt

hi,t
wi,t

∣∣∣∣2 ≤ Pmax
i , (38b)

βi,t ∈ {0, 1}, i ∈ {1, 2, ..., U},

where Ki should be Kb in (38b) for the SGD case.
However, in (38b), the knowledge of {wi,t}Ui=1 is needed

but is unavailable to the PS due to analog aggregation.
To overcome this issue, we reformulate a practical optimiza-

tion problem via an approximation that wt−1 ≈ 1
U

∑U
i=1 wi,t,

in light of the consensus constraint in P1. According to (47) in
the proof of Theorem 1, each local parameter wi,t is updated
from the broadcast wt−1 along the direction of the averaged
gradient over its local data α

Ki

∑Ki

k=1∇f(wt−1;xi,k,yi,k).
Hence, it is reasonable to make the following common as-
sumption on bounded local gradients, considering that the local
gradients can be controlled by adjusting the learning rate or
through simple clipping [21], [28], [37], [38].

Assumption 4 (bounded local gradients): The gap be-
tween the global parameter wt−1 and the local parameter
update wi,t, ∀i, t is bounded by

|wt−1 − wi,t| ≤ η, (39)

where η ≥ 0 is related to the learning rate α that satisfies the
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following condition4

η ≥ max


{∣∣∣∣∣ αKi

Ki∑
k=1

∇f(w,xi,k,yi,k)

∣∣∣∣∣
}U
i=1

 . (40)

Under Assumption 4, we reformulate the original opti-
mization problem (P2) into the following problem (P3), by
replacing wi,t in (38b) by its approximation:

P3: min
{bt,βi,t}Ui=1

Rt (41a)

s.t.
∣∣∣∣βi,tKibt

hi,t

∣∣∣∣2(|wt−1|+ η)2 ≤ Pmax
i , (41b)

βi,t ∈ {0, 1}, i ∈ {1, 2, ..., U}, (41c)

where the power constraint (41b) is constructed based on the
fact that ∣∣∣∣βi,tKibt

hi,t
wi,t

∣∣∣∣2 =

∣∣∣∣βi,tKibt
hi,t

∣∣∣∣2|wi,t|2
≤
∣∣∣∣βi,tKibt

hi,t

∣∣∣∣2(|wt−1|+ η)2. (42)

Since wt−1 is always available at the PS, P3 becomes a
feasible formulation for adoption in practice. Next, we develop
the optimal solution to P3.

B. Optimal Solution to P3 via Discrete Programming

At first glance, a direct solution to P3 leads to a mixed
integer programming (MIP), which unfortunately incurs high
complexity. To solve P3 in an efficient manner, we develop a
simple solution by identifying a tight search space without loss
of optimality. The tight search space, given in the following
Theorem 4, is a result of the constraints in (41b) and (41c),
irrespective of the objective function (41a). Hence, it holds
universally for any Rt, such as those in (35)-(37).

Theorem 4. When all the required parameters in P3 i.e.,
{Pmax

i , wt−1, hi,t,Ki, η}Ui=1, are available at the PS, the
solution space of (bt, βi,t) in P3 can be reduced to the
following tight search space without loss of optimality as

S =

{ßÄ
b
(k)
t , β

(k)
i,t

ä™U
k=1

∣∣∣∣∣b(k)
t =

∣∣∣∣∣
√
Pmax
k hk,t

Kk(|wt−1|+ η)

∣∣∣∣∣ ,
β

(k)
t (b

(k)
t ) =

î
β

(k)
1,t , . . . , β

(k)
U,t

ó
, k = 1, . . . , U

}
, (43)

where β(k)
t is a function of b(k)

t , in the form:

β
(k)
i,t = H

Å
Pmax
i −

∣∣∣∣Kib
(k)
t (|wt−1|+ η)

hi,t

∣∣∣∣ã (44)

and H(x) is the Heaviside step function, i.e., H(x) = 1 for
x > 0, and H(x) = 0 otherwise.

Proof. Please see Appendix B.

4This implies the value range of η. In practice, η can take
|wt−1 − wt−2|. In addition, for the SGD case, we have η ≥
max{{|αEDi

[∇f(w,xi,k,yi,k)]|}Ui=1}

Thanks to Theorem 4, we equivalently transform P3 from a
MIP into a discrete programming (DP) problem P4 as follows

P4: min
(bt,βt)∈S

Rt = Rt (bt,βt) (45)

According to P4, the objective Rt can only take on U
possible values corresponding to the U feasible values of
bt; meanwhile, given each bt, the value of βt is uniquely
determined. Hence the minimum Rt can be obtained via line
search over the U feasible points (bt,βt) in (43). Note that the
feasible points in (43) are determined by the channel gains,
power limits and data sizes of the U workers. Hence, the
optimal transmission policy decided by P4 reflects the tradeoff
among workers in terms of their channel quality, available
power resource, and data quality.

It is worth noting that the solution b∗t of P4 may exceed the
maximum value allowed at a worker, due to the approximation
introduced in Assumption 4. To strictly comply to the power
constraint, each worker needs to take the following bounding
step when sending its local parameters:

1) if
∣∣∣∣Kib

∗
twi,t

hi,t

∣∣∣∣2 ≤ Pmax
i , then the i-th worker sends

Kib
∗
twi,t

hi,t
;

2) otherwise, it sends
√
Pmax
i sgn(wi,t), where sgn(·) is the

sign function.
Putting together, we propose a joint optimization for FL

over the air (INFLOTA) as summarized in Algorithm 1, which
is a dynamic scheduling and power scaling policy. By using
different Rt, our INFLOTA can be adjust to all the considered
cases including the convex and non-convex, using either GD
or SGD implementations.

Algorithm 1 The implementation of INFLOTA

Given:
System parameters {Pmax

i ,Ki, η}Ui=1;
1: The PS initializes {w0, b

∗
1,β

∗
1} and broadcasts them to all

the local workers.
2: for t = 1 : T do
3: At the workers:
4: Computation: Iteratively update the local model via

(4) where w = wt−1 is from the PS;
5: Communication: Upon receiving (bt,βt), send

sgn(wi,t) min
Ä
Kibt|wi,t|

hi,t
,
√
P Max
i

ä
to the PS, if

βi,t = 1, ∀i, d;
6: At the PS:
7: Calculate the global model wt via (9) from yt that is

aggregated from local workers;
8: for d = 1 : D do
9: Calculate S from (43), which yields U feasible points

{(b(k)
t+1,β

(k
t+1)}Uk=1;

10: Solve P4 in (45) by using a line search over the U
feasible points to find the optimal {b∗t+1,β

∗
t+1} for

given d and t;
11: end for
12: Send wt and (bt+1,βt+1) (including all D optimal

{b∗t+1,β
∗
t+1}) to all the workers;

13: end for
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Remark 2. (Optimality) P3 is equivalently reformulated as
P4, which is solved by a search method with much reduced
computational complexity thanks to the reduced search space.
Comparing P3 to P2, the constraint (41b) of P3 is more
restrictive than the constraint in (38b) of P2. Since P3 reduces
the feasible domain of P2, the solution to P3 cannot be
superior to that of P2. Therefore, the optimal solution of P3
is an upper bound of P2, i.e., Rt calculated by solving P3 is
larger than the actual one.
Remark 3. (Complexity) Algorithm 1 provides a holistic
solution for implementation of the overall FL at both the PS
and workers sides. Its computational complexity is mainly
determined by that of the optimization step in P4. The
complexity order of the optimization step is low at O(U),
since the search space is reduced to U points only via P4.
Remark 4. (Implementation) To implement the FL over the
air in Algorithm 1, the PS must know the CSI, the number
of the data samples and the maximum transmit power of all
local workers. This information can be obtained by the PS
when local workers initially connect to it. Before the imple-
mentation of Algorithm 1, the PS must first broadcast the
global model information to the workers. Noticeably, taking
P4 into the implementation of FL, some workers need to send
sgn(wi,t) min

Ä
Kibt|wi,t|

hi,t
,
√
P Max
i

ä
to meet the requirement on

the maximum transmit power. Such a bounding method can
be viewed as a quantization measure, which does not affect
the convergence [39].

VI. SIMULATION RESULTS AND ANALYSIS

In the simulations, we evaluate the performance of the
proposed INFLOTA for both linear regression and image
classification tasks, which are based on a synthetic dataset
and the MNIST dataset, respectively.

The considered network has U = 20 workers, whose
maximum power is set to be Pmax

i = Pmax = 10 mW for
any i ∈ [1, U ]. The receiver noise power at PS is set to be
σ2 = 10−4 mW, i.e., SNR = Pmax

σ2 = 5 dB. The wireless
channel gain between the workers and the PS are generated
from a Rayleigh fading model. Here, hi,t is generated from
an exponential distribution with unit mean for different i and
t.

We use two baseline methods for comparison: a) an FL
algorithm that assumes idealized wireless transmissions with
error-free links to achieve perfect aggregation, and b) an FL
algorithm that randomly determines the power scalar and user
selection. They are named as Perfect aggregation and Random
policy, respectively. In Random policy, the probability of each
worker being selected is 50% and the power scalar is generated
from an exponential distribution with unit mean.

A. Linear regression experiments

In linear regression experiments, the synthetic data used to
train the FL algorithm is generated randomly from [0, 1]. The
input x and the output y follow the function y = −2x+ 1 +
n× 0.4 where n follows a Gaussian distribution N (0, 1). The
FL algorithm is used to model the relationship between x and
y.
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Fig. 2: An example of implementing FL for linear regression.
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Fig. 3: MSE as the number of iteration varies.

Since linear regression only involves two parameters, we
train a simple two-layer neural network, with one neuron in
each layer, without activation functions, which is the convex
case. The loss function is the MSE of the model prediction ŷ
and the labeled true output y. The learning rate is set to 0.01.

Fig. 2 shows an example of using FL for linear regression.
The optimal result of a linear regression is y = −2x + 1,
because the original data generation function is y = −2x +
1 + 0.4n. In Fig. 2, we can see that the most accurate
approximation is achieved by Perfect aggregation, which is
the ideal case without considering the influence of wireless
communication. Random policy considers the influence of
wireless communication but without any optimization. Thus,
its performance is worst. Our proposed INFLOTA performs
closely to the ideal case, which jointly considers the learning
and the influence of wireless communication. This is because
that our proposed INFLOTA can optimize worker selection
and power control so as to reduce the effect of wireless
transmission errors on FL.

In Fig. 3, we show how wireless transmission affects the
convergence behavior of the global FL model training in terms
the value of the loss function and the global FL model remains
unchanged which shows that the global FL model converges.
As we can see, as the number of iterations increases, the
MSE values of all the considered learning algorithms decrease
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Fig. 4: MSE as the number of workers varies.
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Fig. 5: MSE as the number of data samples per worker varies.

at different rates, and eventually flatten out to reach their
steady state. All schemes converge, but to different steady
state values. This behavior corroborates the results in Lemma
1 and Proposition 1 that the channel noise does not affect the
convergence of the FL algorithm but it affects the value that
the FL algorithm converges to.

Fig. 4 shows how MSE varies with the total number of
workers U . In general, the MSE performance of all considered
FL schemes decreases as U increases. This is due to the
fact that an increase in the number of workers leads to an
increased volume of data available for the FL training and
hence improved accuracy of the estimated model parameters.
Moreover, as the number of workers increases, the effect of
wireless transmission on the global FL model accuracy starts
to diminish. This is because the data samples may be already
enough for accurate training when U exceeds a certain level.

In Fig. 5, we present how the MSE changes with the average
number of samples per worker K̄ = K/U . The number of data
samples per worker fluctuates around the average number, i.e.,
we set Ki = round(uniform[K̄−5, K̄+5]). As K̄ increases, all
of the considered learning algorithms have more data samples
available for training, and hence the MSE of all of considered
FL algorithms decrease in Fig. 5. As the average data samples
per worker continues to increase, the MSE improvement slows
down and eventually saturates. This is because that as the data
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Fig. 6: MSE as the noise variance varies.

samples per worker continues to increase, the data samples are
enough for training the FL model.

Fig. 6 presents how the AWGN received by the PS affects
the MSE. We can see that as the noise variance increases, the
MSE values of all of considered FL algorithms increase, ex-
cept for Perfect aggregation. When the noise variance is small
(e.g., less than 10−1), it has little effect on the performance
of FL algorithms.

B. Evaluation on the MNIST dataset

In order to evaluate the performance of our proposed
INFLOTA in realistic application scenarios with real data, we
train a multilayer perceptron (MLP) on the MNIST dataset5

with a 784-neuron input layer, a 64-neuron hidden layer, and
a 10-neuron softmax output layer, which is a non-convex case.
We adopt cross entropy as the loss function, and rectified linear
unit (ReLU) as the activation function. The total number of
parameters in the MLP is 50890. The learning rate α is set
as 0.1. In MNIST dataset, there are 60000 training samples
and 10000 test samples. We randomly take out 500 − 1000
training samples and distribute them to 20 local workers as
their local data. Then the three trained FL are tested with
10000 test samples. We provide the results of cross entropy
and test accuracy versus the iteration index t in Fig. 7 and
Fig. 8, respectively. Since the MNIST dataset is designed for
handwritten digit identification, the test accuracy presents the
identification accuracy. As we can see, our proposed INFLOTA
outperforms Random policy, and achieves comparable perfor-
mance as Perfect aggregation.

VII. CONCLUSION

In this paper, we have studied the joint optimization of
communications and FL over the air with analog aggregation,
in which both worker selection and transmit power control
are considered under the constraints of limited communication
resources. Under the convex and non-convex cases with either
the GD or SGD implementations, we respectively derive
closed-form expressions for the expected convergence rate of

5http://yann.lecun.com/exdb/mnist/
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Fig. 7: Cross entropy as the number of iteration varies.
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Fig. 8: Test accuracy as the number of iteration varies.

the FL algorithm, which can quantify the impact of resource-
constrained wireless communications on FL under the analog
aggregation paradigm. Through analyzing the expected con-
vergence rate, we have proposed a joint optimization scheme
of worker selection and power control, which can mitigate the
impact of wireless communications on the convergence and
performance of the FL algorithm. More significantly, our joint
optimization scheme is applicable for both the convex and
non-convex cases, using either GD or SGD implementations.
Simulation results show that the proposed optimization scheme
is effective in mitigating the impact of wireless communica-
tions on FL.

APPENDIX A
PROOF OF THEOREM 1

Theorem 1 considers the full GD method for convex
problems. Following the proof for the gradient methods with
noise in [33], we first present the inequality implied by the
Assumption 1, as follows

F (wt) ≤F (wt−1) + (wt −wt−1)T∇F (wt−1)

+
L

2
‖wt −wt−1‖2. (46)

Employing a standard full GD method, the i-th worker
updates its local FL model parameter wi,t at the t-th iteration
by

wi,t = wt−1−
α

Ki

Ki∑
k=1

∇f(wt−1,xi,k,yi,k), i = 1, 2, ..., U.

(47)

Substituting (47) to (9), we have

wt = wt−1 +

(
U∑
i=1

Kiβi,t � bt

)�−1

� zt

− α

(
U∑
i=1

Kiβi,t

)�−1

�
U∑
i=1

Ki∑
k=1

βi,t �∇f(wt−1;xi,k, yi,k)

= wt−1 − α(∇F (wt−1)− o), (48)

where

o = ∇F (wt−1) +

(
α

U∑
i=1

Kiβi,t � bt

)�−1

� zt

−

(
U∑
i=1

Kiβi,t

)�−1

�
U∑
i=1

Ki∑
k=1

βi,t �∇f(wt−1;xi,k, yi,k).

(49)

Given the learning rate α = 1
L (a special setting for

simple expression without loss of generality), the expected
optimization function of E[F (wt)] can be expressed as

E[F (wt)] ≤E
ï
F (wt−1)− α(∇F (wt−1)− o)T∇F (wt−1)

+
Lα2

2
‖∇F (wt−1)− o‖2

ò
(a)
=E[F (wt−1)]− 1

2L
‖∇F (wt−1)‖2 +

1

2L
E[‖o‖2],

(50)

where the step (a) is derived from the fact that

Lα2

2
‖∇F (wt−1)− o‖2 =

1

2L
‖∇F (wt−1)‖2

− 1

L
oT∇F (wt−1) +

1

2L
‖o‖2. (51)
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E[‖o‖2] can be derived as follows

E[‖o‖2] =

E

[∥∥∥∥∇F (wt−1) +

(
α

U∑
i=1

Kiβi,t � bt

)�−1

� zt−(
U∑
i=1

Kiβi,t

)�−1

�
U∑
i=1

Ki∑
k=1

βi,t �∇f(wt−1;xi,k,yi,k)

∥∥∥∥2
]

= E

[∥∥∥∥∑U
i=1

∑Ki

k=1∇f(wt−1;xi,k,yi,k)

K
−

(
U∑
i=1

Kiβi,t

)�−1

�
U∑
i=1

Ki∑
k=1

βi,t �∇f(wt−1;xi,k,yi,k)

+

(
α

U∑
i=1

Kiβi,t � bt

)�−1

� zt

∥∥∥∥2
]

= E

[∥∥∥∥
(
α

U∑
i=1

Kiβi,t � bt

)�−1

� zt +
U∑
i=1

Å
1

K
−

βi,t �

(
U∑
i=1

Kiβi,t

)�−1
é
�

Ki∑
k=1

∇f(wt−1;xi,k,yi,k)

∥∥∥∥2
]
,

(52)

where 1 is the all-1 vector of length D. The dimension of 1
is the same length as that of βi,t.

Employing the triangle inequality of norms ‖X + Y‖ ≤
‖X‖+‖Y‖, the submultiplicative property of norms ‖XY‖ ≤
‖X‖‖Y‖, and the Jensen’s inequality, (52) can be further
derived as follows

E[‖o‖2] ≤ E

[∥∥∥∥∥
U∑
i=1

Å
1

K
−

βi,t �

(
U∑
i=1

Kiβi,t

)�−1
é
�

Ki∑
k=1

∇f(wt−1;xi,k,yi,k)

∥∥∥∥∥
2]

+ E

[∥∥∥∥∥
(
α

U∑
i=1

Kiβi,t � bt

)�−1

� zt

∥∥∥∥∥
2]

≤ E

[∥∥∥∥∥∥
(
α

U∑
i=1

Kiβi,t � bt

)�−1

� zt

∥∥∥∥∥∥
2 ]

+ E

[
K

U∑
i=1

∥∥∥∥∥ 1

K

− βi,t �

(
U∑
i=1

Kiβi,t

)�−1 ∥∥∥∥∥
2 Ki∑
k=1

‖∇f(wt−1;xi,k,yi,k)‖2
]

≤

∥∥∥∥∥∥
(

U∑
i=1

Kiβi,t � bt

)�−1
∥∥∥∥∥∥

2

σ2L2 +K
U∑
i=1

∥∥∥∥∥ 1

K

− βi,t �

(
U∑
i=1

Kiβi,t

)�−1 ∥∥∥∥∥
2 Ki∑
k=1

‖∇f(wt−1;xi,k,yi,k)‖2.

(53)

Applying (12) in Assumption 3 to (53) leads to

E[‖o‖2] ≤ K
U∑
i=1

∥∥∥∥∥ 1

K
− βi,t �

(
U∑
i=1

Kiβi,t

)�−1 ∥∥∥∥∥
2

Ki(ρ1

+ ρ2‖∇F (wt−1)‖2) +

∥∥∥∥∥∥
(

U∑
i=1

Kiβi,t � bt

)�−1
∥∥∥∥∥∥

2

σ2L2

= K
U∑
i=1

D∑
d=1

(
1

K
−

βdi,t∑U
i=1Kiβdi,t

)2

Ki(ρ1

+ ρ2‖∇F (wt−1)‖2) +

∥∥∥∥∥(
U∑
i=1

Kiβi,t � bt)�−1

∥∥∥∥∥
2

σ2L2

= K
U∑
i=1

D∑
d=1

(
1

K2
− 2

K

βdi,t∑U
i=1Kiβdi,t

+
(βdi,t)

2

(
∑U
i=1Kiβdi,t)

2

)
Ki(ρ1 + ρ2‖∇F (wt−1)‖2)

+

∥∥∥∥∥(

U∑
i=1

Kiβi,t � bt)�−1

∥∥∥∥∥
2

σ2L2

=
D∑
d=1

(
K∑U

i=1Kiβdi,t
− 1

)
(ρ1 + ρ2‖∇F (wt−1)‖2)

+

∥∥∥∥∥(

U∑
i=1

Kiβi,t � bt)�−1

∥∥∥∥∥
2

σ2L2. (54)

Substituting (54) to (50), we have:

E[F (wt)] ≤ E[F (wt−1)]− 1

2L
‖∇F (wt−1)‖2+

1

2L

(
D∑
d=1

(
K∑U

i=1Kiβdi,t
− 1

)
(ρ1 + ρ2‖∇F (wt−1)‖2)

+

∥∥∥∥∥(
U∑
i=1

Kiβi,t � bt)�−1

∥∥∥∥∥
2

σ2L2

)
. (55)

Subtract E[F (w∗)] from both sides of (55), we have:

E[F (wt)− F (w∗)] ≤ E[F (wt−1)− F (w∗)]

+
1

2L

(
D∑
d=1

(
K∑U

i=1Kiβdi,t
− 1

)
(ρ1 + ρ2‖∇F (wt−1)‖2)

+

∥∥∥∥∥(

U∑
i=1

Kiβi,t � bt)�−1

∥∥∥∥∥
2

σ2L2

)
− 1

2L
‖∇F (wt−1)‖2.

(56)

To minimize both sides of (11), we have

min
wt

F (wt) ≥ min
wt

(F (wt−1) + (wt −wt−1)T∇F (wt−1)

+
µ

2
‖wt −wt−1‖2). (57)

The minimization of the left-hand side is achieved by wt =
w∗, while the minimization of the right-hand side is achieved
by wt = wt−1 − 1

µ∇F (wt−1). Thus, we have

F (w∗) ≥ F (wt−1)− 1

2µ
‖∇F (wt−1)‖2. (58)
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Then

‖∇F (wt−1)‖2 ≥ 2µ(F (wt−1)− F (w∗)). (59)

Substituting (59) to (56), we get

E[F (wt)− F (w∗)] ≤ (1− µ

L
)E[F (wt−1)− F (w∗)]

+
1

2L

(
D∑
d=1

(
K∑U

i=1Kiβdi,t
− 1

)
(ρ1 + ρ2‖∇F (wt−1)‖2)

+

∥∥∥∥∥(
U∑
i=1

Kiβi,t � bt)�−1

∥∥∥∥∥
2

σ2L2

)

= (1− µ

L
)E[F (wt−1)− F (w∗)] +

ρ2

2L

(
D∑
d=1

(
K∑U

i=1Kiβdi,t

− 1

))
‖∇F (wt−1)‖2 +

ρ1

2L

D∑
d=1

(
K∑U

i=1Kiβdi,t
− 1

)

+

∥∥∥∥∥(

U∑
i=1

Kiβi,t � bt)�−1

∥∥∥∥∥
2

Lσ2

2
. (60)

Next, in the same way that (59) is derived, to minimize both
sides of (46), we have

‖∇F (wt−1)‖2 ≤ 2L(F (wt−1)− F (w∗)). (61)

Substituting (61) to (60), we get

E[F (wt)− F (w∗)] ≤

(
1− µ

L

+ ρ2

D∑
d=1

(
K∑U

i=1Kiβdi,t
− 1

))
E[F (wt−1)− F (w∗)]

+
ρ1

2L

D∑
d=1

(
K∑U

i=1Kiβdi,t
− 1

)

+

∥∥∥∥∥(
U∑
i=1

Kiβi,t � bt)�−1

∥∥∥∥∥
2

Lσ2

2

=Bt +AtE[F (wt−1)− F (w∗)], (62)

where

At = 1− µ

L
+ ρ2

D∑
d=1

(
K∑U

i=1Kiβdi,t
− 1

)
, (63)

Bt =
ρ1

2L

D∑
d=1

(
K∑U

i=1Kiβdi,t
− 1

)

+

∥∥∥∥∥(
U∑
i=1

Kiβi,t � bt)�−1

∥∥∥∥∥
2

Lσ2

2
. (64)

The proof is completed.

APPENDIX B
PROOF OF THEOREM 2

Theorem 2 considers the full GD method for non-convex
problems. The proof of Theorem 2 follows that of Theorem
1 until (55). From (55), we have

E[F (wt)] ≤ E[F (wt−1)] +
ρ1

2L

D∑
d=1

(
K∑U

i=1Kiβdi,t
− 1

)

− 1

2L

(
1− ρ2

D∑
d=1

(
K∑U

i=1Kiβdi,t
− 1

))
‖∇F (wt−1)‖2

+

∥∥∥∥∥(
U∑
i=1

Kiβi,t � bt)�−1

∥∥∥∥∥
2

Lσ2

2

= E[F (wt−1)]−
2−At − µ

L

2L
‖∇F (wt−1)‖2 +Bt. (65)

Summing up the above inequality from t = 1 to t = T , we
get

E[F (wt)]− E[F (w0)]

≤ −
T∑
t=1

2−At − µ
L

2L
‖∇F (wt−1)‖2 +

T∑
t=1

Bt,

(66)

which leads to

T∑
t=1

2−At − µ
L

2L
‖∇F (wt−1)‖2

≤ E[F (w0)]− E[F (wt)] +
T∑
t=1

Bt

≤ E[F (w0)]− E[F (w∗)] +
T∑
t=1

Bt. (67)

Recalling Proposition 1, we have

0 ≤
1− ρ2D( K

Kmin
− 1)

2L
≤

2−At − µ
L

2L
≤ 1

2L
, ∀t. (68)

Substituting (68) to (67), we get

1

T

T∑
t=1

1− ρ2D( K
Kmin

− 1)

2L
‖∇F (wt−1)‖2

≤ 1

T

T∑
t=1

2−At − µ
L

2L
‖∇F (wt−1)‖2

≤ 1

T
(E[F (w0)]− E[F (w∗)]) +

1

T

T∑
t=1

Bt. (69)

As a result, we have the conclusion in Theorem 2,

1

T

T∑
t=1

‖∇F (wt−1)‖2 ≤
2L
∑T
t=1Bt

T (1− ρ2D( K
Kmin

− 1))

+
2L

T (1− ρ2D( K
Kmin

− 1))
E[F (w0)− F (w∗)]. (70)
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APPENDIX C
PROOF OF THEOREM 3

Exploiting the SGD method, the local parameter of the i-th
worker is updated at the t-th iteration by

wi,t = wt−1 − αEDi

ñ∑Kb

k=1∇f(wt−1,xi,k,yi,k)

Kb

ô
, (71)

where EDi [·] is the expectation, which represents that the i-th
worker randomly chooses Kb samples from its local dataset
Di to compute the local gradient.

Substituting (71) to (9), we reach a averaged gradient
estimate as

wt =wt−1 − α

(
U∑
i=1

Kbβi,t

)�−1

�
U∑
i=1

Ç
Kbβi,t � EDi

ñ∑Kb

k=1∇f(wt−1,xi,k,yi,k)

Kb

ôå
+

(
U∑
i=1

Kbβi,t � bt

)�−1

� zt

=wt−1 − α(∇F (wt−1)− o), (72)

where

o =∇F (wt−1)−

(
U∑
i=1

Kbβi,t

)�−1

�
U∑
i=1

(
βi,t � EDi

[
Kb∑
k=1

∇f(wt−1,xi,k,yi,k)

])

+

(
α

U∑
i=1

Kbβi,t � bt

)�−1

� zt. (73)

Let Ni,t denote the set of the samples that are not chosen
by the i-th worker at the t-th iteration, E[‖o‖2] can be derived

as follows

E[‖o‖2] = E

[∥∥∥∥∑U
i=1

∑Ki
k=1∇f(wt−1;xi,k,yi,k)

K

+

(
α

U∑
i=1

Kbβi,t � bt

)�−1

� zt −

(
U∑

i=1

Kbβi,t

)�−1

�
U∑

i=1

(
βi,t � EDi

[
Kb∑
k=1

∇f(wt−1,xi,k,yi,k)

]) ∥∥∥∥2
]

= E

[∥∥∥∥ U∑
i=1

Ñ
1

K
− βi,t �

(
U∑

i=1

Kbβi,t

)�−1
é

� EN i,t

 ∑
k∈N i,t

∇f(wt−1;xi,k,yi,k)


+

∑U
i=1 E[

∑
k∈Ni,t

∇f(wt−1;xi,k,yi,k)]

K

+

(
α

U∑
i=1

Kbβi,t � bt

)�−1

� zt

∥∥∥∥2
]

≤

∥∥∥∥∥∥
(

U∑
i=1

Kbβi,t � bt

)�−1
∥∥∥∥∥∥
2

σ2L2 +

(
U∑

i=1

Kb

)
U∑

i=1

∥∥∥∥ 1

K
− βi,t

�

(
U∑

i=1

Kbβi,t

)�−1 ∥∥∥∥2EN i,t

 ∑
k∈N i,t

‖∇f(wt−1;xi,k,yi,k)‖2


+
‖
∑U

i=1 E[
∑

k∈Ni,t
∇f(wt−1;xi,k,yi,k)]‖2

K2
. (74)

Applying Assumption 3, we get

E[‖o‖2] ≤

(
U∑
i=1

Kb

)
D∑
d=1

ÑÄ∑U
i=1Kb

ä
− 2K

K2

+
1∑U

i=1Kbβdi,t

)
(ρ1 + ρ2‖∇F (wt−1)‖2)+

(
∑U
i=1(Ki −Kb))

2

K2
(ρ1 + ρ2‖∇F (wt−1)‖2)

+

∥∥∥∥∥∥
(

U∑
i=1

Kbβi,t � bt

)�−1
∥∥∥∥∥∥

2

σ2L2. (75)

Substituting (75) into (50), we have

E[F (wt)] ≤
1

2L

(∥∥∥∥∥∥
(

U∑
i=1

Kbβi,t � bt

)�−1
∥∥∥∥∥∥

2

σ2L2

+

(
D∑
d=1

(Ä∑U
i=1Kb

ä2
− 2K

Ä∑U
i=1Kb

ä
K2

+

Ä∑U
i=1Kb

ä
∑U
i=1Kbβdi,t

)

+
(
∑U
i=1(Ki −Kb))

2

K2

))
(ρ1 + ρ2‖∇F (wt−1)‖2)

)
+ E[F (wt−1)]− 1

2L
‖∇F (wt−1)‖2. (76)
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Subtracting E[F (w∗)] from both sides of (76), and applying
(59) and (61), we get

E[F (wt)− F (w∗)] ≤ BSGDt +ASGDt E[F (wt−1)− F (w∗)],
(77)

where

ASGDt =1− µ

L
+ ρ2

(
D∑
d=1

(
(
∑U
i=1Kb)

2 − 2K(
∑U
i=1Kb)

K2

+
(
∑U
i=1Kb)∑U

i=1Kbβdi,t

)
+

(
∑U
i=1(Ki −Kb))

2

K2

)
, (78)

BSGDt =
ρ1

2L

(
D∑
d=1

(
(
∑U
i=1Kb)

2 − 2K(
∑U
i=1Kb)

K2

+
(
∑U
i=1Kb)∑U

i=1Kbβdi,t

)
+

(
∑U
i=1(Ki −Kb))

2

K2

)

+

∥∥∥∥∥∥
(

U∑
i=1

Kiβi,t � bt

)�−1
∥∥∥∥∥∥

2

Lσ2

2
. (79)

Applying (77) recursively, we have

E[F (wt)− F (w∗)] ≤
t−1∑
i=1

i∏
j=1

ASGDt+1−jB
SGD
t−i +BSGDt

+

t∏
j=1

ASGDj E[F (w0)− F (w∗)]. (80)

which completes the proof.

APPENDIX D
PROOF OF THEOREM 4

To minimize Rt, it can be seen from (35), (36) and (37)
that we should maximize the number of the selected workers
and the transmit power scaling factor in the t-th iteration.
Thus, the selected workers should send their parameters at
their maximum power. In order to reach the desired parameter
aggregation at the PS as in (5), each worker needs to use the
same transmit power scaling factor bt, which is a parameter
that needs to be optimized (bt determines the worker selec-
tion). According to (35), (36) and (37), a larger bt leads to a
smaller Rt. On the other hand, (41b) indicates that a larger
bt results in less workers is selected, which then results in an
increase of Rt.

Rewriting (38b) and replacing |wi,t| with (|wt−1|+ η), we
obtain the maximum acceptable bt of the i-th worker as

bmax
i,t =

∣∣∣∣∣
√
Pmax
i hi,t

Ki(|wt−1|+ η)

∣∣∣∣∣ . (81)

Accordingly, bt should be chosen from {bmax
i,t }Ui=1. Once

bt is determined, βt can be determined by verifying whether
the transmit power meets the condition in (7). As a result, we

obtain a reduced solution space of the optimization problem
P2 as

S =

{¶Ä
b
(k)
t , β

(k)
i,t

ä©U
k=1

∣∣∣∣b(k)
t = bmax

k,t ,

β
(k)
t

Ä
b
(k)
t

ä
=
î
β

(k)
1,t , . . . , β

(k)
U,t

ó
, k = 1, . . . , U

}
, (82)

with

β
(k)
U,t = H

Ç
Pmax
U −

∣∣∣∣∣KUb
(k)
t (|wt−1|+ η)

hU,t

∣∣∣∣∣
å

(83)

where

H(x) =

®
1, x > 0,

0, x ≤ 0.
(84)

is the Heaviside step function.
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