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Tracking Control of UAVs with Uncertainty and Input Constraints

Shihab Ahmed and Wenjie Dong

Abstract— This paper considers the position and attitude
tracking control problem of a vertical take-off and landing
unmanned aerial vehicle with uncertainty and input constraints.
Considering the parametric and non-parametric uncertainties
in the dynamics of systems, a robust adaptive tracking con-
troller is proposed with the aid of the special structure of the
dynamics of the system. Considering the uncertainty and input
constraints, a robust adaptive saturation controller is proposed
with the aid of an auxiliary compensated system. Simulation
results show the effectiveness of the proposed algorithms.

I. INTRODUCTION

Control of vertical take-off and landing (VTOL) unmanned
aerial vehicles (UAVs) has been an active research area in
the past decades due to its wide applications in the areas
such as surveillance, search and rescue missions, monitoring,
etc. A VTOL UAV can operate in cluttered environments
and hover for a long time in the air. A VTOL UAV is an
underactuated system because it has six degrees of freedom
(DOFs) (i.e., three DOFs for the position and three DOFs for
the orientation) but has only four inputs. The underactuated
nature of the system makes its control problems challenging.

In order to deal with its underactuated property, different
control methods have been proposed in [1], [2], [3], [4],
[5]. In control of VTOL UAVs, there is always uncertainty
in the dynamics of VTOL UAVs in practice. In [6], the
position and attitude tracking control of a quadrotor with
inertia parameter uncertainty was considered. Adaptive track-
ing controllers were proposed with the aid of the cascade
structure of the dynamics of the system and the immersion
and invariance technique. In [7], [8], the sliding mode control
technique was applied to estimate disturbance and a sliding
mode based tracking controller was proposed. In [9], [10],
the sliding mode technique was applied to compensate un-
modeled dynamics and adaptive robust tracking controllers
were proposed. In [11], composite learning controllers were
proposed by using the terminal sliding mode for a quadrotor
with unknown dynamics and time-varying disturbances. In
[12], [13], [14], the immersion and invariance technique was
applied to design adaptive controllers for a quadrotor with
parametric uncertainty. In [15], the adaptive backstepping
technique and command-filter compensation were applied
and adaptive tracking controllers were proposed without
computation of derivatives of signals. In [16], [17], con-
trollers were proposed with the aid of model predictive
control. In [18], robust adaptive controllers were proposed in
the presence of wind disturbance with the aid of the singular-
perturbation technique.
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For a VTOL UAYV, there is always constraint on its
inputs. For the tracking control of VTOL UAVs with input
constraints, a nested tracking controller was proposed with
the aid of the nested saturation control in [19] if there
is no uncertainty and disturbance. However, the selection
of the control parameters are intricate and the stability of
the closed-loop system cannot be guaranteed if there is
uncertainty in the model of the system. To overcome this,
the tracking control problem of a quadrotor with parametric
uncertainty and input constraints was studied in [20] and
an adaptive tracking controller was proposed. However, the
closed-loop tracking error system is semi-globally stable
and the non-parametric uncertainty was not considered. In
[21], the trajectory tracking control was studied for a VTOL
aircraft with a simplified model under an input constraint.
Since the proposed controller is based on a 3 DOF model, it
cannot be extended to deal with a 6 DOF model of VTOL
vehicles. In [22], the trajectory tracking control of a 6-
DOF quadrotor UAV with an input constraint was studied.
Position tracking controllers were proposed with the aid of
backstepping techniques and a Nussbaum function under the
assumptions that the inertia parameters are exactly known
and the disturbances in the dynamics are constants. However,
in practice these assumptions are not true.

In this paper we study two control problems of 6-DOF
VTOL UAVs under the conditions that there is uncertainty
and input constraint. One problem is the position and attitude
tracking control of VTOL UAVs with both parametric and
non-parametric uncertainty. The other problem is the position
and attitude tracking control of VTOL UAVs with both un-
certainty and input constraint. For the first problem, with the
aid of backstepping techniques and saturation control a new
quaternion-based robust adaptive controller is proposed such
that the position and the attitude converge to their desired
values, respectively. For the second problem, by introducing
an auxiliary compensated system a new robust adaptive
saturation controller is proposed such that the tracking errors
of the position and the attitude are uniformly ultimately
bounded (UUB).

II. PROBLEM STATEMENT AND SOME PRELIMINARIES

A. Problem Statement

Consider a rigid VTOL UAV. The well-known rigid body
model can be written as [23]:

p = v (L
v = 7963+%fR63+d1 (2)
R = RS(w) (3)
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Ju = S(Jww+T+dy 4)
where p and v are the position and velocity of the mass
center of the UAV in the inertia frame, respectively, g is the
gravitational acceleration, e3 = [0,0,1]7, f € R is the total
thrust, R = [b1,bo, b3] is the rotation matrix of the body
frame with respect to the inertia frame, w = [wy,ws,ws] "
is the angular velocity of the UAV in its body frame, J
is the inertia moment of the UAV, d; and ds denote non-
parametric uncertainty which include un-modeled dynamics,
friction, and disturbance, S(-) is a skew-symmetric matrix,
and 7 = |1y, 72, 73] | is the torque input of the system. The
dynamics of the thrust f and the torque 7 are omitted for
simplicity.

The model in (1)-(4) is a 6-DOF model. Due to the
coupling between the position and attitude, four DOFs can
be controlled independently.

In this paper, we consider the following tracking control
problems.

Tracking control with uncertainty: It is given a desired
trajectory p?(t) and a desired unit vector b4(t). If m, J, di,
and do are unknown, the control problem is to design a state
feedback controller (f,7) such that

Jim (p(t) — p*(£)) =0 o)
Jim (ba(t) — b3(1)) = 0. (6)

Tracking control with uncertainty and input satura-
tion: It is given a desired trajectory p?(t) and a desired unit
vector b4(t). If m, J, dy, and dy are unknown, the control
problem is to design a state feedback controller (f,7) such
that (5)-(6) are satisfied and

O<f<My, |nl<M; 1<j<3 ™
where My and M, are appropriate positive constants.

In order to solve the above problems, the following
assumptions are made.

Assumption 1: The mass m is an unknown constant and
m € [m,m] where m and m are known constants.

Assumption 2: The inertia matrix J is an unknown di-
agonal constant matrix (i.e., J = diag([Ji, J2,J3])) and
J; € [J,J] for 1 < i < 3, where J and J are known
constants.

Assumption 3: dy and dy are bounded and |di;| < D,
and |dgj| < Ds for 1 < j < 3, where D; and D5 are known
constants, and dy; and dp; are the j-th elements of d; and
ds, respectively.

Assumption 4: p(t) = [p{(t),pd(t),pi(t)]" is smooth,
[p4(t)] < M, (1 < j < 3) for any time.

Assumption 5: bd(t) is smooth. b and b¢ are bounded.

bd(t) x bd(t) = 0 for any time where bd(t) = ngggiig:“
and x denotes the cross product of two vectors.

Assumption 6: My > %.
In (7), My and M. should be large enough such that there
exist controllers which make (5)-(6) satisfied.

B. Quaternions

The attitude of a VTOL UAV can be defined by a unit
quaternion ¢ = [n,eT]T where 7 € R and € € R3. The
relation between ¢ and R is defined by R = R(q) = I +
2nS(€) + 252 (e).

With the aid of the unit quaternion, (3) can be written as

SA) ®)

where A(q) = [—e,nl + ST(e)]T.

In this paper, some saturation functions will be applied.
It is given a positive constant M, a function o : ® — R is
said to be a smooth monotonically increasing saturation with
M if it is a smooth function satisfying: (a). so(s) > 0 for
all s # 0; (b). |o(s)] < M for all s € R; and (¢). o(s) is
monotonically increasing.

For given M; > 0 (1 < ¢ < 3), the smooth function
o(s) with M; is denoted as o;(s). If s = [s1,...,5,] ",
oi(8) = [04(51),...,0i(s,)] " for 1 <4 <3,

III. CONTROLLER DESIGN WITH UNCERTAINTY

We design a controller such that (5)-(6) hold when there
is uncertainty. Considering the structure of the system in (1)-
(4), a modified backstepping approach will be proposed as
follows:

Step 1: Let e, = p — p? and e, = v — p¢, we have

ép = € ©))
(10)

. . 1

éy = —ges—p?+ —fRes+di.
m

Consider fReg as a virtual control input, we design it such

that (5) is satisfied. Noting the special structure of the system

in (9)-(10), we choose a Lyapunov function

Ay Ao
Vl(Al,A27B) = / Ul(s)Tds—i—/ JQ(S)TdS
0 0
ki T 71_1 32
toeent b

where 0 = [0,0,0]", k; > 0, ky > 0, 7 is a positive
constant, and

~ 1
Ay = kiep + koey, Ao =koe,, B= o B

where [ is an estimate of % It can be proved that V; is
a positive definite function of €ps Eu, and 3. Furthermore,
Vi=0ife,=0,e, =0, and 5 = 0. The derivative of V;
is

Vl = klal(Al)Tev + (kQUl(Al) + k202(A2) + klev)T X
(—ges — " + Bf Res +d1) — 77" (7711 - /3) (B
—1 (k201 (A1) + koo (A2) + kre,) T fRes).
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To make V1 as small as possible, we choose the virtual
control input for fRes and update law of 3 as

1
(6% = [041,042,0[3]T = 5(701(/\1) 702(/\2) 7D1h(G,5)
+ges + %) (11)
§ = Projg, (1G" fRes) = Projg,, (H)
if € (5, m);
_ H, orif=-<Land H>O0,
= orif =1 and H <0 (12)
0, otherwise
where
- b
m m
H = 4G fRes (13)
G = [G1,G2,G3]" = kao1(A1) + kaoa(As)
+kie, (14)
e G Gs T
nG,o) = [ JairowR Jarrewe ' atewe |(15)

5(t) = e % and §; > 0. Then, if fRes3 = o, we have
Vi < —ko(o1 (A1) + Uz(Az))T(U1(A1) + 02(A2))

—EO'Q(AQ)TO'Q(AQ)-F?)DNS@). (16)

ko
It should be noted that « is well defined since 8 > %
For the defined o, we have the following lemma by simple
calculation.
Lemma 1: If My and M are chosen such that

g—Mp—Ml—Mg—D1>O (17

then ||«|| > 0 and

V3(My + My + Dy + M,) +g
- )

ol < (18)

Step 2: We find f and a virtual control input g4 for the
unit quaternion q. We choose

f =

It is obvious that f > 0 for any time with the aid of Lemma
1.

[lex]]- (19)

Let r3 = ﬁ, we define

de bd _ de bd
no— SRS o

[[(73 b3)bs — (73 b)bs||
p, = 2278 @1)

[[r2 x 73|
The desired attitude of R is chosen as

Rd = [T17 T2, 7"3] (22)

and the desired quaternion gg = [4,€,]" of ¢ is calculated
from (22) by the equations (166)-(168) in [24] which are
omitted here. The desired angular velocity is calculated by

Td4a

(23)

It should be noted that ¢; and w, are well defined because
f is always positive.
With the aid of the virtual control input gg4,

fRd63 =«

and equation (10) can be written as

by =

—O'(Al) — O'(Ag) — D1h+ d1 + (;L - ﬂ) fR€3

+8|lal|Ra(Ry R — Is)es. (24)

Step 3: We assume w is a virtual control input and design
a virtual controller for w such that (5)-(6) satisfied. Let the
difference between ¢ and g4 be

G=q;' @q=[Me"", (25)
The derivative of ¢ is
q = %A(d)(w - R'wq) (26)
where R = RIR. (24) can be written as
€y = —01(A1) —o2(A2) — Dih + dy + (;
—B) fRes — 28||al|Ra(iil3 + S(€))S(e3)e. (27)

Choose a Lyapunov function
Voo = Vit21-q)=Vi+ee+(1-7)?* (28)

It can be proved that V3 is a positive definite function of
(A17A2aﬂv]‘ - ﬁ) and ‘/2 = 0 if (A17A27ﬂ71 - ﬁ) =
(0,0,0,0). The derivative of V5 is
Vo < —ka(01(M1) +02(A2)) T (01 (A1) + 02(Az))
k -
7}6*102(A2)T0'2(A2)5 + 3D1 + ET (w - Rde
2
—2Blla|S(es) " (il + S(6)) " R G)

To make V5 as small as possible, a virtual controller p for
w can be chosen as

1= —ksé+ R wq + 28| S(es) T (7ils + S(€)) TR, G

where k3 is a positive constant. If w were a real control input,
ie., w = p, then

Vo < —ka(01(A1) + 02(A2)) T (01 (A1) + 02(A2))
—fO'Q(Ag)TO'Q(AQ) +3D16 — k3€T€.

Step 4: Since w is not a real control input, w cannot be
. Let

@ = [@1,@0,@3) " =w— 4,
then,
. 1
G = FAME)(—hse +@+28]alS(es)" (05
+5(&)"R;G) (29)
Jo = 71— (SW)(w)+T()a+dy (30)
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where I'(w) denotes a diagonal matrix with its diagonal
elements being the vector w and

a = la1,a2,a3]" =[J1, o, T3] .

Since a and dy are unknown, an adaptive robust control
law will be proposed such that (5)-(6) are satisfied. To this
end, we choose a Lyapunov function

-1
Vs = Vat-0"Jo+ 2 (a—a) (a—a)

2

where v, is a positive constant and & is an estimate of a
which will be designed later. The derivative of V3 along the
solution of (27), (29) and (30) is

o1(A1) + 02(A2)) T (01 (A1) 4 02(A2))
—fUQ(AQ) JQ(AQ) + 3D1(5 - k3€T€+ €T(D
+@T(T—(5( )T(w) +T(i)a + dz)

~%5 (a =) (@ +72(S@)TW) +T(1)@).

Vs <

To make V}) as small as possible, we choose the control law
7 and the update law a as follows:

7= kil — &+ (S@)N(w) + T()a —
a= Prona(—W(S(W)FW)

2h(@,6)  (31)
(u))ﬂv) (32)

where Q, = [J, J| and k4 is a positive constant. Then,

Vs < —kao(o1(A1) + 02(A2)) (01 (A1) + 02(A2))
k
—kiag(Az)TaQ(AQ) +3D10+3Dy6 — ke '€
2
—kyo "o (33)

Based on the above controller design procedure, we have
the following results.

Theorem 1: For the system in (1)-(4) and given desired
trajectories p? and bg, the control inputs (f,7) in (19) and
(31) with the update laws in (12) and (32) ensure that (5)-(6)
are satisfied and (3, @) are bounded. Furthermore, the thrust
force f is larger than zero at any time and is bounded.

IV. CONTROLLER DESIGN WITH UNCERTAINTY AND
INPUT SATURATION

Assume the input 7 is subject to a saturation constraint,
ie.,

T= 0'3(Td) (34)

where 7% € R? is a new control input without constraint
and will be designed later. In order to compensate the effect
of the input saturation, the following auxiliary compensated
system is defined:

(35)
(36)

o = %A(Qa) (Rawa - k5€a)

We = —kywg + F(é)(T - Td)

where g, = [1q, ¢, ] is an auxiliary unit quatermon we €
R3 is an auxiliary angular velocity, 6 = [0]792,03] is an
estimate of

NAAA
and will be designed later, k4 and k5 are positive constants,
and

.
1 1 1
0 =[01,00,05]" = [ }

Ry = T+ 2145(eq) +25%(eq) (37)
R. = R/R. (38)
Define
da = 4, ®q (39)
then,
- 1 =
Qo = 3AG@) (0 -watksRle). @0
Let 75 and r; be defined as in (20) and (21) and
a= R;ra, r3 = % 41
[l

where « is defined in (11). Define R4 as in (22). The unit
quaternion corresponding to R, is denoted as gq4. By (23),
we can calculate wy.

Define ¢ = [75,€"]T = ¢;' ® §a, then,

. 1 ~ -
§ = §A(q)(w —wa— RTwyg+ksRle,)  (42)

where R = R] R/ R. We choose f as in (19). It can be
shown that f = ||@||. So, fR4e3 = & = R} o and equation
(10) can be written as

€y = _U(Al) — O'(Ag) Dih+d; + ( — B) fRes
—20||al|Ra Ra(715 + S(€))S(e3)e. (43)
Choose a Lyapunov function
Vai=Vi+2(1—-17).

It can be proved that V} is a nonnegative function of A1, Ao,
and 7). The derivative of V} is

V4 S —kQ(Ul(A )+O’2(A2)) (01(A1)+02(A2))

_%02(A2) UQ(AQ) + 3D1(5 + €T(w - Rde
2

—wq — 2Bl S(e3) " (713 + S(€)) " (RaRa) ' G
+ksR] €,).

To make V4 as small as possible, a virtual controller p for
w can be chosen as

28||al|S(es) T (7ils + S(€)) T (RaRa) ' G — ksé
+RTwy — k:5f~€; €a (44)

,U =

where k3 is a positive constant. If w were the real control
input, i.e., w = u, then

v, < —ka(o1(A1) + 02(A2)) T (01(A1) + 02(A2))

k
7]6710'2(1&2) OQ(AQ) + 3D15 + gT(fkgg - wa).
2
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Since w is not the real control input, w cannot be u. Let

W= [@17@25@3]T =W [ W

then,
. 1. . .
¢ = FAQ(-ke+o+ 28| S(es) " (7113
+5(8) T (RaRa)" @)
w ()B4 T(0) (1 + dy) — fi + kawa — T(B) (7 — 79)
= T +T(0 — 6)7 + kawo + D(I)B + T(0)ds — fu
where
T T
B = [ B1,By,B3 | = wows,wiws,wiws |
In = [ HlaH27H3 ]T

— [ I e = ), Iy (s — i), Iy (= ) |

To make ¢ converge to the identity quaternion and @
converge to zero, we choose a Lyapunov function

_ 1 7t AN 5
V5 = ‘/21"‘5(40 W+7(9—9) (9—0)
-1
+737(n—ﬁ)T(H_ﬂ)

where IT = [II;,II,, II5] T is an estimate of II, , and 5 are
positive constants. The derivative of Vj is

Vs < —ka(01(A1) + 02(A2)) T (01 (A1) + 02(A2))
f%az(Az)Tag(AQ) +3D16 — ksé e+ (T(H)r?
2

+é+T(IN)B + Fawa + [(0)dy — 1)
RN (NG
—5 (10" (H — 731“(3)@) :

To make V5 as small as possible, we choose

= IO (~kalw—p) — e~ TB+ 4
D
~Z2h(@,4)) (45)
J
0; = Projg,(1er@;), j=1,2,3 (46)
I, = wBjw, j=123 (47)

where Qy = [lf, ﬂ Then,

Vs < —kao(o1(A1) + 02(A2)) T (01 (A1) + 02(A2))
_%0’2(A2)T0’2(A2) + 3D1(5 - k3€—r€
2
— kT o+ 3DJQ‘S. (48)

With the aid of the above procedure, we have the following
results.

Theorem 2: For the system in (1)-(4) and given desired
trajectories p? and bg, the control inputs (f,7) in (19) and
(34) with 7% in (45) and the update laws in (12) and (46)-(47)
ensure that

1 3, f[, and 0 are bounded,

2) ep, €y, €, and w converge to zero, and

3) by — bg is uniformly ultimate boundedness (UUB).
Furthermore, f is larger than zero at any time and (7) are
satisfied if My, Ms, and M3 are chosen such that

mMys — g
#—Dl—Mp,MB:MT.

My + My <

V. SIMULATION

Simulation results are presented to illustrate the effective-
ness of the proposed controllers. We consider a VTOL UAV
modeled as a rigid body with mass m = 0.85kg and inertia
tensor J = diag([4.856,4.856,9.801]) 2kg m? (see [14]).
In the controllers, m and J are unknown. However, it is
known that m € [0.7, 1]kg, i.e., m = 0.7kg and m = lkg.
For disturbance, it is assumed that d; and d» are white noise
with magnitudes D; = Dy = 0.05.

In the simulation, the desired trajectory p? and b9 are
chosen as pi(t) = [100cos(0.05¢),100sin(0.05¢),10 —
10exp(—0.1¢)] and b¢ = [sin(0.05¢), — cos(0.05¢),0] . If
there is no input constraint, the robust adaptive controller
is (19) and (31) with the aid of Theorem 1. In the control
law, we chose o;(x) = M, tanh(x) where M; = 4. It can
be verified that (17) is satisfied. Simulation was done for
one group of control parameters. The time response of the
tracking errors of p; — p?, py — pd, and p3 — p¢ are shown
in Fig. 1 which shows they converge to zero. Fig. 2 depicts
the response of the tracking error ¢. It shows that 7 asymp-
totically converge to one and € asymptotically converges to
zero. The simulation results show the effectiveness of the
results in Theorem 1.

If there are uncertainty and input constraints. The control
laws can be obtained in (19) and (34) with the aid of
Theorem 2. In the simulation, the bounds on the force and
the toque are chosen as My = 12 N and M, = 0.05. It
can be shown that Assumption 6 is satisfied. Simulation
was done for a set of chosen control parameters. The time
response of the tracking errors of p; — p{, p» — p4, and
p3 — pd are shown in Fig. 3. Fig. 4 shows the response of
the tracking error ¢ '®q. Fig. 5 shows the total force f. It
is obvious that f is bounded and is larger than zero at any
time. Fig. 6 shows the input torque 7. It is bounded by 0.05.
The simulation results show the effectiveness of the results
in Theorem 2.

VI. CONCLUSION

This paper considered the tracking control problems of a
VTOL UAV with uncertainty and input constraints. Consid-
ering the uncertainty in the dynamics of the system, a robust
adaptive tracking controller was proposed such that the
position and the attitude of a VTOL UAV asymptotically con-
verge to their desired value with the aid of the backstepping
technique. Considering the uncertainty and input constraints,
a saturation robust adaptive controller was proposed with the
aid of an auxiliary compensated system. Simulation results
show the effectiveness of the proposed controllers.
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