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Abstract— This paper considers the position and attitude
tracking control problem of a vertical take-off and landing
unmanned aerial vehicle with uncertainty and input constraints.
Considering the parametric and non-parametric uncertainties
in the dynamics of systems, a robust adaptive tracking con-
troller is proposed with the aid of the special structure of the
dynamics of the system. Considering the uncertainty and input
constraints, a robust adaptive saturation controller is proposed
with the aid of an auxiliary compensated system. Simulation
results show the effectiveness of the proposed algorithms.

I. INTRODUCTION

Control of vertical take-off and landing (VTOL) unmanned
aerial vehicles (UAVs) has been an active research area in
the past decades due to its wide applications in the areas
such as surveillance, search and rescue missions, monitoring,
etc. A VTOL UAV can operate in cluttered environments
and hover for a long time in the air. A VTOL UAV is an
underactuated system because it has six degrees of freedom
(DOFs) (i.e., three DOFs for the position and three DOFs for
the orientation) but has only four inputs. The underactuated
nature of the system makes its control problems challenging.

In order to deal with its underactuated property, different
control methods have been proposed in [1], [2], [3], [4],
[5]. In control of VTOL UAVs, there is always uncertainty
in the dynamics of VTOL UAVs in practice. In [6], the
position and attitude tracking control of a quadrotor with
inertia parameter uncertainty was considered. Adaptive track-
ing controllers were proposed with the aid of the cascade
structure of the dynamics of the system and the immersion
and invariance technique. In [7], [8], the sliding mode control
technique was applied to estimate disturbance and a sliding
mode based tracking controller was proposed. In [9], [10],
the sliding mode technique was applied to compensate un-
modeled dynamics and adaptive robust tracking controllers
were proposed. In [11], composite learning controllers were
proposed by using the terminal sliding mode for a quadrotor
with unknown dynamics and time-varying disturbances. In
[12], [13], [14], the immersion and invariance technique was
applied to design adaptive controllers for a quadrotor with
parametric uncertainty. In [15], the adaptive backstepping
technique and command-filter compensation were applied
and adaptive tracking controllers were proposed without
computation of derivatives of signals. In [16], [17], con-
trollers were proposed with the aid of model predictive
control. In [18], robust adaptive controllers were proposed in
the presence of wind disturbance with the aid of the singular-
perturbation technique.
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For a VTOL UAV, there is always constraint on its
inputs. For the tracking control of VTOL UAVs with input
constraints, a nested tracking controller was proposed with
the aid of the nested saturation control in [19] if there
is no uncertainty and disturbance. However, the selection
of the control parameters are intricate and the stability of
the closed-loop system cannot be guaranteed if there is
uncertainty in the model of the system. To overcome this,
the tracking control problem of a quadrotor with parametric
uncertainty and input constraints was studied in [20] and
an adaptive tracking controller was proposed. However, the
closed-loop tracking error system is semi-globally stable
and the non-parametric uncertainty was not considered. In
[21], the trajectory tracking control was studied for a VTOL
aircraft with a simplified model under an input constraint.
Since the proposed controller is based on a 3 DOF model, it
cannot be extended to deal with a 6 DOF model of VTOL
vehicles. In [22], the trajectory tracking control of a 6-
DOF quadrotor UAV with an input constraint was studied.
Position tracking controllers were proposed with the aid of
backstepping techniques and a Nussbaum function under the
assumptions that the inertia parameters are exactly known
and the disturbances in the dynamics are constants. However,
in practice these assumptions are not true.

In this paper we study two control problems of 6-DOF
VTOL UAVs under the conditions that there is uncertainty
and input constraint. One problem is the position and attitude
tracking control of VTOL UAVs with both parametric and
non-parametric uncertainty. The other problem is the position
and attitude tracking control of VTOL UAVs with both un-
certainty and input constraint. For the first problem, with the
aid of backstepping techniques and saturation control a new
quaternion-based robust adaptive controller is proposed such
that the position and the attitude converge to their desired
values, respectively. For the second problem, by introducing
an auxiliary compensated system a new robust adaptive
saturation controller is proposed such that the tracking errors
of the position and the attitude are uniformly ultimately
bounded (UUB).

II. PROBLEM STATEMENT AND SOME PRELIMINARIES

A. Problem Statement

Consider a rigid VTOL UAV. The well-known rigid body
model can be written as [23]:

ṗ = v (1)

v̇ = −ge3 +
1

m
fRe3 + d1 (2)

Ṙ = RS(ω) (3)
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Jω̇ = S(Jω)ω + τ + d2 (4)

where p and v are the position and velocity of the mass
center of the UAV in the inertia frame, respectively, g is the
gravitational acceleration, e3 = [0, 0, 1]>, f ∈ < is the total
thrust, R = [b1, b2, b3] is the rotation matrix of the body
frame with respect to the inertia frame, ω = [ω1, ω2, ω3]>

is the angular velocity of the UAV in its body frame, J
is the inertia moment of the UAV, d1 and d2 denote non-
parametric uncertainty which include un-modeled dynamics,
friction, and disturbance, S(·) is a skew-symmetric matrix,
and τ = [τ1, τ2, τ3]> is the torque input of the system. The
dynamics of the thrust f and the torque τ are omitted for
simplicity.

The model in (1)-(4) is a 6-DOF model. Due to the
coupling between the position and attitude, four DOFs can
be controlled independently.

In this paper, we consider the following tracking control
problems.

Tracking control with uncertainty: It is given a desired
trajectory pd(t) and a desired unit vector bd2(t). If m, J , d1,
and d2 are unknown, the control problem is to design a state
feedback controller (f, τ) such that

lim
t→∞

(p(t)− pd(t)) = 0 (5)

lim
t→∞

(b2(t)− bd2(t)) = 0. (6)

Tracking control with uncertainty and input satura-
tion: It is given a desired trajectory pd(t) and a desired unit
vector bd2(t). If m, J , d1, and d2 are unknown, the control
problem is to design a state feedback controller (f, τ) such
that (5)-(6) are satisfied and

0 < f ≤Mf , |τj | ≤Mτ , 1 ≤ j ≤ 3 (7)

where Mf and Mτ are appropriate positive constants.
In order to solve the above problems, the following

assumptions are made.
Assumption 1: The mass m is an unknown constant and

m ∈ [m, m̄] where m and m̄ are known constants.
Assumption 2: The inertia matrix J is an unknown di-

agonal constant matrix (i.e., J = diag([J1, J2, J3])) and
Ji ∈ [J, J̄ ] for 1 ≤ i ≤ 3, where J and J̄ are known
constants.

Assumption 3: d1 and d2 are bounded and |d1j | ≤ D1

and |d2j | ≤ D2 for 1 ≤ j ≤ 3, where D1 and D2 are known
constants, and d1j and d2j are the j-th elements of d1 and
d2, respectively.

Assumption 4: pd(t) = [pd1(t), pd2(t), pd3(t)]> is smooth,
|p̈dj (t)| ≤Mp (1 ≤ j ≤ 3) for any time.

Assumption 5: bd2(t) is smooth. ḃd2 and b̈d2 are bounded.
bd2(t) × bd3(t) = 0 for any time where bd3(t) = p̈d(t)+ge3

‖p̈d(t)+ge3‖
and × denotes the cross product of two vectors.

Assumption 6: Mf >
√

3(D1+Mp)+g
m .

In (7), Mf and Mτ should be large enough such that there
exist controllers which make (5)-(6) satisfied.

B. Quaternions

The attitude of a VTOL UAV can be defined by a unit
quaternion q =

[
η, ε>

]>
where η ∈ < and ε ∈ <3. The

relation between q and R is defined by R = R(q) = I +
2ηS(ε) + 2S2(ε).

With the aid of the unit quaternion, (3) can be written as

q̇ =
1

2
A(q)ω (8)

where A(q) =
[
−ε, ηI + S>(ε)

]>
.

In this paper, some saturation functions will be applied.
It is given a positive constant M , a function σ : < → < is
said to be a smooth monotonically increasing saturation with
M if it is a smooth function satisfying: (a). sσ(s) > 0 for
all s 6= 0; (b). |σ(s)| ≤ M for all s ∈ <; and (c). σ(s) is
monotonically increasing.

For given Mi > 0 (1 ≤ i ≤ 3), the smooth function
σ(s) with Mi is denoted as σi(s). If s = [s1, . . . , sn]>,
σi(s) = [σi(s1), . . . , σi(sn)]> for 1 ≤ i ≤ 3.

III. CONTROLLER DESIGN WITH UNCERTAINTY

We design a controller such that (5)-(6) hold when there
is uncertainty. Considering the structure of the system in (1)-
(4), a modified backstepping approach will be proposed as
follows:

Step 1: Let ep = p− pd and ev = v − ṗd, we have

ėp = ev (9)

ėv = −ge3 − p̈d +
1

m
fRe3 + d1. (10)

Consider fRe3 as a virtual control input, we design it such
that (5) is satisfied. Noting the special structure of the system
in (9)-(10), we choose a Lyapunov function

V1(Λ1,Λ2, β̃) =

∫ Λ1

0

σ1(s)>ds+

∫ Λ2

0

σ2(s)>ds

+
k1

2
e>v ev +

γ−1
1

2
β̃2

where 0 = [0, 0, 0]>, k1 > 0, k2 > 0, γ1 is a positive
constant, and

Λ1 = k1ep + k2ev, Λ2 = k2ev, β̃ =
1

m
− β

where β is an estimate of 1
m . It can be proved that V1 is

a positive definite function of ep, ev , and β̃. Furthermore,
V1 = 0 if ep = 0, ev = 0, and β̃ = 0. The derivative of V1

is

V̇1 = k1σ1(Λ1)>ev + (k2σ1(Λ1) + k2σ2(Λ2) + k1ev)
> ×

(−ge3 − p̈d + βfRe3 + d1)− γ−1
1

(
1

m
− β

)
(β̇

−γ1(k2σ1(Λ1) + k2σ2(Λ2) + k1ev)
>fRe3).
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To make V̇1 as small as possible, we choose the virtual
control input for fRe3 and update law of β as

α = [α1, α2, α3]> =
1

β
(−σ1(Λ1)− σ2(Λ2)−D1h(G, δ)

+ge3 + p̈d) (11)
β̇ = ProjΩm

(
γ1G

>fRe3

)
= ProjΩm (H)

=

 H,

if β ∈ ( 1
m̄ ,

1
m ),

or if β = 1
m̄ and H > 0,

or if β = 1
m and H < 0

0, otherwise

(12)

where

Ωm =

[
1

m̄
,

1

m

]
H = γ1G

>fRe3 (13)
G = [G1, G2, G3]> = k2σ1(Λ1) + k2σ2(Λ2)

+k1ev (14)

h(G, δ) =
[

G1√
G2

1+δ(t)2
, G2√

G2
2+δ(t)2

, G3√
G2

3+δ(t)2

]>
(15)

δ(t) = e−δ1t and δ1 > 0. Then, if fRe3 = α, we have

V̇1 ≤ −k2(σ1(Λ1) + σ2(Λ2))>(σ1(Λ1) + σ2(Λ2))

−k1

k2
σ2(Λ2)>σ2(Λ2) + 3D1δ(t). (16)

It should be noted that α is well defined since β ≥ 1
m̄ .

For the defined α, we have the following lemma by simple
calculation.

Lemma 1: If M1 and M2 are chosen such that

g −Mp −M1 −M2 −D1 > 0 (17)

then ‖α‖ > 0 and

‖α‖ ≤
√

3(M1 +M2 +D1 +Mp) + g

m
. (18)

Step 2: We find f and a virtual control input qd for the
unit quaternion q. We choose

f = ‖α‖. (19)

It is obvious that f > 0 for any time with the aid of Lemma
1.

Let r3 = α
‖α‖ , we define

r2 =
(r>3 b

d
3)bd2 − (r>3 b

d
2)bd3

‖(r>3 bd3)bd2 − (r>3 b
d
2)bd3‖

(20)

r1 =
r2 × r3

‖r2 × r3‖
. (21)

The desired attitude of R is chosen as

Rd = [r1, r2, r3] (22)

and the desired quaternion qd = [ηd, ε
>
d ]> of q is calculated

from (22) by the equations (166)-(168) in [24] which are
omitted here. The desired angular velocity is calculated by

ωd = 2A(qd)
> dqd
dt
. (23)

It should be noted that qd and ωd are well defined because
f is always positive.

With the aid of the virtual control input qd,

fRde3 = α

and equation (10) can be written as

ėv = −σ(Λ1)− σ(Λ2)−D1h+ d1 +

(
1

m
− β

)
fRe3

+β‖α‖Rd(R>d R− I3)e3. (24)

Step 3: We assume ω is a virtual control input and design
a virtual controller for ω such that (5)-(6) satisfied. Let the
difference between q and qd be

q̃ = q−1
d ⊗ q = [η̃, ε̃>]>, (25)

The derivative of q̃ is

˙̃q =
1

2
A(q̃)(ω − R̃>ωd) (26)

where R̃ = R>d R. (24) can be written as

ėv = −σ1(Λ1)− σ2(Λ2)−D1h+ d1 +

(
1

m

−β) fRe3 − 2β‖α‖Rd(η̃I3 + S(ε̃))S(e3)ε̃. (27)

Choose a Lyapunov function

V2 = V1 + 2(1− η̃) = V1 + ε̃>ε̃+ (1− η̃)2 (28)

It can be proved that V2 is a positive definite function of
(Λ1,Λ2, β̃, 1 − η̃) and V2 = 0 if (Λ1,Λ2, β̃, 1 − η̃) =
(0, 0, 0, 0). The derivative of V2 is

V̇2 ≤ −k2(σ1(Λ1) + σ2(Λ2))>(σ1(Λ1) + σ2(Λ2))

−k1

k2
σ2(Λ2)>σ2(Λ2)δ + 3D1 + ε̃>(ω − R̃>ωd

−2β‖α‖S(e3)>(η̃I3 + S(ε̃))>R>d G)

To make V̇2 as small as possible, a virtual controller µ for
ω can be chosen as

µ = −k3ε̃+ R̃>ωd + 2β‖α‖S(e3)>(η̃I3 + S(ε̃))>R>d G

where k3 is a positive constant. If ω were a real control input,
i.e., ω = µ, then

V̇2 ≤ −k2(σ1(Λ1) + σ2(Λ2))>(σ1(Λ1) + σ2(Λ2))

−k1

k2
σ2(Λ2)>σ2(Λ2) + 3D1δ − k3ε̃

>ε̃.

Step 4: Since ω is not a real control input, ω cannot be
µ. Let

ω̃ = [ω̃1, ω̃2, ω̃3]> = ω − µ,

then,

˙̃q =
1

2
A(η̃, ε̃)(−k3ε̃+ ω̃ + 2β‖α‖S(e3)>(η̃I3

+S(ε̃))>R>d G) (29)
J ˙̃ω = τ − (S(ω)Γ(ω) + Γ(µ̇))a+ d2 (30)
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where Γ(ω) denotes a diagonal matrix with its diagonal
elements being the vector ω and

a = [a1, a2, a3]> = [J1, J2, J3]>.

Since a and d2 are unknown, an adaptive robust control
law will be proposed such that (5)-(6) are satisfied. To this
end, we choose a Lyapunov function

V3 = V2 +
1

2
ω̃>Jω̃ +

γ−1
2

2
(a− â)>(a− â)

where γ2 is a positive constant and â is an estimate of a
which will be designed later. The derivative of V3 along the
solution of (27), (29) and (30) is

V̇3 ≤ −k2(σ1(Λ1) + σ2(Λ2))>(σ1(Λ1) + σ2(Λ2))

−k1

k2
σ2(Λ2)>σ2(Λ2) + 3D1δ − k3ε̃

>ε̃+ ε̃>ω̃

+ω̃>(τ − (S(ω)Γ(ω) + Γ(µ̇))â+ d2)

−γ−1
2 (a− â)>

(
˙̂a+ γ2(S(ω)Γ(ω) + Γ(µ̇))>ω̃

)
.

To make V̇3 as small as possible, we choose the control law
τ and the update law â as follows:

τ = −k4ω̃ − ε̃+ (S(ω)Γ(ω) + Γ(µ̇))â−D2h(ω̃, δ) (31)
˙̂a = ProjΩa(−γ2(S(ω)Γ(ω) + Γ(µ̇))>ω̃) (32)

where Ωa =
[
J, J̄

]
and k4 is a positive constant. Then,

V̇3 ≤ −k2(σ1(Λ1) + σ2(Λ2))>(σ1(Λ1) + σ2(Λ2))

−k1

k2
σ2(Λ2)>σ2(Λ2) + 3D1δ+3D2δ − k3ε̃

>ε̃

−k4ω̃
>ω̃. (33)

Based on the above controller design procedure, we have
the following results.

Theorem 1: For the system in (1)-(4) and given desired
trajectories pd and bd2, the control inputs (f, τ) in (19) and
(31) with the update laws in (12) and (32) ensure that (5)-(6)
are satisfied and (β, â) are bounded. Furthermore, the thrust
force f is larger than zero at any time and is bounded.

IV. CONTROLLER DESIGN WITH UNCERTAINTY AND
INPUT SATURATION

Assume the input τ is subject to a saturation constraint,
i.e.,

τ = σ3(τd) (34)

where τd ∈ R3 is a new control input without constraint
and will be designed later. In order to compensate the effect
of the input saturation, the following auxiliary compensated
system is defined:

q̇a =
1

2
A(qa)

(
R̃aωa − k5εa

)
(35)

ω̇a = −k4ωa + Γ(θ̂)(τ − τd) (36)

where qa = [ηa, ε
>
a ]> is an auxiliary unit quaternion, ωa ∈

R3 is an auxiliary angular velocity, θ̂ = [θ̂j , θ̂2, θ̂3]> is an
estimate of

θ = [θ1, θ2, θ3]> =

[
1

J1
,

1

J2
,

1

J3

]>
and will be designed later, k4 and k5 are positive constants,
and

Ra = I + 2ηaS(εa) + 2S2(εa) (37)
R̃a = R>a R. (38)

Define

q̃a = q−1
a ⊗ q (39)

then,

˙̃qa =
1

2
A(q̃a)

(
ω − ωa + k5R̃

>
a εa

)
. (40)

Let r2 and r1 be defined as in (20) and (21) and

ᾱ = R>a α, r3 =
ᾱ

‖ᾱ‖
(41)

where α is defined in (11). Define Rd as in (22). The unit
quaternion corresponding to Rd is denoted as qd. By (23),
we can calculate ωd.

Define q̃ = [η̃, ε̃>]> = q−1
d ⊗ q̃a, then,

˙̃q =
1

2
A(q̃)(ω − ωa − R̃>ωd + k5R̃

>
a εa) (42)

where R̃ = R>d R
>
a R. We choose f as in (19). It can be

shown that f = ‖ᾱ‖. So, fRde3 = ᾱ = R>a α and equation
(10) can be written as

ėv = −σ(Λ1)− σ(Λ2)−D1h+ d1 +

(
1

m
− β

)
fRe3

−2β‖ᾱ‖RaRd(η̃I3 + S(ε̃))S(e3)ε̃. (43)

Choose a Lyapunov function

V4 = V1 + 2(1− η̃).

It can be proved that V4 is a nonnegative function of Λ1, Λ2,
and η̃. The derivative of V4 is

V̇4 ≤ −k2(σ1(Λ1) + σ2(Λ2))>(σ1(Λ1) + σ2(Λ2))

−k1

k2
σ2(Λ2)>σ2(Λ2) + 3D1δ + ε̃>(ω − R̃>ωd

−ωa − 2β‖α‖S(e3)>(η̃I3 + S(ε̃))>(RaRd)
>G

+k5R̃
>
a εa).

To make V̇4 as small as possible, a virtual controller µ for
ω can be chosen as

µ = 2β‖α‖S(e3)>(η̃I3 + S(ε̃))>(RaRd)
>G− k3ε̃

+R̃>ωd − k5R̃
>
a εa (44)

where k3 is a positive constant. If ω were the real control
input, i.e., ω = µ, then

V̇4 ≤ −k2(σ1(Λ1) + σ2(Λ2))>(σ1(Λ1) + σ2(Λ2))

−k1

k2
σ2(Λ2)>σ2(Λ2) + 3D1δ + ε̃>(−k3ε̃− ωa).
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Since ω is not the real control input, ω cannot be µ. Let

ω̃ = [ω̃1, ω̃2, ω̃3]> = ω − µ− ωa
then,

˙̃q =
1

2
A(q̃)(−k3ε̃+ ω̃ + 2β‖α‖S(e3)>(η̃I3

+S(ε̃))>(RaRd)
>G)

˙̃ω = Γ(Π)B + Γ(θ)(τ + d2)− µ̇+ k4ωa − Γ(θ̂)(τ − τd)
= Γ(θ̂)τd + Γ(θ − θ̂)τ + k4ωa + Γ(Π)B + Γ(θ)d2 − µ̇

where

B =
[
B1, B2, B3

]>
=
[
ω2ω3, ω1ω3, ω1ω2

]>
Π =

[
Π1,Π2,Π3

]>
=

[
J−1

1 (J2 − J3), J−1
2 (J3 − J1), J−1

3 (J1 − J2)
]>
.

To make q̃ converge to the identity quaternion and ω̃
converge to zero, we choose a Lyapunov function

V5 = V4 +
1

2
ω̃>ω̃ +

γ−1
2

2
(θ − θ̂)>(θ − θ̂)

+
γ−1

3

2
(Π− Π̂)>(Π− Π̂)

where Π̂ = [Π̂1, Π̂2, Π̂3]> is an estimate of Π, γ2 and γ3 are
positive constants. The derivative of V5 is

V̇5 ≤ −k2(σ1(Λ1) + σ2(Λ2))>(σ1(Λ1) + σ2(Λ2))

−k1

k2
σ2(Λ2)>σ2(Λ2) + 3D1δ − k3ε̃

>ε̃+ ω̃>(Γ(θ̂)τd

+ε̃+ Γ(Π̂)B + k4ωa + Γ(θ)d2 − µ̇)

−γ−1
2 (θ − θ̂)>

(
˙̂
θ − γ2Γ(τ)ω̃

)
−γ−1

3 (Π− Π̂)>
(

˙̂
Π− γ3Γ(B)ω̃

)
.

To make V̇5 as small as possible, we choose

τd = Γ−1(θ̂)(−k4(ω − µ)− ε̃− Γ(Π̂)B + µ̇

−D2

J
h(ω̃, δ)) (45)

˙̂
θj = ProjΩθ (γ2τjω̃j), j = 1, 2, 3 (46)
˙̂
Πj = γ3Bjω̃j , j = 1, 2, 3 (47)

where Ωθ =
[

1
J̄
, 1
J

]
. Then,

V̇5 ≤ −k2(σ1(Λ1) + σ2(Λ2))>(σ1(Λ1) + σ2(Λ2))

−k1

k2
σ2(Λ2)>σ2(Λ2) + 3D1δ − k3ε̃

>ε̃

−k4ω̃
>ω̃+

3D2δ

J
. (48)

With the aid of the above procedure, we have the following
results.

Theorem 2: For the system in (1)-(4) and given desired
trajectories pd and bd2, the control inputs (f, τ) in (19) and
(34) with τd in (45) and the update laws in (12) and (46)-(47)
ensure that

1) β, Π̂, and θ̂ are bounded,
2) ep, ev , ε̃, and ω̃ converge to zero, and
3) b2 − bd2 is uniformly ultimate boundedness (UUB).

Furthermore, f is larger than zero at any time and (7) are
satisfied if M1, M2, and M3 are chosen such that

M1 +M2 <
mMf − g√

3
−D1 −Mp,M3 = Mτ .

V. SIMULATION

Simulation results are presented to illustrate the effective-
ness of the proposed controllers. We consider a VTOL UAV
modeled as a rigid body with mass m = 0.85kg and inertia
tensor J = diag([4.856, 4.856, 9.801])−2kg m2 (see [14]).
In the controllers, m and J are unknown. However, it is
known that m ∈ [0.7, 1]kg, i.e., m = 0.7kg and m̄ = 1kg.
For disturbance, it is assumed that d1 and d2 are white noise
with magnitudes D1 = D2 = 0.05.

In the simulation, the desired trajectory pd and bd2 are
chosen as pd(t) = [100 cos(0.05t), 100 sin(0.05t), 10 −
10 exp(−0.1t)] and bd2 = [sin(0.05t),− cos(0.05t), 0]

>. If
there is no input constraint, the robust adaptive controller
is (19) and (31) with the aid of Theorem 1. In the control
law, we chose σi(x) = Mi tanh(x) where Mi = 4. It can
be verified that (17) is satisfied. Simulation was done for
one group of control parameters. The time response of the
tracking errors of p1 − pd1, p2 − pd2, and p3 − pd3 are shown
in Fig. 1 which shows they converge to zero. Fig. 2 depicts
the response of the tracking error q̃. It shows that η̃ asymp-
totically converge to one and ε̃ asymptotically converges to
zero. The simulation results show the effectiveness of the
results in Theorem 1.

If there are uncertainty and input constraints. The control
laws can be obtained in (19) and (34) with the aid of
Theorem 2. In the simulation, the bounds on the force and
the toque are chosen as Mf = 12 N and Mτ = 0.05. It
can be shown that Assumption 6 is satisfied. Simulation
was done for a set of chosen control parameters. The time
response of the tracking errors of p1 − pd1, p2 − pd2, and
p3 − pd3 are shown in Fig. 3. Fig. 4 shows the response of
the tracking error q−1

d ⊗ q. Fig. 5 shows the total force f . It
is obvious that f is bounded and is larger than zero at any
time. Fig. 6 shows the input torque τ . It is bounded by 0.05.
The simulation results show the effectiveness of the results
in Theorem 2.

VI. CONCLUSION

This paper considered the tracking control problems of a
VTOL UAV with uncertainty and input constraints. Consid-
ering the uncertainty in the dynamics of the system, a robust
adaptive tracking controller was proposed such that the
position and the attitude of a VTOL UAV asymptotically con-
verge to their desired value with the aid of the backstepping
technique. Considering the uncertainty and input constraints,
a saturation robust adaptive controller was proposed with the
aid of an auxiliary compensated system. Simulation results
show the effectiveness of the proposed controllers.
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Fig. 1. Time response of p− pd Fig. 2. Time response of q̃ Fig. 3. Time response of p− pd

Fig. 4. Time response of q̃ Fig. 5. Time response of f Fig. 6. Time response of τ
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