
DescribeCtx: Context-Aware Description Synthesis for Sensitive
Behaviors in Mobile Apps

Shao Yang1 Yuehan Wang2 Yuan Yao3 Haoyu Wang4 Yanfang (Fanny) Ye5 Xusheng Xiao1

1Case Western Reserve University, 2University of Illinois at Urbana-Champaign
3State Key Laboratory for Novel Software Technology, Nanjing University

4Beijing University of Posts and Telecommunications, 5University of Notre Dame
1{sxy599,xusheng.xiao}@case.edu, 2yuehanw2@illinois.edu, 3y.yao@nju.edu.cn, 4haoyuwang@bupt.edu.cn, 5yye7@nd.edu

ABSTRACT

While mobile applications (i.e., apps) are becoming capable of han-

dling various needs from users, their increasing access to sensitive

data raises privacy concerns. To inform such sensitive behaviors

to users, existing techniques propose to automatically identify ex-

planatory sentences from app descriptions; however, many sensitive

behaviors are not explained in the corresponding app descriptions.

There also exist general techniques that translate code to sentences.

However, these techniques lack the vocabulary to explain the uses

of sensitive data and fail to consider the context (i.e., the app func-

tionalities) of the sensitive behaviors. To address these limitations,

we propose DescribeCtx, a context-aware description synthesis

approach that trains a neural machine translation model using a

large set of popular apps, and generates app-specific descriptions

for sensitive behaviors. Specifically, DescribeCtx encodes three

heterogeneous sources as input, i.e., vocabularies provided by pri-

vacy policies, behavior summary provided by the call graphs in code,

and contextual information provided by GUI texts. Our evaluations

on 1,262 Android apps show that, compared with existing baselines,

DescribeCtx produces more accurate descriptions (24.96 in 𝐵𝐿𝐸𝑈)

and achieves higher user ratings with respect to the reference sen-

tences manually identified in the app descriptions.

CCS CONCEPTS

•Theory of computation→ Program analysis; • Security and

privacy → Software security engineering.

KEYWORDS

mobile apps; description synthesis; static analysis; deep learning

ACM Reference Format:

Shao Yang, Yuehan Wang, Yuan Yao, Haoyu Wang, Yanfang (Fanny) Ye,

Xusheng Xiao. 2022. DescribeCtx: Context-Aware Description Synthesis for

Sensitive Behaviors in Mobile Apps. In Proceedings of the 44th IEEE/ACM

International Conference on Software Engineering (ICSE’22), May 22–27, 2022,

Pittsburgh, USA.ACM,NewYork, NY, USA, 13 pages. https://doi.org/10.1145/-

3510003.3510058

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICSE ’22, May 22–27, 2022, Pittsburgh, PA, USA

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9221-1/22/05. . . $15.00
https://doi.org/10.1145/3510003.3510058

(a) GIF camera (b) Auto SMS

Figure 1: Example apps’ GUIs: (a) permission request; (b)

GUI context for SMS and microphone permissions.

1 INTRODUCTION

Mobile applications (i.e., apps) are becoming capable of handling

nearly all kinds of needs fromusers [63]. However, certain behaviors

of apps are less desirable or even harmful [28, 35, 44, 60, 86], such

as disclosing users’ location in the background [22, 44, 61, 86].

Mainstream smartphone platforms (i.e., Android and iOS) require

users to grant permissions for permission requests at run time [36,

55] (Figure 1(a)). However, as shown in research studies [23, 45, 74,

75], most apps provide only information about what permissions

they request, rather than how and why they will use the permission-

protected data, causing users to make uninformed decisions on

their privacy.

Recognizing these limitations, existing research efforts [56, 59]

have been made to provide descriptions by identifying sentences

in app descriptions. App descriptions describe apps’ functionalities

and features, and may include sentences that provide justifications

for certain permissions. However, as most app descriptions or pri-

vacy policies do not explain every sensitive behavior of the app,

these methods can only provide descriptions for a small subset

of sensitive behaviors. Our empirical study on 1,292 popular apps

from Google Play [27] shows that only 37.37% permission uses are

explained in app descriptions. For example, “Wish” is an uprising

shopping app with more than 500M downloads. It requests multi-

ple dangerous permissions (such as LOCATION, STORAGE, CONTACTS, and

685

2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE)

CAMERA) without providing any information regarding how these

dangerous permissions will be used in the app description.

Alternatively, there exist techniques [33, 40, 46, 62, 82] that gen-

erate comments for code, or translate permission-protected API

calls based on a pre-defined description model. Unfortunately, these

techniques mainly generate functionality descriptions by utilizing

the words in comments and identifiers, and lack the vocabulary to

explain the uses of sensitive data. More importantly, these tech-

niques fail to consider the context of sensitive behaviors, i.e., what

functionality justify the apps’ sensitive behaviors (e.g., car navi-

gation justifying the use of gps locations), making the generated

sentences less accurate and informative.

In this paper, we propose a context-aware description syn-

thesis approach, DescribeCtx, to generate app-specific de-

scriptions for sensitive behaviors. Specifically, inspired by the

recent advances of neural machine translation [12, 16, 50, 66], De-

scribeCtx trains a sequence-to-sequence (seq2seq) model by using

the apps’ code and contextual features extracted from a large set of

popular apps. The synthesized descriptions can be used to directly im-

prove the descriptions shown in permission requests (e.g., the prompts

for requesting permissions), or assist developers in writing customized

messages for explaining the permission requests, helping promote

better security practices in mobile apps.

Due to the unique characteristics of mobile apps, there are three

major challenges to train DescribeCtx: � identifying the represen-

tative features for the sensitive behaviors in the code and the apps’

contextual information, � building the vocabulary for describing

the sensitive behaviors, and � extracting the reference sentences

to supervise the model learning. To address these challenges, De-

scribeCtx is built upon the following key insights:

• Representation of sensitive behaviors: sensitive behaviors are trig-

gered by permission-protected API calls. Call graphs that lead to

permission-protectedAPI calls, referred to as permission-protected-

API call graph (PACG), have been shown to be effective in rep-

resenting the contexts of sensitive behaviors for detecting un-

desired behaviors [20, 78, 82, 83]. Thus, the PACG of a sensitive

behavior provides a representative summary of the sensitive

behavior’s context in the code.

• Representation of contextual information: an app’s GUI includes

the contextual information that describes the app’s functional-

ity and justifies the uses of certain permissions. As shown in

Figure 1(b), the GUI provides the contextual information of the

apps’ functionality for sending SMSs, and we can infer that the

intention of the “Auto Reply” button is to reply SMSs. Thus, the

text in the GUI where a sensitive behavior is triggered provides

the contextual information for the sensitive behavior.

• Vocabularies for sensitive behaviors: as shown in existing stud-

ies [14, 59, 69], privacy policies contain information such as what

kind of data will be collected and what permissions are required

in this app. Thus, privacy policies can provide the vocabulary for

the apps’ sensitive behaviors.

• Reference sentences for sensitive behaviors: in order to assess the

quality of the synthesized descriptions during both training and

testing stages, we need high-quality reference sentences that

describe sensitive behaviors in apps. As indicated by recent stud-

ies [56, 59], app descriptions contain sentences that explain per-

mission uses. Since these descriptions are provided by the app

developers who own the apps’ code and are mainly used to pro-

mote the apps, they are more concise and easy for the users to

understand. Thus, the sentences that describe sensitive data uses

in app descriptions can be used as the reference sentences for

sensitive behaviors.

Based on these key insights, DescribeCtx represents the fea-

tures of apps’ PACGs, GUI texts, and privacy policies as the sources

and the reference sentences in app descriptions as the targets, and

learns the conversion from the sources to the target. Furthermore,

apps may lack permission descriptions for sensitive behaviors in

their privacy policies. As shown in existing work [13, 23, 68] and

our empirical results in Section 5.2, most apps use permissions

for similar purposes, and thus DescribeCtx borrows the relevant

permission descriptions from the training apps for these apps.

We evaluate DescribeCtx using popular Android apps down-

loaded from Google Play.1 Within our affordable effort, we examine

8,814 apps in total, and then curate an evaluation dataset consisting

of 1,292 popular Android apps among them (20.86𝐺𝐵, 16.93𝑀𝐵 on

average). All of these apps contain permission descriptions in pri-

vacy policies and reference sentences of sensitive behaviors in app

descriptions, so that DescribeCtx can use the permission descrip-

tions to train the seq2seq model and use the reference sentences to

evaluate DescribeCtx. We measure the performance using both

standard metrics in machine translation (𝐵𝐿𝐸𝑈 [57] and 𝑅𝑂𝑈𝐺𝐸-
𝐿 [42]) and user studies.

The results show that DescribeCtx achieves 𝐵𝐿𝐸𝑈 score 24.47
when apps’ own privacy policies are missing and 𝐵𝐿𝐸𝑈 score 25.75
when they are available, which is at least 15.31% better than the

state-of-the-art description synthesis approaches: Code2Vec [4, 5]

andDescribeMe [82]. Furthermore, the user study results show that

on average, DescribeCtx achieves higher ratings for syntactical

correctness and semantic closeness than the baselines, with relative

improvements over 5.13% and 9.91%, respectively. These results in-
dicate that as most permissions are used for similar purposes, even if

apps do not provide descriptions in privacy policies, the guidance

of behavior representation, GUI contextual text, and the rel-

evant permission descriptions of other apps’ privacy poli-

cies can be leveraged to synthesize accurate descriptions.

In summary, the paper makes the following major contributions:

• A novel approach, DescribeCtx, that synthesizes natural lan-

guage descriptions for sensitive behaviors in apps.

• A novel set of techniques that extract features from GUIs, privacy

policies, and PACGs of apps and a novel model that combines

these features to synthesize descriptions for sensitive behaviors.

• An evaluation on 1,292 apps that demonstrates the effectiveness

of DescribeCtx and the improvement over the state-of-the-art.

• A prototype implementation of DescribeCtx and the results

that are both publicly available [2].

1We focus on Android apps due to its market dominance [63] and open source ecosys-
tem, but the general idea is applicable to other smartphone platforms such as iOS.

686

onCreate()

setContentView()

getLastKnownLocation()

getBestProvider() ...

...

...

PACG

Permission Description

GUI Layout Files

... we may use GPS to
determine your location...

Sensitive Behavior
Description
Synthesis

Reference Sentence

find your current location to
get weather based on
your location and gps

...
<TextView
n1:text_size="18.0sp"
...
n1:text="@string/weather_
wait_for_location" />
...

This clock weather app displays
weather temperature based on

your current location

Figure 2: Motivating example of DescribeCtx.

2 BACKGROUND

2.1 App Descriptions and Privacy Policies

An app description is a short summary that describes the app’s

functionality, justifying the sensitive data it will need. For example,

the “Facebook” app declares that its functionality include “share

photos, videos, and your favorite memories, find local social events,

and make plans to meet up with friends”, and “backup photos by

saving them in albums”. This implies that users have to provide the

app with the corresponding permissions to access the camera, the

location data, and the storage. A privacy policy is legally required

by Google Play. In most cases, a privacy policy should specify the

data being collected and the user rights. Additionally, if the app

uses any permission in the following dangerous permission groups,

i.e. CALENDAR, CONTACTS, LOCATION, CAMERA, SMS, STORAGE, PHONE, MICROPHONE,

the developers have to disclose the use of the permission because

these permission groups collect personal sensitive data from the

app users.

2.2 Attentive Seq2seq Model

From a probabilistic perspective, translation from a given source

sentence 𝑥 = (𝑥1, ...𝑥𝑛) to a target sentence 𝑦 = (𝑦1, ...𝑦𝑛), is
equivalent to finding the maximum conditional probability, i.e.

𝑎𝑟𝑔𝑚𝑎𝑥𝑦𝑝 (𝑦 |𝑥). In neural machine translation, a parameterized

model, such as seq2seq [64], is trained to maximize the conditional

probability of sentence pairs. A typical seq2seq model has two re-

current neural networks (RNNs) [25]. One RNN (encoder) is used

to transform source natural language sequences into vector rep-

resentations. The other RNN (decoder) is used to transform the

vector representations to the target natural language sequences. As

the length of input sequence grows, Cho et al. [15] show that the

performance of traditional seq2seq architecture deteriorates dras-

tically. In order to address this issue, Bahdanau et al. [12] extend

the typical seq2seq model with attention mechanism, where the

attentive seq2seq adaptively learns the weights of each input word

at the decoding stage.

3 MOTIVATION EXAMPLE

Figure 2 shows how DescribeCtx extracts features and synthe-

sizes the description for the sensitive behavior triggered by the

permission-protected API getLastKnownLocation, which requires the

permission ACCESS_COARSE_LOCATION. This example is simplified from

the app “mobi.infolife.ezweather.widget.liveweather_forcast”. De-

scribeCtx extracts three types of features from the app. The first

feature is the text in the GUIs, referred to as GUI contextual text,

which provides rich information to inform users about the apps’

purposes and expected functionalities [7, 34, 51, 76]. The second

feature is the text in the PACG, which is a call graph that leads

to the permission-protected API getLastKnownLocation, and contains

not only direct method calls, but also edges representing Inter-

Component Communications (ICC) [41, 53, 54, 85], lifecycle method

calls [9, 70], and multithreading method calls [81]. The third feature

is the permission description of LOCATION in its privacy policy (i.e.,

“. . .we may use GPS to determine your location. . .”).
These three types of features form three heterogeneous input se-

quences, and are fed into DescribeCtx’s synthesis model, which is

trained using popular apps in Google Play. As shown in Figure 2, the

synthesized description is quite similar to the reference sentence,

achieving a 𝐵𝐿𝐸𝑈 score of 46.06. The colored lines show how the

three types of features contribute to the words in the synthesized

description. If DescribeCtx discards GUI contextual text from the

model and retrains the model, the synthesized description (i.e., “the

app can use your location and gps”) will lose some important app-

specific information (i.e., weather). In fact, we have conducted an

empirical study on 1,262 apps to measure theword uniqueness of the

GUI contextual text, and the results show that GUI contextual text

can provide 10.46% unique words for the synthesized descriptions.

Furthermore, if DescribeCtx further discards both GUI contex-

tual text and PACG from the model, the synthesized description

becomes very short and general (i.e., “access location and gps”).

This demonstrates the important roles played by privacy polices,

GUI contextual texts, and PACGs in DescribeCtx.

4 APPROACH

4.1 Overview

Figure 3 shows the overview of DescribeCtx. DescribeCtx con-

sists of two phases: training phase and prediction phase. The train-

ing phase has two major steps: (1) feature extraction and (2) sensi-

tive behavior-description learning. In the feature extraction step,

DescribeCtx accepts the APK files and privacy policies of train-

ing apps as input, and extracts three text sequences (i.e., PACGs,

GUI contextual texts, and privacy policies) from each app. In the

sensitive behavior-description learning step, DescribeCtx trains

a description synthesis model based on the three inputs and the

reference sentences in app descriptions. In the prediction phase,

given an app with sensitive behaviors, DescribeCtx extracts the

PACGs and the GUI contextual texts from the app’s APK file. Then,

the permission description selection module checks whether the

app’s privacy policy provides descriptions for the permissions used

by the sensitive behaviors. If the privacy policy contains related

permission descriptions, it directly extracts such descriptions; oth-

erwise, it uses the most relevant permission descriptions from the

687

Feature Extraction

Call Graph
Construction

Description
Synthesis

Model

App to
Predict

Sensitive Behavior
Description
Synthesis

Sensitive Behavior
Description

GUIAnalysis

Permission
Description
Extraction

Text
Embedding

Seq2seq
Learning

Training Prediction

PACG GUI Contextual
Text

Sensitive Behavior-
Description Learning

Permission
Description
Selection

Permission
Description

Training
Apps

APK

Privacy
Policy

PACG

GUI
Contextual

Text

Permission
Description

Figure 3: Overview of DescribeCtx.

privacy policies of the training apps. Using the PACG, the GUI con-

textual text, and the permission description as input, DescribeCtx

synthesizes a description for each sensitive behavior of the app.

4.2 Feature Extraction

DescribeCtx applies static analysis and textual analysis techniques

to extract three types of features: PACG, GUI contextual text, and

privacy policy.

4.2.1 Permission-Protected-API Call Graph (PACG). In Android

apps, building a call graph for a sensitive behavior needs to con-

sider the unique characteristics of Android runtime. Android apps

are component-based and event-driven applications, where apps’

code is developed as components (e.g., activities for defining the

GUIs and services for performing background jobs) and executed

when user events (e.g., clicking buttons) or system events (e.g.,

receiving a phone call) occur [24, 29, 78]. In particular, the commu-

nications between components (i.e., Inter-Component Communica-

tions (ICC) [41, 53, 54, 85]), lifecycle methods triggered when apps’

execution states change (e.g., open or close) [9, 70], and multithread-

ing methods used to run worker threads cause apps’ executions to

split into different components or threads [81], forming implicit

calling relationships among the methods in the apps’ code.

To build a PACG for a permission-protected API call in an app,

DescribeCtx first constructs an Inter-Component Call Graph (ICCG)

for the app, and then identifies the PACG based on the ICCG for

the sensitive behavior. Based on the identified PACG, DescribeCtx

extracts the texts of the nodes in the PACG as the representation

for the sensitive behavior. We next formally define an ICCG and a

PACG, and describe how to build them in detail.

Definition 1. An Inter-Component Call Graph (ICCG) is a di-

rected call graph of an app that contains both the edges that represent

calling statements and the edges that represent implicit calling re-

lationships, including multi-threading methods, Android lifecycle

methods, event-driven methods, and ICC methods.

To build an ICCG, DescribeCtx first leverages existing static

call graph techniques [9, 70] to build a call graph based on call-

ing statements and lifecycle methods. It then expands the static

call graph with the edges representing more implicit calling rela-

tionships. In particular, our analysis includes three types of im-

plicit calling relationships that are most commonly used in Android

apps, including multi-threading, event-driven method, and inter-

component communication (ICC). Representative callers and callees

include setOnClickListener and onClick, Thread.start and Thread.run,

AsyncTask.execute and doInBackground, sendMessage and handleMessage,

etc. Additionally, DescribeCtx integrates ICC methods using an

existing tool IC3 [53]. Based on ICCGs, we next formally define

PACGs:

Definition 2. A Permission-Protected-API Call Graph (PACG) is

a subgraph of an ICCG, which is formed by the union of the paths

from the dummy entry node of the ICCG to the node that represents a

given sensitive API call.

To identify a PACG for a sensitive API call in an ICCG, De-

scribeCtx performs Breadth-First-Search (BFS) from this API call

to find all the paths leading to the dummy entry node of the ICCG,

and then uses all the nodes and edges found in these paths to con-

struct the PACG. If no paths are found, the PACG contains only the

sensitive API call. In our evaluation dataset (Section 5), each ICCG

contains 34,897 nodes and 83,949 edges on average, and each PACG

contains only 66 nodes and 71 edges on average. Note that one

app can have multiple PACGs because it may use multiple sensi-

tive API calls when requiring one certain permission. For example,

an app that requires CAMERA permission can invoke takePicture and

MediaRecorder.start to take pictures and record videos.

Representation for Sensitive Behaviors. DescribeCtx gener-

ates the representation of a sensitive behavior by extracting the

text from the nodes of its PACG. Note that a method call contains

the text that represents the class name, the return type, the method

name, and the parameters. As method names often present useful

and relatively unique information while class names, return types,

and parameters may be shared by many methods, DescribeCtx ex-

tracts words from only the method names. As Android apps mainly

follow the camel case convention in defining method names, De-

scribeCtx splits each method name into a set of words based on

the convention. For example, getLastKnownLocation is split into 𝑔𝑒𝑡 ,
𝑙𝑎𝑠𝑡 , 𝑘𝑛𝑜𝑤𝑛, and 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛.

One particular challenge for extracting texts from a PACG is

code obfuscation, which is widely used in Android apps. The ob-

fuscated words (e.g., 𝑧𝑧𝑎𝑏) will make the extracted texts contain

lots of noises. To address this challenge, DescribeCtx removes

the obfuscated methods by leveraging two English dictionaries:

NLTK [47] and WordNet [21]. Specifically, DescribeCtx looks

688

up each extracted word in both dictionaries to filter out the non-

English words. DescribeCtx adopts two dictionaries to expand the

scope of the acceptable words. For example, “app” is not listed as

an English word in NLTK’s word list, but it is listed in WordNet. In

addition, DescribeCtx directly removes those method names that

use a single character such as 𝑎 or 𝑏.

4.2.2 GUI Contextual Text. To extract GUI contextual texts from

an app, we first apply Apktool [65] to decompile an app and extract

its XML layout files. To extract GUI information that is relevant

to a sensitive behavior, DescribeCtx performs a static analysis

to associate layout files to sensitive behaviors. First, based on the

PACG of a sensitive behavior, DescribeCtx identifies the activ-

ities that invoke the sensitive API calls. In Android apps, layout

files are mostly loaded in activities using methods setContentView or

onCreateView with their unique layout ids. Our static analysis identi-

fies these methods and associates the layout ids to the activities and

fragments, and further associates the activities to the corresponding

layout files using the layout-id mapping.

The GUI contextual text mainly consists of two types: (1) string

values of any GUI widget with text attribute from the GUI’s XML

layout files, and (2) names of images and icons used in the app.

Both types of text can be found in the resource folder /𝑟𝑒𝑠/ of a
decompiled APK file. For the textual GUI widgets, such as TextView

and Button, we extract their text attributes. For the image-based GUI

widgets, such as ImageView and ImageButton, we extract their id and

src attributes, where the id attributes link the GUI widgets in the

layout files to the variables in the source code, and the src attributes

provide the names of the resource files (i.e., images and icons). We

mainly use the text from the text and src attributes. If they are not

available, we use the id attributes of the GUI widgets.

Sensitive Behaviors without GUI Contextual Texts. Note that

for certain sensitive behaviors that have no relevant GUI contextual

text, we apply a text-similarity based approach to borrow GUI con-

textual text from another app. Specifically, DescribeCtx computes

the text similarity based on TF-IDF [11] between the extracted text

of the sensitive behavior’s call graph and the GUI contextual text

of other apps that use the same permission. Then, DescribeCtx

chooses the GUI contextual text with the highest similarity score

for the sensitive behavior.

4.2.3 Privacy Policy. In addition to permission descriptions, pri-

vacy policies also include the information unrelated to the sensitive

behaviors of the app, such as legal information and user agreements.

To effectively extract permission descriptions from apps’ privacy

policies, DescribeCtx incorporates BERT [17], which has achieved

dominating performance in natural language processing (NLP) tasks

such as question answering (QA) and text classification. Specifically,

DescribeCtx issues permission-related questions (e.g., “why does

it use SMS permission?”) to the QA module of BERT [73], and the QA

module returns an answer (i.e., an sentence) from the privacy policy

with the highest confidence. As apps may use the same permission

to perform different sensitive behaviors and the permission descrip-

tions often include multiple sentences, DescribeCtx applies this

extraction process for 𝑘 times: each time DescribeCtx gets a sen-

tence, DescribeCtx removes the sentence from the privacy policy

and issues the same question to the QA module. To ensure the pre-

cision of the extracted permission descriptions, DescribeCtx only

accepts the answers whose confidence are greater than a threshold

𝑠 . Based on our empirical evaluations (Section 5), we set 𝑘 to 3

and 𝑠 to 0.2. Finally, to take into consideration the contexts for the

sentences, DescribeCtx also extracts the previous and the next

sentences of each returned sentence.

4.3 Sensitive Behavior-Description Learning

In this step, DescribeCtx learns a neuralmachine translationmodel

using the extracted features from the training apps and the reference

sentences identified from the corresponding app descriptions.

4.3.1 Model Overview. The overview of our behavior-description

learning model is shown in Figure 4. The model adapts a seq2seq

architecture but accepts three heterogeneous input sequences (i.e.,

word sequences from PACGs, GUI contextual texts, and privacy

policies). Each input sequence is transformed by a text embed-

ding model and passed to a bidirectional LSTM (Long-Short Term

Memory) layer. Next, before combining three representations into

a single vector, we apply the co-attention mechanism [48, 66] to

combine the representations of the GUI contextual text and PACG.

The main reason for using co-attention is that a PACG usually

contains many irrelevant words for a specific sensitive behavior,

and the GUI contextual text helps identify the words that are most

relevant to the sensitive behavior. Then, the concatenated vector

representation is used as input of the decoder. When decoding,

DescribeCtx applies another attention layer, which computes the

relative weights of the three input sequences as well as the relative

weights of each word in terms of generating each target word to

form the description.

4.3.2 Modeling Input Sequences. We adopt similar modeling for

all the three input sequences. In the following, we take the GUI

contextual text as an example. We denote the embeddings of the

words in the GUI contextual text as [𝑥1, 𝑥2, · · · , 𝑥𝑁], where 𝑥𝑖 ∈ R
𝑙

is the embedding of the 𝑖-th word, 𝑙 is the embedding dimension,

and 𝑁 is the maximum length of the input sequence. To obtain 𝑥𝑖 ,
we adopt Glove [58], which is a pre-trained and widely-used word

embedding model in machine translation, as our text embedding

model. Then, to capture the sequential order of words, we use the

widely-used bidirectional LSTM [25, 32]. Each LSTM neuron takes

the word embedding 𝑥𝑖 and the output of the previous neuron ℎ𝑖−1
as input, and outputs ℎ𝑖 for the current word,

ℎ𝑖 = 𝐵𝑖-𝐿𝑆𝑇𝑀 (𝑥𝑖 , ℎ𝑖−1) (1)

where ℎ𝑖 ∈ R𝑑 of size 𝑑 is the hidden state of the current LSTM

neuron, and it also stands for the updated feature vector for the 𝑖-th
word. The output of the bidirectional LSTM contains the feature

vectors for each input word, i.e., 𝑓𝐺𝑈 𝐼 = [ℎ1, ℎ2, · · · , ℎ𝑁] where

𝑓𝐺𝑈 𝐼 ∈ R
𝑑×𝑁 . Note that the embeddings of all the words including

those in PACGs, GUI contextual texts, and permission descriptions,

are maintained in the same lookup table.

4.3.3 Feature Combination. To eliminate the irrelevant informa-

tion in a PACG, we adopt the parallel co-attention mechanism to

simultaneously update the PACG feature and the GUI contextual

text feature with the guidance of each other. In the following, we

show how to update the PACG features based on the GUI contex-

tual text features, and the opposite direction can be analogously

689

“… we may
use GPS to

determine ...”

“… weather
wait for

location …”

“… get last
known

location …”

Text
Embedding

Text
Embedding

Text
Embedding

Bi-
LSTM

Bi-
LSTM

Bi-
LSTM

Co-Attention Layer

C

Encoder Decoder

...

<START> Find your

Find your location ...

... gps

<END>

GUI
contextual
text

PACG

Permission
description

Attention Layer

Figure 4: Overview of the behavior-description learning model.

obtained. Here, the attention improves the PACG feature vector

by highlighting the words that are relevant to GUI contextual text.

Specifically, we use 𝑓𝐺𝑈 𝐼 ∈ R
𝑑×𝑁 and 𝑓𝐶𝐺 ∈ R𝑑×𝑀 to denote the

feature vectors of the input PACG and GUI contextual text, where

𝑁 and𝑀 are the maximum lengths of the input GUI contextual text

and PACG, respectively. We then compute the correlation matrix

𝐶 ∈ R𝑁×𝑀 as follows,

𝐶 = 𝑡𝑎𝑛ℎ(𝑓 𝑇𝐺𝑈 𝐼𝑊𝑐 𝑓𝐶𝐺) (2)

where𝑊𝑐 ∈ R𝑑×𝑑 is the parameter to learn. Note that there are 𝑁
and𝑀 feature vectors for the GUI contextual text and the PACG,

and this 𝐶 matrix contains the similarities/correlations between

these 𝑁 ×𝑀 pairs of feature vectors.

Based on the above correlation matrix, we can correlate 𝑓𝐺𝑈 𝐼

and 𝑓𝐶𝐺 by transferring the features for each other. In particular,

we update 𝑓𝐶𝐺 with the guidance of 𝑓𝐺𝑈 𝐼 ,

𝐻𝐶𝐺 = 𝑡𝑎𝑛ℎ(𝑊𝐶𝐺 𝑓𝐶𝐺 + (𝑊𝐺𝑈 𝐼 𝑓𝐺𝑈 𝐼)𝐶)

𝑎𝐶𝐺 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑊ℎ𝐻𝐶𝐺)

˜𝑓𝐶𝐺 =
𝑀∑

𝑖=1

(𝑎
(𝑖)
𝐶𝐺 𝑓

(𝑖)
𝐶𝐺) (3)

where ˜𝑓𝐶𝐺 ∈ R𝑑 indicates the final attentive feature vector for the

PACG, and𝑊𝐺𝑈 𝐼 ,𝑊𝐶𝐺 ∈ R𝑟×𝑑 ,𝑊ℎ ∈ R1×𝑟 are learnable param-

eters. 𝑎𝐶𝐺 stands for the attention/importance for each word to

the final PACG feature vector. Similarly, we can obtain the feature

vector ˜𝑓𝐺𝑈 𝐼 from 𝑓𝐺𝑈 𝐼 . In practice, we update 𝑓𝐺𝑈 𝐼 and 𝑓𝐶𝐺 in

parallel. For the permission description from the privacy policy,

since it usually contains human-written, high-quality sentences,

we directly use the output of the last LSTM neuron as its feature

vector. We denote it by 𝑓𝑃𝑒𝑟𝑚 , and obtain the final output vector

𝑓 = [𝑓𝑃𝑒𝑟𝑚 ; ˜𝑓𝐶𝐺 ; ˜𝑓𝐺𝑈 𝐼] of the encoder.

4.3.4 Attentive Decoder. When generating the target sequence, the

relative importance/weights of the three input sequences are not

necessarily equal. For example, the privacy policy is more important

when generating words related to the description of permissions,

and the GUI context and call graph explain more on the specific

behaviors. Therefore, DescribeCtx applies an attentive decoder

to learn the relative importance of three input sequences when

generating each word of the target sequence. In particular, we

also use LSTM to generate the behavior description. Suppose the

hidden state of the LSTM neuron is 𝑠𝑡 ∈ R
𝑑 at timestep 𝑡 (i.e., when

generating the 𝑡-th word). The attention distribution of the three

input sequences is then calculated as follows,

𝑒𝑡𝑖 = 𝑣𝑇 𝑡𝑎𝑛ℎ(𝑊𝑓 𝑓𝑖 +𝑊𝑠𝑠𝑡)

𝑎𝑡𝑖 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑒𝑡𝑖) (4)

where 𝑓1 = 𝑓𝑃𝑒𝑟𝑚, 𝑓2 = ˜𝑓𝐶𝐺 , 𝑓3 = ˜𝑓𝐺𝑈 𝐼 , and𝑊𝑓 ,𝑊𝑠 ∈ R𝑟×𝑑 , 𝑣 ∈ R𝑟

are parameters to learn. The normalized 𝑎𝑡𝑖 determines how much

attention should be given to the 𝑖-th input sequence when gener-

ating the 𝑡-th word in the description. Then, we can produce the

overall representation 𝑐𝑡 =
∑3
𝑖=1 𝑎

𝑡
𝑖 𝑓𝑖 of the three input sequences

when generating the 𝑡-th word.

4.4 Sensitive Behavior Description Synthesis

Based on the trained model, given an app that contains sensitive

behaviors, DescribeCtx applies the feature extraction techniques

to extract the features from the app, and feeds the features into

the model to synthesize descriptions for each sensitive behavior.

Given the fact that the privacy policy of an app does not neces-

sarily contain all related permission descriptions, the permission

description selection module in DescribeCtx is used to choose relevant

permission descriptions from the training apps when the related per-

mission descriptions are missing. It computes the TF-IDF similarity

between the GUI contextual text and the permission descriptions

of the training apps, and chooses the top-𝑘 similar sentences as the

permission description.

5 EVALUATION

We evaluate the effectiveness of DescribeCtx on real world apps.

Specifically, we aim to answer the following research questions:

• RQ1: How effective is DescribeCtx in generating descriptions

for sensitive behaviors, with and without app-specific privacy

policies?

• RQ2: How does DescribeCtx compare with the existing work?

• RQ3: How do different techniques in extracting features affect

the effectiveness of DescribeCtx?

• RQ4: How effective is DescribeCtx in generating descriptions

for sensitive behaviors, from users’ perspectives?

690

Table 1: Effectiveness results of DescribeCtx and existing work. DescribeCtx performs significantly better than the existing

work. DescribeCtx𝑝 can further improve DescribeCtx when the app-specific privacy policies are available.

Approach Metric CALENDAR CAMERA CONTACT LOCATION MICROPHONE SMS STORAGE Average

DescribeCtx
BLEU 24.27 ± 1.90 24.91 ± 2.77 24.10 ± 2.56 26.79 ± 3.45 24.03 ± 3.35 24.55 ± 2.92 24.01 ± 3.33 24.47 ± 3.02

ROUGE-L 22.76 ± 1.37 23.16 ± 1.90 25.78 ± 1.48 23.64 ± 1.80 19.53 ± 1.70 26.45 ± 1.60 22.84 ± 2.35 22.88 ± 2.00

DescribeCtx𝑝
BLEU 26.94 ± 3.48 26.12 ± 2.74 24.71 ± 3.50 27.85 ± 3.44 25.60 ± 2.90 24.55 ± 2.92 24.29 ± 3.20 25.75 ± 3.10

ROUGE-L 23.44 ± 1.47 23.39 ± 1.91 26.14 ± 1.65 23.82 ± 2.00 21.88 ± 2.01 26.45 ± 1.60 23.10 ± 2.44 23.47 ± 2.20

Code2Vec [5]
BLEU 9.19 ± 1.50 8.12 ± 0.56 2.27 ± 0.21 10.87 ± 1.39 11.21 ± 1.06 3.71 ± 1.03 8.44 ± 1.00 8.49 ± 0.97

ROUGE-L 13.35 ± 1.44 6.28 ± 0.38 11.93 ± 0.72 16.00 ± 1.13 9.38 ± 0.51 16.20 ± 3.93 17.38 ± 1.41 13.01 ± 0.98

Code2Vec+𝑝𝑝 [5]
BLEU 15.22 ± 1.85 13.42 ± 1.55 17.89 ± 2.15 15.54 ± 1.68 15.19 ± 1.92 12.11 ± 1.40 12.74 ± 1.72 14.36 ± 1.76

ROUGE-L 18.96 ± 1.28 15.64 ± 1.65 24.76 ± 1.72 19.15 ± 1.18 16.80 ± 1.34 21.88 ± 1.83 17.73 ± 1.76 18.19 ± 1.59

DescribeMe [82]
BLEU - - 20.90 ± 1.40 - 14.16 ± 1.24 4.88 ± 0.30 - -

ROUGE-L - - 9.31 ± 0.25 - 17.31 ± 0.90 8.17 ± 0.62 - -

DescribeCtx−𝑐𝑡𝑥
BLEU 17.78 ± 2.47 16.45 ± 2.01 23.22 ± 2.63 19.30 ± 2.55 18.48 ± 2.48 16.63 ± 2.22 17.74 ± 3.20 18.38 ± 2.62

ROUGE-L 20.06 ± 1.52 13.73 ± 1.14 23.21 ± 1.86 19.47 ± 1.39 14.38 ± 1.41 24.66 ± 2.58 18.56 ± 2.40 17.74 ± 1.79

DescribeCtx−𝐺𝑈 𝐼
BLEU 17.78 ± 2.47 16.91 ± 2.09 23.31 ± 2.65 21.17 ± 2.94 19.03 ± 2.51 16.63 ± 2.22 18.61 ± 3.20 18.79 ± 2.48

ROUGE-L 20.06 ± 1.52 14.52 ± 1.20 23.77 ± 1.90 19.88 ± 1.45 17.91 ± 1.90 24.66 ± 2.58 18.70 ± 2.35 18.76 ± 2.17

DescribeCtx−𝑝𝑝
BLEU 6.94 ± 0.44 4.13 ± 0.23 11.64 ± 2.18 5.67 ± 0.49 4.89 ± 0.40 1.62 ± 0.04 2.60 ± 0.28 4.83 ± 0.05

ROUGE-L 9.27 ± 0.90 7.04 ± 0.67 19.88 ± 1.45 9.64 ± 1.07 8.87 ± 0.88 4.79 ± 0.46 7.94 ± 0.61 9.27 ± 0.10

DescribeCtx𝑐𝑝
BLEU 22.46 ± 2.28 23.37 ± 2.90 24.10 ± 2.56 25.88 ± 3.28 22.90 ± 2.87 24.55 ± 2.92 22.75 ± 3.25 23.70 ± 3.00

ROUGE-L 22.37 ± 1.45 21.57 ± 1.89 25.78 ± 1.48 23.50 ± 1.80 19.04 ± 1.65 26.45 ± 1.60 21.99 ± 2.49 22.19 ± 2.08

5.1 Evaluation Subjects and Setup

We collected real-world apps of different categories from Google

Play [27] as our evaluation subjects, which are then grouped based

on their permission groups [18, 26]. Note that all permissions are

protecting user understandable sensitive data [7, 56, 59, 71, 72].

Thus, we focus on 12 dangerous permissions in 7 groups, which are

the representative permissions that protect user understandable

sensitive data. Since we need to use the permission descriptions

in privacy policies for training and the explanations of permission

uses in app descriptions for assessing the quality of the synthesized

descriptions, we choose apps that use at least one of the dangerous

permissions and satisfy the following two requirements:

• Permission Descriptions in Privacy Policy: for each app, if it pro-

vides a link for a privacy policy, we apply relevant keyword

search to check whether the privacy policy contains sentences

to explain the permission.

• Permission Explanation in App Description: for each chosen per-

mission, we apply relevant keyword search to check whether

their app descriptions contain sentences that may explain the

uses of the permission. We then manually inspect these sentences

to determine whether they can be used as reference sentences.

In total, we examine 8,814 apps, and use 1,262 qualified apps (20.86𝐺𝐵,
16.93𝑀𝐵 on average). The detailed number of apps in each permis-

sion group can be found in Table 2. Note that we exclude the PHONE

permission group because its permissions (i.e., READ_PHONE_STATE,

CALL_PHONE, READ\WRITE_CALL_LOG) are barely explained in apps’ de-

scriptions (only 3 apps). We compile a list of permission-protected

APIs (from API level 21 to level 29) from the Android Developer

website. We also manually inspect the permission-API mappings

provided by PScout [10] and add more APIs if the APIs access sensi-

tive data and are not deprecated after API level 20. In total, we obtain

171 unique permission-protected APIs. For each app, DescribeCtx

is applied to build an ICCG and extract PACGs from the ICCG

for each permission-protected API call. On average, DescribeCtx

extracts 4.6 PACGs from each app.

Training and Prediction. For each permission-protected API in

an app, we extract its PACGs, GUI contextual text, and permission

description as an input triple, and use the reference sentence as the

output. In total, we obtain 1,556 data samples from the 1,262 apps.

To evaluate the effectiveness of our model, we perform ten-fold

cross validation. For the parameters, we set the word embedding

size 𝑙 = 100 and the LSTM state size 𝑑 = 256. The maximum lengths

of the text sequences extracted from GUI contextual text, PACGs,

and privacy policy are all set to 50. Based on our empirical results

(Section 5.4), DescribeCtx uses top-3 relevant permission descrip-

tions from the training apps when an app’s own privacy policy does

not provide related permission descriptions. The model is trained

using stochastic gradient descent with the Adam optimizer.

Evaluation Metrics. We measure the effective of DescribeCtx

using two widely-used metrics for machine translation: 𝐵𝐿𝐸𝑈 [57]

and 𝑅𝑂𝑈𝐺𝐸 [42]. 𝐵𝐿𝐸𝑈 -𝑛 (𝑛 from 1 to 4) score ∈ [0, 100] represents
the percentage of the 𝑛-grams from the synthesized description

that also co-occur in the reference sentence, where score 100 means

a perfect match. The 𝐵𝐿𝐸𝑈 metric used in our evaluations is the

average of 𝐵𝐿𝐸𝑈 -𝑛 (𝑛 from 1 to 4). For 𝑅𝑂𝑈𝐺𝐸, we use 𝑅𝑂𝑈𝐺𝐸-
𝐿, which takes the longest common subsequences in reference

sentences and synthesized descriptions into account. Similar to

𝐵𝐿𝐸𝑈 , 𝑅𝑂𝑈𝐺𝐸-𝐿 score/percentage is also in the range of [0, 100]
with 100 indicating a perfect match.

User Study. As 𝐵𝐿𝐸𝑈 and 𝑅𝑂𝑈𝐺𝐸-𝐿 do not fully consider seman-

tic meanings and grammatical structures, we further conduct two

user studies to evaluate whether the synthesized descriptions are

similar to the reference sentences. The first study recruits students

with Android usage experiences in their daily lives and Android

development experiences, and the second study leverages Amazon

Mechanical Turk (MTurk) [6] to recruit users with more diverse

backgrounds. MTurk is a crowdsourcing marketplace which en-

ables researchers to easily harness the collective insights from the

survey participants with different backgrounds and experiences.

Having two different groups with participants from various back-

grounds is more representative and bias-resistant. For both user

studies, we compare the synthesized descriptions generated by De-

scribeCtx with the baselines DescribeCtx−𝑐𝑡𝑥 and Code2Vec+𝑝𝑝 .

691

Table 2: Permission groups and reference sentences.

Permission Group # Apps # Refs Coverage

STORAGE 1,126 462 41.11%
LOCATION 586 336 57.34%
MICROPHONE 558 217 39.25%
CAMERA 877 328 36.94%
CONTACT 356 138 38.76%
SMS 107 24 22.43%

CALENDAR 202 51 25.74%

Average – – 37.37%

DescribeCtx−𝑐𝑡𝑥 uses the features of permission and privacy poli-

cies (so that it can build the vocabularies for sensitive behaviors),

but does not use PACGs and GUI contextual text to represent sen-

sitive behaviors. Code2Vec+𝑝𝑝 uses code2vec [4, 5] to model code

and generate sentence, and extends it by incorporating the pri-

vacy policy as input. We also provide an introduction to help the

participants better understand the purpose of the survey.

For the first user study, we recruited 8 graduate students and

4 undergraduate students. The participants are provided with a

reference sentence and three synthesized descriptions, and asked to

provide ratings on whether each synthesized description is similar

to the reference sentence from two aspects: syntactical correctness

and semantic closeness. For each aspect, the students rate each

synthesized description using a 5-point scale: Very Bad (1), Bad (2),

So-so (3), Good (4), and Very Good (5). To reduce the bias of the

user study, we randomly shuffle the three sentences produced by

the three approaches. In total, each student is given a survey of

778 quadruples of one reference sentence and three synthesized

sentences, and each synthesized sentence is rated by 6 students.

For the second user study, we resort to MTurk for an open survey.

We divide 1,556 data samples into 50 splits (each containing 31 or

32 samples), and send out 300 splits (i.e., 6 for each split). Each

sample consists of a reference sentence as the question and three

synthesized sentences from the three approaches as the answers.

The order of the three answers is randomly shuffled. Rating the syn-

thesized sentences can be time-consuming, and MTurk participants

are perhaps more impatient. Thus, instead of rating the synthesized

sentences, for each question, MTurk participants are asked to pick

one or more answers that look like the reference sentence in terms

of semantic closeness. To ensure the quality of the collected an-

swers, we constrain that each sample is displayed for at least 10

seconds before it can be moved to the next sample. For each data

split, we also intentionally plug in an additional data sample with

one obvious answer and two irrelevant answers. If the user chose

the irrelevant answers, we consider all his/her answers invalid and

remove them all. There are 275 unique users participating in our

study, and 174 out of them are considered valid.

The example survey, the consent form, the detailed statistics

of the recruited students, and more details of the user studies are

available at our project website [2].

5.2 RQ1: Overall Effectiveness

Table 1 shows the effectiveness results of our approach. We first

compare DescribeCtx, which uses relevant permission descrip-

tions from the privacy policies of training apps, with DescribeCtx𝑝 ,

which uses the permission descriptions from the apps’ own privacy

policies. On average, DescribeCtx achieves 24.47 𝐵𝐿𝐸𝑈 score with

a standard deviation of 3.02, and achieves 22.88 𝑅𝑂𝑈𝐺𝐸-𝐿 score

with a standard deviation of 2.00. DescribeCtx𝑝 achieves slightly

higher 𝐵𝐿𝐸𝑈 (25.75 with a standard deviation of 3.10) and 𝑅𝑂𝑈𝐺𝐸-
𝐿 scores (23.47 with a standard deviation of 2.20). These results

indicate that most popular apps use permissions for similar

purposes, and thus with the guidance of behavior represen-

tation and GUI contextual text, the relevant permission de-

scriptions of other apps’ privacy policies can be leveraged to

synthesize accurate descriptions.

In general, DescribeCtx performs well in all permission groups

(𝐵𝐿𝐸𝑈 > 24), even in the CALENDAR and SMS groups where we have

a limited number of training samples (only 24 and 51 as shown

in Table 2). The possible reason is that the permissions in these

groups are used for similar purposes (e.g., “send SMS” or “send

text message” for SEND_SMS, and “add event” for WRITE_CALENDAR). The

lowest 𝑅𝑂𝑈𝐺𝐸-𝐿 score is from the MICROPHONE group. One possible

reason is that those apps usemicrophones for quite diverse purposes

including detecting surrounding noise, recording speech, having

audio or video chat, or even playing games.

Case Study. We provide some examples in Table 3. The first two

examples are from the CAMERA group. We can observe although these

two apps use cameras for different purposes (take photos vs. scan

QR code), DescribeCtx is able to synthesize non-trivial and high-

quality descriptions for both of them. This is due to the fact that

we take app-specific contextual information as input. For example,

DescribeCtx extracts “photo” and “gallery” from the GUI of the

first app and extracts “Scan the QR code” from the GUI of the second

app. Additionally, the second app’s privacy policy does not provide

any permission description for this behavior, and DescribeCtx

addresses this problem by extracting the permission descriptions

from the most similar apps in our training set (e.g., “Our app uses

camera permission for scanning purpose”) and connecting them

with the GUI contextual text. Two more examples from the STORAGE

and LOCATION groups are shown in the table, where unique words

are extracted from apps’ GUIs to synthesize the descriptions. The

last example is from the app “com.lily.times.tweenshusky.all” which

uses the microphone to record user’s speech and repeats it using the

voice of husky dog. DescribeCtx precisely identifies the sensitive

behavior of the app (i.e., using the microphone to record your voice).

However, app-specific words such as “husky” and “funny voice”

from the app’s GUI contextual text are ignored given the fact that

they are very rare in the training data. In summary, these examples

show that apps’ GUI contextual texts and relevant permission

descriptions in privacy policies can provide app-specific in-

formation to improve the synthesized descriptions.

5.3 RQ2: Comparison with Existing Work

Next, we compare DescribeCtx with the following three lines

of the state-of-the-art approaches. (1) Approach that identifies

sentences in app descriptions to explain sensitive behaviors [56,

692

Table 3: Synthesized examples fromdifferent permission groups. The boldwords represent the uniquewords that are extracted

from apps’ GUIs and used by DescribeCtx to synthesize the descriptions.

App Permission Group Reference Sentence DescribeCtx BLEU

app.tocus.photoframe.

missyouphotoframe
CAMERA

Take your photos from your gallery

or from the camera

Take photos from your gallery or take from

the camera
62.31

com.citylife.cachier CAMERA
Scan the QR code of the cards and

quickly receive the information
You can scan the qr code with phone camera 35.04

nl.fotoview.shatter STORAGE
Save and share your image

in JPG or PNG format

You can save image to your phone and share

with social media on social
31.17

com.cedarfair.

canadaswonderland
LOCATION

The app uses your location to keep

you up to date with offers, events

and activities relevant to your location

This app will read your location information

you can search location and nearby service
25.35

com.lily.times.

tweenshusky.all
MICROPHONE

Talk to husky dog and he will repeat

everything you say with a funny voice
The app uses microphone to record your voice 12.73

59]. (2) Two closest related approaches Code2Vec [4, 5] and De-

scribeMe [82]. Code2Vec leverages only the source code of the

app, constructs abstract syntax tree (AST) of each method, and

uses attentive seq2seq model to generate summary for the source

code. DescribeMe leverages both GUI contexts and call graphs

of the app, and uses pre-defined templates to generate sensitive

permission descriptions. (3) Traditional comment generation ap-

proach that does not consider app contexts (i.e., GUI contextual

text and call graph) or app-specific vocabulary (i.e., privacy pol-

icy), or uses code context (i.e., call graphs) solely [33, 40, 46, 62].

Specifically, these methods can be seen as variants of DescribeCtx:

DescribeCtx−𝑐𝑡𝑥 that uses only privacy policies of the apps as input,

DescribeCtx−𝐺𝑈 𝐼 that uses both privacy policies and PACGs as

inputs, and DescribeCtx−𝑝𝑝 that uses app contexts as inputs.

Comparison with Sentence Identification. In this comparison,

we measure the number of dangerous permissions requested by the

apps (8,814 apps) and the number of reference sentences provided

to explain them, as shown in Table 2. As we can see, each app

requests 3.3 dangerous permissions on average, and the reference

sentences cover only 1.2 permissions, which results in the average

coverage being only 37.37%. This shows that app descriptions do

not always have the descriptions for all the dangerous permissions

requested by the apps. In contrast, DescribeCtx can synthesize

descriptions for all permissions.

Comparison with Code2Vec and DescribeMe. The compar-

ison results of these two approaches are shown in Table 1. We can

see that DescribeCtx outperforms Code2Vec for all permission

groups in terms of 𝐵𝐿𝐸𝑈 and 𝑅𝑂𝑈𝐺𝐸-𝐿 scores (at least 43% better).

As Code2Vec lacks the vocabulary from privacy policies, we also

feed the privacy policies into Code2Vec’s learning model, resulting

in a variant of Code2Vec: the Code2Vec+𝑝𝑝 approach. Code2Vec+𝑝𝑝
is much better than Code2Vec, achieving a 𝐵𝐿𝐸𝑈 score of 14.36
and a 𝑅𝑂𝑈𝐺𝐸-𝐿 score of 18.19. Nonetheless, DescribeCtx still

outperforms Code2Vec+𝑝𝑝 by 41.3% for the 𝐵𝐿𝐸𝑈 score and 20.5%
for the 𝑅𝑂𝑈𝐺𝐸-𝐿 score. These results indicate that GUI contextual

texts and PACGs of the apps contribute more on synthesizing ac-

curate sensitive behavior descriptions than using the source code

representation alone with Code2Vec. For DescribeMe, we compare

only three permission groups (i.e., SMS, STORAGE, and CONTACT) since

we can only find these three templates from their paper2. We can

see that DescribeCtx significantly outperforms DescribeMe on

both 𝐵𝐿𝐸𝑈 and 𝑅𝑂𝑈𝐺𝐸-𝐿 scores in these three permission groups,

especially the SMS group (𝐵𝐿𝐸𝑈 scores: 24.55 versus 4.88).
ComparisonwithTraditionalCommentGeneration. As shown

in Table 1, DescribeCtx outperforms the three competitors for all

permission groups. DescribeCtx−𝑐𝑡𝑥 only achieves a 𝐵𝐿𝐸𝑈 score of

18.38 and a𝑅𝑂𝑈𝐺𝐸-𝐿 score of 17.74 on average. This is significantly
lower than DescribeCtx (dropping relatively by 24.88% and 22.47%,
respectively). DescribeCtx−𝐺𝑈 𝐼 achieves a 𝐵𝐿𝐸𝑈 score of 18.79 and
a 𝑅𝑂𝑈𝐺𝐸-𝐿 score of 18.76 on average. These scores are slightly

higher than those of DescribeCtx−𝑐𝑡𝑥 , indicating the effectiveness

of using PACGs instead of the permission names. Still, DescribeCtx

achieves much higher 𝐵𝐿𝐸𝑈 and 𝑅𝑂𝑈𝐺𝐸-𝐿 scores in 6 out of 7 per-

mission groups (i.e., CALENDAR, CAMERA, LOCATION, MICROPHONE, SMS, and

STORAGE), indicating that GUI contextual text plays an important

role for DescribeCtx to generate app-specific descriptions in these

six permission groups. For DescribeCtx−𝑝𝑝 , it performs relatively

poor, indicating the importance of incorporating the vocabulary of

privacy policies.

Overall, these results demonstrate that DescribeCtx outper-

forms the state-of-the-art techniques in terms of 𝐵𝐿𝐸𝑈 and

𝑅𝑂𝑈𝐺𝐸-𝐿 scores.

5.4 RQ3: Impact of Feature Extractions

We next evaluate the impacts of different design choices in the

feature extraction.

Impact of PACGs. We first design DescribeCtx𝑐𝑝 that uses a call

path instead of a PACG as its features for behavior representation.

As shown in Table 1, DescribeCtx outperforms DescribeCtx𝑐𝑝
by 3.15% and 3.02% on average in terms of 𝐵𝐿𝐸𝑈 and 𝑅𝑂𝑈𝐺𝐸-𝐿
scores. For the permission groups SMS and CONTACTS, the scores of

both methods are almost identical, as the GUI contextual text in

these two permission groups already contains sufficient informa-

tion for explaining sensitive behaviors (e.g., “send sms” or “open

contact”). Overall, this experiment indicates that compared to call

2We have contacted the authors but they were not able to provide the complete set of
the templates used in their study.

693

(a) User study A (b) User study B

Figure 5: User ratings for the synthesized descriptions of

different approaches. The proposed DescribeCtx is better

than the two competitors in both user studies.

paths, our PACGs contain more useful information that can be used

to synthesize sensitive behavior descriptions.

Impact of Permission Descriptions Extraction. Existing work

provides various techniques that can be used to extract permission

descriptions from apps’ privacy policies [14, 39, 56, 73]. We com-

pare DescribeCtx’s permission description extraction technique

with a keyword-based search approach and two text classification

techniques using BERT [73] and CNN [39]. We manually label the

sentences that describe permission uses in the privacy policies as

the ground truths, and compute the precision, recall, and F1 values

of each technique. The results show that DescribeCtx achieves the

best F1 score (0.86) among all the compared approaches, while the

keyword-based search technique achieves the worst F1 score (0.65).
These results clearly demonstrate the superiority of DescribeCtx’s

permission description extraction technique over the existing ones.

Impact of Top-𝑘 Relevant Permission Descriptions. In this

experiment, we compare the results of DescribeCtx using different

𝑘 values, ranging from 1 to 6. The results show that, DescribeCtx

achieves the best results when 𝑘 is 2 or 3. To mitigate the over-

fitting issue, 𝑘 = 3 is used in our evaluations. The 𝐵𝐿𝐸𝑈 scores

achieved by DescribeCtx drop sharply when 𝑘 ≥ 4. The probable

reason is that when 𝑘 becomes larger, more noises are introduced

and it becomes more difficult to synthesize accurate descriptions.

5.5 RQ4: User Study

Figure 5 shows the results of our two user studies, where we com-

pare DescribeCtx with DescribeCtx−𝑐𝑡𝑥 and Code2Vec+𝑝𝑝 . Fig-

ure 5(a) shows the average ratings from the recruited students of

different approaches. We can see that DescribeCtx achieves higher

ratings for both syntactical correctness and semantic closeness than

the two competitors. For example, compared with DescribeCtx−𝑐𝑡𝑥 ,

the relative improvements of DescribeCtx are 5.13% (4.30 versus
4.09) and 9.91% (3.55 versus 3.23), respectively. Figure 5(b) shows
the results from MTurk workers. Here, we collect the pick ratios of

different approaches, i.e., the percentage of sentences selected as

the most semantically similar one to the reference sentences. The

results show that users are more inclined to choose the synthesized

sentences from DescribeCtx. Compared with DescribeCtx−𝑐𝑡𝑥 ,

DescribeCtx improves it by 19.97% (57.06% versus 47.56%).
We also observe some inconsistencies between user ratings and

𝐵𝐿𝐸𝑈 /𝑅𝑂𝑈𝐺𝐸 scores. We show two examples in Table 4. The first

example uses the CALENDAR permission, and its 𝐵𝐿𝐸𝑈 score is 21.56,
which is much lower than the average. However, the user ratings

indicate that this is an accurate description as its semantic rating is

much higher than the average (i.e., 4.33 versus 3.55). The reason
is that 𝐵𝐿𝐸𝑈 /𝑅𝑂𝑈𝐺𝐸-𝐿 scores measure the word-level similarity

between the synthesized description and the reference sentence,

whereas user ratings could better cover the semantics. For the

second example, although the 𝐵𝐿𝐸𝑈 score of the synthesized de-

scription is much higher than the average, the semantic rating is

only 2.83 as the keyword “usb” is missing. These examples illustrate

the necessity of conducting the user study.

Overall, these two user studies show that the synthesized de-

scriptions of DescribeCtx are better than the existing ap-

proaches from users’ perspectives.

6 THREAT TO VALIDITY

The main internal threat comes from mistakenly labelling the ref-

erence sentences for the sensitive behaviors. To mitigate the threat,

each sentence is verified by at least two authors, and we further

check the GUIs and the code when we are not sure whether a sen-

tence is providing justification to a permission. Another inherent

limitation is that DescribeCtx does not consider dynamic-loading

GUI texts in the feature extraction phase. This would cause De-

scribeCtx miss some GUI contextual texts of the sensitive behav-

iors. We mitigate this issue by using similar GUI contextual texts

from other training samples.

The main external threat comes from the representativesness of

our evaluation dataset. We have used 12 dangerous permissions

in 7 groups that protect user understandable sensitive data, and

chose 1,262 apps that contain both reference sentences and pri-

vacy policies as we need to use the apps’ reference sentences and

privacy policies to assess the effectiveness of DescribeCtx. To

mitigate the threat for generalizing sentences for the apps that

do not contain privacy policies describing their requested permis-

sions, DescribeCtx leverages the training apps’ privacy policies

to complement the missing privacy policies for the apps. We also

exclude the PHONE permission group due to lack of training data.

These threats can be further mitigated by contacting the developers

of the apps to provide the accurate descriptions.

7 DISCUSSION

Application of DescribeCtx. The synthesized descriptions of

DescribeCtx can help users understand the functionalities of apps

when the original app descriptions are incomplete or absent. Also,

the synthesized descriptions can be used to check whether an app

provides only low-qualify general descriptions for permission uses

by comparing the synthesized descriptions with the provided de-

scriptions [45], and serve as the basis for developers to provide

customized permission descriptions.

Sensitive Behaviors. DescribeCtx focuses on the sensitive be-

haviors resulted by invoking sensitive APIs. However, apps may

use sensitive data in Android’s 𝑖𝑛𝑡𝑒𝑛𝑡 and 𝑢𝑟𝑖 messages, or through

the inputs from GUIs [7, 34, 51]. Such issues can be mitigated by

integrating existing static/dynamic analysis techniques to expand

the scope of the sensitive behaviors.

CodeObfuscation and Third-party Libraries. In our evaluation

subjects, we observe that at least 78.53% of the apps (991 out of

1262) apply obfuscation techniques on their code. As demonstrated

694

Table 4: Example synthesized descriptions with contradictory 𝐵𝐿𝐸𝑈 scores and user ratings.

BLEU
Rating

(Semantics/Syntax)
Reference Sentence DescribeCtx

21.56 4.33/4.17 You can view all schedules in calendar, or create a schedule You can read calendar and add event to calendar

32.97 2.83/4.00 Download recordings to a usb storage Download files to your phone storage

in Section 5.2, while DescribeCtx discards obfuscated names in

call graphs, DescribeCtx is still able to effectively synthesize de-

scriptions with the help of the contextual information provided by

GUI text. Also, Section 5.4 shows that DescribeCtx𝑐𝑝 that uses

call paths instead of call graphs are more sensitive to obfuscations

due to the limited nodes in the call paths. Currently, DescribeCtx

does not consider third-party libraries as apps generally do not

explain the uses of libraries to users. These issues can be addressed

by requesting developers of third-party libraries to provide their

own descriptions on the permission uses.

Malicious Apps. DescribeCtx is designed to synthesize descrip-

tions for sensitive behaviors, but not to detect malicious behaviors

that deliberately evade detection [19, 67, 70, 86]. For malicious apps

that aim to manipulate permission-protected data, DescribeCtx

can still synthesize descriptions for them by training a model on

malicious apps with reference sentences (e.g., malware family de-

scription) that explain the malicious behaviors. For malicious be-

haviors that do not concern about the sensitive data protected by

permissions, such as root phones and C&C (Command and Control),

we can adopt the advanced detection techniques [49, 76, 78, 79],

which is out of the scope of DescribeCtx.

Reference Sentences. We consider the app descriptions provided

by the app developers as the most reliable and easy-to-access source

for reference sentences. To mitigate the risk that developers may

lie about the permission uses, we choose only high-quality popular

apps and manually inspect the chosen apps’ functionality to verify

that the provided app descriptions can be used. Crowd-sourcing

approaches may also be adopted to collect reference sentences

especially for the apps that lack such sentences in the app descrip-

tions. However, obtaining an accurate reference sentence requires

deploying apps and inspecting code, which is a non-trivial effort.

Nonetheless, we conduct such an evaluation by first randomly se-

lecting 125 apps that are not included in our evaluation dataset.

Then, two authors spent over 70 hours to verify the apps and write

the behavior descriptions, by deploying them in Android 8.0 virtual
machine and inspecting the source code via JADX [1]. In total, we

obtain 64 sensitive behaviors from these apps by excluding those

requiring login, leading to failures, or triggering sensitive behavior

in the background. Among them, 53 (83%) author-written descrip-

tions are semantically consistent with the synthesized sentences

by DescribeCtx. This result shows that DescribeCtx synthesizes

sentences that can well describe the sensitive behaviors themselves.

8 RELATEDWORK

Extracting Descriptions for Sensitive Behavior. There exists

a line of work [56, 59] that adapts NLP techniques and machine

learning techniques to extract sentences in app descriptions for

explaining the permission uses. However, these sentences usually

cannot cover all the permissions requested by the apps. Unlike

these approaches, DescribeCtx incorporates app descriptions and

privacy policies into the neural machine translation model to syn-

thesize descriptions for sensitive behaviors. Recent work [82] gen-

erates descriptions using behavior description model for the call

graphs of sensitive APIs. Unlike DescribeCtx, this approach uses

only words from the code, failing to consider app-specific func-

tionality described in privacy policies and GUIs. In addition, some

work [8, 14] identifies sentences that describe what types of infor-

mation have been used in the apps, while DescribeCtx identifies

the permission descriptions for the sensitive behaviors.

Code Comment Generation. Earlier code comment generation

work adopts template-based or heuristic-based techniques to gen-

erate comments for source code [31, 62]. However, these propos-

als have been shown to be less effective and flexible compared

to data-driven techniques. Later, deep learning techniques such

as convolutional neural networks and recurrent neural networks

have been adopted to translate a small piece of the source code

into comments [3, 33, 37, 40, 46]. However, these proposals do not

consider the context of sensitive behaviors and are not as effective

as DescribeCtx, as shown in Section 5.3 and Section 5.4.

Seq2seq and Attention Mechanism. Seq2seq learning and the

attention mechanism [12, 64, 66] have become the de facto stan-

dard in many applications including neural machine translation,

text summarization, and question answering. As a promising deep

learning model, seq2seq model has also been used in addressing

plenty of other software engineering tasks, such as commit mes-

sage generation [38, 77], comment generation [33, 40, 46], API

migration [30, 52], and program synthesis [43, 80]. In this work,

we also adopt the attentive seq2seq model for synthesizing natural

language descriptions. Different from existing work, we encode

three-way information in our seq2seq model, and pay special at-

tention to learning the context of sensitive behaviors via applying

co-attention [48, 84] on the call graph and GUI words.

9 CONCLUSION

We have presented a context-aware neural machine translation

approach, DescribeCtx, that trains a seq2seq model using a large

number of apps, and generates descriptions for sensitive behav-

iors in the apps based on app-specific contextual information. De-

scribeCtx provides static analysis techniques and text analysis

techniques to extract features from apps’ call graphs, GUI layout

files, and privacy policies, forming three heterogeneous input se-

quences for training the model. Our evaluations on 1,292 real apps

show that DescribeCtx achieves high𝐵𝐿𝐸𝑈 /𝑅𝑂𝑈𝐺𝐸-𝐿 scoreswith
respect to the reference sentences in the app descriptions. Users

also provide relatively high ratings for DescribeCtx in terms of

syntactic and semantic aspects of the synthesized descriptions.

695

ACKNOWLEDGMENTS

Xusheng Xiao’s work is partially supported by the National Science

Foundation under the grants CCF-2046953 and CNS-2028748. Yuan

Yao is partially supported by the Collaborative Innovation Center

of Novel Software Technology and Industrialization. The work was

done when the second author was at Nanjing University. Xusheng

Xiao and Yuan Yao are the corresponding authors.

REFERENCES
[1] Jadx: Dex to java decompiler, 2020. https://github.com/skylot/jadx/releases.
[2] Describectx project website, 2021. https://github.com/DescribeCTX/DescribeCTX.
[3] Miltiadis Allamanis, Hao Peng, and Charles Sutton. A convolutional attention

network for extreme summarization of source code. In Proceedings of the Inter-
national Conference on Machine Learning (ICML), pages 2091–2100, 2016.

[4] Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav. Code2seq: Generating
sequences from structured representations of code. In Proceedings of the Interna-
tional Conference on Learning Representations (ICLR), 2019.

[5] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. Code2Vec: Learning
distributed representations of code. Proceedings of the ACM on Programming
Languages (POPL), 3:40:1–40:29, 2019.

[6] Amazon. Amazon mechanic turk, 2021. https://www.mturk.com/.
[7] Benjamin Andow, Akhil Acharya, Dengfeng Li, William Enck, Kapil Singh, and

Tao Xie. UiRef: Analysis of sensitive user inputs in android applications. In
Proceedings of the ACM Conference on Security and Privacy in Wireless and Mobile
Networks (WiSec), pages 23–34, 2017.

[8] Benjamin Andow, Samin Yaseer Mahmud, JustinWhitaker, William Enck, Bradley
Reaves, Kapil Singh, and Serge Egelman. Actions speak louder than words: Entity-
sensitive privacy policy and data flow analysis with policheck. In Proceedings of
the USENIX Security Symposium, 2020.

[9] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,
Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. FlowDroid:
Precise context, flow, field, object-sensitive and lifecycle-aware taint analysis for
android apps. In Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), page 259–269, 2014.

[10] Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and David Lie. PScout: Analyzing
the android permission specification. In Proceedings of ACM Conference on
Computer and Communications Security (CCS), pages 217–228, 2012.

[11] Ricardo A. Baeza-Yates and Berthier Ribeiro-Neto. Modern Information Retrieval.
Addison-Wesley Longman Publishing Co., Inc., USA, 1999.

[12] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine trans-
lation by jointly learning to align and translate. In Proceedings of the International
Conference on Learning Representations (ICLR), 2015.

[13] David Barrera, H. Güneş Kayacik, Paul C. van Oorschot, and Anil Somayaji. A
methodology for empirical analysis of permission-based security models and
its application to android. In Proceedings of ACM Conference on Computer and
Communications Security (CCS), pages 73–84, 2010.

[14] Andow Benjamin, Mahmud Samin, Yaseer, Wang Wenyu, Whitaker Justin, Enck
William, Reaves Bradley, Singh Kapil, and Xie Tao. PolicyLint: Investigating
internal privacy policy contradictions on google play. In Proceedings of the
USENIX Security Symposium, pages 585–602, 2019.

[15] Kyunghyun Cho, Bart van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio.
On the properties of neural machine translation: Encoder–decoder approaches.
In Proceedings of the Workshop on Syntax, Semantics and Structure in Statistical
Translation (SSST), pages 103–111, 2014.

[16] Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase repre-
sentations using RNN encoder-decoder for statistical machine translation. In
Proceedings of the Conference on Empirical Methods in Natural Language Processing
(EMNLP), pages 1724–1734, 2014.

[17] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
pre-training of deep bidirectional transformers for language understanding. In
Proceedings of the Annual Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language Technologies (NAACL-HLT),
pages 4171–4186, 2019.

[18] Android Official Documentation. App permissions: Permissions overview.
[19] William Enck, Damien Octeau, Patrick McDaniel, and Swarat Chaudhuri. A study

of android application security. In Proceedings of the USENIX Security Symposium,
pages 21–21, 2011.

[20] Ming Fan, Xiapu Luo, Jun Liu, Meng Wang, Chunyin Nong, Qinghua Zheng, and
Ting Liu. Graph embedding based familial analysis of android malware using
unsupervised learning. In Proceedings of the International Conference on Software
Engineering (ICSE), pages 771–782, 2019.

[21] Christiane Fellbaum, editor. WordNet An Electronic Lexical Database . The MIT
Press, 1998.

[22] Adrienne Porter Felt, Matthew Finifter, Erika Chin, Steve Hanna, and David
Wagner. A survey of mobile malware in the wild. In Proceedings of the Annual
ACM CCS Workshop on Security and Privacy in Smartphones and Mobile Devices
(SPSM), pages 3–14, 2011.

[23] Adrienne Porter Felt, Elizabeth Ha, Serge Egelman, Ariel Haney, Erika Chin,
and David Wagner. Android permissions: User attention, comprehension, and
behavior. In Proceedings of the Symposium on Usable Privacy and Security (SOUPS),
pages 1–14, 2012.

[24] Dominik Franke, Corinna Elsemann, Stefan Kowalewski, and Carsten Weise.
Reverse engineering of mobile application lifecycles. In Proceedings of theWorking
Conference on Reverse Engineering (WCRE), pages 283–292, 2011.

[25] Ian J. Goodfellow, Yoshua Bengio, and Aaron C. Courville. Deep Learning. Adap-
tive computation and machine learning. MIT Press, 2016.

[26] Google. Android permission groups, 2020.
https://developer.android.com/reference/android/Manifest.permission_group.

[27] Google. Google Play Store, 2020. https://play.google.com/store?hl=en.
[28] Google. Potentially harmful applications (phas), 2020.

https://developers.google.com/android/play-protect/potentially-harmful-
applications.

[29] Google. Application Fundamentals, 2021.
https://developer.android.com/guide/components/fundamentals.

[30] Xiaodong Gu, Hongyu Zhang, Dongmei Zhang, and Sunghun Kim. DeepAM:
migrate apis with multi-modal sequence to sequence learning. In Proceedings of
the International Joint Conference on Artificial Intelligence (IJCAI), pages 3675–
3681, 2017.

[31] Sonia Haiduc, Jairo Aponte, and Andrian Marcus. Supporting program com-
prehension with source code summarization. In Proceedings of the international
conference on software engineering (ICSE), pages 223–226, 2010.

[32] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
Computation, 9(8):1735–1780, 1997.

[33] Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. Deep code comment generation.
In Proceedings of the International Conference on Program Comprehension (ICPC),
pages 200–210, 2018.

[34] Jianjun Huang, Zhichun Li, Xusheng Xiao, Zhenyu Wu, Kangjie Lu, Xiangyu
Zhang, and Guofei Jiang. SUPOR: Precise and scalable sensitive user input
detection for android apps. In Proceedings of the USENIX Security Symposium,
pages 977–992, 2015.

[35] AV-TEST Institute. Malware statistics, 2020. https://www.av-
test.org/en/statistics/malware/.

[36] iOS Official Documentation. Human interface guideilnes: Requesting permission.
[37] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. Summa-

rizing source code using a neural attention model. In Proceedings of the Annual
Meeting of the Association for Computational Linguistics (ACL), pages 2073–2083,
2016.

[38] Siyuan Jiang, Ameer Armaly, and Collin McMillan. Automatically generating
commit messages from diffs using neural machine translation. In Proceedings of
the IEEE/ACM International Conference on Automated Software Engineering (ASE),
page 135–146, 2017.

[39] Yoon Kim. Convolutional neural networks for sentence classification. In Pro-
ceedings of the Conference on Empirical Methods in Natural Language Processing
(EMNLP), 2014.

[40] Alexander LeClair, Siyuan Jiang, and Collin McMillan. A neural model for
generating natural language summaries of program subroutines. In Proceedings
of the ACM/IEEE International Conference on Software Engineering (ICSE), pages
795–806, 2019.

[41] Li Li, Alexandre Bartel, Tegawendé F. Bissyandé, Jacques Klein, Yves Le Traon,
Steven Arzt, Siegfried Rasthofer, Eric Bodden, Damien Octeau, and Patrick Mc-
Daniel. IccTA: Detecting inter-component privacy leaks in android apps. In
Proceedings of the International Conference on Software Engineering (ICSE), pages
280–291, 2015.

[42] Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In
Proceedings of the Association for Computational Linguistics (ACL), pages 74–81,
2004.

[43] Xi Victoria Lin, Chenglong Wang, Deric Pang, Kevin Vu, Luke Zettlemoyer, and
Michael D. Ernst. Program synthesis from natural language using recurrent
neural networks. Technical Report UW-CSE-17-03-01, University of Washington
Department of Computer Science and Engineering, 2017.

[44] Bin Liu, Hongxia Jin, and Ramesh Govindan. Medusa: A programming frame-
work for crowd-sensing applications. In Proceedings of the Annual International
Conference on Mobile Systems, Applications, and Services (MobiSys), pages 337–350,
2015.

[45] Xueqing Liu, Yue Leng, Wei Yang, Wenyu Wang, Chengxiang Zhai, and Tao Xie.
A large-scale empirical study on android runtime-permission rationale messages.
In Proceedings of the IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC), pages 137–146, 2018.

[46] Zhongxin Liu, Xin Xia, Ahmed E Hassan, David Lo, Zhenchang Xing, and Xinyu
Wang. Neural-machine-translation-based commit message generation: how far
are we? In Proceedings of the ACM/IEEE International Conference on Automated

696

Software Engineering (ASE), pages 373–384, 2018.
[47] Edward Loper and Steven Bird. NLTK: The natural language toolkit. In Pro-

ceedings of the ACL Interactive Poster and Demonstration Sessions, pages 214–217,
2004.

[48] Jiasen Lu, Jianwei Yang, Dhruv Batra, and Devi Parikh. Hierarchical question-
image co-attention for visual question answering. In Proceedings of the Interna-
tional Conference on Neural Information Processing Systems (NIPS), pages 289–297,
2016.

[49] Long Lu, Zhichun Li, ZhenyuWu, Wenke Lee, and Guofei Jiang. CHEX: Statically
vetting android apps for component hijacking vulnerabilities. In Proceedings
of the ACM Conference on Computer and Communications Security (CCS), pages
229–240, 2012.

[50] Thang Luong, Hieu Pham, and Christopher D. Manning. Effective approaches to
attention-based neural machine translation. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing (EMNLP), pages 1412–1421,
2015.

[51] Yuhong Nan, Min Yang, Zhemin Yang, Shunfan Zhou, Guofei Gu, and Xiaofeng
Wang. UIPicker: User-input privacy identification in mobile applications. In
Proceedings of the USENIX Security Symposium, pages 993–1008, 2015.

[52] Trong Duc Nguyen, Anh Tuan Nguyen, Hung Dang Phan, and Tien N Nguyen.
Exploring API embedding for API usages and applications. In Proceedings of the
International Conference on Software Engineering (ICSE), pages 438–449, 2017.

[53] Damien Octeau, Daniel Luchaup, Matthew Dering, Somesh Jha, and Patrick Mc-
Daniel. Composite constant propagation: Application to android inter-component
communication analysis. In Proceedings of the International Conference on Soft-
ware Engineering (ICSE), pages 77–88, 2015.

[54] Damien Octeau, Patrick McDaniel, Somesh Jha, Alexandre Bartel, Eric Bodden,
Jacques Klein, and Yves Le Traon. Effective inter-component communicationmap-
ping in android with Epicc: An essential step towards holistic security analysis.
In Proceedings of the USENIX Conference on Security, page 543–558, 2013.

[55] Jason D. O’GRADY. New privacy enhancements coming to ios 8 in the fall.,
2014. http://www.zdnet.com/new-privacy-enhancements-coming-to-ios-8-in-
the-fall-7000030903/.

[56] Rahul Pandita, Xusheng Xiao, Wei Yang, William Enck, and Tao Xie. WHYPER:
towards automating risk assessment of mobile applications. In Proceedings of the
USENIX Security Symposium, page 527–542, 2013.

[57] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. BLEU: a method
for automatic evaluation of machine translation. In Proceedings of the Annual
Meeting of the Association for Computational Linguistics (ACL), pages 311–318,
2002.

[58] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. GloVe: Global
vectors for word representation. In Proceedings of Empirical Methods in Natural
Language Processing (EMNLP), pages 1532–1543, 2014.

[59] Zhengyang Qu, Vaibhav Rastogi, Xinyi Zhang, Yan Chen, Tiantian Zhu, and
Zhong Chen. AutoCog: Measuring the description-to-permission fidelity in
android applications. In Proceedings of the ACM Conference on Computer and
Communications Security (CCS), pages 1354–1365, 2014.

[60] Vaibhav Rastogi, Yan Chen, and William Enck. AppsPlayground: Automatic
security analysis of smartphone applications. In Proceedings of ACM Conference
on Data and Application Security and Privacy (CODASPY), page 209–220, 2013.

[61] Sanae Rosen, Zhiyun Qian, and Z. Morely Mao. AppProfiler: A flexible method
of exposing privacy-related behavior in android applications to end users. In
Proceedings of the ACM Conference on Data and Application Security and Privacy
(CODASPY), page 221–232, 2013.

[62] Giriprasad Sridhara, Emily Hill, Divya Muppaneni, Lori Pollock, and K Vijay-
Shanker. Towards automatically generating summary comments for javamethods.
In Proceedings of the ACM/IEEE International Conference on Automated Software
Engineering (ASE), pages 43–52, 2010.

[63] Statista. Global mobile os market share, 2020.
https://www.statista.com/statistics/266136/global-market-share-held-by-
smartphone-operating-systems/.

[64] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with
neural networks. In Proceedings of the Annual Conference on Neural Information
Processing Systems (NIPS), pages 3104–3112, 2014.

[65] Connor Tumbleson and Ryszard Wisniewski. Apktool, 2017. https://ibotpeaches.
github.io/Apktool/.

[66] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need.
In Proceedings of Annual Conference on Neural Information Processing Systems
(NIPS), pages 5998–6008, 2017.

[67] VirusShare. VirusShare, 2021. http://virusshare.com/.
[68] Haoyu Wang, Jason Hong, and Yao Guo. Using text mining to infer the purpose

of permission use in mobile apps. In Proceedings of the ACM International Joint
Conference on Pervasive and Ubiquitous Computing (UbiComp), pages 1107–1118,

2015.
[69] Xiaoyin Wang, Xue Qin, Mitra Bokaei Hosseini, Rocky Slavin, Travis D. Breaux,

and Jianwei Niu. GUILeak: Tracing privacy policy claims on user input data for
android applications. In Proceedings of the International Conference on Software
Engineering (ICSE), pages 37–47, 2018.

[70] Fengguo Wei, Sankardas Roy, Xinming Ou, and Robby. Amandroid: A precise
and general inter-component data flow analysis framework for security vet-
ting of android apps. In Proceedings of the ACM Conference on Computer and
Communications Security (CCS), page 1329–1341, 2014.

[71] Primal Wijesekera, Arjun Baokar, Lynn Tsai, Joel Reardon, Serge Egelman,
David A. Wagner, and Konstantin Beznosov. The feasibility of dynamically
granted permissions: Aligning mobile privacy with user preferences. In Pro-
ceedings of the IEEE Symposium on Security and Privacy (S&P), pages 1077–1093,
2017.

[72] Primal Wijesekera, Joel Reardon, Irwin Reyes, Lynn Tsai, Jung-Wei Chen, Nathan
Good, David Wagner, Konstantin Beznosov, and Serge Egelman. Contextualizing
privacy decisions for better prediction (and protection). In Proceedings of the CHI
Conference on Human Factors in Computing Systems (CHI), pages 1–13, 2018.

[73] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement De-
langue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu,
Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest,
and Alexander M. Rush. Transformers: State-of-the-art natural language process-
ing. In Proceedings of the Conference on Empirical Methods in Natural Language
Processing: System Demonstrations (EMNLP), pages 38–45, 2020.

[74] Xusheng Xiao, Nikolai Tillmann, Manuel Fahndrich, Jonathan De Halleux, and
Michal Moskal. User-aware privacy control via extended static-information-flow
analysis. In Proceedings of the International Conference on Automated Software
Engineering (ASE), pages 80–89, 2012.

[75] Xusheng Xiao, Nikolai Tillmann, Manuel Fahndrich, Jonathan De Halleux, and
Michal Moskal. User-aware privacy control via extended static-information-flow
analysis. Automated Software Engineering Journal (ASEJ), 22(3):333–366, 2015.

[76] Ke Xu, Yingjiu Li, Robert H. Deng, and Kai Chen. DeepRefiner: Multi-layer
android malware detection system applying deep neural networks. In Proceedings
of the IEEE European Symposium on Security and Privacy (EuroS&P), pages 473–
487, 2018.

[77] Shengbin Xu, Yuan Yao, Feng Xu, Tianxiao Gu, Hanghang Tong, and Jian Lu.
Commit message generation for source code changes. In Proceedings of the
International Joint Conferences on Artificial Intelligence (IJCAI), pages 3975–3981,
2019.

[78] Wei Yang, Xusheng Xiao, Benjamin Andow, Sihan Li, Tao Xie, and William Enck.
AppContext: Differentiating malicious and benign mobile app behaviors using
context. In Proceedings of the International Conference on Software Engineering
(ICSE), pages 303–313, 2015.

[79] Zhemin Yang, Min Yang, Yuan Zhang, Guofei Gu, Peng Ning, and X. Sean Wang.
AppIntent: analyzing sensitive data transmission in android for privacy leakage
detection. In Proceedings of the ACM conference on Computer & communications
security (CCS), pages 1043–1054, 2013.

[80] Pengcheng Yin and Graham Neubig. A syntactic neural model for general-
purpose code generation. In Proceedings of the Annual Meeting of the Association
for Computational Linguistics (ACL), pages 440–450, 2017.

[81] Yujie Yuan, Lihua Xu, Xusheng Xiao, Andy Podgurski, and Huibiao Zhu. Run-
Droid: recovering execution call graphs for android applications. In Proceedings
of the ACM Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering (ESEC/FSE), pages 949–953, 2017.

[82] Mu Zhang, Yue Duan, Qian Feng, and Heng Yin. Towards automatic generation
of security-centric descriptions for android apps. In Proceedings of the ACM
Conference on Computer and Communications Security (CCS), pages 518–529,
2015.

[83] Mu Zhang, Yue Duan, Heng Yin, and Zhiruo Zhao. Semantics-aware android
malware classification using weighted contextual API dependency graphs. In
Proceedings of the ACM Conference on Computer and Communications Security
(CCS), pages 1105–1116, 2014.

[84] Suwei Zhang, Yuan Yao, Fent Xu, Hanghang Tong, Xiaohui Yan, and Jian Lu.
Hashtag recommendation for photo sharing services. In Proceedings of the AAAI
Conference on Artificial Intelligence (AAAI), pages 5805–5812, 2019.

[85] Jinman Zhao, Aws Albarghouthi, Vaibhav Rastogi, Somesh Jha, and Damien
Octeau. Neural-augmented static analysis of android communication. In Pro-
ceedings of the ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE), pages
342–353, 2018.

[86] Yajin Zhou and Xuxian Jiang. Dissecting android malware: Characterization and
evolution. In Proceedings of the IEEE Symposium on Security and Privacy (S & P),
pages 95–109, 2012.

697

