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ABSTRACT

Speech privacy leakage has long been a public concern. Through

speech eavesdropping, an adversary may steal a user’s private in-

formation or an enterprise’s financial/intellectual properties, lead-

ing to catastrophic consequences. Existing non-microphone-based

eavesdropping attacks rely on physical contact or line-of-sight be-

tween the sensor (e.g., a motion sensor or a radar) and the victim

sound source. In this poster, we discover a new form of speech

eavesdropping attack that senses minor speech-induced vibrations

upon common room objects using mmWave. By integrating phased-

array and multiple-input and multiple-output (MIMO) on a single

mmWave transceiver, our attack can capture and fuse micrometer-

level vibrations upon the surfaces of multiple objects to reveal

speech content in a remote and non-line-of-sight fashion. We suc-

cessfully demonstrate such an attack by developing a deep speech

recognition scheme grounded on unsupervised domain adaptation.

Without prior training on the victim’s data, our attack can achieve a

high success rate of over 90% in recognizing simple speech content.

KEYWORDS

Speech Privacy Attack, mmWave Sensing, Phased-MIMO

ACM Reference Format:

Cong Shi, Tianfang Zhang, Zhaoyi Xu, Shuping Li, Yichao Yuan, Athina

Petropulu, Chung Tse Michael Wu, Yingying Chen. 2022. Poster: Speech

Privacy Attack via Vibrations from Room Objects Leveraging a Phased-

MIMO Radar. In The 20th Annual International Conference on Mobile Systems,

Applications and Services (MobiSys ’22), June 25–July 1, 2022, Portland, OR,

USA. ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/3498361.

3538790

1 INTRODUCTION

Human voice has always been a dominant medium of communi-

cation. For both enterprises and individuals, voice communication

plays a critical role in various important tasks, such as meetings,

phone calls/messages, and bank transactions. The recent advance-

ments of voice-user interfaces even extend the use of voice to

human-to-machine interactions. However, the unencrypted nature

of voice creates a looming threat of security and privacy leakage.
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Figure 1: Illustration of the proposed mmWave-based eaves-

dropping attack exploiting minor passive speech vibrations

upon common room objects.

Speech eavesdropping attacks may steal a user’s private informa-

tion (e.g., passwords, social security numbers) or an enterprise’s

financial and intellectual properties (e.g., transactions, financial re-

ports/blueprint), resulting in high risks of financial and reputation

loss.

Exploring the issues of speech eavesdropping has long been

a core topic in computer security. Early attempts with tampered

microphones can be thwarted by restricting physical access to a

space (e.g., using a confidential meeting room). Motion sensors

on mobile devices were shown to pick up conductive vibrations

caused by the speech playback of a built-in or neighboring external

loudspeaker [1]. However, the motion sensors do not generally get

impacted by aerial sounds, which precludes their use in natural

scenarios with airborne speech. Research studies also revealed the

potential of using radio frequency (RF) techniques [2] for speech

sensing. However, these approaches are still limited to scenarios

with the sound source in the line of sight of the radar sensor.

In this work, we demonstrate a remote and non-line-of-sight

speech eavesdropping attack by exploiting passive speech-induced

vibrations on common room objects (e.g., plastic boxes, glass win-

dows). Speech is carried by sound waves propagating through the

air. Upon hitting nearby objects, the sound energy of speech is

partially transmitted onto those solid media, causing subtle physi-

cal vibrations. As illustrated in Figure 1, our attack lies in sensing

such minor vibrations by leveraging widely deployed mmWave-

enabled devices (e.g., 802.11ad routers, 5G-enabled devices). Our

contributions are summarized as follows:

• To the best of our knowledge, our work is the first attempt to

explore mmWave to capture passive speech vibrations for speech

eavesdropping, which can turn a common room object into a

microphone in a remote fashion.

• We integrate phased-array and MIMO on a single transceiver.

Our phased-MIMO radar can steer the mmWave beam to simul-

taneously sense on multiple vibration sources while utilizing
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Figure 2: Illustration of the designed phased-MIMO radar

capable of sensing and fusing passive speech vibrations on

multiple room objects.

all antennas to boost the signal-to-noise ratio (SNR) for speech

eavesdropping.

• We design a deep speech recognition scheme based on unsuper-

vised domain adaptation. Our attack can adapt a model built on

public audio datasets to recognize speech in passive vibrations,

without any prior training.

2 ATTACK DESIGN

Threat Model. We assume a scenario where the victim uses voice

communication in a private space/confidential room with restricted

access. An adversary tries to breach the security and eavesdrop on

the voice communicationwithout physical access to the space/room.

The adversary can compromise a mmWave-enabled device by in-

jecting malware and log mmWave signals to capture passive speech

vibrations on room objects.

Passive Vibration Sensing via mmWave. Our attack senses

the passive vibrations upon room objects based on Frequency-

Modulated Continuous-Wave (FMCW) radar, which transmits a

sequence of chirp signals sweeping across a fixed bandwidth. The

distance between the object and the radar, 𝑅(𝑡), is encoded in the

received signal 𝑟 (𝑡):

𝑟 (𝑡) = 𝛼𝑒𝑥𝑝 ( 𝑗2𝜋 (2𝑓𝑐 + 𝛽𝑡)𝑅(𝑡)/𝑐), (1)

where 𝑓𝑐 is denoted as the carrier frequency, and 𝛽 is the slope of

the chirp. 𝛼 is an attenuation factor dependent on the propagation

distance. We apply dechirp and range-FFT operations on the re-

ceived signal to determine a particular distance where the object is

placed, and extract the time-series signals at this distance:

𝑦 (𝑡) = 𝛼𝑒𝑥𝑝 (− 𝑗4𝜋 𝑓𝑐 (𝑅(𝑡))/𝑐), (2)

where the phase part 𝑒𝑥𝑝 (·) of the time-series signal is associate

with the vibrations of the object’s surface.

Phased-MIMO Sensing System. Although mmWave sensing

can capture displacement of objects, it is still challenging to pre-

cisely measure passive vibrations that are orders of magnitude

smaller than the wavelength (i.e., micrometer-level), especially un-

der the signal distortions induced by propagation. Therefore, we

design a system based on time-division-multiplexing (TDM) phased-

MIMO [3], which can significantly enhance the directivity and the

sensitivity of mmWave sensing. As shown in Figure 2, for a group

of consecutive chirps, the system transmits the FMCW waveform

through a subset of the transmitting antennas. The antenna weights

are chosen so that a beam, focusing the transmitted power to the

direction of the object, is formed. In addition, TDM-MIMO oper-

ation enables the formation of a virtual receiving array aperture

longer than that of the physical receiving array. The combination

of the beamforming can MIMO significantly boosts the SNR, while

enabling sensing and fusing vibrations on multiple objects.
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Room Object

mmWave
Device

Sound 
Source

Figure 3: Capturing speech from a loudspeaker by sensing

the passive vibrations on an aluminum foil.

Speech Recognition based on Deep Learning. The time-

frequency patterns of speech vibrations are dependent on many

practical factors, such as the materials of objects, the victim’s vo-

cal characteristics, the distance between the object and the sound

source, etc. It is unlikely that an adversary can obtain labeled data

considering all these impacting factors to build a general speech

recognition model. To enable a practical attack, we first leverage

public audio datasets to pre-train a bidirectional recurrent neural

network (BRNN)-based speech recognition model. Then, the col-

lected vibration data (i.e., without labels) are utilized to adapt the

parameters of the BRNN model through adversarial training with a

domain discriminator, which transfers the knowledge of speech to

the victim’s vibration data. The adapted model is then utilized to

predict the speech content.

3 PRELIMINARY EVALUATION

As a proof of concept, we implement the proposed TDM phased-

MIMO radar on an off-the-shelf TI AWR2243 mmWave device op-

erating within a 76𝐺𝐻𝑧 ∼ 81𝐺𝐻𝑧 frequency range. The mmWave

device consists of three transmitting and four receiving antennas.

An evaluation board TI DCA 1000 is used to acquire raw I/Q sig-

nals for speech vibration sensing. We collect audio recordings of

digits of 0 ∼ 9 from two participants (i.e., 10 repeats per digit per

participant), and then replay the audio using a Logitech Z623 loud-

speaker with 85dB volume. An aluminum foil is used as a room

object to capture speech vibrations as illustrated in Figure 3 (a), and

an example spectrogram of passive speech vibrations of "Zero" is

shown in Figure 3 (b). Under this setting, our attack achieves 91.9%
accuracy in recognizing the 10 digits.
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