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Abstract—Vital sign monitoring plays a critical role in track-
ing the physiological state of people and enabling various health-
related applications (e.g., recommending a change of lifestyle,
examining the risk of diseases). Traditional approaches rely on
hospitalization or body-attached instruments, which are costly and
intrusive. However, in recent years there is an emergence of contact-
less vital sign monitoring techniques that rely on radio frequency
signals. Early studies with continuous wave radars/WiFi devices
have shown good success in detecting the vital signs of a single indi-
vidual, while simultaneous monitoring of the vital signs of multiple,
closely spaced subjects remains a challenge. In this paper, using an
off-the-shelf Texas Instrument automotive FMCW radar, we design
and implement a time-division multiplexing (TDM) phased-MIMO
radar sensing system that allows high-precision vital sign monitor-
ing of multiple subjects. The proposed sensing system can steer the
beam towards the desired directions with a micro-second delay.
The steerable beam enables capturing the vital signs of multiple
individuals at the same radial distance to the radar. The proposed
system enables the formation of a virtual array with aperture longer
than that of the physical array. A Capon beamformer is used at the
receiver side to combine the data collected from different transmit
and receive antenna pairs corresponding to the virtual array. As
all those pairs provide independent information about the targets,
their combination significantly boosts the receiver signal-to-noise
ratio. Based on the designed TDM phased-MIMO radar, we develop
a system to automatically localize multiple human subjects and
estimate their vital signs. Extensive evaluations show that under
two-subject scenarios, our system can achieve more than 98.06%
accuracy for breathing rate (BR) and more than 82.89% accuracy
for heartbeat rate (HR) estimation, at a subject-to-radar distance of
1.6 m when the targets are facing the radar. The minimal subject-
to-subject angle separation is 30◦ at a subject-to-radar distance
of 1.6 m, corresponding to a close distance of 0.3 m between two
subjects, which outperforms the state-of-the-art.
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I. INTRODUCTION

TRACKING of the physiological states of people can
enable change of lifestyle recommendations and examine

the risk of diseases. Vital signs, including breathing rate
(BR) and heartbeat rate (HR), provide crucial insights into
the physiological state of the individual. Traditional ways to
monitor vital signs usually require hospitalization and involve
body-attached instruments (e.g., PPG and ECG sensors),
which are intrusive, costly, and require the cooperation of the
person being monitored. To overcome these problems, research
studies have been exploring contact-less vital sign monitoring
via radio frequency (RF) signals [1]–[5]. Early studies used
continuous-wave radar, or WiFi devices transmitting RF
signals. The signal echoes are modulated by the small chest
movements caused by those vital signs, thus can be used for
vital sign estimation [6], [7], [27]. However, the methods
of [6], [7] rely on RF signals that operate at fixed frequencies,
and thus have limited ability to disentangle echo signals
from targets at different ranges. Such limitation precludes
their use in health monitoring of multiple individuals, for
example, they could not be used for tracking the vital signs of
people in the over-crowded, resource limited clinics that we
experienced during the COVID-19 crisis. In [27], sophisticated
signal processing techniques were used along with a commercial
60 GHz WiFi device transmitting OFDM signals. OFDM signals
provide the ability to resolve targets from different range bins.

Powered by recent advances in mmWave sensing, research
studies have been exploring mmWave signals for vital sign mon-
itoring [8]–[16]. Compared to low-frequency RF signals[17],
mmWave signals have much shorter wavelength, and thus can
better respond to small chest movements, enabling more fine-
grained vital sign monitoring. By utilizing frequency-modulated
continuous-waveform (FMCW) techniques, a mmWave radar
can detect multiple people at different radial distances to the
radar device, and further derive vital signs information of each
individual.

MmWave FMCW radar for vital sign monitoring has been
explored via phased arrays, performing analog beamforming, or
multiple-input and multiple-output (MIMO) radar. The phased
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array approach of [8], [11] uses analog beamforming to suc-
cessively steer the mmWave beam towards different directions.
This is achieved by varying the antenna weights so that the
transmitted energy is focused in the desired direction. Those
works enable the detection of people separated in the angle
domain, while the allowable minimum angle separation (res-
olution) is limited by the receive array’s aperture. By processing
the echoed signals of each beam separately, the vital signs of
the person in each direction can be estimated. Specifically, [11]
deploys analog beamforming on a single-channel FMCW radar
to measure the vital signals of two subjects at different ranges
with minimum angle separation of 40 degrees. However, [11]
reported preliminary BR and HR estimation performance of a
single subject only (i.e., around 93% HR estimation and 96%
BR estimation accuracy). Using a MIMO radar approach, [12]
transmits mmWave signals via multiple transmitting antennas
(TX) in a time-division-multiplexing (TDM) fashion, and use
multiple receiving antennas (RX). By leveraging the TDM-
induced orthogonality of the transmitted signals, each receive
antenna can extract the contribution of each transmit antenna.
The contributions of different TX-RX pairs offer independent
views of the targets, which can be exploited to improve target es-
timation. For example, [12] uses a MIMO radar with 12 TXs and
16 RXs, where in each time slot, only one of the available TXs
transmits. The measurements collected over 12 slots correspond
to 192 TX-RX antenna pairs, and can be used for high-precision
vital sign monitoring with low estimation error. Similarly, [16]
presented results using an FMCW-based MIMO radar with 8
TXs and 16 RXs. All the aforementioned methods consider
either analog beamforming, or MIMO techniques, but not both,
thus missing the opportunity to fully explore the potential of
radar-based mmWave sensing.

In this paper, we propose a novel approach for high-precision
vital sign monitoring of multiple people that uses techniques
that have not been explored before for vital sign monitoring.
In particular, we propose a TDM phased-MIMO radar sensing
scheme that performs transmit and receive beamforming. We
also propose an implementation of the proposed scheme using
as basic tool a single-chip automotive mmWave FMCW antenna
array and present results for monitoring of the vital signs of
two subjects. The unique features of the proposed radar are the
following:

i) In each time slot the proposed system transmits a
waveform through a phased array structure. The antenna
weights in each slot are chosen so that a beam, focusing
the transmitted power to the desired direction, is formed.
This assumes that the targets have been first detected and
their angles are known.

ii) The TDM-MIMO operation of the proposed system en-
ables the formation of a virtual receiving array with
aperture longer than that of the physical receiving array.
As all transmit-receive pairs corresponding to the virtual
array provide independent information about the targets,
their combination significantly boosts the receiver signal-
to-noise ratio allowing high precision target estimation.

iii) A Capon beamformer (CB) [18] is implemented at the
receiver, so that the receiving array focuses on echoes

coming from the desired directions, while the power from
all other directions is minimized. The large aperture of
the virtual receive array enables the receiver to separate
closely spaced targets.

On establishing the relation of the proposed work to the above
cited literature, we should note that [11] did not have features
(ii) and (iii), while [12], [16] did not have features (i) and (iii).

Based on the proposed radar, we develop a system to automat-
ically localize multiple human subjects and estimate their vital
signs. Initially, our proposed system transmits as a TDM MIMO
radar, and then uses Capon’s beamformer on the virtual receiving
array to obtain the angles of the targets with respect to the radar.
Subsequently, it works as a TDM phased-MIMO radar, itera-
tively steering the beam towards each individual subject, one
subject per slot. The received echoes corresponding to the same
subject are processed through a receive Capon beamformer,
which focuses on the echoes coming from the desired direction,
while minimizing the power from other directions. The narrow
beam from the large virtual array aperture enables the separation
of the targets, so that each beam contains the vital signs of one
subject only.

For each subject, our system computes the phase of range
Discrete Fourier Transform (DFT) peaks corresponding to hu-
man subjects, which encodes both the breathing and heartbeats
of the subject. Two band-pass filters, which use normal human
breathing and heartbeat frequency ranges as cut-off frequencies,
are employed to separate the two types of vital signs. Our system
then detects the BR and HR in the frequency domain by locating
the frequency peaks.

We implement the designed TDM phased-MIMO radar on an
off-the-shelf Texas Instrument (TI) AWR2243 mmWave radar
with 3 TXs and 4 RXs. Our phased-MIMO radar can steer the
mmWave beam towards different directions with a micro-second
delay, which enables simultaneously monitoring of the vital
signs of multiple individuals. By combining high angle reso-
lution and high precision target estimation, the proposed system
enables the precise estimation of the BR and HR of multiple
people located close to each other, even when they are at the same
radial distance to the radar. We conduct extensive experiments
involving two subjects, under various settings (e.g., different
distances and angles between the radar and subjects). The results
show that our system can provide high accuracy BR and HR
estimation under various experimental settings. Our approach
thus provides a promising solution to track the health status of
multiple people in many indoor venues (e.g., classrooms, offices,
and crowded hospital rooms).

II. THE PROPOSED TDM PHASED-MIMO RADAR

A. Analog Transmit Beamforming

A phased-MIMO radar combines MIMO radar and phased
array features, in the sense that the radar transmits orthogonal
FMCW signals (see Section II.C), each feeding a phase array
structure. Here, orthogonality is achieved by TDM transmission
of the same waveform, weighted by different weights in each
slot. Orthogonality allows the transmitted signals to be separated
at the receiver. The contributions of the multiple orthogonal
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signals offer independent views of the targets, which can be
exploited to improve target estimation.

Let us consider a transmitter that has a uniform linear array
(ULA) with N TXs spaced by dt, and a receiver that has a ULA
with M RXs spaced by dr. The transmit array transmits in a
time-slotted fashion. In each slot, each TX transmits a weighted
version of waveformx(t), using different weights between slots.
The weights are chosen so that the transmissions of all antennas
add up coherently in a specific direction. By using different
weights in each slot we effectively create different channels that
provide diversity and thus can lead to improved target estimation.

Let the weights for the p-th slot be

wp(θ) = ej2πpα(θ)[1, e−j2πα(θ), . . . , e−j2π(N−1)α(θ)]T

= ej2πpα(θ)at(θ) (1)

where α(θ) = dt
sin(θ)

λ
, λ is the wavelength of signal and at(θ)

is the transmit steering vector. If θ0 is the direction of the beam,
the signal transmitted in the p-th slot towards direction θ can be
written as

zp(t, θ) = aHt (θ)wp(θ0)x(t)

= ej2πpα(θ)aHt (θ)at(θ0)x(t), (2)

where {·}H denotes the conjugate transpose operation. The
transmitted power towards direction θ during the p-th slot equals

Q(θ) = E{zp(t, θ)zHp (t, θ)}
= |b(θ)|2Qx (3)

where b(θ) =
∑N−1

n=0 ej2πn[α(θ)−α(θ0)], andQx is the basedband
signal power. One can see that b(θ0) = N , and the transmitted
power is maximized along direction θ0. Also, the signal trans-
mitted in each slot is the same as that of a TDM-MIMO radar
using the same array, except that it is amplified by the number
of antennas.

We should note that analog beamforming (see Eq. (1)) is not
optimal, in the sense that although it makes the signals add
up in phase in the preferred direction, it does not control the
power along other directions. Optimal transmit beamforming
would modulates the power of each TX as well as the phase, and
thus could control the sidelobe level. However, optimal transmit
beamforming is hard to implement on a phased array.

B. Virtual Array and Receive Beamforming

Let us assume that the target is at direction θ0. After mixing
the received signal with the conjugate of the transmitted signal,
the beat signal [28] in the p-th slot is

yp(t) = ar(θ0)zp(t− τ, θ0)x
H(t) (4)

where ar(θ) = [1, e−j2πdr
sinθ

λ , . . . , e−j2π(M−1)dr
sinθ

λ ] is the re-
ceive steering vector and τ is the round-trip delay. By stacking
the received signal from P slots, one can formulate a virtual
array of P ·M elements with steering vector

av(θ) = ar(θ0)⊗ [1, . . . , ej2π(P−1)α(θ0)]T (5)

Fig. 1. A TDM phased-MIMO with 3 TX and 4 RX gives rise to a receiving
virtual uniform linear array with 8 RX antennas. This provides 8 TX-RX pairs
for target estimation.

where ⊗ denotes the Kronecker product. Thus the virtual array
provides a larger aperture than that of the physical receive array.
The output of the virtual array is

yv(t) = Nav(θ)x(t− τ)xH(t) (6)

Let us apply CB on the virtual array output. This will allow
us to focus on signals coming form the desired direction,

z(t) = wH
v yv(t) (7)

where

wv =
R−1

y av(θ)

aHv (θ)R−1
y av(θ)

(8)

with Ry being the received signal covariance matrix (please
refer to Section II-C for estimation details).

An example of TDM phased-MIMO is shown in Fig. 1 where
the system has 3 TXs spaced apart by a wavelength, and 4 RXs
spaced apart by half of wavelength. Two time slots are used
to formulate a TDM phased-MIMO with 8 virtual elements.
The corresponding 3-dB beam width for such configuration is
18◦ which supports at maximum 11 non-overlapped beams with
distinct directions in a field of view of 180° to monitor vital
signals.

By exploiting the multiple channels, corresponding to the
multiple TX-RX antenna pairs of the virtual array, phased-
MIMO can achieve higher target resolution and higher SNR than
a phased array. Also, by implementing transmit beamforming,
phased-MIMO can avoid clutter. In vital sign monitoring appli-
cations, especially in the multi-target scenario, phased-MIMO
can steer the beam towards each of the target and individually
monitor their vital signals even when the targets are closely
spaced. As shown in Section IV-D, phased-MIMO can achieve
good performance when the targets are closely placed and with
different orientations.
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C. FMCW Waveforms and Target Parameter Estimation

The proposed radar uses FMCW waveforms, i.e., the trans-
mitted signal is given by (2), where

x(t) = Ate
j2π[fct+

B
2Tc

t2+Φ(t)]. (9)

In the above, At is the amplitude, fc is the chirp starting
frequency, B is the chirp bandwidth, Tc is the chirp duration,
and Φ(t) is the phase noise from the transmitter. Note that the
phase noise will be neglected in the following equations since it
is slow varying and the propagation delay of mmWave is small.

The transmitted signals in all time slots will be referred to as
a frame. Multiple frames are transmitted in sequence to monitor
the vital signals of subjects. At the radar receiver, based on (6),
the signal received by the m-th RX, due to the transmission of
the n-th antenna, i.e., the (nN +m)th element of yv(t), can be
written as

y(n,m, t) = Anme−j2π[fbt+Φb(t,n,m)], (10)

where Anm is the complex amplitude of the signal transmitted
by the n-th transmit antenna and received by the m-th receive
antenna after beamforming, and also contains the effect of
the path between the two antennas, fb =

2BR(t)
cTc

is the beat
frequency,

Φb(t, n,m) =
2fcR(t)

c
− 2BR2(t)

c2Tc
− (dm − dn)

sin(θ)

λ
,

R(t) is the radial range of the subject, which is associated
and changed with the chest displacements of the target, dn =
(n− 1)dt and dm = (m− 1)dr, respectively. Since the propa-
gation delay is very small, the phase term can be approximated
as Φb(t, n,m) = 2fcR(t)

c − (dm − dn)
sin(θ)

λ
.

Using discrete-time samples, based on ADC sample interval
Ts and frame interval Tf , the signal of (10) corresponding to the
k-th ADC sample of the l-th frame can be written as

y[n,m, k, l] = Anmej2π[fbkTs+
2fc
c R(kTs+lTf )−(dm−dn)

sin(θ)
λ

].
(11)

Provided that the range change due to vital sign is slow (<
2Hz) and the sampling interval is very short, if the target stays
at a nominal range R0, then the phase term of (11) will be

Φb(l, n,m) =
2

λ
[R0 +R1(lTf )]− (dm − dn)

sin(θ)

λ

= Φ0(n,m) +
2R1(lTf )

λ
. (12)

where R1(l) denotes the chest displacement due to vital activi-
ties and (11) can be expressed as

y[n,m, k, l] = Anmej2πΦ0(n,m)ej2πfbkTsej2π
2R1(lTf )

λ . (13)

The virtual array is formulated as follows

yv(k, l) = [y[0, 0, k, l], y[0, 1, k, l],

. . . , y(N − 1,M − 1, k, l)]T . (14)

To compute the optimal CB weights (see (8)), we need
to obtain an estimate of the covariance matrix based on the

available data, i.e.,

R̂y(l) =
1

K

K−1∑
k=0

yv(k, l)y
H
v (k, l) (15)

and then use that as the true covariance in (8). Then the CB
output equals

z[k, l] = wH
v (l)yv(k, l)

= Ãej2π
2R1(lTf )

λ ej2πfbkTs . (16)

where Ã =
∑N−1

n=0

∑M−1
m=0 Anm. One can clearly see that even

if some Anm are close to zero due to bad channels, Ã will be
non-zero and as a result, the CB output will be non-zero. This
is the advantage of using the multiple TX-RX pairs provided
by the virtual array. Thus, the subsequent estimation of vital
sign signals enjoys high SNR. Our system then leverages the
combined signal z[k, l] for BR and HR estimation.

The signal consisting of K samples of z[k, l] during the
l-th frame, i.e., z[k, l], k = 0, . . .,K − 1 can be viewed as a
complex sinusoid with frequency fbTs and complex amplitude

Ãej2π
2R1(lTf )

λ . Therefore, on applying a K-point DFT on z[k, l]
along k we see a peak at DFT sample h = �KfbTs� where �·�
refers to the floor function, indicating the radial range of the
target [19]. The phase of Ã is constant and can be estimated
(see Section III-B) by observing the phases of the peak value
in all frames. Thus, based on the phases of the DFT sample
h = �KfbTs�, i.e., arg{Ã}+ 2π

2R1(lTf )
λ

for l = 0, . . . , L, one
can measure the frequency of chest displacement caused by
human chest displacements. In this paper, we use the real and
imaginary parts of the peak corresponding to the target in the
l-th frame, denoted as YR[l] and YI [l].

III. IMPLEMENTATION ISSUES OF VITAL SIGN MONITORING

SYSTEM

A. Target Detection

Prior to applying the TDM phased-MIMO technique for
multi-people vital sign monitoring, we need to detect the human
subjects and determine their angles with respect to the radar. For
this purpose the radar first works as a TDM MIMO radar where
only one antenna is active in each slot. Then on the received
echos we use CB, a widely used angle estimation method,
which provides better resolution as compared to conventional
methods [8].

Upon detecting one or more target subjects, our system steers
the mmWave beam towards the directions of the detected targets
by applying analog beamforming at the TX side. Our system
then utilizes CB, phased calibration, and frequency analysis
techniques as described below to estimate the vital signs of the
target subjects.

B. Constellation Correction With Least-Square

Due to the strong coupling effects and interference in the mea-
surement environment, the range DFT outputs usually contain
DC offsets, which distort the phase information at the target’s
range bin. It is thus necessary to remove the DC offsets before



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

XU et al.: SIMULTANEOUS MONITORING OF MULTIPLE PEOPLE’S VITAL SIGN LEVERAGING A SINGLE PHASED-MIMO RADAR 5

Fig. 2. (a) DC-offset correction using least square method; (b) Phase drift
calibration through interpolation.

we deriving reliable vital sign information. Given a TX-RX pair,
i, the phase at a selected range bin h can be formulated as

φ(l) = arctan

[
Im(ri,h(l) +DCim)

Re(ri,h(l) +DCre)

]
, (17)

where DCim and DCre denote the imaginary and real parts of
the complex DC offset, respectively. ri,h(l) shows the range DFT
output of the combined signal z[k, l] at range bin h in the l-th
frame. The formulation indicates that the DC offset will shift the
origin to (DCre, DCim). To compensate such a shift, we use the
least-squares method to estimate and cancel (DCre, DCim) [9].
An example is shown in Fig. 2(a) where the shifted phases (red
dots) are moved so that the center is at the origin (blue dots).

C. Phase Calculation With DACM

Existing work [20] found that the human chest displacement
can exceed the wavelength of mmWave signals (i.e.,< 4mm for
77 GHz). Therefore, the phase of the range DFT can be outside
the range [−π, π], which can lead to false detection of vital signs.
To tackle this issue, we use the differential and cross-multiply
algorithm (DACM) [29] to calculate phase.

Instead of directly applying arctangent demodulation, DACM
converts complex range DFT outputs of l − th frame into phases
leveraging the derivative of arctangent function

φ(l) = φ(l − 1) + Δφ(l), l = 2, 3, . . . , L, (18)

where L is the number of frames and

Δφ(l) =
YR[l]{YI [l]−YI [l−1]}−{YR[l]−YR[l−1]}YI [l]

YR[l]2 + YI [l]2
.

The DACM algorithm mainly corrects the phase distortions
caused by breathing. In contrast, small-scale heartbeat motions
are less likely to exceed the range of phase.

D. Phase Drift Calibration Based on Phase Difference

Signal phase drifts in transmission, mainly caused by the
impacts of temperature and humidity variations on the hardware,
make the range of phase fluctuations exceed the normal ranges
of human breathing and heartbeat. The phase drifts cannot be
removed leveraging DACM, since these drifts can be close to
but not exceeding the unwrapping threshold of ±π. Further-
more, the harmonics of breathing [21] (i.e., multiple of breath-
ing frequency, e.g., 0.2− 0.33Hz) can also distort the phase
patterns at the heartbeat frequency range (e.g., 0.8− 2.0Hz).

Fig. 3. BR and HR estimation by applying frequency analysis on the phase of
mmWave signals.

Fig. 4. Comparison between ground truth and our estimation on breath and
heartbeat.

It is thus necessary to remove the impacts of such harmon-
ics for reliable HR estimation. For that purpose, we realize
phase drift calibration [8] by computing the phase difference
Δφ(l) = φ(l)− φ(l − 1) for each φ(l). If the absolute value
of the phase difference exceeds a certain threshold, φ(l) will be
replaced by a new value computed by the Lagrange interpolation
of the previous three phases φ(l − 3), φ(l − 2), φ(l − 1). An
example is shown in Fig. 2(b).

E. BR and HR Estimation

We apply frequency analysis upon the calibrated phase within
a sliding window to estimate BR and HR. Since the periods of
human breathing and heartbeat are close to each other, we need
to separate the BR and HR for reliable estimations. Particularly,
we apply a 3-th order Butterworth bandpass filter with a cut-off
frequency range of 0.8− 2.0Hz to extract heartbeats, which
removes the impacts of human breathing and its harmonics.
Similarly, we use another bandpass filter of 0.1− 0.5Hz to
extract human breaths. Then, our system applies a DFT on
the extracted breathing signals, and takes the highest peak of
the DFT magnitude as the detected BR. To extract heartbeat,
which involves subtler displacement, we first calculate phase dif-
ference: Δφ(l) = φ(l)− φ(l − 1), which reveals minor phase
changes [22]. Our system then applies a DFT on the phase differ-
ences to calculate the HR. Examples of BR and HR estimation
results are shown in Fig. 3. Comparisons between ground truth
and our estimation of breath and heartbeat are shown in Fig. 4.

IV. PERFORMANCE EVALUATION

A. TDM-Phased-MIMO Implementation

As a proof of concept, we implement the proposed TDM
phased-MIMO radar on an off-the-shelf TI AWR2243 mmWave
device [23], [24], which transmits and receives FMCW wave-
forms within 76GHz ∼ 81 GHz frequency range. As shown
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TABLE I
CHIRP PARAMETERS USED IN THIS WORK

Fig. 5. Subframe implementation on AWR2243 (F=1).

in Fig. 1, the mmWave device consists of three TXs with the
spacing of λ and four RXs with the spacing of λ/2, respectively.
It is noted that while the middle TX antenna element is offset
from the other two in the elevation direction [23], the antenna
array can still be assumed as a linear antenna array in the
horizontal direction given the broadside radiation of the patch
antennas and wavefront direction. In the measurement setup,
each TX chain includes a programmable phased shifter, with
which the analog scanning angle can be achieved by providing
different phase information feeding to each TX, separately. The
FMCW setting based on AWR2243 was shown in Table I. In
this configuration,the resolution of range bin measurement is
19.5 cm. An evaluation board TI DCA1000 [25] is adopted
in the streaming mode to acquire raw baseband I/Q signals
down-converted from received signals.

It is worth mentioning that when leveraging TXs to realize
the analog beamforming, there will be grating lobes pointing
to other directions because of the large spacing between TXs,
λ > λ/2, which may introduce interference in the multi-target
scenario. Nevertheless, RXs are spaced by λ/2 which means
there is no grating lobe at the receiver side. By leveraging the
CB at the receiver side, we can alleviate the grating lobe problem
since the energy is focused to a certain direction. In multiple-
subject scenarios, our TDM phased-MIMO radar can change the
beam direction towards two different subjects within one frame
periodicity of 50 ms. Each frame is equally divided into four
subframes [26] for multi-target detection, whose block diagram
is shown in Fig. 5. Particularly, the direction 1 can be illuminated
using subframe 1 with TX0 as the reference, and subframe 2 with
TX2 as the reference, while the direction 2 can be illuminated
using subframe 3 with TX0 as the reference and subframe 4 with
TX2 as the reference.

B. Experimental Validation and Error Analysis

We evaluate the performance of our vital sign monitoring
system under single-subject and two-subject scenarios. For both

TABLE II
REPRESENTATIVE RESULTS OF BREATH RATE ESTIMATION (SINGLE TARGET

SCENARIO AND MULTI-TARGET SCENARIO)

TABLE III
REPRESENTATIVE RESULTS OF HEARTBEAT RATE ESTIMATION (SINGLE TARGET

SCENARIO AND MULTI-TARGET SCENARIO)

scenarios, we conduct experiments to study the impacts of
various factors, including the distance between the radar and
the subject and the separation angle between two subjects and
the orientations of subjects. A total of 40 experiments was
conducted, each of 2 min time duration. A total of 6 volun-
teers participated in the experiments. As ground truth we use
breathing and heartbeat signals collected with a Neulog NUL236
respiration belt and a Neulog NUL208 Heart Rate sensor. A
60-second sliding window, with a step size of 1 s, is applied upon
the breathing and heartbeat signals to obtain the ground-truth
BR and HR. We compare the HR and BR estimates obtained
with our proposed system to the ground truth. To quantify the
vital sign estimation performance, we use statistical metrics
including standard derivation (STD), root-mean-square error
(RMSE), and estimation accuracy, which are also used in prior
work [9]. Specifically, STD indicates the consistency of the
estimations, and a lower STD means higher consistency and
better performance. RMSE measures the average errors between
the estimations of our system and the ground truth. Besides
these two statistical metrics, we use estimation accuracy for
evaluation, which is defined as the percentage of the estimation
with < 3 bpm errors.

C. Single-Target Vital Sign Estimation

In the scenario of single-target vital sign monitoring, the
subject is requested to sit in front of the radar, which is placed
1 m, 2 m and 4 m away from the subject with a direction of 20.1◦.
The estimation accuracy and statistic results of single-target
BR are shown in Fig. 7. Results of single-target breath and
heartbeat estimation are shown in Table II and Table III. For
the single-target BR estimation on 1 m and 2 m, the estimation
accuracy for phased-array can reach 97%. However, under a far
radar-to-subject distance of 4 m, the accuracy drops to 80% for
predictions of < 3 bpm errors. In contrast, the phased-MIMO
not only maintains high accuracy on BR estimation on 1 m (99%)
and 2 m (100%), but achieves much higher accuracy at 4 m,
with 100% for predictions of < 3 bpm errors as well. For the
statistic results, the STD and RMSE of both phased-array and
phased-MIMO experience a severe increasing when the distance
between subjects and radar increases to 4 m, which can attribute
to the instability of long distance data collection from radar.
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Fig. 6. Setup for multi-target vital sign monitoring.

Fig. 7. (a), (b) Accuracy on single-target BR estimation; (c), (d) corresponding
errors. X-axis: subject-to-radar distance.

Fig. 8. (a), (b) Accuracy on single-target HR estimation; (c), (d) corresponding
errors. X-axis: subject-to-radar distance.

Compared to phased-array, phased-MIMO has much lower STD
and RMSE on all three different distances, demonstrating the
superior performance on BR estimation.

In Fig. 8, we compare the performance of phased array and
proposed phased-MIMO on HR estimation. For phased-array,
the accuracies are only 67.9%, 86.3%, and 78.0%, at 1 m, 2 m,
and 4 m, respectively. In contrast, the proposed phased-MIMO
has much better HR estimation performance, with over 95%
accuracy at three different distances. We note that phased array
has the best performance on the setup of 2 m, with STD of
3.63 and RMSE of 3.98. In order to illustrate this observation,
we draw a schematic in Fig. 9, where the human body is
approximated as a circle with 0.44 m of diameter. As shown
in Fig. 9, due to the width of human, when the targets are at
1 m, the beam formulated by the phased array does not cover
the whole chest thus leading to a low accuracy. At 2 m, the beam
covers the whole chest, and thus a higher accuracy is achieved.
At 4 m, due to attenuation of mmWave signal, the accuracy is
lower than in the 2 m case. With the combination of 8 channels,

Fig. 9. Beam formulated by phased array with 3 TX can not cover the whole
body when target is 1 m far from radar.

even at longer distance the proposed phased-MIMO has lower
STD and RMSE, which proves the stability and robustness using
phase-MIMO to make single-target heartbeat estimation.

D. Multi-Target Vital Sign Estimation

Multi-target vital signs detection is more challenging, es-
pecially when the targets are in the same range bin, since
the FMCW signal only provides range information [9]. For
that case, we propose to use analog beamforming and CB to
separate different targets in the angle domain. By transmitting
beams towards each of the target, we can isolate the targets at
the same distance; by CB on the virtual array, we can further
focus the energy of received signal towards the desired target
and thus reduce the interference from other targets. In the first
multi-target detection experiment, two targets are sitting along
the direction of −30◦ and 30◦ with the same distance of 1 m or
1.6 m away from the radar sensor. In this case, due to the large
spacing between TXs, the grating lobe issue appears along the
direction of −30◦ with the maximum gain of main beam along
the direction of 30◦ and vice versa. Fortunately, we can use CB
on the virtual array to address this problem.

Example results of multi-target breath and heartbeat estima-
tion are shown in Table II and Table III. The statistic result
comparison between phased array and phased-MIMO are shown
in Fig. 10, when two targets are located at different distances
with the angle separation of 60◦. In Figs. 10(a) and (b), for
BR estimation, both the accuracy rates for the phased-MIMO
and the phased array are 100%. At a distance of 1 m, the STD
and RMSE of the phased array are 0.14 and 0.2, respectively,
while the STD and RMSE for the proposed phased-MIMO are
0.06 and 0.15, respectively. At a distance of 1.6 m, the STD
and RMSE for the phased array are 0.6 and 0.71, respectively,
while the STD and RMSE for the phased-MIMO are 0.55 and
0.66, respectively. For HR estimation in Figs. 10(c) and (d),
the accuracy rates between phased array and phased-MIMO are
40.68% and 87.29%, At a distance of 1 m, the STD and RMSE
for phased array are 4.2 and 5.83, respectively, while the STD
and RMSE of the phased-MIMO are 1.48 and 2.99, respectively.
At a distance of 1.6 m, the STD and RMSE for the phased array
are 9.88 and 14.17, respectively, while the STD and RMSE for
the phased-MIMO are 1.31 and 1.53, respectively.

When two targets located at the distance of 1.6 m with
different angle separations of 40◦, 45◦ and 60◦, the performance
of the phased array and the phased-MIMO are summarized in
Fig. 11 and the experiment setup for 45° is shown in Fig. 6. In
Figs. 11(a) and (b), for BR estimation, the accuracy rate of the



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE JOURNAL OF ELECTROMAGNETICS, RF, AND MICROWAVES IN MEDICINE AND BIOLOGY, VOL. 00, NO. 00, 2022

Fig. 10. (a), (b) Accuracy on multi-target BR estimation; (c), (d) accuracy
on multi-target HR estimation; (e), (f) errors for multi-target BR estimation;
(g), (h) errors for multi-target HR estimation. X-axis: subject-to-radar distance.
The angle separation between subjects is 60◦.

Fig. 11. (a), (b) Accuracy on multi-target BR estimation; (c), (d) accuracy
on multi-target HR estimation; (e), (f) errors for multi-target BR estimation;
(g), (h) errors for multi-target HR estimation. X-axis: angle between two targets.
The radar-to-target distances are all 1.6 m.

Fig. 12. Experiment setup for different targets’ orientations.

Fig. 13. (a), (b) Accuracy on multi-target BR estimation; (c), (d) accuracy
on multi-target HR estimation; (e), (f) errors for multi-target BR estimation;
(g), (h) errors for multi-target HR estimation. X-axis: target orientations. The
radar-to-target distances are all 1.6 m and inter-target angle is 30◦.

phased array is larger than 82.79% while the accuracy rate of the
phased-MIMO is larger than 98.06% when the angle separation
is changed from 40◦ to 60◦. For HR measurement shown in
Figs. 11(c) and (d), the accuracy rate for the phased array is larger
than 62.82% while the accuracy rate for the phased-MIMO is
larger than 82.89% when the angle separation is changed from
40◦ to 60◦. Furthermore, Figs. 11(e) and (f) show that the STD
and RMSE results for phased-MIMO are smaller than those for
phased array. Similar results can be seen in Figs. 11(g) and (h).
For HR estimation, the accuracy rates for the phased-MIMO
are larger than those for the phased array under different angle
separations.

Further experiments were conducted with targets not facing
the radar; the setup is shown in Fig. 12. Figs. 13(a) and (b) show
the performance of BR estimation based on the phased array and
the phased-MIMO, while Figs. 13(c) and (d) illustrate the HR
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estimation performance. Figs. 13(e), (f), (g) and (h) show STD
and RMSE results for the phased array and the phased-MIMO in
this case, respectively. As can be seen in Fig. 13, when the radar
sensor is used to detect vital sign signals on the front and back
chest of target, the accuracy rates for either the phased array or
the phased-MIMO are higher than those when the radar sensor is
located on the right side of target. This is mainly because, in this
case, the chest displacement is not obvious on the arm. Further-
more, the reflection area becomes much smaller in that orienta-
tion, thus the breathing and heartbeat are much more difficult to
detect when the radar sensor is located on the right side of target.

It needs to be mentioned that, an experiment where two targets
are at same radial distance of 1.6 m and angle separation of 20◦

was also conducted. In this case, the proposed phased-MIMO
can resolve and accurately estimate the different breathing rates
of the two targets while the heart rates can not be resolved. In
our future work, more advanced radar techniques, e.g., CB at
transmitter side, would be applied to improve the performance
of the propose system on more challenging scenarios, e.g.,
larger subject-to-radar distance and smaller subject-to-subject
distance.

V. CONCLUSION

We have designed a TDM phased-MIMO radar to realize
high-precision multi-people vital sign monitoring. The designed
radar can successively steer the mmWave beam towards different
directions, which enables the separation of vital signals of
multiple subjects at the same range bin and integrates the MIMO
technique into our design to boost the SNR. The received echoes
are processed with Capon’s beamformer to further enhance the
directivity which allows us to localize multiple target subjects
and extract echoed mmWave signals of each individual subject.
As compared to the phased array, our TDM-phased MIMO
with receive beamforming can more accurately estimate the
BR and the HR of multiple subjects. Furthermore, compared
to the state-of-the-art MIMO-based approach [12], which relies
on a large antenna array (i.e., with 192 TX-RX antenna pairs),
our solution achieves similar performance with the approach
to BR detection (0.1 RMSE vs 0.2 RMSE) and HR estimation
(0.6 RMSE vs 0.53 RMSE) in single target scenario while
using a smaller array of only 8 TX-RX pairs. We believe that
by implementing our method on the large antenna array used
in [12], the performance of vital signal monitoring could be
further improved. In [27], due to high attenuation of mmWave
signal, the detection is within 2m. Here in our work, with analog
beamforming at transmitter side, the vital signal can be detected
at a longer distance of 4m. We believe that performance can
also be improved by combining the phased-MIMO radar with
sophisticated signal processing techniques.
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