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ABSTRACT

Speech privacy leakage has long been a public concern. Through
speech eavesdropping, an adversary may steal a user’s private in-

formation or an enterprise’s financial/intellectual properties, lead- g § .
ing to catastrophic consequences. Existing non-microphone-based ’

eavesdropping attacks rely on physical contact or line-of-sight be-

Common Room
Objects

Victim Sound Source Passive Speech-induced Compromised mmWave-
tween the sensor (e.g., a motion sensor or a radar) and the victim Vibrations enabled Device
sound source. In this poster, we discover a new form of speech Figure 1: Illustration of the proposed mmWave-based eaves-
eavesdropping attack that senses minor speech-induced vibrations dropping attack exploiting minor passive speech vibrations
upon common room objects using mmWave. By integrating phased- upon common room objects.

array and multiple-input and multiple-output (MIMO) on a single
mmWave transceiver, our attack can capture and fuse micrometer-
level vibrations upon the surfaces of multiple objects to reveal
speech content in a remote and non-line-of-sight fashion. We suc-
cessfully demonstrate such an attack by developing a deep speech
recognition scheme grounded on unsupervised domain adaptation.
Without prior training on the victim’s data, our attack can achieve a

Speech eavesdropping attacks may steal a user’s private informa-
tion (e.g., passwords, social security numbers) or an enterprise’s
financial and intellectual properties (e.g., transactions, financial re-
ports/blueprint), resulting in high risks of financial and reputation

high success rate of over 90% in recognizing simple speech content. loss. . ) .
Exploring the issues of speech eavesdropping has long been
KEYWORDS a core topic in computer security. Early attempts with tampered
microphones can be thwarted by restricting physical access to a
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In this work, we demonstrate a remote and non-line-of-sight
1 INTRODUCTION speech eavesdropping attack by exploiting passive speech-induced
vibrations on common room objects (e.g., plastic boxes, glass win-
dows). Speech is carried by sound waves propagating through the
air. Upon hitting nearby objects, the sound energy of speech is
partially transmitted onto those solid media, causing subtle physi-
cal vibrations. As illustrated in Figure 1, our attack lies in sensing
such minor vibrations by leveraging widely deployed mmWave-
enabled devices (e.g., 802.11ad routers, 5G-enabled devices). Our
contributions are summarized as follows:

Human voice has always been a dominant medium of communi-
cation. For both enterprises and individuals, voice communication
plays a critical role in various important tasks, such as meetings,
phone calls/messages, and bank transactions. The recent advance-
ments of voice-user interfaces even extend the use of voice to
human-to-machine interactions. However, the unencrypted nature
of voice creates a looming threat of security and privacy leakage.
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Figure 2: Illustration of the designed phased-MIMO radar
capable of sensing and fusing passive speech vibrations on
multiple room objects.
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all antennas to boost the signal-to-noise ratio (SNR) for speech
eavesdropping.

o We design a deep speech recognition scheme based on unsuper-
vised domain adaptation. Our attack can adapt a model built on
public audio datasets to recognize speech in passive vibrations,
without any prior training.

2 ATTACK DESIGN

Threat Model. We assume a scenario where the victim uses voice
communication in a private space/confidential room with restricted
access. An adversary tries to breach the security and eavesdrop on
the voice communication without physical access to the space/room.
The adversary can compromise a mmWave-enabled device by in-
jecting malware and log mmWave signals to capture passive speech
vibrations on room objects.

Passive Vibration Sensing via mmWave. Our attack senses
the passive vibrations upon room objects based on Frequency-
Modulated Continuous-Wave (FMCW) radar, which transmits a
sequence of chirp signals sweeping across a fixed bandwidth. The
distance between the object and the radar, R(¢), is encoded in the
received signal r(t):

r(t) = aexp(j27(2fc + f)R(1)/c), 1)
where f is denoted as the carrier frequency, and f is the slope of
the chirp. & is an attenuation factor dependent on the propagation
distance. We apply dechirp and range-FFT operations on the re-
ceived signal to determine a particular distance where the object is
placed, and extract the time-series signals at this distance:

y(1) = aexp(~janfe (R(1)) /), )
where the phase part exp(-) of the time-series signal is associate
with the vibrations of the object’s surface.

Phased-MIMO Sensing System. Although mmWave sensing
can capture displacement of objects, it is still challenging to pre-
cisely measure passive vibrations that are orders of magnitude
smaller than the wavelength (i.e., micrometer-level), especially un-
der the signal distortions induced by propagation. Therefore, we
design a system based on time-division-multiplexing (TDM) phased-
MIMO [3], which can significantly enhance the directivity and the
sensitivity of mmWave sensing. As shown in Figure 2, for a group
of consecutive chirps, the system transmits the FMCW waveform
through a subset of the transmitting antennas. The antenna weights
are chosen so that a beam, focusing the transmitted power to the
direction of the object, is formed. In addition, TDM-MIMO oper-
ation enables the formation of a virtual receiving array aperture
longer than that of the physical receiving array. The combination
of the beamforming can MIMO significantly boosts the SNR, while
enabling sensing and fusing vibrations on multiple objects.
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(b) Spectrogram of “Zero”

(a) Experimental setup

Figure 3: Capturing speech from a loudspeaker by sensing
the passive vibrations on an aluminum foil.

Speech Recognition based on Deep Learning. The time-
frequency patterns of speech vibrations are dependent on many
practical factors, such as the materials of objects, the victim’s vo-
cal characteristics, the distance between the object and the sound
source, etc. It is unlikely that an adversary can obtain labeled data
considering all these impacting factors to build a general speech
recognition model. To enable a practical attack, we first leverage
public audio datasets to pre-train a bidirectional recurrent neural
network (BRNN)-based speech recognition model. Then, the col-
lected vibration data (i.e., without labels) are utilized to adapt the
parameters of the BRNN model through adversarial training with a
domain discriminator, which transfers the knowledge of speech to
the victim’s vibration data. The adapted model is then utilized to
predict the speech content.

3 PRELIMINARY EVALUATION

As a proof of concept, we implement the proposed TDM phased-
MIMO radar on an off-the-shelf TI AWR2243 mmWave device op-
erating within a 76GHz ~ 81GHz frequency range. The mmWave
device consists of three transmitting and four receiving antennas.
An evaluation board TI DCA 1000 is used to acquire raw I/Q sig-
nals for speech vibration sensing. We collect audio recordings of
digits of 0 ~ 9 from two participants (i.e., 10 repeats per digit per
participant), and then replay the audio using a Logitech Z623 loud-
speaker with 85dB volume. An aluminum foil is used as a room
object to capture speech vibrations as illustrated in Figure 3 (a), and
an example spectrogram of passive speech vibrations of "Zero" is
shown in Figure 3 (b). Under this setting, our attack achieves 91.9%
accuracy in recognizing the 10 digits.
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